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ABSTRACT 42 

Background: Dietary nitrate is an important source of nitric oxide (NO), a molecule critical 43 

for cardiovascular health. Nitrate is sequentially reduced to NO through an enterosalivary 44 

nitrate-nitrite-NO pathway that involves the oral microbiome. This pathway is considered an 45 

important adjunct pathway to the classical L-arginine-NO synthase pathway. The objective of 46 

this study was to systematically assess the evidence for dietary nitrate intake and improved 47 

cardiovascular health from both human and animal studies. 48 

Methods: A systematic literature search was performed according to PRISMA guidelines 49 

using key search terms in Medline and EMBASE databases and defined inclusion and 50 

exclusion criteria. 51 

Results: Thirty-seven articles were included on humans and fourteen articles on animals 52 

from 12,541 screened references. Data on the effects of dietary nitrate on blood pressure, 53 

endothelial function, ischaemic reperfusion injury, arterial stiffness, platelet function, and 54 

cerebral blood flow in both human and animal models were identified. Beneficial effects of 55 

nitrate on vascular health have predominantly been observed in healthy human populations 56 

while effects in populations at risk of cardiovascular disease are less clear. Few studies have 57 

investigated the long-term effects of dietary nitrate on cardiovascular disease clinical 58 

endpoints. In animal studies, there is evidence that nitrate improves blood pressure and 59 

endothelial function particularly in animal models with reduced NO bioavailability. Nitrate 60 

dose seems to be a critical factor as there is evidence of cross-talk between the two pathways 61 

of NO production. 62 

Conclusion: Evidence for a beneficial effect in humans at risk of cardiovascular disease is 63 

limited. Furthermore, there is a need to investigate the long-term effects of dietary nitrate on 64 

cardiovascular disease clinical endpoints. Further animal studies are required to elucidate the 65 

mechanisms behind the observed effects. 66 
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Introduction 68 

Cardiovascular disease is the number one cause of death globally and contributes a major 69 

burden to public health systems worldwide (1). Several observational cohort studies have 70 

found plant-based diets rich in vegetables to be associated with a lower incidence of 71 

cardiovascular disease clinical endpoints (2-4). Specific vegetable groups, such as green leafy 72 

vegetables, have been shown to be the most beneficial (5-9). There are many bioactive 73 

components in green leafy vegetables that may benefit cardiovascular health. One component 74 

that has gained research interest in the last decade is nitrate (10). 75 

Nitrate is present in all vegetables at various concentrations; however, the richest sources of 76 

nitrate are beetroot and green leafy vegetables (11). Increasing nitrate intake through the diet 77 

is one potential strategy to increase nitric oxide (NO) bioavailability (12). NO plays an 78 

important role in vascular tone and integrity, and is a vital molecule for cardiovascular health 79 

(12). Reduced NO bioavailability has been observed in individuals with cardiovascular 80 

disease (13). Strategies to increase NO in healthy individuals and those at risk of 81 

cardiovascular disease may reduce cardiovascular-related events in the wider population.  82 

Due to the increased research interest in the vascular benefits of dietary nitrate, the aim of 83 

this review is to provide an overview of dietary nitrate as a source of NO, the importance of 84 

the oral microbiome in the nitrate-nitrite-NO pathway, and dietary sources of nitrate. We have 85 

also systematically compiled evidence to date on the effects of nitrate ingestion on blood 86 

pressure, arterial stiffness, endothelial function, platelet function, and cerebral blood flow in 87 

human and animal studies. This systematic literature search was conducted using criteria 88 

outlined in the PRISMA checklist. Key search terms used in Medline and EMBASE 89 

databases are outlined in Supplemental Table 1 and inclusion and exclusion criteria in 90 

Supplemental Table 2. The PRISMA flow charts for human studies can be found in 91 
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Supplemental Figure 1 and animal studies in Supplemental Figure 2. Articles were 92 

excluded if full texts could not be accessed or the articles were not in English. 93 

Two pathways to nitric oxide 94 

Nitric oxide is an important cell signalling molecule critical for vascular homoeostasis (13). A 95 

powerful vasodilator, NO relaxes smooth muscle tissue and increases regional blood flow 96 

(14). Nitric oxide also inhibits platelet and leukocyte adhesion to the vessel wall, delaying the 97 

onset of atherogenesis (15). Nitric oxide is generated through the L-arginine-NOS pathway 98 

and the recently described enterosalivary nitrate-nitrite-NO pathway. 99 

L-arginine-NOS pathway 100 

Nitric oxide is synthesised predominantly through the classical L-arginine NO synthase 101 

(NOS) pathway (16) which involves three types of NOS isoforms. These include neuronal 102 

NOS (nNOS or NOS-1), cytokine-inducible NOS (iNOS or NOS-2), and endothelial NOS 103 

(eNOS or NOS-3) (17). Due to the large mass of the endothelium within the body, eNOS is a 104 

major contributor to NO production. The regulation of eNOS activity is via intracellular 105 

calcium (Ca2+) (18) and several signal transduction pathways, including phosphoinoside 3-106 

kinase (PI3K) and adenylate cyclase (AC) pathways (19). An increase in shear stress, cyclic 107 

strain or receptor activation of vascular endothelium by biochemical stimuli (bradykinin, 108 

acetylcholine, thrombin, adenosine diphosphate, and serotonin) causes a release of Ca2+ from 109 

intracellular stores, stimulating eNOS activity (17, 20). Phosphorylation of several residues 110 

on the eNOS dimer is also an important requirement for activation (19). Equimolar amounts 111 

of NO and L-citrulline are produced using L-arginine and molecular oxygen together with 112 

tetrahydrobiopterin (BH4) in a complex oxygen-dependent five electron-transfer reaction (18, 113 

21). 114 

Nitric oxide synthesised from L-arginine in the endothelium diffuses across the cell 115 

membrane to nearby smooth muscle cells stimulating soluble guanylate cyclase (sGC) (18). 116 
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This results in the synthesis of cyclic guanosine monophosphate (cGMP) from guanosine 117 

triphosphate (GTP), triggering the relaxation of smooth muscle cells (18). Uncoupling of 118 

eNOS, by reduced bioavailability of BH4 or the substrate L-arginine, can lead to the 119 

production of superoxide or H2O2 (22). Furthermore, studies have demonstrated that reduced 120 

tissue levels of BH4 and increased superoxide generation are associated with risk factors for 121 

atherosclerosis (23-25). 122 

Nitrate-nitrite-NO pathway 123 

Historically, nitrate and nitrite have been considered to be environmental pollutants and 124 

potential carcinogenic residues in the food chain (26). Now, however, nitrate and nitrite are 125 

considered important molecules for cardiovascular health (27). 126 

Vegetables are a major source of nitrate consumed in the human population (28). When 127 

nitrate is ingested, it is absorbed in the proximal area of the small intestine (12). Nitrate then 128 

enters the bloodstream and mixes with endogenous sources of nitrate (mainly derived from 129 

oxidation of NO through the L-arginine-NOS pathway). Approximately 75% of circulating 130 

nitrate is excreted by the kidneys. The rest (~25%) is actively taken up by the salivary glands 131 

where nitrate is concentrated in saliva and secreted in the oral cavity (29, 30). Nitrate is then 132 

reduced to nitrite by facultative anaerobic bacteria found in the deep clefts on the dorsal 133 

surface of the tongue (31). The commensal bacteria in the oral cavity use nitrate as an 134 

alternative electron acceptor to oxygen during respiration, reducing nitrate to nitrite by nitrate 135 

reductases (32). Once swallowed, a proportion of nitrite is rapidly protonated forming nitrous 136 

acid (HNO2) in the acidic environment of the stomach (33). Nitrous acid decomposes further 137 

to form NO, having localised benefits (33). This non-enzymatic reduction of nitrite to NO is 138 

enhanced by vitamin C and polyphenols (34, 35). The remaining nitrate and nitrite in the 139 

stomach enter the small intestine and are absorbed into the bloodstream where they mix with 140 
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endogenous forms of nitrate and nitrite (mainly derived from oxidation of NO through the L-141 

arginine-NOS pathway). 142 

The one-electron reduction of nitrite to NO in the blood and tissues is catalysed by both 143 

enzymatic and non-enzymatic pathways (10). Enzymatic pathways include a number of 144 

proteins and enzymes including globins (such as haemoglobin, myoglobin, cytoglobin, and 145 

neuroglobin), xanthine oxidoreductase, cytochrome P450, mitochondrial proteins, carbonic 146 

anhydrase, aldehyde oxidase and eNOS (10). Non-enzymatic pathways include protons, 147 

polyphenols, and vitamin C (10). Both enzymatic and non-enzymatic reductions of nitrite to 148 

NO are enhanced during hypoxia and at a low pH (10, 36). Recent evidence suggests that the 149 

acidic environment of the stomach plays an important role in the reduction of nitrite to NO 150 

(37). 151 

The nitrate-nitrite-NO pathway and the L-arginine-NOS pathway are interconnected through 152 

the anions, nitrate and nitrite. Nitrate and nitrite are the oxidation end products of NO 153 

metabolism through the L-arginine-NOS pathway but can also be derived from the diet (32). 154 

