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Abstract

Similarity Relations may be constructed from a set of fuzzy at-
tributes. Each fuzzy attribute generates a simple similarity, and these
simple similarities are combined into a complex similarity afterwards.
The Representation Theorem establishes one such way of combining
similarities, while averaging them is a different and more realistic ap-
proach in applied domains. In this paper, given an averaged similarity
by a family of attributes, we propose a method to find families of new
attributes having fewer elements that generate the same similarity.
More generally, the paper studies the structure of this important class
of fuzzy relations.

1 Introduction

Similarity Relations were introduced by Zadeh [11] as a natural way of fuzzi-
fying classical equivalence relations. They have become widely used, and
they appear under different names in the literature, depending on the au-
thors and on the specific algebrization of the multivalued transitivity axiom.
So Similarity Relation, Likeness, Fuzzy Equality, T -indistinguishability Op-
erator, or simply Fuzzy Equivalence Relation, are common terms that refer
to this class of fuzzy relations.

Following Trillas and Valverde [10] we favor the term T-indistinguishabil-
ity Operator, which makes explicit reference to the t-norm T , and we will use
Similarity only in an informal way.

Definition 1.1. Let X be a set and T a t-norm. A T -indistinguishability
operator E on X is a fuzzy relation E : X × X → [0, 1] satisfying, for all
x, y, z ∈ X,
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1. E(x, x) = 1 (Reflexivity)

2. E(x, y) = E(y, x) (Symmetry)

3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -Transitivity)

The transitivity axiom involves a t-norm [6]. A t-norm T is an operation
on the unit interval that is associative, commutative, non-decreasing in both
variables and which satisfies the boundary condition T (x, 1) = x for all x ∈
[0, 1]. Since it is generally accepted that t-norms are the AND connectives
of Fuzzy Logic [4], axiom 3 in Definition 1.1 can be read as if x is similar to
y, AND y is similar to z, THEN x is similar to z.

Definition 1.1 is intended to provide a formal framework for dealing with
the primitive notion of similarity as perceived by humans. If, for example,
an observer is presented with a set X of characters written by hand by
several people and questioned about the resemblances between them, such
observer is likely to answer by providing a degree of similarity for each pair of
handwritten characters. By normalizing those degrees a map E : X ×X →
[0, 1] is obtained, which is expected to fulfill, whatever imperfectly, the axioms
of a T -indistinguishability operator for some suitably chosen t-norm T .

On the other hand, the problem of determining the map (or fuzzy relation)
E may be tackled from an entirely different angle. We may select a set of
criteria, such as size, thickness, roundness and so forth that every single
character x ∈ X is liable to fulfill to some degree. Again, by normalizing
those degrees a family of fuzzy subsets hi : X → [0, 1] , i ∈ I, is obtained,
each fuzzy subset representing one of the fuzzy criteria which have been
selected as the features relevant to this problem. Such a family of fuzzy
subsets induces a family of similarities on X, and some suitable combination
of these similarities ought to yield, at least approximately, the map E as a
result.

In a theoretical setting, the Representation Theorem (2.5) [10] provides a
synthesis of the two previous approaches which consists in taking the infima
of all the elementary T -indistinguishability operators Ehi induced by single
fuzzy subsets hi : X → [0, 1],

E(x, y) = inf
i∈I

Ehi(x, y).

From an applied point of view, though, this way of aggregating the simple
similarities induced by the attributes hi may seem a bit unrealistic. This is



because a single attribute hi taking discordant values hi (x) 6= hi (y) on two
elements x and y is enough to render those elements strongly dissimilar by
E, regardless of how many of the remaining attributes hj, j 6= i, take close
or even identical values on the pair. If the theory of similarity relations is
to be applied to practical domains, some other ways of averaging the simple
similarities Ehi need to be explored.

Quasi-arithmetic means (see [1]) are a family of averaging operators which
are widely used. They may be easily related to the continuous Archimedean
t-norms presented in Section 2, because they may also be obtained from
additive generators. This common theoretical background makes them very
suitable to average indistinguishabilities.

Across this paper we will be concerned with T -indistinguishability oper-
ators Ē such that

Ē = M
i∈I

(αiEhi)

where M represents a quasi-arithmetic mean, (αi)i∈I a family of weights,
and T an Archimedean t-norm, although some particular results are also
provided for the t-norm T = MIN . Our goal is to find alternative fami-
lies h′j : X → [0, 1], j ∈ J , having fewer (and, in general, different) fuzzy
attributes and such that

Ē = M
j∈J

(
βjEh′j

)
.

Smaller generating families of fuzzy sets are of practical interest both for
storage and for computational reasons, but also because they provide a way
of representing data in a more understandable, visual way (see example 5.6).

The proposed solution is to split the family {hi}i∈I into subfamilies
{
hij
}
ij∈Ij

of compatible fuzzy subsets, each subfamily to be replaced afterwards by a
quasi-arithmetic mean of all its members, that is, a new fuzzy subset h′j.

The key concept behind such grouping, splitting and further aggregating
is the order induced by a fuzzy attribute on X. The structure of these orders
is studied in Section 3. Section 4 deals with the simplest case, in which only
one induced order is involved. Most of the results presented there are already
known. Section 5 and 6 are new. Section 5 deals with the general case, and
contains the main contributions of this paper. Section 6 makes use of the
so-called betweenness relations [8] in order to explore the structure of the
averaged similarities Ē when the fuzzy attributes {hi}i∈I are unknown.



2 Preliminaries

The majority of the results in this paper refer to T -indistinguishability oper-
ators with respect to a continuous Archimedean t-norm. Formally, a t-norm
is Archimedean if and only if for each x, y in the open interval (0, 1) there is
a natural number n such that xn 6 y, where xn = T (...T (x, T (x, x))...) (n
times).

Every continuous Archimedean t-norm is isomorphic to the sum of posi-
tive real numbers, bounded or unbounded, according to Ling’s theorem [6].
The order reversing isomorphism t : [0, 1] → [0,+∞] is called an additive
generator of T, and T (a, b) = t[−1](t(a) + t(b)) for all a, b ∈ [0, 1] where t[−1]

is the pseudo-inverse of t.
The standard examples of continuous Archimedean t-norms are  L (the

 Lukasiewicz t-norm) and P , the product t-norm. The most prominent exam-
ple of continuous t-norm which is not Archimedean is T = MIN .

If the t-norm T has an additive generator t, the T -transitivity (defini-
tion 1.1.3) can be understood as a particular version of the triangle inequal-
ity for metrics, since T (E (x, y) , E (y, z)) ≤ E (x, z) can be rewritten as
t (E (x, y)) + t (E (y, z)) ≥ t (E (x, z)) or, in a more convenient notation for
the purposes of this paper,

(t ◦ E) (x, y) + (t ◦ E) (y, z) ≥ (t ◦ E) (x, z) .

