
Edith Cowan University Edith Cowan University

Research Online Research Online

ECU Publications Post 2013

2018

Ransomware behavioural analysis on windows platforms Ransomware behavioural analysis on windows platforms

Nikolai Hampton

Zubair A. Baig
Edith Cowan University, z.baig@ecu.edu.au

Sherali Zeadally

Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013

 Part of the Databases and Information Systems Commons, Risk Analysis Commons, and the Software

Engineering Commons

10.1016/j.jisa.2018.02.008
This is an Author's Accepted Manuscript of: Hampton, N., Baig, Z., & Zeadally, S. (2018). Ransomware behavioural
analysis on windows platforms. Journal of Information Security and Applications, 40, 44-51. Available here.
This Journal Article is posted at Research Online.
https://ro.ecu.edu.au/ecuworkspost2013/4153

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online @ ECU

https://core.ac.uk/display/159235636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.ecu.edu.au/
https://ro.ecu.edu.au/ecuworkspost2013
https://ro.ecu.edu.au/ecuworkspost2013?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1199?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ro.ecu.edu.au%2Fecuworkspost2013%2F4153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1016/j.jisa.2018.02.008
https://doi.org/10.1016/j.jisa.2018.02.008

1

Ransomware Behavioral Analysis on Windows Platforms

Nikolai Hampton1, Zubair Baig2, Sherali Zeadally3

nikolaih@3583bytesready.net, z.baig@ecu.edu.au, szeadally@uky.edu
1Impression Research, Brisbane, Australia

2School of Science and Security Research Institute, Edith Cowan University,

Joondalup 6027, Australia
3College of Communication and Information, 315 Little Library Bldg, University of

Kentucky, Lexington, KY 40506-0224, USA

Abstract

Ransomware infections have grown exponentially during the recent past to cause major

disruption in operations across a range of industries including the government. Through

this research, we present an analysis of 14 strains of ransomware that infect Windows

platforms, and we do a comparison of Windows Application Programming Interface

(API) calls made through ransomware processes with baselines of normal operating

system behavior. The study identifies and reports salient features of ransomware as

referred through the frequencies of API calls.

Keywords: Cryptovirology, cybersecurity, intrusion detection, malware, ransomware,

Win/32

1. Introduction

Malware or malicious software is defined as any program or process that is crafted by

the adversary to either affect routine operations of a computer, its operating system and

hosted software, or to steal sensitive data. When such malware is crafted with the intent

of extorting user data and holding it for ransom, then it is categorized as ransomware.

While malware has been persistent for decades, the emergence of ransomware as the

next big threat adopts a new business model by threat actors. The evolution of malware

capabilities over the past 30 years is attributed to the rapid advances in computing

power, memory, and communication bandwidth. Extortion of user data through

malware dates back to 1989, when the PC CYBORG (AIDS) Trojan was released on

floppy disks. Infected floppy disks when inserted by naïve users into their workstations

would cause a Trojan infection, locking user files using basic cryptographic techniques,

presenting a message stating the user’s ‘breach of software license’, and demanding an

amount of approximately US $200 for release of the extorted data. The Trojan was not

very successful because the payment procedure adopted by the adversary was through

bank cheques and the proliferation of malware through the crude floppy-disk medium

was excruciatingly slow.

Strong data encryption techniques, attributed to advances in computing power and

memory technology/affordability, alongside advances in payment techniques and

cryptocurrency [1] have led to rapid evolution of ransomware during the period 2007-

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://
creativecommons.org/licenses/by-nc-nd/4.0/

2

2016. The ability of the adversary to conceal his/her identity and reaps profit through

ransomware infections proliferating across billions of Internet-connected devices, is

thus easily achievable in today’s highly connected landscape. CTB-Locker (Curve,

TOR, Bitcoin), is considered to be the first variant of ransomware to effectively

combine three key characteristics required to achieve a high degree of success in

infection, namely, the anonymity capabilities of the TOR routing protocol to conceal

adversary location, the anonymous payment capabilities of Bitcoin to keep payment

path untraceable, and strong encryption based on Elliptic Curve Cryptography with

sufficient key lengths to resist attempts to crack the key including those involving brute-

force [2].