Nitrate and nitrite, derived from the diet and derived as oxidation end products of NO 155 

metabolism, are both recycled through the nitrate-nitrite-NO pathway. Both pathways become 156 

a storage pool for NO production. Because the L-arginine-NOS pathway requires molecular 157 

oxygen to produce NO, nitrite reduction to NO via the nitrate-nitrite-NO pathway may form 158 

as a backup system for NO production during hypoxia. A crucial step in the nitrate-nitrite-NO 159 

pathway is nitrate to nitrite reduction by the oral microbiome. 160 

The oral microbiome 161 

The oral microbiome is the second most diverse microbial community in the human body 162 

comprising 50 – 100 billion bacteria, from over 700 prokaryotic taxa, as well as a fungal and 163 

viral flora (38). Disturbances to the composition, and therefore function, of the oral 164 

microbiome are thought to play a role in a number of diseases, including cardiovascular 165 
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disease (38). Whether this link is related in part to the nitrate-nitrite-NO pathway is garnering 166 

research interest. An important step in the nitrate-nitrite-NO pathway is the reduction of 167 

nitrate to nitrite by facultative anaerobic bacteria found in the oral cavity. Reduced oral 168 

bacterial nitrate to nitrite reduction, both in the presence and absence of dietary nitrate intake, 169 

could have detrimental effects on the circulating NO pool with subsequent vascular effects. In 170 

the presence of nitrate intake, interrupting the nitrate-nitrite-NO pathway with an antibacterial 171 

mouthwash or spitting out of saliva, prevented the resultant increase in salivary and plasma 172 

nitrite and the associated decrease in blood pressure (39, 40). In the absence of dietary nitrate 173 

intake, increases in blood pressure with concomitant decreases in salivary and plasma nitrite 174 

were observed with daily chlorhexidine based antibacterial mouthwash use in both healthy 175 

volunteers (41) and treated hypertensives (42). This could be explained by the fact that nitrate 176 

and nitrite, produced as end-products of NO metabolism, are recycled through the nitrate-177 

nitrite-NO pathway back into the circulating NO pool. Thus nitrate to nitrite reduction by the 178 

oral microbiome could play a key role in blood pressure control. The influence on other 179 

measures of vascular health has yet to be determined. 180 

The fundamental role of the oral microbiome in the nitrate-nitrite-NO pathway and possibly 181 

blood pressure control makes understanding all the factors that influence oral nitrate to nitrite 182 

reduction an important research area. Indeed, there is evidence of a considerable variation 183 

between individuals in the nitrate-reducing capacity of the oral microbiome (43). The first set 184 

of factors to consider is the use of anti-bacterial mouthwashes, anti-bacterial toothpastes, and 185 

antibiotics. Given the results of the studies described above, the widespread use of daily 186 

mouthwash in the general population is of potential concern. The mouthwash used in these 187 

studies, however, contained chlorhexidine, a strong antibacterial agent. Different effects have 188 

been observed with other types and strengths of antibacterial mouthwashes (44). To date only 189 

one study has examined the effect of antibacterial toothpaste, containing triclosan, on oral 190 
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nitrate to nitrite reduction (45), with no effect observed. These results need to be confirmed in 191 

additional studies examining the effect of mouthwash and toothpaste on oral nitrate 192 

reduction. Interestingly, epidemiological studies show that regular tooth brushing and 193 

mouthwash use, indicative of good oral hygiene, is associated with a decreased risk of 194 

hypertension and cardiovascular disease (46, 47). The effect of antibiotic use on oral nitrate 195 

to nitrite reduction has yet to be ascertained. 196 

Other important factors are those inherent to the complex oral microbial community such as 197 

bacterial genetics, the presence and influence of other microorganisms and environmental 198 

pressures. There are a number of potential nitrate-reducing taxa present in the oral 199 

microbiome. Doel et al (48) identified Veillonella spp as the most abundant nitrate-reducing 200 

genus followed by Actinomyces, Rothia and Staphylococcus spp (48). Hyde et al (49) 201 

confirmed Veillonella spp as the most abundant nitrate-reducing genus present but also 202 

detected Prevotella, Neisseria and Haemophilus at a higher abundance than Actinomyces spp. 203 

Nitrate to nitrite reduction by these bacteria is highly variable both within and between 204 

bacterial species and needs to be examined in the context of the huge interdependent 205 

microbial network in which they exist. This network comprises a heterogenous microbial 206 

community within a biofilm which communicates using a process called quorum sensing. 207 

These communities are highly complex, with all members influencing its health and vitality. 208 

Interestingly, the presence of nitrite reducers may prevent the accumulation of nitrite in the 209 

saliva and as such have a negative influence on the nitrate-nitrite-NO pathway (49). 210 

Microbial nitrate metabolism can also be altered by environmental influences such as pH and 211 

oxygen tension. A low pH in an oral microenvironment together with increased nitrate and 212 

nitrite concentration, can select for nitrate-reducing bacteria (50). Nitrate-reducing bacteria 213 

are facultative anaerobes. A low or no oxygen environment will therefore result in the nitrate 214 

reductive pathway being utilised for respiration. Other potential factors influencing nitrate to 215 
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nitrite reduction that requires future investigation include host factors such as age, diet, and 216 

oral health. 217 

The evidence of the link between oral health and cardiovascular disease being related to the 218 

nitrate-nitrite-NO pathway is strongly suggestive. Future studies will need to examine this 219 

relationship in the context of the large number of factors that could influence oral nitrate to 220 

nitrite reduction. 221 

Dietary sources of nitrate and nitrite 222 

Vegetables contribute approximately 80% of dietary nitrate intake in the human population 223 

(28, 51-54). Nitrate ingested in the diet can also be derived from other food sources such as 224 

fruits, grains, and animal products with the remainder coming from drinking water. Many 225 

countries have strict regulations to maintain low levels of nitrate in drinking water due to 226 

underlying health concerns, such as methaemoglobinaemia (55). High levels, however, have 227 

been detected in private wells in rural areas due to nitrogen-based fertiliser use in agricultural 228 

areas (56). Another controversial health concern is the addition of nitrate and nitrite to meat 229 

and their potential to form N-nitrosoamines, which are potential carcinogens (29). 230 

Compounds such as polyphenols, vitamins C and E and other antioxidants inhibit the 231 

formation of N-nitrosoamines (56). These compounds are abundant in vegetables. A large 232 

number of countries have also set maximum levels for nitrate in vegetables, particularly for 233 

lettuce and spinach, which are known to accumulate high amounts of nitrate (57). These 234 

maximum levels vary across harvest period, being higher in winter and if grown under cover, 235 

and lower in summer and if grown in open air (57). 236 

Dietary nitrite, on the other hand, contributes only a small amount to human exposure and is 237 

mainly consumed from animal-based foods such as cured meats and bacon (52). Nitrite is 238 

added to these products as a preservative and to enhance taste and appearance (52). Although 239 

a small amount of nitrite is consumed from these food sources, the majority of nitrite 240 
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exposure (70-90%) is derived from the in vivo conversion of nitrate to nitrite through 241 

endogenous pathways (58).  242 

The nitrate content of vegetables depends on many different factors including the biological 243 

properties of plants, fertiliser use, soil conditions, sun exposure, and cooking and storage 244 

methods. The biological properties of plants can influence the amount of nitrate that 245 

accumulates in that plant. For example, nitrate accumulates in different parts of the plants 246 

with the leaf and stem having the highest concentrations, and the bulb and fruit having the 247 

lowest (28). In our recently developed reference database for assessing dietary nitrate in 248 

vegetables (11), leafy vegetables were found to have the highest nitrate content, with Chinese 249 

flat cabbage and arugula containing the highest concentrations of nitrate (3000 mg/kg fresh 250 

weight). Corn, mushroom, and peas had the lowest nitrate content (<50 mg/kg fresh weight). 251 

Nitrate concentration in vegetables also differs between varieties. For example, Chinese 252 

lettuce has a 3-fold higher nitrate value than iceberg lettuce (11). 253 

Nitrogen-based fertilisers enhance the growth of plants, and thus, have an impact on how 254 

much nitrate accumulates in vegetables. Nitrate located in the soil of a growing vegetable is 255 

transported via the plant xylem system to the leaves of the vegetables (52). As organic 256 

vegetables tend to be grown in fertilisers containing less nitrogen, by comparison 257 

conventionally grown vegetables tend to accumulate higher nitrate levels (11, 59). 258 

Other factors such as handling, storage, and processing, as well as temperature and light 259 

intensity can also influence the amount of nitrate in vegetables (52). Higher nitrate levels are 260 

observed in vegetables grown in winter compared to summer, and vegetables grown under 261 

cover contain higher nitrate levels than those grown outdoors in the same season and the 262 

same region (11, 52). 263 

Storage in ambient temperature can also reduce the nitrate content of fresh vegetables. Under 264 

refrigerated and frozen storage conditions nitrate levels appear to be unaffected (52). 265 
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Endogenous nitrate reductase activity and the amount of bacterial contamination due to post-266 

harvest storage and wilting processes reduce nitrate and subsequently increase nitrite in fresh 267 

vegetables (52). Being water soluble, nitrate is also reduced with washing and cooking 268 

methods by approximately 10-15% and 50%, respectively (52). As nitrate is also found in the 269 

skin of vegetables, peeling of the skin can also reduce nitrate levels by roughly 20-34% (52). 270 

Nitrate ingestion and its effects on vascular function 271 

Dietary nitrate is now considered an important alternative source of NO. Human and animal 272 

studies to date have focused on the effects of nitrate ingestion on blood pressure, arterial 273 

stiffness, endothelial function, platelet function, and cerebral blood flow, as discussed below. 274 

A summary of the beneficial effects of nitrate ingestion on these cardiovascular-related 275 

outcomes in human and animal studies is shown in Figure 1. Benefits of nitrate ingestion on 276 

exercise performance will not be covered in this review. 277 

Blood pressure 278 

Evidence that decreased NO production was associated with hypertension raised the 279 

possibility that nitrate, through the nitrate-nitrite-NO pathway, could partially account for the 280 

blood pressure lowering effects of green leafy vegetables. Randomised controlled trials such 281 

as the Dietary Approaches to Stop Hypertension (DASH) trial have been shown to reduce 282 

blood pressure (60). It has been suggested that the high nitrate content of the DASH diet 283 

contributes to the blood pressure lowering effects observed (28). The DASH diet has been 284 

estimated to include as much as 1,222 mg (19.7 mmol) of nitrate per day (28). This amount 285 

can, however, differ by as much as 700% due to the wide variation of nitrate in vegetables 286 