Such interpretation allows us to think of similar objects as close objects in
a metric sense. Although T = MIN lacks an additive generator, it behaves
similarly to its Archimedean counterparts, only that it becomes associated
to an ultrametric instead of a proper metric [9].

Each fuzzy subset hi : X → [0, 1], i ∈ I induces a similarity on X by
means of ET , the biresiduation, or natural indistinguishability with respect to
T on [0, 1].

Definition 2.1. The residuated implication of a t-norm T is the map IT :
[0, 1]× [0, 1]→ [0, 1] defined by IT (a, b) = SUP {α ∈ [0, 1] /T (α, a) 6 b}, for
all a, b ∈ [0, 1]

Definition 2.2. The residuated biimplication, or natural indistinguishability,
of a t-norm T is the map ET : [0, 1] × [0, 1] → [0, 1] defined by ET (a, b) =
MIN {IT (a, b) , IT (b, a)}



As the t-norm T represents the multivalued connective AND, the resid-
uated implication IT and the natural indistinguishability ET associated to T
represent the multivalued implication and biimplication on the unit interval,
respectively. Accordingly, they are often written as→T and↔T respectively.

It is worth noticing that the natural indistinguishability ET is indeed a
T -indistinguishability in the sense of definition 1.1.

For the purposes of this paper, the following lemmata provide operative
definitions of ET in the case of a continuous Archimedean t-norm, or T =
MIN .

Lemma 2.3. Given a continuous Archimedean t-norm T, and t an ad-
ditive generator of T , the natural indistinguishability operator ET is the
T -indistinguishability operator on the unit interval defined by ET (x, y) =
t[−1] (|t (x)− t (y)|) for all x, y ∈ [0, 1].

Lemma 2.4. The natural indistinguishability EMIN is the MIN-indistin-
guishability operator on the unit interval defined for all x, y ∈ [0, 1] by

EMIN (x, y) =

{
1, if x = y
MIN (x, y) , otherwise.

Each fuzzy subset hi : X → [0, 1] induces a T -indistinguishability opera-
tor on X via Ehi (x, y) = ET (hi (x) , hi (y)), and the Representation Theorem
states that every indistinguishability E can be obtained from T -indistin-
guishability operators Ehi induced by single fuzzy attributes hi.

Theorem 2.5. [10] Representation Theorem. Let E be a fuzzy relation on a
set X and T a continuous t-norm. E is a T -indistinguishability operator if
and only if there exists a family H = {hi}i∈I of fuzzy subsets of X such that
for all x, y ∈ X

E(x, y) = inf
i∈I

Ehi(x, y).

Definition 2.6. [1] The quasi-arithmetic mean M in [0,1] generated by a
continuous strict monotonic map t : [0, 1] → [−∞,∞] is defined for all
n ∈ N and x1, ..., xn ∈ [0, 1] by

M(x1, ...xn) = t−1

(
t(x1) + ...+ t(xn)

n

)
.

M is continuous if and only if Im t 6= [−∞,∞], (where Im t is the set of
all z such that z = t(x) for some x ∈ [0, 1]).



Proposition 2.7. [9] The map assigning to every continuous Archimedean t-
norm T with additive generator t the quasi-arithmetic mean mt generated by
t is a canonical bijection between the set of continuous Archimedean t-norms
and continuous quasi-arithmetic means with t(1) 6= ±∞.

Similarly, weighted quasi-arithmetic means can be defined in the following
way.

Definition 2.8. Let α1, α2, ..., αn be positive numbers such that
∑n

i=1 αi =
1. αi are called weights. The weighted quasi-arithmetic mean Mα1,α2,...,αn

of x1, x2, ..., xn ∈ [0, 1] with weights α1, α2, ..., αn generated by a continuous
strict monotonic map t : [0, 1]→ [−∞,∞] is

Mα1,α2,...,αn(x1, x2, ..., xn) = t−1

(
n∑
i=1

αi · t(xi)

)
.

Mα1,α2,...,αn is continuous if and only if Im t 6= [−∞,∞].

Proposition 2.9. [9] The map assigning to every continuous Archimedean t-
norm T with additive generator t the weighted quasi-arithmetic mean Mα1,α2,...,αn

generated by t is a canonical bijection between the set of continuous Archimedean
t-norms and continuous weighted quasi-arithmetic means with weights α1, α2, ..., αn
and with t(1) 6= ±∞.

For simplicity, we well writeM(αi, xi) instead ofMα1,α2,...,αn(x1, x2, ..., xn).
The  Lukasiewicz t-norm provides a specially simple example of quasi-

arithmetic mean.

Example 2.10. Consider the additive generator t : [0, 1]→ [0, 1] defined by
t (a) = 1− a. Its quasi-inverse is

t[−1](b) =


0, if b > 1
1− b, if 0 6 b < 1
1, if b < 0

The t-norm T (a, b) = t[−1] (t(a) + t(b)) is then the  Lukasiewicz t-norm,
T (a, b) = MAX(a + b − 1, 0), and the associated quasi-arithmetic mean is

M(αi, ai) =
n∑
i=1

αiai =
n∑
i=1

1
n
ai, the standard arithmetic mean, provided that

αi = 1
n

for all i = 1, ..., n.

Similarly, it is easy to show that the quasi-arithmetic mean associated to
the product t-norm is the standard geometric mean.



3 Orders Induced by Fuzzy Attributes

In this section the structure of the orders induced by families of fuzzy subsets
on a finite set X is thoroughly explained. We represent fuzzy attributes, or
criteria, by means of fuzzy subsets h : X → [0, 1], and any fuzzy subset h
naturally induces the order of [0, 1] on X. We will note this order (which is,
in general, a preorder) by ≤h. Formally:

Definition 3.1. A relation on X is called:
3.1.1 A preorder if it is reflexive and transitive.
3.1.2 An order if it is reflexive, transitive and antisymmetric.
3.1.3 A total preorder if it is reflexive, transitive and such that x ≤ y or

y ≤ x for all x, y ∈ X.

Definition 3.2. Induced preorder. The preorder induced by a fuzzy subset
h : X → [0, 1] on X, ≤h, is defined by x ≤h y if and only if h(x) ≤ h(y).

It is straightforward to check that ≤h is, indeed, a preorder on X, and a
total one, since [0, 1] is a totally ordered set.

Lemma 3.3. For all fuzzy subsets h : X → [0, 1], the relation ≤h is a total
preorder on X.

Accordingly, a family of fuzzy subsets H = {hi}i∈I induces a family of
total preorders ≤hi , i ∈ I, on X, the structure of which is key to reduce the
complexity of the similarities obtained as averages of the singly generated
similarities Ehi , i ∈ I.

NOTE: Informally, we will refer to such total preorders simply as the
orders induced by H.

A set X with a total order defined on it is called a totally ordered set.
The most prominent example in our context is the unit interval [0, 1] with
≤, the standard real line’s order.