In 2013, a 500% growth in ransomware variants and capabilities was reported [2]. This

can be attributed to the three technological advances enumerated above. The common

families of ransomware alongside their respective dates of emergence are listed as

follows [2]: PC CYBORG Trojan (12/19/1989), One Half Virus (>1994), GPCode

family (~2004), Reveton (~2012), CryptoLocker (~2013), CryptoWall (~2014),

CryptoDefense (~2014), PoshCoder (~2014), Virlock (~2014), TeslaCrypt (~2015),

CryptoFortress (~2015), CryptoTorLocker2015 (~2015), CTB-Locker (~2015),

CryptoWall (~2016), Xorist (~2016), Filecoder (~2017) along with variants such as

Petya (~2017), JAFF (~2017), and Wannacrypt (~2017).

Ransomware evolution witnessed the first brief increase in 2006-07 [3], mainly through

the emergence of the GPCode variants. The GPCode.ak variant in particular was known

to write the encrypted file contents to a new location in the user’s disk, deleting the

unencrypted user files. Through application of the ‘undeletion utility’, partial recovery

of user data was possible without having to pay the ransom to the adversary. Newer

variants of GPCode used stronger encryption techniques with longer encryption keys

(1024 or 2048 bits), thus encumbering the user data recovery attempts at the victim’s

machine.

A close look at the evolution of several versions of ransomware releases revealed that

they were mostly copy-paste code from previous versions. Therefore, many of the

limitations of one version were carried over to the next. In addition, several ransomware

variants operated in unconventional ways. For instance, the Reveton ransomware [2],

released in 2015, was found to merely lock the operation system’s boot process without

encrypting user data. Consequently, the ransomware activity was limited to disruption

of operations and recovering user data without having to pay the ransom amount, was

found to be easily achievable.

Another observed characteristic of recent ransomware traits is the ransomware

procedural requirement to contact a centralized Command-and-Control (C2C) Server,

once the victims’ machine is infected, prior to encrypting the data. The C2C Server

typically holds the cryptographic key required to decrypt the victim’s data which has

been held for ransom. In summary, the four stages of a ransomware-based attack can

be described as follows:

 Infection: The ransomware software infects a victim’s machine when the naïve

victim opens an attachment that accompanies a spam message. Alternately, the

victim’s machine can also be infected when a compromised website is accessed.

3

 Data encryption: Once the victim’s machine is infected with ransomware,

cryptographic keys utilizing the Public Key Infrastructure (PKI) are generated

either on the infected PC or the C2C server. The ransomware then proceeds to

lock down the user’s files or device. Ransomware specific definitions

commonly result in one of two actions being undertaken: either the data/files on

the victim’s machine are attacked on a file-by-file basis, or critical filesystem

structures such as the Windows Master File Table are altered. In both cases, the

original files or data are encrypted with the host specific cryptographic keys,

and the original files or metadata are then deleted.

 Demand: The ransomware software displays a message to the victim demanding

that a certain amount be paid so as to release the locked data/files.

 Outcome: Based on the action taken by the victim, the following are possible

outcomes: a) the data is recovered through elimination of ransomware trait from

the victim’s machine without paying the ransom amount, b) payments are made

through anonymous channels such as BitCoin/MoneyPak or DarkCoin, or c)

payments are not made and the ransomware trait is not eliminated, upon which

the data/files are destroyed; with no backup in place, permanent loss of victim’s

data/files thus occurs.

It can be seen from the above examples that ransomware activity must by nature follow

specific patterns of behavior. These patterns include the file identification process,

encryption of files, network command and control communications, and use of

anonymous networks. Quite simply, there is no optimal way to scan files and encrypt

their content without making system level calls facilitated through the Windows

Application Programming Interface (API). The Window API [4] provides a set of

programming interfaces that simplify the process of developing software. For example,

while a developer makes the system call “FileOpen”, the operating system executes a

series of instructions to locate the file in the file system, checks file access rights and

permissions, and locates the file on the hard disk before returning the handle or

reference back to the developer. By using the Windows API, developers are free to

focus on the logic of their program (or malware) code and use the pre-defined

procedures to accomplish their tasks [5].