(28). An Acceptable Daily Intake (ADI) of 3.7 mg nitrate per kg body weight was set by the 287 

Joint Food and Agricultural Organisation and World Health Organisation (52). For an average 288 

person weighing 70 kg, this is calculated to be 259 mg of nitrate. The DASH diet can provide 289 

up to 500% more nitrate than this ADI.  290 
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The DASH diet is associated with reductions of 4.5 mmHg in systolic blood pressure (SBP) 291 

(61). This blood pressure reduction is similar to that seen in a meta-analysis demonstrating 292 

that consumption of inorganic nitrate and nitrate-rich beetroot juice is associated with a SBP 293 

reduction of 4.4 mmHg (62). There is now substantial evidence from human intervention 294 

trials to demonstrate blood pressure reductions with short-term intake of dietary nitrate in 295 

healthy populations (62). However, the effects of chronic nitrate intake on blood pressure in 296 

older populations and populations at risk of cardiovascular disease remain uncertain (50, 63-297 

68). 298 

Human studies 299 

Our systematic literature search revealed 27 acute studies (≤24 hours) (Table 1) (40, 50, 63, 300 

69-85) and 15 chronic studies (>1 day) (Table 2) (50, 65-68, 86-93) in 32 publications 301 

investigating the effects of nitrate ingestion on blood pressure. Beetroot juice was the most 302 

common nitrate source used in both acute and chronic studies. Twenty-four hour ambulatory 303 

blood pressure (24-hour ABP), the preferred diagnostic method for assessing hypertension 304 

(94, 95), was used in 10 studies (65-68, 77, 80-82, 87, 90). Clinic blood pressure was used in 305 

34 studies (40, 50, 63, 65, 67, 69-76, 78, 79, 83-93) and four studies used home blood 306 

pressure monitoring (66, 67, 87, 90). 307 

Acute studies 308 

The acute effects of nitrate ingestion on blood pressure were investigated between 2-24 hours 309 

with nitrate doses ranging from 68-1488 mg (1.1-24 mmol) (Table 1). Five studies showed a 310 

significant reduction in SBP only (78, 82-85) and four studies showed a significant reduction 311 

in only diastolic blood pressure (DBP) (71, 77, 79, 80). Eleven studies showed significant 312 

reductions in both SBP and DBP (40, 50, 71, 72, 81, 85). Acute reductions in SBP ranged 313 

from 2.7 to 22.2 mmHg and 2.6 to 23.6 mmHg for DBP. Reductions in blood pressure were 314 

seen across the entire range of nitrate doses investigated and in subjects that were healthy (40, 315 
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71, 72, 77, 78, 80-85), overweight (79), and hypercholesterolaemic (50). Sample sizes of 316 

these populations ranged from 6 to 67 participants. Blood pressure reductions were not seen 317 

in seven studies (63, 69, 70, 73-76). These populations consisted of subjects that were healthy 318 

(69, 70, 73-76) and subjects with heart failure (63). Sample sizes of these populations ranged 319 

from 5 to 40 participants. 320 

Chronic studies 321 

The chronic effects of nitrate ingestion on blood pressure were investigated in 15 studies 322 

from 3 to 42 days (6 weeks) with nitrate doses ranging from 155-1104 mg/d (2.5-17.8 323 

mmol/d) (Table 2). Three studies showed a significant reduction in SBP (88-90) and three 324 

other studies showed a significant reduction in DBP (86, 92, 93). Only one study showed a 325 

significant reduction in both SBP and DBP (87). In total, seven studies demonstrated a 326 

significant reduction in blood pressure. It is worth noting, the study conducted by Ashworth 327 

et al (88) was not clear whether the significant reductions in blood pressure were acute or 328 

chronic as the subjects were advised to eat high nitrate vegetables 2-3 hours before blood 329 

pressure was taken on the final day. Reductions in SBP ranged from 4.0 to 8.1 mmHg and 330 

reduction in DBP ranged from 2.4 to 12 mmHg with nitrate doses ranging from 165-1104 331 

mg/d (2.7-17.8 mmol/d). Reductions in blood pressure were seen in one study using 24-hour 332 

ABP monitoring (87), two studies using home blood pressure (87, 90) and six studies using 333 

clinic blood pressure (86-89, 92, 93). Blood pressure reductions were seen in subjects that 334 

were healthy (86, 88, 92, 93), at moderate cardiovascular risk (89), older and overweight 335 

(90), and grade 1 hypertensive (treated and untreated) (87). These studies were a mix of 336 

young (mean age <37 y) (86, 88, 92, 93) and older cohorts (mean age >56 y) (87, 89, 90). 337 

Most studies demonstrating reductions in blood pressure were of low sample size (n range 6-338 

25), except Kapil et al (87), which had a sample size of n=64. 339 



16 
 

Blood pressure reductions were not seen in eight studies (50, 65-68, 91). These populations 340 

consisted of subjects that were older (91), pre-hypertensive (67), treated hypertensive (66), 341 

overweight and obese (65), type 2 diabetic (68), and hypercholesterolemic (50). These 342 

populations were all older adult populations (mean age >60 y) with larger sample sizes (n 343 

range 27-67) (50, 65-68), apart from one study which had a sample size of n=8 (91).  344 

There is now clear and convincing evidence that nitrate reduces blood pressure within hours 345 

of ingestion. The evidence of chronic ingestion of nitrate on blood pressure is less clear. 346 

Studies suggest that chronic intake of nitrate lowers blood pressure in young healthy 347 

individuals; however, these blood pressure lowering effects are not seen in older individuals 348 

and individuals at risk of cardiovascular disease. Recent evidence suggests possible 349 

interactions between sulphate and nitrate which may explain some of these inconsistencies 350 

(96). However, research is in need to further investigate this theory. 351 

Animal studies 352 

We identified 17 studies, in 12 publications, that assessed the effect of nitrate 353 

supplementation on blood pressure in an animal model (Table 8). Nitrate sources included 354 

NaNO3 (n=10), KNO3 (n=1), and Mg(NO3)2 (n=1) supplemented drinking water. Nitrate 355 

doses ranged from 0.1-4.27 mmol/kg/d and treatment time ranged from 1 week to 12 months. 356 

The number of animals in each treatment group ranged from 5 to 23. Nine studies reported a 357 

decrease in blood pressure after nitrate supplementation and five studies reported no change 358 

in blood pressure. Only one study reported an increase in blood pressure; Carlstrom et al 359 

reported a significant increase in mean arterial pressure (MAP) in healthy rats after 8 weeks 360 

of nitrate supplementation (1 mM/kg/d) (97). In the same study, a decrease in blood pressure 361 

was seen with a 0.1 mM dose of nitrate. In two studies where high blood pressure was 362 

induced, either by the use of spontaneously hypertensive rats (98, 99) or by administration of 363 

a high-fructose diet (100), nitrate supplementation prevented the increase in blood pressure 364 
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observed in the control group. In a study by Henzel et al, a decrease in MAP and SBP was 365 

only seen in old (22 months) Sprague-Dawley rats and not in young (3 months) rats (101). It 366 

is important to note that although both groups were receiving the same concentration of 367 

nitrate in their drinking water, the younger rats were receiving a much higher dose of nitrate 368 

(776 µmol/kg/d vs 290 µmol/kg/d), due to their higher water intake and lower body weight. 369 

In a study by Khalifi et al, a decrease in SBP was only seen in diabetic Wistar rats and not 370 

their healthy counterparts (102). This may be due to positive effects of nitrate 371 

supplementation on NO status and oxidative stress, which would have been compromised in 372 

the diabetic rats but not the healthy rats. Other studies have shown that higher doses of nitrate 373 

can reduce blood pressure in animal models that have been shown to have reduced NO 374 

bioavailability (100, 101, 103). 375 

Endothelial function 376 

The endothelium lines the entire vascular system and plays an essential role in the 377 

maintenance of vascular homoeostasis (104). Dysfunction of the endothelium has been 378 

identified in the development of atherosclerotic-related diseases (105). Flow-mediated 379 

dilatation (FMD) via non-invasive ultrasound measures the endothelial function of the 380 

brachial artery (106, 107). It is the gold standard method for assessing conduit artery 381 

endothelial function (106) and is significantly associated with cardiovascular disease events 382 

(108, 109). It has previously been shown from a meta-analysis of 14 prospective cohort 383 

studies that the risk of experiencing a cardiovascular event is reduced by 13% for every 1% 384 

higher in FMD (110). The degree of endothelial function is determined by the change in 385 

brachial artery diameter before and after a shear stress stimulus, induced by reactive 386 

hyperaemia (108). In the forearm vasculature, FMD provides a measure of endothelium-387 

derived NO bioavailability (111). 388 

Human studies 389 
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Our systematic literature search revealed seven acute studies (≤24 hours) (Table 3) (50, 75, 390 

76, 79, 83, 84, 112) and four chronic studies (>1 day) (Table 4) (50, 68, 87, 89) in 10 391 

publications investigating the effects of nitrate ingestion on FMD. Beetroot juice was the 392 

most common nitrate source used in both acute and chronic studies. 393 

Acute studies 394 

The acute effects of nitrate ingestion on FMD were investigated between 1.5-4 hours with 395 

nitrate doses ranging from 6-772 mg (0.1-12.4 mmol) (Table 3). The lower nitrate dose in this 396 

range was estimated using the global average body weight of 62 kg as no average body 397 

weight was reported in this study (75). Six studies demonstrated a significant improvement in 398 

FMD (50, 75, 76, 79, 83, 112) and one study demonstrated no effect (84). Improvements in 399 

FMD ranged from 0.5 to 4.0% were seen across the entire range of nitrate doses investigated. 400 

Beetroot juice was also found to attenuate the postprandial impairment of FMD following a 401 

high-fat meal (79). Improvements in FMD were seen in mainly healthy populations (75, 76, 402 

