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Abstract 

Ransomware infections have grown exponentially during the recent past to cause major 

disruption in operations across a range of industries including the government. Through 

this research, we present an analysis of 14 strains of ransomware that infect Windows 

platforms, and we do a comparison of Windows Application Programming Interface 

(API) calls made through ransomware processes with baselines of normal operating 

system behavior. The study identifies and reports salient features of ransomware as 

referred through the frequencies of API calls.  

Keywords: Cryptovirology, cybersecurity, intrusion detection, malware, ransomware, 

Win/32  

1. Introduction

Malware or malicious software is defined as any program or process that is crafted by 

the adversary to either affect routine operations of a computer, its operating system and 

hosted software, or to steal sensitive data. When such malware is crafted with the intent 

of extorting user data and holding it for ransom, then it is categorized as ransomware. 

While malware has been persistent for decades, the emergence of ransomware as the 

next big threat adopts a new business model by threat actors. The evolution of malware 

capabilities over the past 30 years is attributed to the rapid advances in computing 

power, memory, and communication bandwidth.  Extortion of user data through 

malware dates back to 1989, when the PC CYBORG (AIDS) Trojan was released on 

floppy disks. Infected floppy disks when inserted by naïve users into their workstations 

would cause a Trojan infection, locking user files using basic cryptographic techniques, 

presenting a message stating the user’s ‘breach of software license’, and demanding an 

amount of approximately US $200 for release of the extorted data. The Trojan was not 

very successful because the payment procedure adopted by the adversary was through 

bank cheques and the proliferation of malware through the crude floppy-disk medium 

was excruciatingly slow.  

Strong data encryption techniques, attributed to advances in computing power and 

memory technology/affordability, alongside advances in payment techniques and 

cryptocurrency [1] have led to rapid evolution of ransomware during the period 2007-

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/ 
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2016. The ability of the adversary to conceal his/her identity and reaps profit through 

ransomware infections proliferating across billions of Internet-connected devices, is 

thus easily achievable in today’s highly connected landscape. CTB-Locker (Curve, 

TOR, Bitcoin), is considered to be the first variant of ransomware to effectively 

combine three key characteristics required to achieve a high degree of success in 

infection, namely, the anonymity capabilities of the TOR routing protocol to conceal 

adversary location, the anonymous payment capabilities of Bitcoin to keep payment 

path untraceable, and strong encryption based on Elliptic Curve Cryptography with 

sufficient key lengths to resist attempts to crack the key including those involving brute-

force [2].  

In 2013, a 500% growth in ransomware variants and capabilities was reported [2]. This 

can be attributed to the three technological advances enumerated above. The common 

families of ransomware alongside their respective dates of emergence are listed as 

follows [2]: PC CYBORG Trojan (12/19/1989), One Half Virus (>1994), GPCode 

family (~2004), Reveton (~2012), CryptoLocker (~2013), CryptoWall (~2014), 

CryptoDefense (~2014), PoshCoder (~2014), Virlock (~2014), TeslaCrypt (~2015), 

CryptoFortress (~2015), CryptoTorLocker2015 (~2015), CTB-Locker (~2015), 

CryptoWall (~2016), Xorist (~2016), Filecoder (~2017) along with variants such as 

Petya (~2017), JAFF (~2017), and Wannacrypt (~2017). 

Ransomware evolution witnessed the first brief increase in 2006-07 [3], mainly through 

the emergence of the GPCode variants. The GPCode.ak variant in particular was known 

to write the encrypted file contents to a new location in the user’s disk, deleting the 

unencrypted user files. Through application of the ‘undeletion utility’, partial recovery 

of user data was possible without having to pay the ransom to the adversary. Newer 

variants of GPCode used stronger encryption techniques with longer encryption keys 

(1024 or 2048 bits), thus encumbering the user data recovery attempts at the victim’s 

machine.  