Windows API sequence of calls has been an area of research during the recent past. In

[6], the authors have presented a ransomware detection scheme that operates on

Windows platforms and identifies modifications to various application types. Thirty

most common Windows applications were evaluated and attempts by ransomware to

access these file types, were analysed and reported.

. In [7], the authors present a call tracer approach for identifying the sequence of

Windows API sequence of calls, by comparing the patterns of calls with known

databases of malware, and by applying machine learning techniques for data analysis.

Malware samples obtained from popular repositories were analysed and the results of

the machine learning based classification of these samples were reported. In [8], the

authors proposed an approach for identifying API sequence calls for malware samples.

The lack of accuracy in anti-virus tools was highlighted as one of the motivations for

the research conducted. Malware behaviour was generalised across 23,080 popular

samples of malware.

4

As the number of Windows API calls is limited, and generally lower level file, network

and cryptographic operations are exposed through a limited set of instructions, it may

be possible to detect ransomware specific activities by analyzing their usage (or calls)

to certain Windows API functions. We analyse and report ransomware activity based

on the executing payload that has been transferred to a victim’s machine beforehand.

API call patterns and frequency analysis are used to help determine the behaviour of

ransomware in a real-world environment. By identifying the programming patterns

used by ransomware programmers, we can improve Operating System or Kernel level

protection mechanisms. TBased on the results reported in this paper, we provide a

fundamental platform for researchers to examine methods of ransomware detection
based on behavioural analysis and/or entropy-based analysis, for future research.

2. Method, experimental setup, data processing and analysis

2.1 Method

We selected ransomware strains from recently circulated and well publicised

ransomware variants [9][10][11] from various online resources. Ransomware strains

were analysed based on their individual behaviour patterns. We tested ransomware and

normal (non-malicious) baseline operations in successive experiments on a

standardized Virtual Machine (VM). For each experimental test, we reset the VM to

the same initial configuration, loaded a target test case, started the VM, logged Process

Monitor events for a fixed duration of 10 minutes, and then halted the machine, and

finally we exported the logged data and saved it for analysis. All ransomware tests were

fully automated with the experimental tests execution and data collection scripted

through a combination of BASH scripts, batch files and PowerShell scripts to ensure

uniformity over each experimental test. For some baseline experimental tests the

automated scripts were modified or customized for specific (often interactive)

operations such as software installation and simulated web browsing.

2.2 Experimental setup

We created a 32-bit Windows 8 Virtual Machine in a Virtual Box. This Test VM was

provided with a firewalled Internet connection through an intermediate VPN router and

firewall. We preloaded the virtual disk image with a mix of documents, picture and

video files. We saved them to multiple locations on the disk image. A Virtual Box

shared folder was mapped to a drive letter and loaded with a multilevel directory

structure, documents and media files. The virtual disk image and the shared folder were

reset to initial conditions for each experimental test conducted. Table 1 presents the

user file structure of the virtual machine deployed. The total disk space was 25 GB with

13.5 GB used space. Table 2 shows the count of the numbers of files in the shared

network folder. Image files were the most popular file types whereas PDF files were

found to be the least frequent.