83, 112). Other populations where improvements in FMD were seen included 403 

hypercholesterolaemic (50) and overweight (79) subjects. These healthy and at risk 404 

populations consisted of three studies in younger cohorts (mean age ≤27 y) (75, 76, 112) and 405 

three studies in older cohorts (mean age >45 y) (50, 79, 83) with an overall sample size 406 

ranging from 5 to 67. No effects on FMD were observed in one healthy population of 14 407 

participants aged 28 y (84). 408 

Chronic studies  409 

The chronic effects of nitrate ingestion on FMD were investigated ranging from 14 to 42 days 410 

(2 to 6 weeks) with nitrate doses ranging from 375 to 577 mg/d (6.0 to 9.3 mmol/d) (Table 4). 411 

The higher nitrate dose in this range was estimated using the global average body weight of 412 

62 kg as no average body weight was reported in this study (89). Three studies showed a 413 

significant improvement in FMD (50, 87, 89) and one study had no effects (68). In particular, 414 
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Rammos et al (89) demonstrated dietary nitrate reversed vascular dysfunction in older adults 415 

with moderately increased cardiovascular risk. Improvements in FMD ranged from 0.5 to 416 

1.1% and were seen across the entire range of nitrate doses investigated. Increases in FMD 417 

(~1%) were seen in two studies (50, 87) using similar nitrate doses from beetroot juice (375 418 

mg/d and 398 mg/d). Ingestion of a slightly higher nitrate dose of 577 mg/d (9.3 mmol/d) 419 

using sodium nitrate showed a 0.5% improvement (89). Improvements in FMD were seen in 420 

subjects with hypercholesterolemia (50), treated and untreated hypertension (87), and 421 

moderate cardiovascular risk (89). All populations were older adult populations (mean age 422 

>50 y) with large sample sizes (>60), except one study that had a sample size of 11 (89). No 423 

effects on FMD were observed after 14 days of nitrate ingestion (beetroot juice) in 27 424 

subjects with type 2 diabetes mellitus (68). 425 

Animal studies 426 

Numerous studies have reported that blood vessels with a damaged endothelium have 427 

impaired vasorelaxation in response to acetylcholine (ACh) (Table 8) (113, 114). We 428 

identified three animal studies, from two publications, investigating the effects of dietary 429 

nitrate supplementation on endothelial function (97, 115). Bakker et al (115) demonstrated 430 

that although supplementation with very high dose nitrate (10 mmol/kg/d) had no effect on 431 

Ach-mediated vessel relaxation in a mouse model of atherosclerosis, low (0.1 mmol/kg/d) 432 

and moderate (1 mmol/kg/d) dose nitrate supplementation significantly improved the 433 

endothelial dysfunction associated with this mouse model. In addition, Carlstrom et al (97) 434 

reported that dietary supplementation with a high dose of nitrate (1 mmol/kg/d) was 435 

associated with attenuated acetylcholine-mediated vasorelaxation. These observations are in 436 

support of the theory proposed by Carlstrom et al that there is cross-talk between the two 437 

pathways of NO production. They suggest that high doses of dietary nitrate may inhibit 438 

production of NO through the L-arginine-NOS pathway, leading to a net decrease in the 439 
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amount of NO reaching the smooth muscle cells of the blood vessel (97). Although Bakker et 440 

al showed improvements with a 1 mmol/kg/d dose of nitrate and Carlstrom et al reported no 441 

improvements with the same dose, the animal model used is likely an important factor as the 442 

Apolipoprotein-E knock-out mice used in the study by Bakker et al (115) have reduced NO 443 

bioavailability. 444 

Ischaemic reperfusion injury 445 

Ischaemic reperfusion injury is tissue damage caused by a period of ischemia or lack of 446 

oxygen. Lack of oxygen during an ischaemic period results in inflammation and oxidative 447 

damage leading to microvascular dysfunction (116). Local and systemic tissue ischemia 448 

remains the major cause of death from cardiovascular disease (1). As the nitrate-nitrite-NO 449 

pathway is enhanced in times of hypoxia, this pathway may provide a back up to the classical 450 

L-arginine-NO synthase pathway.  451 

Human studies 452 

Our systematic literature search revealed three acute studies (two publications) investigating 453 

the effects of nitrate ingestion on ischaemic reperfusion injury (Table 5) (40, 85). Beetroot 454 

juice was the most common nitrate source used. The acute effects of nitrate ingestion on 455 

ischaemic reperfusion injury were investigated between 2-3 hours with nitrate doses ranging 456 

from 341-1488 mg (5.5-24 mmol) (Table 5). Benefits were also seen in all studies where 457 

beetroot juice (40, 85) and potassium nitrate (85) attenuated ischaemia reperfusion-induced 458 

endothelial dysfunction measured using FMD. Improvements were seen in young (mean age 459 

<28 y), healthy populations (40, 85) with an overall sample size ranging from 10 to 12. 460 

Animal studies 461 

We found only one study describing the effects of dietary nitrate supplementation on 462 

ischaemia-induced revascularisation in an animal model (Table 8). In a study by Hendgen-463 

Cotta et al, mice were treated with either nitrate (1 g/L NaNO3 in drinking water) or NaCl 464 
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(control) for 14 days (117). Perfusion recovery in the ischaemic hind limb was significantly 465 

improved in mice treated with nitrate compared with controls via a significant increase in 466 

capillary density. These results suggest that dietary nitrate supplementation may represent a 467 

novel strategy to enhance ischaemia-induced revascularization. 468 

Arterial stiffness 469 

Pulse wave velocity (PWV) is a measure of aortic stiffness and is a strong predictor of 470 

cardiovascular events (118-120). Pulse wave velocity is recognised as the most simple, non-471 

invasive, robust and reproducible technique to determine arterial stiffness and is considered 472 

the gold-standard measurement of arterial stiffness (121). Pulse wave velocity measures 473 

arterial stiffness by dividing the estimated distance between the carotid and femoral arteries 474 

by the pulse transit time, the time delay between the carotid and femoral waveforms. A 475 

tonometer is used to capture the carotid waveform and a cuff is placed around the femoral 476 

artery to capture the femoral waveform. Augmentation index (AIx) is another measure of 477 

arterial stiffness which provides a composite measure of elastic plus muscular artery stiffness 478 

and wave reflection. Augmentation index has also been shown to be an independent predictor 479 

of future cardiovascular disease events (122). 480 

Human studies 481 

Our systematic literature search revealed seven acute studies (≤24 hours) (50, 70, 72, 78-80, 482 

84) and 5 chronic studies (>1 day) (50, 65, 67, 87, 89) in 10 publications investigating the 483 

effects of nitrate consumption on arterial stiffness (Table 6). Beetroot juice was the most 484 

common nitrate source used in both acute and chronic studies. 485 

Acute studies 486 

The acute effects of nitrate ingestion on arterial stiffness were investigated between 2-6 hours 487 

with nitrate doses ranging from 68-583 mg (1.1-9.4 mmol) (Table 6). Three studies 488 

demonstrated a significant decrease in arterial stiffness (50, 72, 84) and four studies 489 
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demonstrated no effect (70, 78-80). A significant decrease of 0.3 m/s in PWV was observed 490 

in two studies (50, 84) with a nitrate dose of 375 mg (6 mmol) from beetroot juice (50) and 491 

496 mg (8 mmol) from potassium nitrate (84). The study by Velmurugan et al (50) consisted 492 

of a large sample size of 67 hypercholesterolaemic men and women with a mean age of 53 y, 493 

whereas the study by Bahra et al (84) consisted of a smaller sample of 14 healthy individuals 494 

with a mean age 28 y. Hughes et al (72) demonstrated a reduced AIx in young, but not old, 495 

adults following a nitrate dose of 583 mg (9.4 mmol). No effect was seen in four studies with 496 

nitrate doses ranging from 68-500 mg (1.1-8.1 mmol) using beetroot juice (70, 79), beetroot-497 

enriched bread (80), and spinach (78). These studies consisted of healthy (70, 78, 80) and 498 

overweight (79) subjects. 499 

Chronic studies 500 

The chronic effects of nitrate ingestion on arterial stiffness were investigated from 7 to 42 501 

days (1 to 6 weeks) with nitrate doses ranging from 300-600 mg/d (4.8-9.7 mmol/d) (Table 502 

6). Three studies demonstrated a significant decreased in arterial stiffness after nitrate 503 

ingestion (50, 87, 89) and two studies demonstrated no effect (65, 67). Studies found a 504 

significant decrease of 0.2-1.2 m/s in PWV with nitrate doses ranging from 375-577 mg/d (6-505 

9.3 mmol/d) using beetroot juice and sodium nitrate (577 mg/d was estimated using the 506 

global average body weight of 62 kg as no average body weight was reported in this study 507 

(89)). The populations where an effect was observed had moderate cardiovascular risk (89), 508 

untreated and treated hypertension (87), and hypercholesterolemia (50). No effect was seen in 509 

two studies with nitrate doses of 300 mg/d (4.8 mmol/d) from green leafy vegetables (67) and 510 

600 mg/d (9.7 mmol/d) from beetroot juice (65); populations that were overweight and obese 511 

(65) and pre-hypertensive (67). It has been demonstrated that for every 3.4 m/s in increase in 512 

PWV, the risk of experiencing a cardiovascular event is increased by 17% (118). Therefore, a 513 



23 
 

decrease of 0.2-1.2 m/s in PWV is likely to provide a small but significant reduction in the 514 

risk of experiencing a cardiovascular disease event. 515 

Animal studies 516 

Upon search of the literature, we found no animal studies investigating the effects of dietary 517 

nitrate supplementation on arterial stiffness. 518 

Platelet function  519 

Platelets play a major role in the acute complications of atherosclerosis in the late stages of 520 

the disease, which can subsequently lead to atherosclerotic-related events (123). Nitric oxide 521 

has been shown to inhibit platelet aggregation and adhesion to the endothelial wall (124) and 522 

there is now evidence to suggest dietary nitrate may repress platelet reactivity. 523 