A close look at the evolution of several versions of ransomware releases revealed that 

they were mostly copy-paste code from previous versions. Therefore, many of the 

limitations of one version were carried over to the next. In addition, several ransomware 

variants operated in unconventional ways. For instance, the Reveton ransomware [2], 

released in 2015, was found to merely lock the operation system’s boot process without 

encrypting user data. Consequently, the ransomware activity was limited to disruption 

of operations and recovering user data without having to pay the ransom amount, was 

found to be easily achievable. 

Another observed characteristic of recent ransomware traits is the ransomware 

procedural requirement to contact a centralized Command-and-Control (C2C) Server, 

once the victims’ machine is infected, prior to encrypting the data. The C2C Server 

typically holds the cryptographic key required to decrypt the victim’s data which has 

been held for ransom. In summary, the four stages of a ransomware-based attack can 

be described as follows: 

 Infection: The ransomware software infects a victim’s machine when the naïve

victim opens an attachment that accompanies a spam message. Alternately, the

victim’s machine can also be infected when a compromised website is accessed.
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 Data encryption: Once the victim’s machine is infected with ransomware, 

cryptographic keys utilizing the Public Key Infrastructure (PKI) are generated 

either on the infected PC or the C2C server. The ransomware then proceeds to 

lock down the user’s files or device. Ransomware specific definitions 

commonly result in one of two actions being undertaken: either the data/files on 

the victim’s machine are attacked on a file-by-file basis, or critical filesystem 

structures such as the Windows Master File Table are altered. In both cases, the 

original files or data are encrypted with the host specific cryptographic keys, 

and the original files or metadata are then deleted. 

 Demand: The ransomware software displays a message to the victim demanding 

that a certain amount be paid so as to release the locked data/files. 

 Outcome: Based on the action taken by the victim, the following are possible 

outcomes: a) the data is recovered through elimination of ransomware trait from 

the victim’s machine without paying the ransom amount, b) payments are made 

through anonymous channels such as BitCoin/MoneyPak or DarkCoin, or c) 

payments are not made and the ransomware trait is not eliminated, upon which 

the data/files are destroyed; with no backup in place, permanent loss of victim’s 

data/files thus occurs. 

 
It can be seen from the above examples that ransomware activity must by nature follow 

specific patterns of behavior. These patterns include the file identification process, 

encryption of files, network command and control communications, and use of 

anonymous networks. Quite simply, there is no optimal way to scan files and encrypt 

their content without making system level calls facilitated through the Windows 

Application Programming Interface (API). The Window API [4] provides a set of 

programming interfaces that simplify the process of developing software. For example, 

while a developer makes the system call “FileOpen”, the operating system executes a 

series of instructions to locate the file in the file system, checks file access rights and 

permissions, and locates the file on the hard disk before returning the handle or 

reference back to the developer. By using the Windows API, developers are free to 

focus on the logic of their program (or malware) code and use the pre-defined 

procedures to accomplish their tasks [5].  

Windows API sequence of calls has been an area of research during the recent past. In 

[6], the authors have presented a ransomware detection scheme that operates on 

Windows platforms and identifies modifications to various application types. Thirty 

most common Windows applications were evaluated and attempts by ransomware to 

access these file types, were analysed and reported. 

 

. In [7], the authors present a call tracer approach for identifying the sequence of 

Windows API sequence of calls, by comparing the patterns of calls with known 

databases of malware, and by applying machine learning techniques for data analysis. 

Malware samples obtained from popular repositories were analysed and the results of 

the machine learning based classification of these samples were reported. In [8], the 

authors proposed an approach for identifying API sequence calls for malware samples. 

The lack of accuracy in anti-virus tools was highlighted as one of the motivations for 

the research conducted. Malware behaviour was generalised across 23,080 popular 

samples of malware.   
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As the number of Windows API calls is limited, and generally lower level file, network 

and cryptographic operations are exposed through a limited set of instructions, it may 

be possible to detect ransomware specific activities by analyzing their usage (or calls) 

to certain Windows API functions. We analyse and report ransomware activity based 

on the executing payload that has been transferred to a victim’s machine beforehand. 