Example 3.4. An important example of a total preorder which is not an
order is provided by X = [0, 1]N . For a fixed k = 1...N we consider the
relation ≤k defined by x ≤k y if, and only if xk ≤ yk, where x = (x1, ..., xN)
and y = (y1, ..., yN).

For a given preorder ≤i, we will use x <i y to indicate the fact that x ≤i y
holds while y ≤i x does not. A necessary, but not sufficient, condition for
which is x 6= y.



Similarly, we will use x =i y when x ≤i y and y ≤i x. If ≤i is an order,
then x =i y if and only if x = y.

Definition 3.5. [2] Two total preorders ≤i and ≤j on X are compatible if
and only if x <i y ⇒ x ≤j y for all x, y ∈ X

If ≤i and ≤j on X are compatible we will write ≤i∼≤j.
The notion of compatibility of orders is central to this paper. It is perhaps

better grasped by saying that x <i y and y <j x cannot hold at the same
time, provided that ≤i∼≤j. That is, the order ≤i cannot revert the order
≤j.

Proposition 3.6. Let P (X) be the set of all total preorders on X. Then ∼
is a reflexive and symmetric relation on P (X).

Proof. The relation is trivially reflexive.
As for symmetry, we have:
6i∼6j iff (∀x, y) if x <i y then x 6j y iff
(∀x, y) if ¬ (x 6j y) then ¬ (x <i y) iff
(∀x, y) if y <j x then y 6i x iff 6j∼6i.

Proposition 3.7. Let O(X) be the set of all total orders on X. The relation
∼ is the standard equality of orders on O(X).

Proof. Given ≤i,≤j∈ O(X), we want to see that if ≤i∼≤j then ≤i and ≤j
are the same order. That is, that if ≤i∼≤j then, for all x, y ∈ X, x ≤i y if
and only if x ≤j y.

For all x, y ∈ X, if x ≤i y then x =i y or x <i y. Since the order ≤i is
total, x =i y is only possible when x = y. It follows that x = y or x ≤j y,
or simply that x ≤j y. We have proved that if x ≤i y then x ≤j y with
independence of the indices i and j, and therefore that x ≤i y if and only if
x ≤j y.

Although ∼ reduces to the standard equality of orders when restricted to
O(X), it becomes a more general kind of relation when defined on P (X).

Example 3.8. Consider X = {x1, x2, x3, x4} and the total preorders ≤a,≤b
and ≤c defined by:

x1 <a x2 <a x3 <a x4



x1 <b x2 =b x3 <b x4

x1 <c x3 <c x2 <c x4

Then 6a∼6b (that is, ≤a and ≤b are compatible), and 6b∼6c, but ≤a�≤c.
In fact, when restricted to the set P ′ = {≤a,≤b,≤c} ⊂ P (X) we have that

[6a]∼ = {6a,6b}
[6c]∼ = {6b,6c}
[6b]∼ = {6a,6b,6c}

where [6i]∼ means the class of 6i by the relation being compatible. Such
classes do not constitute a partition.

NOTE: we use the term class in a broad sense, meaning by it the set of
all the elements related to a particular one, even when the involved relation
is not an equivalence.

Let us focus on the orders induced on X by fuzzy attributes (Definition
3.2).

Proposition 3.9. Let h : X → [0, 1] be a fuzzy subset, and let ≤h be the
preorder induced on X by h. Then h is injective if and only if ≤h is a total
order on X.

Proof. Trivial.

As a consequence, a given family of fuzzy subsets H = {hi}i∈I inherits
the notion of compatibility defined previously for total preorders.

Definition 3.10. Two fuzzy subsets h, g : X → [0, 1] are compatible if their
respectively induced preorders are compatible, ≤h∼≤g.

We will use h ∼ g to indicate the compatibility of h and g.

Corollary 3.11. Let H = {hi}i∈I be a family of fuzzy subsets. Then ∼ is a
reflexive and symmetric relation on H.

Proof. It is a consequence of Proposition 3.6.

Corollary 3.12. Let H = {hi}i∈I be a family of fuzzy subsets. If hi is
injective for all i ∈ I then ∼ defines an equivalence relation on H.



Proof. It is a consequence of Proposition 3.7, and the fact that injective fuzzy
subsets induce total orders on X.

The injectivity of fuzzy subsets hi is not a necessary condition for ∼ to
be an equivalence relation. As a rule of thumb, we may say that families H
with a small number of fuzzy subsets compared to the number of elements
of X tend to make of ∼ an equivalence relation. In general, carefully chosen
families H provide equivalence relations and, therefore, partitions of H.

Example 3.13. Consider X = {x1, x2, x3, x4, x5, x6} and three fuzzy subsets
ha, hb, hc : X → [0, 1] such that:

ha (x1) < ha (x2) = ha (x3) < ha (x4) = ha (x5) < ha (x6)

hb (x1) = hb (x2) < hb (x3) < hb (x4) < hb (x5) = hb (x6)

hc (x1) = hc (x2) < hc (x4) < hc (x3) = hc (x5) < hc (x6)

Then ha ∼ hb (that is, ha and hb are compatible), but ha � hc and hb � hc.
The set H = {ha, hb, hc} becomes therefore partitioned into two equivalence
classes:

[ha]∼ = {ha, hb}
[hb]∼ = {ha, hb}
[hc]∼ = {hc}

Another interesting feature of the injective fuzzy subsets is that they may
be thought of as the prototypes at the core of the compatibility relation’s
classes, even if such classes are not proper ones and do not constitute a
partition of H. If the compatibility relation ∼ defined on H is not an equiv-
alence relation, but each of its classes has at least one injective fuzzy subset,
then the overlapping among classes are entirely made of non-injective fuzzy
subsets.

Proposition 3.14. Let f, g, h : X → [0, 1] be fuzzy subsets such that f and
g are injective, and f � g. If h ∼ f and h ∼ g then h is non-injective.

Proof. Since f � g there exist x, y ∈ X such that f (x) < f (y) and g (x) >
g (y), and because h ∼ f and h ∼ g then both h (x) 6 h (y) and h (x) > h (y)
hold, and therefore h (x) = h (y).

Also, if a class has at least one injective fuzzy subset, transitivity is
guaranteed inside that particular class.



Proposition 3.15. Let f, g, h : X → [0, 1] be fuzzy subsets of X such that
g ∼ f and h ∼ f . If f is injective, then g ∼ h.

Proof. For a given pair x, y ∈ X, if h (x) < h (y) then f (x) < f (y) ( for
h ∼ f and f is injective) and therefore g (x) 6 g (y) (since f ∼ g).

The preorders ≤hi induced on X by the fuzzy subsets hi ∈ H and the
(classical) compatibility relation ∼ defined on them are key to the study of
the (fuzzy) similarity relations because they explain how some subsets of
fuzzy attributes hi may be merged into a single one g, depending on the
compatibility of the induced preorders ≤hi .