Human studies 524 

Our systematic literature search identified five acute studies (≤24 hours) (40, 125, 126) and 525 

one chronic study (>1 day) (50), in four publications, investigating the effects of nitrate 526 

intake on platelet function (Table 7). Potassium nitrate was the most common nitrate source 527 

used in acute studies whilst beetroot juice was used in the chronic study.  528 

Acute studies 529 

The acute effects of nitrate ingestion on platelet function were investigated between 2.5-3 530 

hours with nitrate doses between 31-1054 mg (0.5-17 mmol) (Table 7). All five studies 531 

demonstrated reductions in platelet aggregation and reactivity (40, 125, 126). Velmurugan et 532 

al (125) demonstrated that nitrate ingestion decreased platelet reactivity in healthy males, but 533 

not in healthy females. This was observed with both beetroot juice (192 mg or 3.1 mmol) and 534 

potassium nitrate (496 mg or 8 mmol). Further studies using beetroot juice (1054 mg or 17 535 

mmol) (40) and potassium nitrate (31 mg and 124 mg or 0.5 and 2 mmol) (126) demonstrated 536 

reductions in platelet aggregation. All cohorts consisted of young healthy populations and 537 
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were of small sample sizes (n<25). Further acute studies are needed to replicate these 538 

findings in older adult populations at risk of developing cardiovascular disease. 539 

Chronic studies 540 

The chronic effects of nitrate ingestion on platelet function were investigated in only one 541 

study (Table 7) (50). Velmurugan et al (50) demonstrated a reduction in platelet-monocyte 542 

aggregates after 42 days of daily beetroot juice ingestion with a nitrate dose of 375 mg/d (6 543 

mmol/d). This study had a large sample size (n=67) of older male and female adults aged 53 544 

y with hypercholesterolemia. There is a strong need for further chronic studies to investigate 545 

the effects of nitrate ingestion on platelet function in healthy populations and to replicate 546 

findings in older adult populations at risk of cardiovascular disease. 547 

Animal studies 548 

Only one animal study has been published investigating the effects of dietary nitrate 549 

supplementation on platelet function (Table 8). In this study, wild-type C57BL/6 mice were 550 

supplemented with 1 g/L NaNO3 in their drinking water for 1 week, placed on a low nitrate 551 

diet or continued on standard mice chow (control) (127). Platelet aggregation was 552 

significantly decreased in the group supplemented with nitrate and was significantly 553 

increased in the group on the low nitrate diet, in comparison to the control group. These 554 

findings demonstrate that manipulation of nitrate levels in blood, via supplementation or 555 

dietary restriction, could affect platelet function in mice, although further studies are required 556 

to corroborate this finding. 557 

Cerebral blood flow 558 

The effect of dietary nitrate on cerebral blood flow has been investigated in several studies 559 

due to the observed effects of dietary nitrate on vasodilation and increases in blood flow. 560 

Diminished blood flow to the brain is likely to contribute to the pathophysiological processes 561 

underlying vascular cognitive impairment (128).  562 
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Human studies 563 

Our systematic literature search identified one acute study (≤24 hours) (129) and one chronic 564 

study (>1 day) (130) in two publications investigating the effect of nitrate ingestion on 565 

cerebral blood flow (Table 9). Sodium nitrate and a high nitrate diet were used as nitrate 566 

sources.  567 

Acute studies 568 

Presley et al (129) demonstrated consuming a high nitrate diet (769 mg or 12.4 mmol of 569 

nitrate) over a 24 hour period increased regional cerebral perfusion in frontal lobe white 570 

matter, in older adults with a mean age of 75 y (Table 9). This was particularly evident in the 571 

dorsolateral prefrontal cortex and anterior cingulate cortex. In the same study, however, the 572 

acute effects of a high nitrate diet did not modify global cerebral perfusion.  573 

Chronic studies 574 

Aamand et al (130) demonstrated no effects after 3 days of sodium nitrate ingestion (477 575 

mg/d or 7.7 mmol/d of nitrate, based on study mean weight of 77kg) on cerebral blood flow 576 

in 20 healthy men (Table 9).  577 

Animal studies 578 

No animal studies investigating the effects of dietary nitrate supplementation on blood flow 579 

were found. 580 

Summary: nitrate ingestion and its effects on vascular function 581 

Human intervention studies have now demonstrated ingestion of nitrate lowers blood 582 

pressure and improves endothelial function. These studies are predominantly in healthy 583 

populations and are of short duration. It is yet to be established whether nitrate ingestion has 584 

the same effects in populations at higher risk of cardiovascular disease as few studies have 585 

been conducted and findings are inconsistent. Further research is also needed to understand 586 

the long-term effects of nitrate intake on cardiovascular clinical endpoints.  587 
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Epidemiological evidence  588 

Epidemiological studies have found plant-based diets rich in vegetables are associated with 589 

lower rates of cardiovascular disease (2, 4, 131-136). In particular, cohort studies have shown 590 

specific vegetable groups high in nitrate, such as green leafy vegetables, to be most beneficial 591 

(6-9). The exact mechanisms for the protective effects shown in these studies are still 592 

unknown. The Mediterranean diet (3, 137), the DASH diet (60, 138) and a vegetarian diet 593 

(139, 140), all rich in vegetables, have been shown to be particularly beneficial towards 594 

cardiovascular health. These diets are likely to contain substantially higher amounts of nitrate 595 

than the average Western diet. Thus, nitrate is one possible candidate for explaining 596 

cardiovascular health benefits seen with higher vegetable intakes (141). 597 

There are very few observational epidemiological studies investigating nitrate intake and 598 

cardiovascular-related health outcomes (Table 10). Although databases have been established 599 

to calculate the nitrate intake in observational epidemiological studies (142-144), there was a 600 

strong need for a more comprehensive database with compiled up-to-date data. Our recently 601 

developed database on the nitrate content of vegetables (11) now gives researchers the 602 

opportunity to conduct more observational epidemiological studies with an adequate 603 

assessment of nitrate intake. 604 

To date, there have been two articles published utilising the nitrate content of vegetables 605 

database (11). We have demonstrated nitrate intake to be inversely associated with 606 

atherosclerotic vascular disease mortality in a cohort of older adult women (mean age 75 ± 3 607 

y) (53). In comparison to lower intakes of nitrate from vegetables <53 mg/d (median 39 608 

mg/d), the inverse relationship with atherosclerotic vascular disease mortality plateaued at 609 

intakes of 53-76 mg/d (median 63 mg/d) (53). In the same cohort of older adult women, we 610 

also observed an inverse relationship between nitrate intake from vegetables and common 611 

carotid artery intima-media thickness, as well as ischaemic cerebrovascular disease events 612 
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(hospitalisation or death) (54). The inverse relationship with ischaemic cerebrovascular 613 

disease events also plateaued at intakes of 53-76 mg/d (median 63 mg/d) (54). 614 

Prior to these studies being published, the Tehran Lipid and Glucose Study reported on the 615 

relationship between consumption of nitrate-containing vegetables and risk of hypertension 616 

(145) and chronic kidney disease (CKD) (146), both risk factors for cardiovascular disease. 617 

These studies investigated nitrate intake by assessing whole vegetables containing nitrate. 618 

The authors further categorised nitrate-containing vegetables into low-nitrate, medium-nitrate 619 

and high-nitrate vegetables. It is worth noting that these studies essentially investigated whole 620 

vegetables and then different types of vegetables according to their nitrate levels and not 621 

nitrate as a separate entity. It is, however, difficult to separate nitrate intake from vegetable 622 

intake as the two can be highly correlated; as we have previously demonstrated (r=0.75, 623 

P<0.001) (53). Golzarand et al (145) found a significant inverse association between the 624 

intake of nitrate-containing vegetables and 3-year incidence of hypertension in the highest 625 

tertile compared with the lowest tertile of nitrate-containing vegetables. There were no 626 

significant associations observed between low-nitrate, medium-nitrate and high-nitrate 627 

containing vegetables and 3-year risk of hypertension. As no associations were found 628 

between categories of nitrate-containing vegetables, it is difficult to determine whether the 629 

inverse association demonstrated with total nitrate-containing vegetables is due to vegetable 630 

intake alone. This cohort consisted of 1,546 Iranian men and women (57% women), aged 631 

38±12 years, without hypertension at baseline. In the same cohort, Mirmiran et al (146) found 632 

that the highest compared to the lowest tertile of nitrate-containing vegetables was associated 633 

with a lower estimated glomerular filtration rate and a higher prevalence of CKD at baseline. 634 

This could be a demonstration of reverse causality bias where the diagnosis of chronic 635 

disease has altered dietary intake. There was no association with the occurrence of CKD after 636 

3 years of follow-up after excluding patients with CKD at baseline. Lastly, Bahadoran et al 637 
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(147) recently reported findings on the potential effects of dietary nitrate and nitrite on the 638 

occurrence of type 2 diabetes in the same cohort of Iranian men and women (Tehran Lipid 639 

and Glucose Study). Bahadoran et al (147) reported on 2,139 adults free of type 2 diabetes at 640 

baseline with a median follow-up of 5.8 y. Nitrate and nitrite values were determined from a 641 

recent survey conducted on frequently consumed food items among Iranians (148). Nitrate 642 

and nitrite concentrations of 87 foods were determined using spectrophotometric methods. 643 

The authors found no associations between nitrate intake and the risk of developing type 2 644 

diabetes. However, the authors demonstrated an increased risk of type 2 diabetes among 645 

participants with higher intakes of total and animal-based nitrite in the presence of low 646 

vitamin C intake. The same was not observed in participants with high intakes of vitamin C 647 