API call patterns and frequency analysis are used to help determine the behaviour of 

ransomware in a real-world environment. By identifying the programming patterns 

used by ransomware programmers, we can improve Operating System or Kernel level 

protection mechanisms. TBased on the results reported in this paper, we provide a 

fundamental platform for researchers to examine methods of ransomware detection 
based on behavioural analysis and/or entropy-based analysis, for future research. 

2. Method, experimental setup, data processing and analysis

2.1 Method 

We selected ransomware strains from recently circulated and well publicised 

ransomware variants [9][10][11] from various online resources. Ransomware strains 

were analysed based on their individual behaviour patterns. We tested ransomware and 

normal (non-malicious) baseline operations in successive experiments on a 

standardized Virtual Machine (VM). For each experimental test, we reset the VM to 

the same initial configuration, loaded a target test case, started the VM, logged Process 

Monitor events for a fixed duration of 10 minutes, and then halted the machine, and 

finally we exported the logged data and saved it for analysis. All ransomware tests were 

fully automated with the experimental tests execution and data collection scripted 

through a combination of BASH scripts, batch files and PowerShell scripts to ensure 

uniformity over each experimental test. For some baseline experimental tests the 

automated scripts were modified or customized for specific (often interactive) 

operations such as software installation and simulated web browsing. 

2.2 Experimental setup 

We created a 32-bit Windows 8 Virtual Machine in a Virtual Box. This Test VM was 

provided with a firewalled Internet connection through an intermediate VPN router and 

firewall. We preloaded the virtual disk image with a mix of documents, picture and 

video files. We saved them to multiple locations on the disk image. A Virtual Box 

shared folder was mapped to a drive letter and loaded with a multilevel directory 

structure, documents and media files. The virtual disk image and the shared folder were 

reset to initial conditions for each experimental test conducted. Table 1 presents the 

user file structure of the virtual machine deployed. The total disk space was 25 GB with 

13.5 GB used space. Table 2 shows the count of the numbers of files in the shared 

network folder. Image files were the most popular file types whereas PDF files were 

found to be the least frequent.  

Location File count and size 

Desktop 1.07GB, 442 files, 90 folders 

Documents 524MB, 66 files, 22 folders 
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Pictures 417MB, 1344 files, 9 folders 

Videos 661MB, 16 Files, 0 Folders 

Table 1 - Virtual machine victim user's file structure 

 
File type Count of files in shared (network) 

folder 
jpg and png image files 1337 

ppt (and pptx) 2 

pdf 55 

doc (and docx) 34 

xls (and xlsx) 17 

mp3/mp4 (audio and video media) 20 

other filetypes 27 

directory and subdirectory entries (maxdepth = 5) 31 

Table 2 - Shared folders (network) file counts 

  

 

Automation 
element/method 

Automated on Host or Guest  Description 

Create PowerShell 
experiment execution 
control file 

Host Create a control file for use by 
Windows PowerShell on boot up – 
specifies the experiment to run, 
working directory and various 
other conditions 

VirtualBox automation Host Use of BASH script and VirtualBox 
Manage commands to start/stop 
and reset VM snapshots 

PowerShell scripts Guest Read the control file from a shared 
read-only resource to identify 
experiment’s executable and run 
conditions 

Shared filesystem reset Host BASH script to reset shared 
filesystem resources 

Timed hard shutdown Host Hard shutdown of the guest VM 
and restart into data extraction 
mode 

Data extraction Guest and Host Restart and launch ProcMon to 
recover boot time data. Save files 
and then move extracted files to a 
safe location for future analysis 

Table 3 - Technology and elements used for automation of testing 

In Table 3, we define various automation procedures that were executed during 
the experiments. 