In Section 4, the families H are studied such that the compatibility re-
lation ∼ is an equivalence relation whose associated partition reduces to a
single class. Such families of fuzzy attributes can be merged into one sin-
gle attribute. In Section 5, families H yielding many equivalence classes or
having non-transitive compatibility relations are considered.

4 Averaged Indistinguishabilities that can be

Generated by a Single Fuzzy Set

In this section we consider families H containing only compatible fuzzy at-
tributes. The compatibility relation ∼ is then an equivalence relation having
only one class. Thus, [h]∼ = H for all h ∈ H.

In [2] some results are given concerning such familiesH, showing that they
can be replaced by a single fuzzy subset obtained as an arithmetic mean of
all the fuzzy subsets in H. Let us recall some of them.

Let T be a continuous Archimedean t-norm with additive generator t,
and M a quasi-arithmetic mean with the same generator t as T , and weights
αi, i ∈ I.

Given a family of fuzzy subsets H = {hi}i∈I , let us note Ē = M (αi, Ehi),
that is, Ē represents the quasi-arithmetic mean of the T - indistinguishability
operators Ehi . On the other hand, we may consider the singly generated T -
indistinguishability operator Eh̄ where h̄ : X → [0, 1] is the quasi-arithmetic
mean of the hi’s, that is, h̄ = M (αi, hi). In this situation, the following
propositions hold.

Proposition 4.1. Eh̄ is an indistinguishability operator with respect to T .



Proof. Obvious, since Eh̄ is the T -indistinguishability generated by the fuzzy
subset h̄.

Proposition 4.2. [7] [9] Ē is an indistinguishability operator with respect to
T .

Proposition 4.3. [7] Ē ≤ Eh̄

Proposition 4.4. [2] Ē = Eh̄ if, and only if, hi ∼ hj for all i, j ∈ I.

Proposition 4.4 is the key result upon which Section 5 is built. If a
set of fuzzy criteria does not constitute a single class with respect to the
compatibility relation ∼, it can still be split into as many subsets as classes,
and for each subset a single fuzzy set is enough to generate the relation.

Slightly different results are obtained when the t-norm T = MIN is
considered.

Proposition 4.5. If T = MIN , Eh̄ is an indistinguishability operator with
respect to the MIN t-norm.

Proof. See proof 4.1.

Proposition 4.6. [2] Let T = MIN . If for all x, y ∈ X either hi(x) < hi(y)
for all i ∈ I, or hi(y) < hi(x) for all i ∈ I, then Ē = Eh̄.

It is worth noting that the previous proposition holds for any considered
quasi-arithmetic mean, even though there is no possible concordance between
the additive generator t of the mean M and that of the t-norm, since T =
MIN lacks one.

Another interesting consequence is that although Ē is not, in general,
a MIN -transitive fuzzy relation, it is so if the conditions of Proposition
4.6 hold, because Ē = Eh̄, and Eh̄ is a MIN -indistinguishability operator,
according to Proposition 4.5.

Corollary 4.7. In the conditions of Proposition 4.6, Ē is a MIN-indis-
tinguishability operator.

Next lemma shows that conditions of Proposition 4.6 hold in case only
injective fuzzy subsets are considered.

Lemma 4.8. If hi ∼ hj for all i, j ∈ I and hi is injective for all i ∈ I, then
for all x, y ∈ I either hi(x) < hi(y) for all i ∈ I holds, or hi(y) < hi(x) for
all i ∈ I does.



Proof. Compatibility of hi and hj reduces to hi (x) < hi (y)⇒ hj (x) < hj (y)
if only injective fuzzy subsets hi and hj are considered.

Therefore, a unified result for both the Archimedean and the MIN case
can be provided in the injective case.

Proposition 4.9. Let T be a continuous Archimedean t-norm additively gen-
erated by t, and M a quasi-arithmetic mean with the same generator t. For
both T and the t-norm MIN , if hi ∼ hj for all i, j ∈ I, and hi is injective
for all i ∈ I, then ĒH = Eh̄

5 The General Case: Reduction of the Num-

ber of Attributes

In this section we assume no restrictive conditions on the orders induced
by the fuzzy subsets H = {hi}i∈I on the finite set X. The goal is to split
the family H into subfamilies Hj made of compatible attributes that can be
merged into a single one gj. The smaller the number of subfamilies Hj, the
simpler the representation.

It is worth noticing that the fuzzy subsets gj do not necessarily belong
to the the original family H = {hi}i∈I , because they are built as quasi-
arithmetic means of elements of H. A new family G = {gj}j∈J with (in
general) gj 6= hi, and having fewer elements than H, is therefore obtained.

As in Section 4, we shall deal first with continuous Archimedean t-norms,
and shall consider T = MIN afterwards.

Let H = {hi}i∈I be a family of fuzzy subsets of X which generates an
averaged similarity Ē = M

i∈I
(αi, Ehi).

We first consider the case when the family H = {hi}i∈I has been previ-
ously split into disjoint subsets of compatible elements. Formally, we assume
that there is a family of subsets {Hj}j∈J of H such that H =

⋃
j∈J

Hj and

Hj ∩Hj′ = ∅ if j 6= j′, a compact notation for which is H =
◦⋃
j∈J

Hj, and such

that hk ∼ hk′ for any arbitrarily chosen hk, hk′ ∈ Hj.
Note that, in such situation, also the family of indexes I becomes parti-

tioned into disjoint subsets, I =
◦⋃
j∈J

Ij so that Hj = {hk}k∈Ij for all j ∈ J .



Obviously, the set J has less or, at most, the same number of elements than
the set I, |J | 6 |I|. Thus it is justified to talk about reduction of attributes,
meaning a reduction in their numbers.

Theorem 5.1. Let T be an Archimedean continuous t-norm and M a quasi-
arithmetic mean with weights (αi)i∈I and the same additive generator as T .

Let H = {hi}i∈I be a family of fuzzy subsets of X, such that H =
◦⋃
j∈J

Hj, and

that hk ∼ hk′ for all k, k′ ∈ Ij. Then there exists a family G = {gj}j∈J
of fuzzy subsets of X and weights (βj)j∈J such that Ē = M

i∈I
(αiEhi) =

M
j∈J

(
βj, Egj

)
.

Proof. 5.1. Our goal is to build a family of fuzzy subsets (gj)j∈J and weights

(βj)j∈J such that Ē = M
i∈I

(αi, Ehi) = M
j∈J

(
βj, Egj

)
. Each fuzzy set gj will be

obtained as the quasi-arithmetic mean of all the fuzzy subsets in the subset
Hj, that is, gj = h̄j = M

k∈Ij
(γk, Ehk) for some wheights γk which will be

naturally inferred from the following equalities.