Location File count and size

Desktop 1.07GB, 442 files, 90 folders

Documents 524MB, 66 files, 22 folders

5

Pictures 417MB, 1344 files, 9 folders

Videos 661MB, 16 Files, 0 Folders

Table 1 - Virtual machine victim user's file structure

File type Count of files in shared (network)

folder
jpg and png image files 1337

ppt (and pptx) 2

pdf 55

doc (and docx) 34

xls (and xlsx) 17

mp3/mp4 (audio and video media) 20

other filetypes 27

directory and subdirectory entries (maxdepth = 5) 31

Table 2 - Shared folders (network) file counts

Automation
element/method

Automated on Host or Guest Description

Create PowerShell
experiment execution
control file

Host Create a control file for use by
Windows PowerShell on boot up –
specifies the experiment to run,
working directory and various
other conditions

VirtualBox automation Host Use of BASH script and VirtualBox
Manage commands to start/stop
and reset VM snapshots

PowerShell scripts Guest Read the control file from a shared
read-only resource to identify
experiment’s executable and run
conditions

Shared filesystem reset Host BASH script to reset shared
filesystem resources

Timed hard shutdown Host Hard shutdown of the guest VM
and restart into data extraction
mode

Data extraction Guest and Host Restart and launch ProcMon to
recover boot time data. Save files
and then move extracted files to a
safe location for future analysis

Table 3 - Technology and elements used for automation of testing

In Table 3, we define various automation procedures that were executed during
the experiments.

2.3 Data processing and analysis

6

We loaded the Process Monitor’s data in a clean Windows 10 Virtual Machine, and

then re-exported it with complete stack traces and Windows debugging symbols to

XML format.

We processed the exported Process Monitor’s event data using a Python script to extract

each stack trace, and examined each call frame in order to identify the first call to a

Windows system file. A sample contingency table is provided in Table 4. The calling

address, the resolved called symbol, the Dynamic Link Library (DLL) path and

metadata were extracted. The extracted API data consisting of 36 million Windows API

calls across all 30 experimental tests were further summarized into two-way

contingency tables plotting Windows API Call frequencies for each API Call and

experimental test combination.

System/API Call CTB-

Locker_A.csv
Revenge_A.csv … Explorer

Session
Install
MS
Office

Run
Powerpoint
+ User
Activity

CloseHandle 4 10946 … 944 0 1545

CoCreateInstance 70 48 … 4567 0 0

CoInitialize 44 0 … 289 542 0

CoInitializeSecurity 38 0 … 116 0 0

… … … … … … …

(Total of 1262 Calls)

Table 4 - Sample contingency table comprising 1262 rows and 25 columns

Experimental test File Hash (SHA 256)

Baseline
operations

Baseline Boot to Idle NOT RECORDED

Windows Explorer Session
Navigating OS and Folders

NOT RECORDED

Install MS Office 07 NOT RECORDED

Install Kodi Media Centre NOT RECORDED

Installing Firefox Browser NOT RECORDED

Installing Apache Open
Office

NOT RECORDED

Installing Logitech Media
Centre

NOT RECORDED

Running Word NOT RECORDED

Running PowerPoint NOT RECORDED

Running Excel NOT RECORDED

Running Apache Open Office NOT RECORDED

Internet Browsing in IE NOT RECORDED

Running Firefox Browser NOT RECORDED

Run Kodi Media Centre NOT RECORDED

Run Logitech Media Centre
Control

NOT RECORDED

Ransomware
tests

 CTB-Locker 128a0f0cd5d10f864d5a0741ba25996b2bf74f580ac7918
dec6516215801e39a

7

Experimental test File Hash (SHA 256)

 Cerber cf262a9236eaf5230c219845823f36fd8c8e8b77ba882c34
ce38a5087539cf71

 CrypMIC b2bcfc4c5d1d60f7ea4298d32dcfff303f4db4b1ba89a8b6
d24b7ccfe883e45a

 CryptFile2 a1e4693db6419eb5588f25d2b9f90db6c0e96e30a51fed5
f0236cbdd49894e75

 CryptoMix a9a232cbff2c4347c1fcdeb1a3f1a6e45fbd4e93a107c6dd5
7fb8994df9d3bce

 CryptoShield d56fb2bdad7a50ab1f6ef76c67669452ed4da2bf865beafc
f4956ab30bfa20fc

 GlobeImposter 72ddceebe717992c1486a2d5a5e9e20ad331a98a146d29
76c943c983e088f66b

 Gryphon 933af0c69e1e622e5677e52c24545761c2843b3f52ea38e
63bbe4786bfd6276e

 JAFF 824901dd0b1660f00c3406cb888118c8a10f66e3258b50
20f7ea289434618b13

 Mole c2e1770241fcc4b5c889fec68df024a6838e63e603f09371
5e3b468f9f31f67a

 NemucodAES 482711b2f17870ddae316619ba2f487641e35ac4c099ae
7e0ff4becd79e89faf (payload)