2.3 Data processing and analysis 
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We loaded the Process Monitor’s data in a clean Windows 10 Virtual Machine, and 

then re-exported it with complete stack traces and Windows debugging symbols to 

XML format. 

 

We processed the exported Process Monitor’s event data using a Python script to extract 

each stack trace, and examined each call frame in order to identify the first call to a 

Windows system file. A sample contingency table is provided in Table 4. The calling 

address, the resolved called symbol, the Dynamic Link Library (DLL) path and 

metadata were extracted. The extracted API data consisting of 36 million Windows API 

calls across all 30 experimental tests were further summarized into two-way 

contingency tables plotting Windows API Call frequencies for each API Call and 

experimental test combination. 

 
System/API Call CTB-

Locker_A.csv 
Revenge_A.csv … Explorer 

Session 
Install 
MS 
Office 

Run 
Powerpoint 
+ User 
Activity 

CloseHandle 4 10946 … 944 0 1545 

CoCreateInstance 70 48 … 4567 0 0 

CoInitialize 44 0 … 289 542 0 

CoInitializeSecurity 38 0 … 116 0 0 

… … … … … … … 

(Total of 1262 Calls) 
      

Table 4 - Sample contingency table comprising 1262 rows and 25 columns 

  
Experimental test File Hash (SHA 256) 

Baseline 
operations 

Baseline Boot to Idle  NOT RECORDED 

Windows Explorer Session 
Navigating OS and Folders 

NOT RECORDED 

Install MS Office 07 NOT RECORDED 

Install Kodi Media Centre NOT RECORDED 

Installing Firefox Browser  NOT RECORDED 

Installing Apache Open 
Office  

NOT RECORDED 

Installing Logitech Media 
Centre  

NOT RECORDED 

Running Word NOT RECORDED 

Running PowerPoint NOT RECORDED 

Running Excel NOT RECORDED 

Running Apache Open Office NOT RECORDED 

Internet Browsing in IE NOT RECORDED 

Running Firefox Browser NOT RECORDED 

Run Kodi Media Centre NOT RECORDED 

Run Logitech Media Centre 
Control 
 

NOT RECORDED 

   

Ransomware 
tests 

 CTB-Locker 128a0f0cd5d10f864d5a0741ba25996b2bf74f580ac7918
dec6516215801e39a 
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Experimental test File Hash (SHA 256) 

 Cerber cf262a9236eaf5230c219845823f36fd8c8e8b77ba882c34
ce38a5087539cf71 

 CrypMIC b2bcfc4c5d1d60f7ea4298d32dcfff303f4db4b1ba89a8b6
d24b7ccfe883e45a 

 CryptFile2 a1e4693db6419eb5588f25d2b9f90db6c0e96e30a51fed5
f0236cbdd49894e75 

 CryptoMix a9a232cbff2c4347c1fcdeb1a3f1a6e45fbd4e93a107c6dd5
7fb8994df9d3bce 

 CryptoShield d56fb2bdad7a50ab1f6ef76c67669452ed4da2bf865beafc
f4956ab30bfa20fc 

 GlobeImposter 72ddceebe717992c1486a2d5a5e9e20ad331a98a146d29
76c943c983e088f66b 

 Gryphon 933af0c69e1e622e5677e52c24545761c2843b3f52ea38e
63bbe4786bfd6276e 

 JAFF 824901dd0b1660f00c3406cb888118c8a10f66e3258b50
20f7ea289434618b13 

 Mole c2e1770241fcc4b5c889fec68df024a6838e63e603f09371
5e3b468f9f31f67a 

 NemucodAES 482711b2f17870ddae316619ba2f487641e35ac4c099ae
7e0ff4becd79e89faf (payload) 

 Revenge 8ab65ceef6b8a5d2d0c0fb3ddbe1c1756b5c224bafc8065c
161424d63937721c 

 TeslaCrypt 200bc25fa093ce65f41baa1c3efe02dcc238b04cb57a6fc5e
e87da1e04d6e168 

 WannaCry ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c
6e5babe8e080e41aa 

Table 5 - Experimental tests - baseline and ransomware (hashes where applicable) 

In Table 5 shows a list of all experiments, baseline and 14 ransomware strains, that 
were conducted. Table 6 describes the baseline experiments that we executed. In 
particular, we identify the system activities and/or events that were executed during 
each Win/32 baseline operation.  