(>108 mg/d) (147), suggesting that diets high in vitamin C may counteract the suggested 648 

adverse effects of nitrite on type 2 diabetes. However, higher intakes of total and animal-649 

based nitrite in the presence of low vitamin C intake may be a marker of an unhealthy diet 650 

and lifestyle that may also be associated with a higher prevalence of type 2 diabetes.  651 

There is a lingering concern that nitrate and nitrite may form cancerous compounds such as 652 

nitrosamines (10). The majority of epidemiological studies to date have investigated 653 

relationships between nitrate intake and cancer outcomes. A report compiled by the 654 

International Agency for Research on Carcinogenicity concluded “Ingested nitrate or nitrite 655 

under conditions that result in endogenous nitrosation is probably carcinogenic to humans 656 

(Group 2A)” (149). Conditions that increase endogenous nitrosation are complex but could 657 

involve interactions between the amount of nitrate and nitrite consumed, stomach acidity, 658 

smoking status, medical conditions and the low intakes of nutrients that are likely to decrease 659 

the potential for nitrosation such as polyphenols, vitamin C and vitamin E (56).  660 

Now that there is a comprehensive database on the nitrate content of vegetables available, 661 

researchers have the opportunity to further investigate the associations between chronic 662 
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intake of nitrate and health outcomes. Further research is needed to elucidate the relationships 663 

amongst different populations including young vs. older age groups, low vs. higher 664 

background nitrate intakes, and healthy vs. at risk populations.  665 

Conclusion 666 

There is now strong evidence to suggest that dietary nitrate derived from vegetables can 667 

reduce blood pressure and other markers of vascular function in healthy populations. There is 668 

a need for further research to investigate whether similar effects are observed in populations 669 

at risk of developing cardiovascular disease. Few studies have investigated the long-term 670 

effects of dietary nitrate on cardiovascular disease clinical endpoints; large observational 671 

follow-up studies are required to address this. Further animal studies are required to elucidate 672 

the mechanisms behind the observed beneficial effects. Increasing nitrate in the diet through 673 

the consumption of nitrate-rich vegetables may prove to be an achievable and cost effective 674 

way to reduce the risk of cardiovascular disease.675 
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Table 1. Intervention studies investigating the acute effects of inorganic nitrate on blood pressure in humans. 
 Blood 

pressure 
effect 

Nitrate source Nitrate dose Duration Subjects Screening/baseline 
blood pressure 

Reference 

Effect ↓ Clinic SBP  
↓ Clinic DBP 

Beetroot juice 583 mg 
(9.4 mmol) 

3 h 
 

Young: 25±4 y (10 M; 3 F)  
Old: 64±5 y (9 M; 3 F) 
Healthy 

Optimal/normal Hughes 
2016 (72) 

 ↓ Clinic DBP 
 

Sodium nitrate  800 mg  
(12.9 mmol) 

5 h 
 

28±1 y (11 M; 7 F) 
Healthy 

Optimal/Normal Jonvik 2016 
(71) 

 ↓ Clinic SBP  
↓ Clinic DBP  

Beetroot juice       

 ↓ Clinic SBP  
↓ Clinic DBP  

Rocket salad 
beverage  

     

 ↓ Clinic SBP  
↓ Clinic DBP  

Spinach 
beverage  

     

 ↓ Clinic SBP  
↓ Clinic DBP  

Beetroot juice 375 mg  
(6 mmol) 

3 h 
 
 

Nitrate: 53±10 y (12 M; 21 F) 
Placebo: 53±12 y (12 M; 22 F) 
Hypercholesterolaemic 

Normal Velmurugan 
2016 (50) 

 ↓ Clinic SBP  Spinach 220 mg  
(3.5 mmol) 

3.5 h 
 

58.8±7.6 y (6 M; 20 F) 
Healthy 

Optimal Liu 2013 
(78) 

 ↓ Clinic DBP  Beetroot juice 500 mg  
(8.1 mmol) 

2 h 
 

61±7 y(20 M) 
Overweight 

High-normal Joris 2013 
(79) 

 ↓ Clinic SBP  Spinach 182 mg 
(2.9 mmol) 

3.3 h 47±14 y (6 M; 24 F) 
Healthy 

Optimal Bondonno 
2012 (83) 

 ↓ Clinic SBP Potassium 
nitrate 

496 mg  
(8 mmol) 

3 h 
 

28±2 y (14) 
Healthy 

Optimal Bahra 2012 
(84) 

 ↓ Clinic SBP 
↓ Clinic DBP 

Potassium 
nitrate 

1488 mg  
(24 mmol) 

24 h 
 

23±1 y (8 M; 12 F) 
Healthy 

Optimal Kapil 2010 
(85) 
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 ↓ Clinic SBP 
↓ Clinic DBP 

Potassium 
nitrate 

248 mg, 744 
mg  
(4 mmol, 12 
mmol) 

3 h 
 

29±2 y (6)  
Healthy 

Optimal  

 ↓ Clinic SBP Beetroot juice 341 mg 
(5.5 mmol) 

3 h 25±1 y (9) 
Healthy 

Normal  

 ↓ Clinic SBP 
↓ Clinic DBP 

Beetroot juice 1395 mg  
(22.5 mmol) 

24 h 
 

26 ± 5 y (9 M; 5 F) 
Healthy 

Optimal Webb 2008 
(40) 

 ↓ Ambulatory 
DBP in T 
carriers only 

Beetroot bread 68 mg 
(1.1 mmol) 

6 h 
 

34±9 y (14 M) 
Healthy 

Normal  Hobbs 2014 
(77) 

 ↓ Ambulatory 
DBP  

Beetroot bread 68 mg  
(1.1 mmol) 

6 h 
 

31±2 y (23 M) 
Healthy 

Normal Hobbs 2013 
(80) 

 ↓ Ambulatory 
SBP 
↓ Ambulatory 
DBP 

Beetroot juice 0-707 mg 
(0-11.4 
mmol) 

24 h 31±3 y (18 M) 
Healthy 

High-normal Hobbs 2012 
(81) 

 ↓ Ambulatory 
SBP 
↓ Ambulatory 
DBP 

White 
beetroot-
enriched bread 

99 mg  
(1.6 mmol) 

24 h 
 

25±1 y (14 M) 
Healthy 

High-normal  

 ↓ Ambulatory 
SBP 
↓ Ambulatory 
DBP 

Red beetroot-
enriched bread 

112 mg  
(1.8 mmol)  

    

 ↓ Ambulatory 
SBP  
(M only) 

Beetroot juice 465 mg  
(7.5 mmol) 

24 h 
 

43±3 y (15 M; 15 F) 
Healthy 

High-normal Coles and 
Clifton 
2012 (82) 
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No effect No effect on 
clinic BP 

Beetroot gel 391 mg  
(6.3 mmol) 

3 h 27±2 y (4 M; 1 F) 
Healthy 

Optimal da Silva 
2016 (73) 

 No effect on 
clinic BP 

Beetroot juice 341 mg  
(5.5 mmol) 

2.5 h Nitrate: 21±1 y (5 M; 15 F) 
Placebo: 21±1 y (7 M; 13 F) 
Healthy 

Optimal Wightman 
2015 (74) 

 No effect on 
clinic BP 

Sodium nitrate 0.1-10 mg/kg 
body weight 

4 h 25±1 y (15 M) 
Healthy 

Optimal Rodriguez-
Mateos 
2015 (75) 

 No effect on 
clinic BP 

Beetroot juice 694 mg 
(11.2 mmol) 

2 h 57±10 y (5 M; 4 F) 
Heart failure 

Optimal Coggan 
2015 (63) 

 No effect on 
clinic BP 

Beetroot juice 310 mg  
(5 mmol) 

3 h 25±5 y (7 M; 4 F) 
Healthy 

Optimal Bakker 
2015 (76) 

 No effect on 
clinic BP 

Beetroot juice  738 mg  
(11.9 mmol) 

3 h Young: 27±6 y (11 M; 5 F) 
Old: 59±6 y (8 M; 7 F) 
Healthy 

Normal/high-
normal 

Shepherd 
2016 (69) 

 No effect on 
clinic BP 

Beetroot juice  403-434 mg 
(6.5-7.0 
mmol) 

2 h 23±3 y (20 M) 
Healthy 

Optimal Lefferts 
2016 (70) 

Screening/baseline blood pressure was based on criteria in the Australian guidelines for the diagnosis and management of hypertension in adults 
(150). BP, blood pressure; DBP, diastolic blood pressure; SBP, systolic blood pressure. 
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Table 2. Intervention studies investigating the chronic effects of inorganic nitrate on blood pressure in humans. 
 Blood 

pressure 
effect 

Nitrate source Nitrate dose Duration Subjects Screening/baseline 
blood pressure 

Reference 

Effect ↓ Clinic DBP Beetroot juice 450 mg/d  
(7.3 mmol/d) 

3 d 24±1 y (6 M) 
Healthy 

Normal Keen 2015 
(86) 

 ↓ Clinic, home 
and 
ambulatory 
SBP 
↓ Clinic, home 
and 
ambulatory 
DBP 

Beetroot juice 398 mg/d  
(6.4 mmol/d) 
 

28 d 
 
 

n=64 (26 M; 38 F) 
Nitrate: 58±14 y 
Placebo: 56±16 y 
Drug-naïve and treated 
hypertensive 

Grade 1 
hypertension 

Kapil 2015 
(87) 

 ↓ Clinic SBP High nitrate 
vegetables 

339±133 
mg/d 
(5.5±2.1 
mmol/d) 

7 d 
 

20±2 y (19 F) 
Healthy 

Optimal Ashworth 
2015 (88) 

 ↓ Home SBP 
 
No effect on 
clinic and 
ambulatory BP 
 

Beetroot juice 300-400 
mg/d  
(4.8-6.4 
mmol/d) 

21 d 
 

n=21 (12 M; 9 F) 
Beetroot:63±2 y 
Placebo: 61±1 y 
Older overweight 

Normal/high-
normal 

Jajja 2014 
(90) 