Ē (x, y) = M
i∈I

(αi, Ehi (x, y)) = t[−1]

(∑
i∈I

αi (t ◦ Ehi) (x, y)

)

= t[−1]

∑
j∈J

∑
k∈Ij

αk (t ◦ Ehk) (x, y)


=
(1)
t[−1]

∑
j∈J

βj

∑
k∈Ij

αk
βj

(t ◦ Ehk) (x, y)


= t[−1]

∑
j∈J

βj
(
t ◦ t[−1]

)∑
k∈Ij

αk
βj
t ◦ Ehk (x, y)


=
(2)
t[−1]

(∑
j∈J

βjt

(
M
k∈Ij

(γk, Ehk (x, y))

))

=
(3)
t[−1]

(∑
j∈J

βj
(
t ◦ Egj

)
(x, y)

)
=
(4)
M
j∈J

(
βj, Egj

)



where the numbered equalities are consequence of:

(1) Define βj =
∑
k∈Ij

αk

(2) Define γk =
αk
βj

and note that
∑
k∈Ij

γk = 1

(3) Take gj = h̄j = M
k∈Ij

(γk, Ehk) and apply proposition 4.4.

(4) Note that
∑
j∈J

βj = 1

Corollary 5.2. In the conditions of the previous theorem, if at least one
subset Hj has more than one element, then |J | < |I|.

The previous theorem is built on the hypothesis that the family H may
be partitioned into disjoint subsets Hj made up of compatible fuzzy subsets.

If the compatibility relation ∼ is transitive, and therefore an equivalence
relation, then the set H becomes naturally partitioned into its equivalence
classes. Then each subset Hj can be thought of as the class of any of its
elements hk, that is, Hj = [hk]∼.

According to corollary 3.12 if all the hi are injective, then the compatibil-
ity relation ∼ defined on H = {hi}i∈I is an equivalence relation, and therefore
injective families of fuzzy subsets become naturally split into classes.

A similar theorem to 5.1 may be stated for T = MIN if H = {hi}i∈I is
a family of injective fuzzy sets.

Theorem 5.3. Let M be a quasi-arithmetic mean with weights (αi)i∈I , T =
MIN , and H = {hi}i∈I a family of injective fuzzy subsets of X. Then
Ē = M

i∈I
(αi, Ehi) = M

j∈J

(
βj, Egj

)
for some family G = {gj}j∈J of fuzzy subsets

of X and weights (βi)i∈I , where
{

[hj]∼
}
j∈J is the set of all the ∼ equivalence

classes.

Proof. The proof of 5.1 may be simply rewritten here, since
(
[hj]∼

)
j∈J pro-

vides a partition of H, and equalitiy (3) holds for T = MIN under the
hypothesis of injectivity, according to 3.12.



Transitivity of the compatibility relation ∼ is not, though, a necessary
condition. Indeed, we will provide a constructive proof of the fact that all
families H = {hi}i∈I can be split into disjoint subfamilies {Hj}j∈J . Each Hj

is built upon an injective fuzzy subset fj which may or may not belong to
H.

Proposition 5.4. Let H = {hi}i∈I be a family of fuzzy subsets of X. Then,
there exists a family F = {fj}j∈J of injective fuzzy subsets of X and, for

each fj a subset Hj ⊆ H such that H =
◦⋃
j∈J

Hj, and that hk ∼ hk′ for all

k, k′ ∈ Ij.

Next lemma will be helpful in order to prove the previous proposition.

Lemma 5.5. Let h : X → [0, 1] be a non-injective fuzzy subset of X. Then
there exists an injective fuzzy subset f : X → [0, 1] such that h ∼ f .

Proof. Let us note h (xi) = ai, and suppose ai < aj if i < j. Since h is
non-injective, h (X) = {a1, ..., ak} with k < n.

If k = 1 then any injective fuzzy set f satisfies h ∼ f .
Let us suppose 1 < k, and consider b1, ..., bk+1 ∈ [0, 1] as follows:

b1 = a1

bj =
aj + aj−1

2
if j = 2, ..., k

bk+1 = ak

Then, if Aj = h−1 (aj) =
{
xk1 , ..., xkj

}
we may consider any injective

map fj : Aj → (bj, bj+1) and the map f : X → [0, 1] defined piecewise by
f (xi) = fj (xi) if xi ∈ Aj, is injective and compatible with h.

Let us proceed with the proof of proposition 5.4.

Proof. Let F = {fl}l∈L, the set of all injective fuzzy subsets of X. According
to corollary 3.12, the compatibility relation ∼ defines an equivalence relation
on F . Let {Fm}m∈M be the set of its classes, that is, Fm = [fm]∼, for

arbitrarily chosen fm ∈ Fm. We then have that F =
◦⋃

m∈M
Fm.

We can construct a map ψ : I →M such that:
a. If ψ (i) = m then hi ∼ fm.



b. If ψ (i) = ψ (j) then hi ∼ hj.
Indeed, for each i ∈ I we consider an injective fuzzy set f defined as in

lemma 5.5 , and define ψ (i) = m if f ∈ Fm. Such a ψ is well defined because
f belongs only to one equivalence class Fm. Defined in this way, obviously
hi ∼ fm. Also, for any other k ∈ I such that ψ (i) = ψ (k) proposition 3.15
assures that hk ∼ hi.

Finally, the sets Hj are obtained by taking J = Im (ψ) , Ij = ψ−1 (j),
for all j ∈ J . Construction ensures both that Ij ∩ Ij′ = ∅ if j 6= j′ and that⋃
j∈J

Ij = I.

Note that the partition {Hj}j∈J obtained in the previous proof is, in
general, not unique. Unless ∼ defines an equivalence relation on H, some
non-injective fuzzy subsets hi may be assigned to different injective ones fj
by lemma 5.5, and therefore to different classes Hj.

An interesting application that involves non-injective fuzzy subsets is
shown in the next example, where a family of binary crisp attributes is packed
into fewer fuzzy attributes. It shows how fuzzy concepts may be built from
crisp ones by grouping those when the induced orders are taken into account.

Example 5.6. Synthesizing crisp data into fuzzy attributes.
Consider X = {x1, x2, x3, x4, x5, x6} and a family of crisp binary at-

tributes H = {h1, h2, h3, h4, h5} explicitly defined by the following matrix,
where row i represents the element xi, and column j represents the attribute
hj.

x1 0 0 0 0 0
x2 1 0 0 1 0
x3 1 1 0 1 1
x4 1 1 0 1 0
x5 1 1 0 0 0
x6 1 1 1 0 0

h1 h2 h3 h4 h5

We define a similarity on X by averaging the crisp equivalence relations

Ehk (xi, xj) = 1− |hk (xi)− hk (xj)| , k = 1, ..., 5, as E =
5∑

k=1

1
5
Ehk .

E is an indistinguishability operator with respect to the  Lukasiewicz t-
norm, T =  L.