 
 

Baseline operation Experiment fully automated? [Yes/No] Description of system events, 
activities  

Baseline boot to idle  Yes Standard windows housekeeping, 
connection to network shares, basic 
operations 

Windows Explorer 
session navigating 
operating system and 
folders 

No  
(opened one folder every 30 seconds, 
copied folder from network share to 
desktop, created folder ever minute, 
moved files from desktop to created 
folders, deleted a folder every 2 minutes) 

Common user activity. Opening 
directories and locations, listing files, 
querying file types to identify 
associated applications 

Install MS Office 07 Yes Writes many files, registers 
components and COM objects 

Install Kodi media 
centre 

Yes Non-Microsoft application handles 
many media file types 

Installing Firefox 
browser  

Yes 
 

Non-Microsoft application handles 
internet and registers application 
capable of using Internet. 
Imports/reads data from other 
browsers 
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Baseline operation Experiment fully automated? [Yes/No] Description of system events, 
activities  

Installing Apache open 
office  

No Alternate to Microsoft Office examine 
the difference in coding standards for 
similar activities 

Installing Logitech 
media centre  

No Media server. registers and starts 
services and network listeners 

Running word No  
(Launch automated by script – Activity 
manual: opened one document every 2 
minutes, copy and pasted text every 30 
seconds, typed for 1 minutes,  imported 
media, ran spell check and saved 
document)  

Common user activity 

Running PowerPoint No  
(Launch automated by script – Activity 
manual: opened one document every 2 
minutes, copied and pasted text every 30 
seconds, typed for 1 minute,  imported 
media, ran spellcheck and saved 
document) 

Common user activity 

Running Excel No  
(Launch automated by script – activity 
manual: opened one document every 2 
minutes, created sheet created 100 rows 
of data, created chart) 

Common user activity 

Running Apache open 
office 

No  
(Initial launch automated by script – 
activity manual: rotated through test 
sequences for Word, PowerPoint and 
Excel until time expired) 

Common user activity provides 
alternate to Microsoft office 
application. Examine the effect of 
different coding standards on similar 
activities to Running Microsoft Office 
Products 

Internet browsing in 
IE 

No  
(Launch automated by script – activity 
manual: browsed to a list of pages, one 
page every 30 seconds) 

Common user activity uses network 

Running Firefox 
browser 

No  
(Launch automated by script – activity 
manual: browsed to a list of pages, one 
page every 30 seconds) 

Common user activity uses network. 
Alternate coding standards for similar 
activities as Internet Browsing in IE 

Run Kodi media centre No  
(Launch automated by script – allowed to 
complete normal start up media scans – 
further manual activity: browse a media 
folder every minute, play one video file, 
added a new media folder and scanned 
for content) 

3rd party developed, accesses many 
files, catalogues media, connects to the 
internet to identify media. Scans 
specified file system locations for 
media files 

Run Logitech media 
centre control 
 

No  
(Required admin privileges and launch 
from control panels. Added a new media 
folder and scanned for content. 

Launches control panel, allows users to 
identify media folders and execute file 
system scans of specified locations for 
media files. Starts and stops the media 
centre service 

Table 6 – Baseline operations and description of system events and activities 

 

3. Analysis 
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Of the 1262 calls to external functions across all experiments, 244 were present in 

ransomware which were further reduced to 209 calls by combining similar calls of 

ANSI and Unicode variants as shown in Table 7. 