 ↓ Clinic SBP 
 

Sodium nitrate 9.3 mg/kg 
body 
weight/d 

28 d 
 

63±6 y (4 M; 7 F) 
Moderate cardiovascular risk 

High-normal Rammos 
2014 (89) 
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 ↓ Clinic DBP Japanese 
traditional diet 

18.8 
mg/kg/body 
weight/d 
 

10 d 
 

36±10 y (10 M; 15 F) 
Healthy 

Optimal 
 

Sobko 2010 
(92) 

 ↓ Clinic DBP  
 

Sodium nitrate 6.2 mg/kg 
body 
weight/d 

3 d 24 y (15 M; 2 F) 
Healthy 

Optimal 
 

Larsen 2006 
(93) 

No effect No effect on 
clinic BP 
 

Beetroot juice 375 mg/d  
(6 mmol/d) 

42 d Nitrate: 53±10 y (12 M; 21 F) 
Placebo: 53±12 y (12 M; 22 F) 
Hypercholesterolaemic  

Normal Velmurugan 
2016 (50) 

 No effect on 
clinic and 
ambulatory BP 

Beetroot juice 600 mg/d  
(9.7 mmol/d) 

7 d 62±5 y (14 M; 16 F) 
Overweight and obese 

Normal/high-
normal 

Lara 2015 
(65) 

 No effect on 
home and 
ambulatory BP 

Beetroot juice 434 mg/d  
(7 mmol/d) 

7 d 63±4 y (10 M; 17 F) 
Treated hypertensive 

High-normal Bondonno 
2015 (66) 

 No effect on 
clinic, home 
and 
ambulatory BP 

Green leafy 
vegetables 

300 mg/d 
(4.8 mmol/d) 

7 d 61±7 y (12 M; 26 F) 
Pre-hypertensive 

High-normal Bondonno 
2014 (67) 

 No effect on 
ambulatory BP 

Beetroot juice 465 mg/d  
(7.5 mmol/d) 

14 d 67±5 y (18 M; 9 F) 
T2DM 

Grade 1 
hypertension 

Gilchrist 
2013 (68) 

 No effect on 
clinic BP 

High nitrate 
diet 

155 mg/d  
(2.5 mmol/d) 

3 d 73±5 y (3 M; 5 F) 
Older 

High-normal Miller 2012 
(91) 

  Beetroot juice 527 mg/d 
(8.5 mmol/d) 

3 d  Normal  

  Combination 682 mg/d  
(11 mmol/d) 

3 d  High-normal  
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Screening/baseline blood pressure was based on criteria in the Australian guidelines for the diagnosis and management of hypertension in adults 
(150). BP, blood pressure; DBP, diastolic blood pressure; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus. 
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Table 3. Intervention studies investigating the acute effects of inorganic nitrate on endothelial function in humans. 
 FMD effect Nitrate source Nitrate dose Duration Subjects Reference 
Effect ↑ FMD Beetroot juice 375 mg  

(6 mmol) 
3 h 
 

Nitrate: 53±10 y (12 M; 21 F) 
Placebo: 53±12 y (12 M; 22 F) 
Hypercholesterolaemic 

Velmurugan 
2016 (50) 

 ↑ FMD Beetroot juice 310 mg 
(5 mmol) 

3 h 25±5 y (7 M; 4 F) 
Healthy 

Bakker 2015 
(76) 

 ↑ FMD Sodium nitrate 0.1-10 mg/kg 
body weight 

4 h 24±1 y (15 M) 
Healthy 

Rodriguez-
Mateos 2015 
(75) 

 ↑ FMD Beetroot juice 500 mg  
(8.1 mmol) 

2 h 61±7 y (20 M) 
Overweight 

Joris 2013 (79) 

 ↑ FMD Sodium nitrate 9.3 mg/kg 
body weight 

1.5 h 26±1 y (5 M; 5 F) 
Healthy 

Heiss 2012 
(112) 

 ↑ FMD Spinach 182 mg 
(2.9 mmol) 

4 h 47±14 y (6 M; 24 F) 
Healthy 

Bondonno 2012 
(83) 

No effect No effect Potassium 
nitrate 

496 mg  
(8 mmol) 

3 h 28±2 y (14) 
Healthy 

Bahra 2012 (84) 

FMD, flow-mediated dilatation. 
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Table 4. Intervention studies investigating the chronic effects of inorganic nitrate on endothelial function in humans. 
 FMD effect Nitrate 

source 
Nitrate dose Duration Subjects Reference 

Effect ↑ FMD Beetroot juice 375 mg/d  
(6 mmol/d) 

42 d Nitrate: 53±10 y (12 M; 21 F) 
Placebo: 53±12 y (12 M; 22 F) 
Hypercholesterolaemic 

Velmurugan 
2016 (50) 

 ↑ FMD Beetroot juice 398 mg/d  
(6.4 mmol) 

28 d n=64 (26 M; 38 F) 
Nitrate: 58±14 y 
Placebo: 56±16 y 
Drug-naïve and treated hypertensive 

Kapil 2015 (87) 

 ↑ FMD Sodium nitrate 9.3 mg/kg body 
weight/d 

28 d 63±6 y (4 M; 7 F) 
Moderate cardiovascular risk 

Rammos 2014 
(89) 

No effect No effect Beetroot juice 465 mg/d  
(7.5 mmol/d) 

14 d 67±5 y (18 M; 9 F) 
T2DM 

Gilchrist 2013 
(68) 

FMD, flow-mediated dilatation; T2DM, type 2 diabetes mellitus. 
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Table 5. Intervention studies investigating the acute effects of inorganic nitrate on ischemic reperfusion in humans. 
 Ischemic 

reperfusion 

effect 

Nitrate source Nitrate dose Duration Subjects Reference 

Effect Attenuated IR-
induced 
endothelial 
dysfunction 

Potassium 
nitrate 

1488 mg 
(24 mmol) 

3 h 25±1 y (12) 
Healthy 

Kapil 2010 (85) 

  Beetroot juice 341 mg  
(5.5 mmol) 

3 h   

 Attenuated IR-
induced 
endothelial 
dysfunction 

Beetroot juice 1395 mg  
(22.5 mmol) 

2 h 27±7 y (4 M; 6 F) 
Healthy 

Webb 2008 (40) 

IR, ischemic reperfusion. 
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Table 6. Intervention studies investigating the effects of inorganic nitrate on arterial stiffness in humans. 
 Arterial 

stiffness effect 
Nitrate source Nitrate dose Duration Subjects Reference 

Effect ↓ AIx (young 
only) 

Beetroot juice 583 mg  
(9.4 mmol) 

Acute (3 h) Young: 25±4 y (10 M; 3 F)  
Old: 64±5 y (9 M; 3 F) 
Healthy 

Hughes 2016 
(72) 

 ↓ PWV  
 

Potassium 
nitrate 

496 mg  
(8 mmol) 

Acute (3 h) 28±2 y (14) 
Healthy 

Bahra 2012 (84) 

 ↓ PWV  
↓ AIx 

Beetroot juice 375 mg/d 
(6 mmol) 

Acute (3 h) Nitrate: 53±10 y (12 M; 21 F) 
Placebo: 53±12 y (12 M; 22 F) 
Hypercholesterolaemic 

Velmurugan 
2016 (50) 

 ↓ PWV    Chronic (42 d)   
 ↓ PWV  

↓ AIx 
Beetroot juice 398 mg/d 

(6.4 mmol/d) 
 

Chronic (28 d) n=64 (26 M; 38 F) 
Nitrate: 58±14 y 
Placebo: 56±16 y 
Drug-naïve and treated hypertensive 

Kapil 2015 (87) 

 ↓ PWV  
↓ AIx 

Sodium nitrate 9.3 mg/kg 
body weight/d 

Chronic (28 d) 
 

63±6 y (4 M; 7 F) 
Moderate cardiovascular risk 

Rammos 2014 
(89) 

No effect No effect on 
PWV and AIx 

Beetroot juice  403-434 mg 
(6.5-7.0 mmol) 

Acute (2 h) 23±3 y (20 M) 
Healthy 

Lefferts 2016 
(70) 

 No effect on 
PWV and AIx 

Beetroot bread 68 mg  
(1.1 mmol) 

Acute (6 h) 31±2 y (23 M) 
Healthy 

Hobbs 2013 (80) 

 No effect on 
PWV and AIx 

Beetroot juice 500 mg  
(8.1 mmol) 

Acute (2 h) 61±7 y (20 M) 
Overweight 

Joris 2013 (79) 

 No effect on 
PWV and AIx 

Spinach 220 mg  
(3.5 mmol) 

Acute (3.5 h) 59±8 y (6 M; 20 F) 
Healthy 

Liu 2013 (78) 

 No effect on 
PWV 

Beetroot juice 600 mg/d  
(9.7 mmol/d) 

Chronic (7 d) 62±5 y (14 M; 16 F) 
Overweight and obese 

Lara 2015 (65) 
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 No effect on 
PWV and AIx 

Green leafy 
vegetables 

300 mg/d  
(4.8 mmol/d) 

Chronic (7 d) 61±7 y (12 M; 26 F) 
Pre-hypertensive 

Bondonno 2014 
(67) 

AIx, augmentation index; PWV, pulse wave velocity.  
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Table 7. Intervention studies investigating the effects of inorganic nitrate on platelet function in humans. 
 Platelet effect Nitrate source Nitrate dose Duration Subjects Reference 
Effect ↓ in platelet 

reactivity in 
males but not 
females 

Beetroot juice 192 mg  
(3.1 mmol) 

Acute (3 h) M: 26±1 y (12) 
F: 24±2 y (12) 
Healthy 

Velmurugan 2013 
(125) 

 ↓ in platelet 
reactivity in 
males but not 
females 

Potassium 
nitrate 

496 mg  
(8 mmol) 