The preorders induced on X by the attributes hj is as follows:

x1 <h1 x2 =h1 x3 =h1 x4 =h1 x5 =h1 x6

x1 =h2 x2 <h2 x3 =h2 x4 =h2 x5 =h2 x6

x1 =h3 x2 =h3 x3 =h3 x4 =h3 x5 <h3 x6

x1 =h4 x5 =h4 x6 <h4 x2 =h4 x3 =h4 x4

x1 =h5 x5 =h5 x6 =h5 x2 =h5 x4 <h5 x3

Without explicitely constructing the injective fuzzy subsets of Lemma 5.5,
it is clear that the total order

x1 <a x2 <a x3 <a x4 <a x5 <a x6

is compatible with the preorders induced by h1, h2 and h3, while the total order

x1 <b x5 <b x6 <b x2 <b x4 <b x3

is compatible with the preorders induced by h4, h5.
By averaging h1, h2, h3 into g1 and h4, h5 into g2 the following matrix is

obtained:
x1 0 0
x2 1/3 1/2
x3 2/3 1
x4 2/3 1/2
x5 2/3 0
x6 1 0

g1 g2

The fuzzy relation E may now be calculated as E = 3
5
Eg1 + 2

5
Eg2

The next example shows how the previous constructs should be applied
when dealing with real problems. The data used does not come from any
specific experimental setting, but is generated in a realistic way nonetheless.
We consider two types of attributes. First, continuous variables spreading
over an interval, such as temperature, pressure, weight, height and so on.
And second, variables tending to group around some specific values acting
as prototypes, such as colour in hand stained glass tiles measured at the end
of a production line for quality control purposes.

The reasons for taking several readings of each variable may vary depend-
ing on the nature of the attribute. For example, filtering a noisy continuous



signal of the aforementioned first type, or measuring colour at many points
of the same tile, as an example of the second type.

The process of attribute reduction tends to group the many readings of
a variable into a single averaged variable. Allowing for some level of error
inherent to every experimental setting, the failing to achieve that indicates
that the noise is too high for a measured attribute to be considered a single
variable, or that the assumption that some readings are the result of a single
variable may in fact constitute an oversimplification of a much more complex
situation.

On the other hand, an interesting feature of the attribute reducing process
is the discovery of monotonic related attributes, such as size and weight or
pressure and temperature, which are then synthesized into a single averaged
attribute.

Example 5.7. Building a simplified similarity model in an experimental set-
ting.

Three variables v1,v2 and v3 are measured against the n elements of a
set X. We take n1 readings of v1, n2 of v2 and n3 of v3 and remap them
into the unit interval. The normalized j-th reading of variable vi is noted
by vij (see matrix below). The first two variables are assumed to come from
continuously spread attributes, while the third tends to cluster around some
specific values. To simulate a real environment, Gaussian noise is added to
the first two variables , and uniformly distributed noise to the third.

For displaying purposes, we run the simulation for n1 = 2, n2 = 2, n3 = 3
and n = 8. After that, we provide results for larger values of the parame-
ters. Standard mathematical software such as Matlab, run on a conventional
laptop, allows for values of n up to thousands, provided that the number of
measurements is kept reasonably low.

STEP 1. Data acquisition and normalisation.
After reordering according to the first column, the following matrix is

obtained. Columns hk represent normalized readings of variables vij and rows
represent elements xn.



v11 v12 v21 v22 v31 v32 v33
x1 0.7008 0.6870 0.0946 0 0.7015 0.7473 0.7718
x2 0.7586 0.7368 0.0189 0.2021 0.7664 0.7903 0.7569
x3 0.7824 0.7708 0.2479 0.2343 0.7724 0.7451 0.7461
x4 0.8365 0.8342 0.2956 0.3801 0.1282 0.1805 0.1445
x5 0.8636 0.8687 0.5247 0.4754 0.1262 0.1829 0.1088
x6 0.9017 0.9013 0.6449 0.5131 0.1708 0.1166 0.1443
x7 0.9638 0.9483 0.7110 0.7435 0.5784 0.5394 0.5366
x8 0.9861 0.9901 0.7924 0.8180 0.5986 0.5521 0.5303

h1 h2 h3 h4 h5 h6 h7

STEP 2. Order matrix.
We compute a matrix displaying the permutations of each column against

the first one.

x1 1 1 2 1 6 7 8
x2 2 2 1 2 7 8 7
x3 3 3 3 3 8 6 6
x4 4 4 4 4 2 2 3
x5 5 5 5 5 1 3 1
x6 6 6 6 6 3 1 2
x7 7 7 7 7 4 4 5
x8 8 8 8 8 5 5 4

h1 h2 h3 h4 h5 h6 h7

Note that columns h1 to h4 are ordered in almost the same way, despite the
fact that the entries for columns h1 and h2 (variable v1) and those for h3 and
h4 (variable v2) are quite different in value. This shows both sound measuring
and monotonic dependence, or correlation, between v1 and v2. Variable v3

(columns h5,h6,h7) behaves independently of the other two, and suffers from
higher levels of noise, reflected in the changing permutation patterns through
columns.

STEP3. Reduction of attributes.
At a glance it becomes apparent that columns h1 to h4 may be averaged into

one single attribute g1, although not in an exact manner owing to column h3.
On the other hand, we may force columns h5 to h7 to become a new attribute
g2 despite the fact that their permutations differ in a more apparent way. The
two new attributes, assuming equal weights i.e. α1 = α2 = α3 = α4 = 0.25
for h1, h2, h3, and h4, and α1 = α2 = α3 = 0.33 for h5,h6 and h7, are:



g1 0.3706 0.4291 0.5089 0.5866 0.6831 0.7403 0.8417 0.8966
g2 0.7402 0.7712 0.7545 0.1510 0.1393 0.1439 0.5515 0.5603

x1 x2 x3 x4 x5 x6 x7 x8

STEP 4. Computing the errors.
We generate the original similarity S by using the 7 attributes, and the

similarity T obtained from the 2 new attributes, with weights α1 = 4
7
, α2 = 3

7
.

Then compute the normalized difference, or error, between the two by means
of e = 1

n2

∑
i,j

|S(xi, xj)− T (xi, xj)|, which yields e = 0.0022.

FILTERING.
Optionally, we may relax precision by rounding the measured variables

with respect to some specific discretized scale. This is a very simple digital
filter, and some more sophisticated ones could be tried. Behind such approach
stands the idea that some amount of disorder may be attributed to noise, and
therefore corrected by filtering.