 
Calls Grouped into 

CopyFileA 
CopyFileExW 
CopyFileW 

CopyFile [A|ExW|W] 

CreateDirectoryA 
CreateDirectoryW 

CreateDirectory [A|W] 

…A 
…W 
…Ex 
…ExA 
…ExW 

…[A|W|Ex|ExA|ExW] 

Table 7 - Merging of similar API Calls 

The rationale for merging similar API calls is that Windows API calls such as 

FindNextFileW and FindNextFileA are essentially the same API call (the ‘W’ variant 

accepting Unicode and ‘A’ variant accepting ANSI coded input strings). Similarly, 

functions with Ex suffixes are generally newer with a different call pattern, however 

their base functionality is often quite similar.  

 

The API calls were arranged into two-way contingency tables that plotted the observed 

frequency of each API call for each experimental test. We identified API calls of 

interest. Calls of interest were selected where the “API call’s presence indicated 

ransomware regardless of call frequency” and “API calls with significantly higher-

than-average call frequencies” statistics. We used Fisher exact tests to compare the 

prevalence of each specific API call in the ransomware group to the normal baseline 

operations group. Calls with usage patterns that differed significantly (p < 0.05) 

between the two groups were identified. 

 

3.1 Results 
 

An initial examination of the contingency table that compares all ransomware system 

calls to system calls made by non-malicious normal baseline operations show that 

ransomware used a small subset of all system calls logged during normal baseline 

operations. Comparing the frequency of all ransomware system calls to the frequency 

of system-calls in normal baseline operations shows that identification of ransomware 

can be done through call frequencies alone (chi-square; p << 0.01; 95% confidence 

level for significance testing). This is a reasonable expectation given the large data set 

and high variability in call frequencies and prevalence. The API calls which contributed 

most to the chi-square statistic were examined to determine what subset of calls could 

be used to indicate the presence of ransomware activity. 

 

When we examine individual API calls more closely, we found that 18 Windows API 

calls where usage patterns (prevalence or call frequency) varied between ransomware 

and baseline normal operation differed significantly (Tables 8, 9 and 10). These API 

calls occur in significantly more ransomware strains (compared to baseline 

experiments), or at greater call frequencies (p < 0.05).  
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The interesting calls identified included:  

 

 8 API calls that existed only in ransomware at a significant level.  

 4 API calls that existed in both ransomware and normal operations, where the 

difference in utilization of the API call was statistically significant and more 

common in ransomware samples than in normal baseline operations. 

 6 API calls that existed in both ransomware and baseline normal operation and 

where the ransomware frequency count exceeded the baseline mean by more 

than three standard deviations (3σ). 
 

 Windows API Call Count of 
ransomware 
samples 
used 

Count of 
baseline 
samples 
used 

Usage differs 
between 
ransomware 
and baseline 
(Fisher exact 
P-value) 

P
re

se
n

t 
o

n
ly

 in
 

ra
n

so
m

w
ar

e 

InternetOpen 6 0 0.006 

CryptDeriveKey 5 0 0.017 

CryptDecodeObject 4 0 0.042 

CryptGenKey 4 0 0.042 

CryptImportPublicKeyInfo 4 0 0.042 

GetUserName 4 0 0.042 

NdrClientCall2 4 0 0.042 

socket 4 0 0.042 

U
se

d
 in

 
m

o
re

 
ra

n
so

m
w

ar
e 

st
ra

in
s 

_tailMerge_CRYPTSP_dll* 9 1 0.002 

CoCreateInstance 8 1 0.005 

SHWindowsPolicy 8 1 0.005 

GetFileType 10 4 0.027 
Table 8 - Calls to Windows APIs (without considering call frequency) - ransomware vs normal baseline 
operations 

 

 

Windows API Call Count of 
ransomware 
samples using 
high (𝒙 + 𝟑𝝈) 
frequency 
calls rates 