Acute (3 h) M: 27±1 y (12) 
F: 29±2 y (12) 
Healthy 

 

 ↓ in platelet 
aggregation 

Beetroot juice 1054 mg  
(17 mmol) 

Acute (2.5 h) 31±2 y (5 M; 1 F) 
Healthy 

Webb 2008 (40) 

 ↓ in platelet 
aggregation 

Potassium 
nitrate 

124 mg  
(2 mmol) 

Acute (2.5 h) 18-44 y (4 M; 3 F) Richardson 2002 
(126) 

 ↓ in platelet 
aggregation  

Potassium 
nitrate 

31 mg, 124 mg  
(0.5 mmol, 2 
mmol) 

Acute (2.5 h) 18-44 y (3 M; 3 F)  

 ↓ in platelet-
monocyte 
aggregates  

Beetroot juice 375 mg/d  
(6 mmol/d) 

Chronic (42 d) Nitrate: 53±10 y (12 M; 21 F) 
Placebo: 53±12 y (12 M; 22 F) 
Hypercholesterolaemic 

Velmurugan 2016 
(50) 
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Table 8. Intervention studies investigating the effects of inorganic nitrate in animals. 
 Effect Nitrate source Background diet Nitrate dose Duration Animals Reference 
Blood 
pressure 

↓ MAP (6.7 
mmol  dose only) 

KNO3 in 
drinking water 

Not described 2.5 or 6.7 
mmol/kg/d 

3 w 
 

Hypoxia WT male mice 
(n≥8) 

Baliga 2012 
(151) 

 No change in 
MAP 

Hypoxia eNOS KO 
male mice (n≥8) 

 

 ↓ MAP NaNO3 in 
drinking water 

Not described 0.1 
mmol/kg/d 

8 w Rats (5≤n≥15) Carlstrom 
2010 (152) 

 ↓ MAP (1mM 
dose only) 

supplemented 
with NaNO3 

High-salt diet 0.1 or 1 
mmol/kg/d 

8-11 w UNX Male Sprague–
Dawley rats 

Carlstrom 
2011 (103) 

 Prevented ↑ in 
MAP 

NaNO3 in 
drinking water 

Not described 1 mmol/kg/d 8 w Male SH rats (n=6) Chien 2014 
(98) 

 No change in 
MAP 

Normotensive Wistar 
Kyoto rats (n=6) 

 

 ↓ MAP Supplemented 
with NaNO3 

High-fructose diet 1.8 
mmol/kg/d 

6 w Male Sprague–Dawley 
rats (n=8) 

Essawy 
2014 (100) 

 Prevented ↑ in 
MAP 

10 w 
from 
start 

Male Sprague–Dawley 
rats (n=8) 

 

 ↓ MAP NaNO3 in 
drinking water 

Standard chow 0.2 
mmol/kg/d 

1 w Male Sprague-Dawley 
rats (n=7) 

Petersson 
2009 (153) 

 ↓ MAP and ↓ 
DBP 

   5 d Male Sprague-Dawley 
rats 

 

 No change in 
MAP or SBP 

NaNO3 in 
drinking water 

Standard chow 0.8 
mmol/kg/d 

2 w Young male Sprague–
Dawley rats (n=8) 

Hezel 2016 
(101) 

 ↓ MAP and ↓ 
SBP 

0.3 
mmol/kg/d 

Old male Sprague–
Dawley rats (n=5) 
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 No change in 
SBP 

NaNO3 in 
drinking water 

Standard chow 0.1 g/L 8 w Male Wistar rats (n=8) Khalifi 
2015 (102) 

 ↓ SBP Diabetic Male Wistar 
rats (n=8) 

 

 No change in BP NaNO3 in 
drinking water 

Western-type diet 0.2 mmol/d 14 w LDL receptor KO mice 
(n=15) 

Marsch 
2016 (154) 

 Smaller rise in 
SBP 

Mg(NO3)2 in 
drinking water 

Not described 0.3 
mmol/kg/d 

4 w Male SH rats (n=7) Vilskersts 
2014 (99) 

 ↓ MAP (0.1mM 
dose only) 
↑ MAP (1mM 
dose only) 

NaNO3 in 
drinking water 

Standard chow 0.1 or 1 
mmol/kg/d 

8-10 w Male Sprague–Dawley 
rats (n=5-12) 

Carlstrom 
2015 (97) 

Vascular 
function 

↓ Ach-mediated 
vasorelaxation 
(1mM dose only) 

   2-4 w WT C57BL/6 mice 
(n=5-12) 

 

 No 
vasorelaxation 

    eNOS KO mice (n=5-
12) 

 

 ↑ Ach-mediated 
vessel relaxation 
(0.1 and 1 mmol 
dose only) 

NaNO3 in 
drinking water 

High-fat diet 0.1, 1 or 10 
mmol/kg/d 

10 w Male ApoE KO mice 
(n= 8-12) 

Bakker 
2016 (115) 

Ischaemic 
reperfusion 

↑ Perfusion 
recovery 

NaNO3 in 
drinking water 

Not described  5.0 
mmol/kg/d 

2 w Male NMRI mice or 
C57BL/6 mice (n=21-
23) 

Hendgen-
Cotta 2012 
(117) 

Platelet 
function 

↓ collagen 
induced platelet 
aggregation 

NaNO3 in 
drinking water 

Standard chow 1 g/L 1 w WT C57BL/6 mice 
(n≥5) 
eNOS KO mice (n≥5) 

Park 2013 
(127) 
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Ach, acetylcholine; ApoE, apolipoprotein e; eNOS, endothelial nitric oxide synthase; KO, knock-out; LDL, low density lipoprotein; MAP, 
mean arterial pressure; NMRI, Naval Medical Research Institute; NO, nitric oxide; NOS, nitric oxide synthase; SBP, systolic blood pressure; 
SH, spontaneously hypertensive; UNX, uninephrectomized; WT, wild-type. 
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Table 9. Intervention studies investigating the effects of inorganic nitrate on cerebral blood flow in humans. 
 Cerebral blood flow effect Nitrate source Nitrate dose Duration Subjects Reference 
Effect ↑ regional cerebral 

perfusion in frontal lobe 
white matter but no effect 
on global cerebral perfusion 

High nitrate diet 769 mg  
(12.4 mmol) 

Acute (24 h) 
 

75±7 y (14) 
Older 

Presley 2011 (129) 

No effect No effect on cerebral blood 
flow 

Sodium nitrate 6.2 mg/kg body 
weight/d 

Chronic (3 d) 
 

25±1 y (20 M) 
Healthy 

Aamand 2014 
(130) 

NOS, nitric oxide synthase. 
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Table 10. Observational epidemiological studies of dietary nitrate and cardiovascular-related health outcomes 
Study design and 
population 

Nitrate intake 
assessment 

Primary 
outcome 

Adjusted variables Results Reference 

15 y follow-up study 
n=1226  
Australian female older adults 
Diabetes and ASVD-free 
75.1±2.7 y 

FFQ ASVD mortality Model 1: Unadjusted. 
Model 2: Age and energy. 
Model 3: Age, BMI, physical 
activity, alcohol intake, history of 
smoking, socioeconomic status, 
calcium supplementation group, 
organic nitrate medication, 
antihypertensive medication, statin 
medication, low-dose aspirin, renal 
function, and energy intake. 

↓ ASVD 
mortality 

Blekkenhorst 
2017 (53) 

15 y follow-up study 
n=1226 
Australian female older adults 
Diabetes and ASVD-free 
75±3 y 

FFQ Ischaemic 
cerebrovascular 
disease 
hospitalisation 
and death  

Model 1: Unadjusted. 
Model 2: Age and energy. 
Model 3: Age, BMI, energy intake, 
alcohol intake, energy expended in 
physical activity, antihypertensive 
medication, statin medication, low-
dose aspirin medication, organic 
nitrate medication, history of 
smoking, and treatment. 

↓ ischaemic 
cerebrovascular 
disease 
hospitalisation 
and death 

Bondonno 
2017 (54) 

Cross-sectional and 3 y 
follow-up study 
n=1538 cross-sectional 
n=1229 follow-up 
Iranian male and female 
adults (57% female) 

FFQ eGFR and CKD  Model 1: age, sex, and BMI. 
Model 2: Additional adjustment for 
smoking, education, physical 
activity, diabetes, and hypertension. 

↓ eGFR, ↑ CKD 
(cross-sectional)  
 
No association 
for 3 year 

Mirmiran 
2016 (146) 
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38.0±12.0 y Model 3: Additional adjustment for 
dietary intake of energy, fibre, and 
potassium. 

follow-up of 
CKD 

5.8 y follow-up study 
n=2139 
Iranian male and female 
adults (54.6% male) 
T2DM-free 
38.9±12.6 y 

FFQ T2DM Model 1: Diabetes risk score.  
Model 2: Additional adjustment for 
dietary total fat, fibre, and vitamin C. 
 

No association  
 

Bahadoran 
2017 (147) 

3 y follow-up study 
Iranian male and female 
adults (57% female) 
38±12 y 
 

FFQ Hypertension Model 1: Adjusted for age and sex. 
Model 2: Additional adjustment for 
weight, 3-year weight change, 
smoking, education, physical 
activity, baseline SBP and DBP. 
Model 3: Additional adjustment for 
dietary intake of energy, fibre, 
sodium, potassium and processed 
meat. 

No association Golzarand 
2016 (145) 

ASVD, atherosclerotic vascular disease; BMI, body mass index; CKD, chronic kidney disease; DBP, diastolic blood pressure; eGFR, 
estimated glomerular filtration rate; FFQ, food frequency questionnaire; SBP, systolic blood pressure; T2DM, type 2 diabetes mellitus. 
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Figure legends: 

Figure 1. Observed beneficial effects of nitrate ingestion on cardiovascular-related health 

outcomes in human and animal studies. ASVD, atherosclerotic vascular disease; CVD, 

cardiovascular disease. 
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