With this new set of data, we repeat all the 4 previous steps, and we
obtain:

x1 0.8000 0.6000 0.0000 0.0000 0.8000 0.8000 0.8000
x2 0.8000 0.8000 0.0000 0.2000 0.8000 0.8000 0.8000
x3 0.8000 0.8000 0.2000 0.2000 0.8000 0.8000 0.8000
x4 0.8000 0.8000 0.2000 0.4000 0.2000 0.2000 0.2000
x5 0.8000 0.8000 0.6000 0.4000 0.2000 0.2000 0.2000
x6 1.0000 1.0000 0.6000 0.6000 0.2000 0.2000 0.2000
x7 1.0000 1.0000 0.8000 0.8000 0.6000 0.6000 0.6000
x8 1.0000 1.0000 0.8000 0.8000 0.6000 0.6000 0.6000

d1 d2 d3 d4 d5 d6 d7

x1 1 1 1 1 6 6 6
x2 2 2 2 2 7 7 7
x3 3 3 3 3 8 8 8
x4 4 4 4 4 1 1 1
x5 5 5 5 5 2 2 2
x6 6 6 6 6 3 3 3
x7 7 7 7 7 4 4 4
x8 8 8 8 8 5 5 5

h1 h2 h3 h4 h5 h6 h7

g1 0.3500 0.4500 0.5000 0.5500 0.6500 0.8000 0.9000 0.9000
g2 0.8000 0.8000 0.8000 0.2000 0.2000 0.2000 0.6000 0.6000

x1 x2 x3 x4 x5 x6 x7 x8



The error in this case becomes e = 0.

SIMULATION RESULTS
Next table shows some results for bigger sets of data. They refer to the

same set of variables v1, v2 and v3. Each variable is measured 5 times, so
that n1 = n2 = n3 = 5 making the real number of variables amount to 15. X
is a set of n = 1000 elements. The levels of noise in each variable are desig-
nated by e1, e2 and e3 respectively, and they represent standard deviations.No
filtering is applied.

e1 e2 e3 e
0.01 0.01 0.05 0.0013
0.02 0.02 0.1 0.0037
0.05 0.05 0.25 0.0157
0.1 0.1 0.25 0.0367

Finally, as a summary of the section, we provide a procedure to find a
smaller set of attributes starting from a given one.

PROCEDURE: THE INJECTIVE CASE
If the family H = {hi}i∈I consists only of injective fuzzy sets, then the

relation ∼ is an equivalence relation on H. The procedure is valid for both
T continuous Archimedean and T = MIN , and can be stated as follows.

Start by chossing any fuzzy subset hi1 ∈ H, and consider its equivalence
class H1 = {h ∈ Hs.t.h ∼ hi1}.

If H = H1, stop. Else, choose hi2 ∈ H −H1, and consider its equivalence
class H2 = {h ∈ Hs.t.h ∼ hi2}.

If H = H1

◦
∪H2, stop. Else, choose hi3 ∈ H −H1

◦
∪H2, and repeat until

H =
◦⋃
j∈J

Hj.

Finally, for each subset Hj we compute the new fuzzy attribute gj as the
quasi-arithmetic mean of all the fuzzy subsets h ∈ Hj, that is, gj = h̄j =

M
hk∈Hj

(γk, hk). The weights γk are those in the proof of theorem 5.1.

THE GENERAL CASE
If the family H = {hi}i∈I has some non injective fuzzy sets, then ∼ is

not necessarily an equivalence relation on H. The procedure is valid only for
continuous Archimedean t-norms, and consists in a simple modification of
the previous one.



At step m, if H =
◦⋃

j=1...m

Hj, stop. Else, choose him+1 ∈ H −
◦⋃

j=1...m

Hj,

construct an injective fuzzy subset fim+1 according to lemma 5.5, and consider
Hm+1 =

{
h ∈ Hs.t.h ∼ fim+1

}
. Note that, in general, fim+1 /∈ Hm+1, and it

is only used to build Hm+1.

6 Betweennes Relations and Averaged Simi-

larities

So far we have assumed that the fuzzy criteria hi used to generate an aver-
aged similarity Ē = M

i∈I
(αi, Ehi) are explicitly known. In a practical setting,

though, this is not always the case. A fuzzy relation may come from mea-
surements directly related to the similarity between objects rather than to
the values of a set of attributes. This is very often the case when we intend
to build a similarity relation by questioning humans about their impressions
and feelings.

If we are presented with two averaged similarities Ē = M
i∈I

(αi, Ehi) and

Ḡ = M
k∈K

(βk, Egk) with unknown fuzzy subsets hi, gk and weights αi, βk , it

will be interesting to know if some quasi-arithmetic mean F̄ of Ē and Ḡ,
F̄ = M

(
Ē, Ḡ

)
, can be simply expressed with the family of fuzzy subsets

{hi}i∈I , or if the underlying fuzzy criteria {gk}k∈K which determine Ḡ are
compatible with those of Ē.

Corollary 6.8 provides necessary conditions for the compatibility of such
(unknown) families {hi}i∈I and {gk}k∈K which are based on the notion of
betweenness, a ternary relation on X that may be derived directly from the
similarity Ē with no reference to the fuzzy subsets hi. Whether similar
sufficient conditions hold remains an open problem.

Definition 6.1. [8] A betweenness relation on a set X is a ternary relation
B on X such that for all x, y, z ∈ X satisfies:

1. (x, y, z) ∈ B ⇒ x 6= y 6= z 6= x.
2. (x, y, z) ∈ B ⇒ (z, y, x) ∈ B.
3. (x, y, z) ∈ B ⇒ (y, z, x) /∈ B, (z, x, y) /∈ B
4. (x, y, z) ∈ B and (x, z, t) ∈ B ⇒ (x, y, t) ∈ B and (y, z, t) ∈ B.

Betweenness relations in the setting of T -indistinguishability operators
have been studied in [9]. Such relations naturally appear if the t-norm T is



Archimedean. In general, indistinguishability operators with respect to non-
Archimedean t-norms such as T = MIN do not define a betweennes relation
on X.

Definition 6.2. A T -indistinguishability operator on a set X separates points
if E (x, y) = 1 only when x = y.

Proposition 6.3. [9] Let T be an Archimedean continuous t-norm and E
a T -indistinguishability operator separating points on a set X and such that
E (x, y) 6= 0 for all x, y ∈ X. The ternary relation BE on X defined by
(x, y, z) ∈ BE if and only if x 6= y 6= z 6= x and T (E (x, y) , E (y, z)) =
E (x, z) is a betweennes relation.

The condition of separating points (definition 6.2) is closely related to the
injectivity of the fuzzy subsets {hi}i∈I involved in the construction of E.

Lemma 6.4. Let h : X → [0, 1] be a fuzzy subset. Then Eh separates points
on Xif, and only if, h is injective.

Proof. Trivial.

Lemma 6.5. Let T be an Archimedean continuous t-norm, and M a quasi-
arithmetic mean with weights (αi)i∈I and the same additive generator t as T .
If hi is injective for all i ∈ I, then Ē = M

i∈I
(αiEhi) separates points.

Proof. Trivial.

Obviously, all of the hi being injective is a sufficient, not necessary, con-
dition for Ē to be separating.

Next proposition establishes how the betweennes relation of Ē is related
with those of Ehi .