Count of 
baseline 
samples using 
high (𝒙 + 𝟑𝝈) 
frequency call 
rates 

Significance 
(Fisher exact) 

U
se

d
 in

 
ra

n
so

m
w

ar
e 

at
 

h
ig

h
er

 c
al

l 
fr

eq
u

en
cy

 

CryptAcquireContext 7 0 0.002 

CloseHandle 6 0 0.006 

FindNextFile 6 0 0.006 

SetFilePointer 6 1 0.035 

GetFileSize 4 0 0.042 

SetFileAttributes 4 0 0.042 
Table 9 - Calls to Windows APIs where ransomware call frequency exceeds baseline mean call frequency by 
more than 3 standard deviations. 
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 Windows System 
Call 

C
T

B
-L

o
ck

er
 

C
er

b
er

 

C
ry

p
M

IC
 

C
ry

p
tF

il
e2

 

C
ry

p
to

M
ix

 

C
ry

p
to

Sh
ie

ld
 

G
lo

b
eI

m
p

o
st

er
 

G
ry

p
h

o
n

 

JA
F

F
 

M
o

le
 

R
ev

en
ge

 

T
es

la
C

ry
p

t 

W
an

n
aC

ry
 

N
em

u
co

d
A

E
S

 

D
et

ec
te

d
 b

y
 c

al
l p

re
se

n
ce

 
(e

xc
lu

si
v

e 
to

 r
an

so
m

w
ar

e)
 

InternetOpen 
   

* * * 
  

* * * 
   

CryptDeriveKey 
   

* * * 
 

* 
  

* 
   

CryptDecodeObject 
 

* 
     

* 
 

* * 
   

CryptGenKey 
     

* 
  

* * * 
   

CryptImportPublicKe
yInfo 

 
* 

     
* 

 
* * 

   

GetUserName 
   

* 
 

* 
   

* * 
   

NdrClientCall2 
    

* * 
 

* 
  

* 
   

socket 
 

* * 
 

* * 
        

D
et

ec
te

d
 b

y
 c

al
l p

re
se

n
ce

  
(n

o
t 

ra
n

so
m

w
ar

e 
ex

cl
u

si
v

e)
 

_tailMerge_CRYPTSP_
dll 
(1 false positive) 

 
* * 

 
* * * * * 

 
* 

 
* 

 

CoCreateInstance 
(1 false positive) 
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CryptAcquireContext    * * * * *  * *    

CloseHandle   *  * * * *   *    

FindNextFile   *   * * * *  *    

SetFilePointer 
(1 false positive) 

 *  * * * *    *    

GetFileSize   *    * * *      

SetFileAttributes  *    *    * *    

 Count of calls capable 
of identifying 
ransomware 

2 9 5 7 11 15 7 12 8 7 16 0 1 3 

 * - Ransomware 
Detected with System 

Call  
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Table 10 - Calls to Windows APIs categorized by ransomware strain. 

The fisher-exact test of independence showed a very high level of certainty that 
the baseline versus ransomware samples differed through a systematic process, 
namely, that the presence of ransomware in the system and not in our baseline 
tests was not merely coincidental. For example, GetFileType is used more often in 
ransomware than in baseline samples runs (10 ransomware samples vs 4 baseline 
operations). However, due to the small sample sizes for both baseline and 
ransomware, the difference in the API usage by ransomware strains and the 
baseline tests within the significant range (p=0.066 > 0.05). As such, no specific 
API can be used for detecting ransomware. Rather, the APIs identified and 
reported in Table 10 can aid in the detection of ransomware strains that would 
otherwise remain undetected in a Win/32 standard operating environment. It 
must also be noted that none of these APIs are dangerous for a standard Win/32 
operating environment. However, based on our findings, we found that calls to 
some of these APIs are more frequent than others during a ransomware infection.  