 Revenge 8ab65ceef6b8a5d2d0c0fb3ddbe1c1756b5c224bafc8065c
161424d63937721c

 TeslaCrypt 200bc25fa093ce65f41baa1c3efe02dcc238b04cb57a6fc5e
e87da1e04d6e168

 WannaCry ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c
6e5babe8e080e41aa

Table 5 - Experimental tests - baseline and ransomware (hashes where applicable)

In Table 5 shows a list of all experiments, baseline and 14 ransomware strains, that
were conducted. Table 6 describes the baseline experiments that we executed. In
particular, we identify the system activities and/or events that were executed during
each Win/32 baseline operation.

Baseline operation Experiment fully automated? [Yes/No] Description of system events,
activities

Baseline boot to idle Yes Standard windows housekeeping,
connection to network shares, basic
operations

Windows Explorer
session navigating
operating system and
folders

No
(opened one folder every 30 seconds,
copied folder from network share to
desktop, created folder ever minute,
moved files from desktop to created
folders, deleted a folder every 2 minutes)

Common user activity. Opening
directories and locations, listing files,
querying file types to identify
associated applications

Install MS Office 07 Yes Writes many files, registers
components and COM objects

Install Kodi media
centre

Yes Non-Microsoft application handles
many media file types

Installing Firefox
browser

Yes

Non-Microsoft application handles
internet and registers application
capable of using Internet.
Imports/reads data from other
browsers

8

Baseline operation Experiment fully automated? [Yes/No] Description of system events,
activities

Installing Apache open
office

No Alternate to Microsoft Office examine
the difference in coding standards for
similar activities

Installing Logitech
media centre

No Media server. registers and starts
services and network listeners

Running word No
(Launch automated by script – Activity
manual: opened one document every 2
minutes, copy and pasted text every 30
seconds, typed for 1 minutes, imported
media, ran spell check and saved
document)

Common user activity

Running PowerPoint No
(Launch automated by script – Activity
manual: opened one document every 2
minutes, copied and pasted text every 30
seconds, typed for 1 minute, imported
media, ran spellcheck and saved
document)

Common user activity

Running Excel No
(Launch automated by script – activity
manual: opened one document every 2
minutes, created sheet created 100 rows
of data, created chart)

Common user activity

Running Apache open
office

No
(Initial launch automated by script –
activity manual: rotated through test
sequences for Word, PowerPoint and
Excel until time expired)

Common user activity provides
alternate to Microsoft office
application. Examine the effect of
different coding standards on similar
activities to Running Microsoft Office
Products

Internet browsing in
IE

No
(Launch automated by script – activity
manual: browsed to a list of pages, one
page every 30 seconds)

Common user activity uses network

Running Firefox
browser

No
(Launch automated by script – activity
manual: browsed to a list of pages, one
page every 30 seconds)

Common user activity uses network.
Alternate coding standards for similar
activities as Internet Browsing in IE

Run Kodi media centre No
(Launch automated by script – allowed to
complete normal start up media scans –
further manual activity: browse a media
folder every minute, play one video file,
added a new media folder and scanned
for content)

3rd party developed, accesses many
files, catalogues media, connects to the
internet to identify media. Scans
specified file system locations for
media files

Run Logitech media
centre control

No
(Required admin privileges and launch
from control panels. Added a new media
folder and scanned for content.

Launches control panel, allows users to
identify media folders and execute file
system scans of specified locations for
media files. Starts and stops the media
centre service

Table 6 – Baseline operations and description of system events and activities

3. Analysis

9

Of the 1262 calls to external functions across all experiments, 244 were present in

ransomware which were further reduced to 209 calls by combining similar calls of

ANSI and Unicode variants as shown in Table 7.