Proposition 6.6. Let T be an Archimedean continuous t-norm, M a quasi-
arithmetic mean with weights (αi)i∈I and the same additive generator as T ,
H = (hi)i∈I a family of injective fuzzy subsets of X such that hi (x) > 0 for
all i ∈ I, and Ē = M

i∈I
(αiEhi). Then B =

⋂
i∈I
Bi where B and Bi are the

betweennes relations of Ē and Ehi, respectively.



Proof. First, note that hi (x) > 0 for all i ∈ I guarantees both thatEhi (x, y) >
0 for all i ∈ I and that Ē (x, y) > 0 for all x, y ∈ X, and therefore we may
apply proposition 6.3.

For any given triplet (x, y, z) such that x 6= y 6= z 6= x, we have that:

T
(
Ē (x, y) , Ē (y, z)

)
= T

(
M
i∈I

(αi, Ehi (x, y)) ,M
i∈I

(αi, Ehi (y, z))

)
= T

(
t[−1]

(∑
i∈I

αi (t ◦ Ehi) (x, y)

)
+ t[−1]

(∑
i∈I

αi (t ◦ Ehi) (y, z)

))

= t[−1]

((
t ◦ t[−1]

)(∑
i∈I

αi (t ◦ Ehi) (x, y)

)
+
(
t ◦ t[−1]

)(∑
i∈I

αi (t ◦ Ehi) (y, z)

))

= t[−1]

(∑
i∈I

αi (t ◦ Ehi) (x, y) +
∑
i∈I

αi (t ◦ Ehi) (y, z)

)

= t[−1]

(∑
i∈I

αi ((t ◦ Ehi) (x, y) + (t ◦ Ehi) (y, z))

)

= t[−1]

(∑
i∈I

αi
(
t ◦ t[−1]

)
(t ◦ Ehi (x, y) + t ◦ Ehi (y, z))

)

= t[−1]

(∑
i∈I

αit (T (Ehi (x, y) , Ehi (y, z)))

)
[1]

And also that:

Ē (x, z) = t[−1]

(∑
i∈I

αi (t ◦ Ehi) (x, z)

)
[2]

In general, [1]≤[2] because Ē is T -transitive.
According to proposition 6.3, (x, y, z) ∈ Bi , if, and only if,

T (Ehi (x, y) , Ehi (y, z)) = Ehi (x, z)

for all i ∈ I. Also, (x, y, z) ∈ B if, and only if, T
(
Ē (x, y) , Ē (y, z)

)
=

Ē (x, z).



As a consequence, if (x, y, z) ∈ Bi for all i ∈ I then [1]=[2],

T
(
Ē (x, y) , Ē (y, z)

)
= Ē (x, z)

and (x, y, z) ∈ B.
Conversely, if (x, y, z) ∈ B then T

(
Ē (x, y) , Ē (y, z)

)
= Ē (x, z), and

therefore [1]=[2]. But since T (Ehi (x, y) , Ehi (y, z)) 6 Ehi (x, z) for all i ∈ I,
the only possibility is T (Ehi (x, y) , Ehi (y, z)) = Ehi (x, z) and then (x, y, z) ∈
Bi for all i ∈ I.

So we have proved that (x, y, z) ∈ Bi for all i ∈ I if, and only if, (x, y, z) ∈
B, which is equivalent to B =

⋂
i∈I
Bi.

Lemma 6.7. Let T be an Archimedean continuous t-norm, and h : X →
[0, 1] an injective fuzzy subset such that h(x) > 0 for all x ∈ X. Then for all
x, y, z ∈ X, (x, y, z) ∈ Bh if, and only if, either x <h y <h z or z <h y <h x,
where Bh is the betweenness relation of Eh, and <h is the order induced by
h.

Proof. Trivial.

Corollary 6.8. Let T be an Archimedean continuous t-norm, M a quasi-
arithmetic mean with weights (αi)i∈I and the same additive generator as T ,
H = {hi}i∈I and G = {gj}j∈J families of injective fuzzy subsets of X such

that hi(x) > 0 and gj(x) > 0 for all i ∈ I, j ∈ J and x ∈ X, and Ē =

M
i∈I

(αi, Ehi) and Ḡ = M
j∈J

(
βj, Egj

)
averaged T -indistinguishability operators

with betweennes relations B and D respectively.
a. If F̄ = M

(
Ē, Ḡ

)
= M

i∈I

(
γi, Eh′i

)
for some fuzzy subsets h′i ∼ hi and

weights (γi)i∈I , then D ⊆ B.
b. If Ḡ = M

i∈I

(
δi, Eh′i

)
, for some fuzzy subsets h′i ∼ hi and weights (δi)i∈I ,

then D ⊆ B.

Proof. Any triplet (x, y, z) such that (x, y, z) ∈ D but (x, y, z) /∈ B satisfies
that for all j ∈ J either x <gj y <gj z or z <gj y <gj x, but fails to satisfy
both x <hi y <hi z and z <hi y <hi x for at least one i ∈ I. This means
that hi 6= gj for all j ∈ J and therefore neither M

(
Ē, Ḡ

)
= M

i∈I

(
γi, Eh′i

)
nor

Ḡ = M
i∈I

(
δi, Eh′i

)
is possible for those x, y, z.



7 Conclusions and Future Works

This paper focuses on complex similarity relations that are obtained as quasi-
arithmetic means of elementary ones induced by single fuzzy attributes.
Specifically, we have dealt with the problem of reducing the number of fuzzy
attributes used to construct a given complex similarity Ē, and solved it by
grouping such attributes and averaging them into one single representative
per group.

There are some points that need further insight and development. First,
we have shown the way to reducing the number of attributes for a particular
Ē, but no calculation of the minimum possible number of attributes has
been provided. This, together with the devising of an explicit algorithm for
computing such optimal reduced families of attributes, are important points
both for theoretical and practical reasons.

Second, most of the time we have assumed full knowledge of the attributes
involved. However, it is not uncommon to be confronted with complex sim-
ilarity relations as the primitive object to deal with, instead of a set of at-
tributes from which to build on. The attributes have then to be guessed,
stated, grouped and aggregated. We have found that betweenness relations
provide a starting point to deal with this problem, but further research is
needed.

Finally, the devising of a general frame for dealing with all continuous t-
norms instead of only the Archimedean family and the MIN t-norm is needed,
for the sake of conceptual simplicity and theoretical completeness. More
generally, it would be interesting to reach similar results concerning other
structures wich are relevant to applied domains, such as OWA operators,
Conjunctors and Overlap Functions [3]. In this respect, the paper [5] pro-
vides a starting point by generalising the notion of quasi-arithmetic mean in
a direction which looks suitable to our needs. However, the present paper
strongly relies on additive generators, and therefore on the metric counter-
part of those similarities that are based on Archimedean t-norms. All the
aforementioned approaches (MIN, OWA and Overlap Functions) lack addi-
tive generators, making it difficult to generalise the findings in this paper in
a straightforward way.
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