4. Discussion 
 

Ransomware activities were clearly identified in thirteen out of fourteen ransomware 

strains using Windows API calls of interest. Of these, nine were identified calls that 

were unique to ransomware and did not trigger false positive events during detection. 

Only the variant of TeslaCrypt tested was not identified. 

 

One third of the API calls of interest were related to cryptographic activities. These 

calls were primarily used to obtain handles to key containers [12] and generate public 

and private keys. The presence of cryptographic API calls is reasonable and expected 

for typical ransomware activities. A delayed load tailMerge of CRYPTSP.DLL [13] 

was also present in nine strains of ransomware. This cryptographic service provider 

dynamic link library appears to be a legacy crypto library the use of which has been 

identified and discussed in [14]. 

 

A further six of the API calls were related to filesystem operations. These included calls 

to scan directory structures for files, examine file types, sizes and set pointers to allow 

the ransomware to read and write file contents. Five out of six file operations were 

detected through API call frequency analysis indicating that while non-malicious 

activities also resulted in file activity, the rates observed in ransomware significantly 

exceeded (x ̅+3σ) the call rates during normal system operations. 

 

Internet and socket connections were surprisingly absent from normal non-malicious 

operations. It appears that the coding patterns employed by windows and open-source 

software developers do not often create direct network sockets or connections. Socket 

operations tend to be low-level in nature, which means coding complete network 

protocols using sockets is likely to be a laborious task. Socket programming is useful 

for limited and specific tasks that require lightweight network listeners or clients with 

well-defined communications protocols [15][16].  

 

Four ransomware strains utilized NdrClientCall2 which is associated with the Windows 

Remote Procedure Call (RPC) interface. RPC is used to create client server applications 

without the need to manage the underlying network protocols and communications [17]. 
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For example, RPC could allow ransomware developers to establish command and 

control server communication without resorting to socket level programming. 

 

CoCreateInstance was used non-exclusively in eight out of the fourteen ransomware 

strains. CoCreateInstance appears to be used by ransomware to access Windows COM 

objects through unique class and instance identifiers. Developers may use 

CoCreateInstance to obtain access to a COM handler instance that can perform a wide 

range of windows actions including creating file links, spawning shells and scheduling 

start-up items. While this is a perfectly legitimate programming technique, it appears 

to be rare among legitimate baseline samples. It has also been observed in ransomware 

examples to obfuscate code being executed and provide a mechanism to bypass 

Microsoft’s Antimalware Scan Interface [18][19].  

 

5. Conclusion 
 

In this work, we have successfully identified Windows API calls that differ 

significantly in their usage between normal non-malicious operations and ransomware 

activities. These low-level system calls may be useful in identifying ransomware 

without specifically identifying code signatures within the ransomware executable. The 
goal of this research was to investigate API calls that could allude toward 
ransomware infection. Based on the findings reported in this paper, we can have 
a now better understanding of what the ransomware strain is actually doing on 
the system in terms of API calls. Our research results obtained in this work will 
help in the future development of better anti-virus software, additional security 
controls including Intrusion Detection System (IDS), or even in hardening kernels 
by allowing them to detect multiple API calls. 
 

 

Given the nature of many of the identified Windows API calls, detection of ransomware 

activity may be possible at the operating system level.  Our research found several API 

calls of interest that were predominantly present in ransomware. By further combining 

the detection of these API calls it would be possible to further reduce the false positive 

rate and increase the detection rate. 

 

As the Windows APIs that have been discussed operate as low-level calls of the 

operating system, we expect that circumventing detection by using different APIs will 

be a complex process requiring developers to statically link complex file system and 

network code into their malware binaries. This type of code embedding would greatly 

increase the size of malicious executable and would funnel API calls to even lower 

levels. We believe this approach is unlikely to be successful for ransomware developers 

because the execution of code that directly calls low level drivers and file system APIs 

is uncommon and would lead to easy detection. 
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