Calls Grouped into

CopyFileA
CopyFileExW
CopyFileW

CopyFile [A|ExW|W]

CreateDirectoryA
CreateDirectoryW

CreateDirectory [A|W]

…A
…W
…Ex
…ExA
…ExW

…[A|W|Ex|ExA|ExW]

Table 7 - Merging of similar API Calls

The rationale for merging similar API calls is that Windows API calls such as

FindNextFileW and FindNextFileA are essentially the same API call (the ‘W’ variant

accepting Unicode and ‘A’ variant accepting ANSI coded input strings). Similarly,

functions with Ex suffixes are generally newer with a different call pattern, however

their base functionality is often quite similar.

The API calls were arranged into two-way contingency tables that plotted the observed

frequency of each API call for each experimental test. We identified API calls of

interest. Calls of interest were selected where the “API call’s presence indicated

ransomware regardless of call frequency” and “API calls with significantly higher-

than-average call frequencies” statistics. We used Fisher exact tests to compare the

prevalence of each specific API call in the ransomware group to the normal baseline

operations group. Calls with usage patterns that differed significantly (p < 0.05)

between the two groups were identified.

3.1 Results

An initial examination of the contingency table that compares all ransomware system

calls to system calls made by non-malicious normal baseline operations show that

ransomware used a small subset of all system calls logged during normal baseline

operations. Comparing the frequency of all ransomware system calls to the frequency

of system-calls in normal baseline operations shows that identification of ransomware

can be done through call frequencies alone (chi-square; p << 0.01; 95% confidence

level for significance testing). This is a reasonable expectation given the large data set

and high variability in call frequencies and prevalence. The API calls which contributed

most to the chi-square statistic were examined to determine what subset of calls could

be used to indicate the presence of ransomware activity.

When we examine individual API calls more closely, we found that 18 Windows API

calls where usage patterns (prevalence or call frequency) varied between ransomware

and baseline normal operation differed significantly (Tables 8, 9 and 10). These API

calls occur in significantly more ransomware strains (compared to baseline

experiments), or at greater call frequencies (p < 0.05).

10

The interesting calls identified included:

 8 API calls that existed only in ransomware at a significant level.

 4 API calls that existed in both ransomware and normal operations, where the

difference in utilization of the API call was statistically significant and more

common in ransomware samples than in normal baseline operations.

 6 API calls that existed in both ransomware and baseline normal operation and

where the ransomware frequency count exceeded the baseline mean by more

than three standard deviations (3σ).

 Windows API Call Count of
ransomware
samples
used

Count of
baseline
samples
used

Usage differs
between
ransomware
and baseline
(Fisher exact
P-value)

P
re

se
n

t
o

n
ly

 in

ra
n

so
m

w
ar

e

InternetOpen 6 0 0.006

CryptDeriveKey 5 0 0.017

CryptDecodeObject 4 0 0.042

CryptGenKey 4 0 0.042

CryptImportPublicKeyInfo 4 0 0.042

GetUserName 4 0 0.042

NdrClientCall2 4 0 0.042

socket 4 0 0.042

U
se

d
 in

m

o
re

ra

n
so

m
w

ar
e

st
ra

in
s

_tailMerge_CRYPTSP_dll* 9 1 0.002

CoCreateInstance 8 1 0.005

SHWindowsPolicy 8 1 0.005

GetFileType 10 4 0.027
Table 8 - Calls to Windows APIs (without considering call frequency) - ransomware vs normal baseline
operations

Windows API Call Count of
ransomware
samples using
high (𝒙 + 𝟑𝝈)
frequency
calls rates

Count of
baseline
samples using
high (𝒙 + 𝟑𝝈)
frequency call
rates

Significance
(Fisher exact)

U
se

d
 in

ra

n
so

m
w

ar
e

at

h
ig

h
er

 c
al

l
fr

eq
u

en
cy

CryptAcquireContext 7 0 0.002

CloseHandle 6 0 0.006

FindNextFile 6 0 0.006

SetFilePointer 6 1 0.035

GetFileSize 4 0 0.042

SetFileAttributes 4 0 0.042
Table 9 - Calls to Windows APIs where ransomware call frequency exceeds baseline mean call frequency by
more than 3 standard deviations.

11

 Windows System
Call

C
T

B
-L

o
ck

er

C
er

b
er

C
ry

p
M

IC

C
ry

p
tF

il
e2

C
ry

p
to

M
ix

C
ry

p
to

Sh
ie

ld

G
lo

b
eI

m
p

o
st

er

G
ry

p
h

o
n

JA
F

F

M
o

le

R
ev

en
ge

T
es

la
C

ry
p

t

W
an

n
aC

ry

N
em

u
co

d
A

E
S

D
et

ec
te

d
 b

y
 c

al
l p

re
se

n
ce

(e

xc
lu

si
v

e
to

 r
an

so
m

w
ar

e)

InternetOpen

* * *

* * *

CryptDeriveKey

* * *

*

*

CryptDecodeObject

*

*

* *

CryptGenKey

*

* * *

CryptImportPublicKe
yInfo

*

*

* *

GetUserName

*

*

* *

NdrClientCall2

* *

*

*

socket

* *

* *

D
et

ec
te

d
 b

y
 c

al
l p

re
se

n
ce

(n

o
t

ra
n

so
m

w
ar

e
ex

cl
u

si
v

e)

_tailMerge_CRYPTSP_
dll
(1 false positive)

* *

* * * * *

*

*

CoCreateInstance
(1 false positive)

* *

* *

* *

*

*

SHWindowsPolicy
(4 false positivies)

 * * * * * * * *

GetFileType
(1 false positive)

* * * * * * * * * *

D
et

ec
te

d
 in

 r
a

n
so

m
w

a
re

 t
h

ro
u

gh

st
at

is
ti

ca
ll

y
 h

ig
h

 (
x

̅+
3

σ
)

ca
ll

fr

eq
u

en
ci

es

CryptAcquireContext * * * * * * *

CloseHandle * * * * * *

FindNextFile * * * * * *

SetFilePointer
(1 false positive)

 * * * * * *

GetFileSize * * * *

SetFileAttributes * * * *

 Count of calls capable
of identifying
ransomware

2 9 5 7 11 15 7 12 8 7 16 0 1 3

 * - Ransomware
Detected with System

Call

12

Table 10 - Calls to Windows APIs categorized by ransomware strain.

The fisher-exact test of independence showed a very high level of certainty that
the baseline versus ransomware samples differed through a systematic process,
namely, that the presence of ransomware in the system and not in our baseline
tests was not merely coincidental. For example, GetFileType is used more often in
ransomware than in baseline samples runs (10 ransomware samples vs 4 baseline
operations). However, due to the small sample sizes for both baseline and
ransomware, the difference in the API usage by ransomware strains and the
baseline tests within the significant range (p=0.066 > 0.05). As such, no specific
API can be used for detecting ransomware. Rather, the APIs identified and
reported in Table 10 can aid in the detection of ransomware strains that would
otherwise remain undetected in a Win/32 standard operating environment. It
must also be noted that none of these APIs are dangerous for a standard Win/32
operating environment. However, based on our findings, we found that calls to
some of these APIs are more frequent than others during a ransomware infection.

4. Discussion

Ransomware activities were clearly identified in thirteen out of fourteen ransomware

strains using Windows API calls of interest. Of these, nine were identified calls that

were unique to ransomware and did not trigger false positive events during detection.

Only the variant of TeslaCrypt tested was not identified.

One third of the API calls of interest were related to cryptographic activities. These

calls were primarily used to obtain handles to key containers [12] and generate public

and private keys. The presence of cryptographic API calls is reasonable and expected

for typical ransomware activities. A delayed load tailMerge of CRYPTSP.DLL [13]

was also present in nine strains of ransomware. This cryptographic service provider

dynamic link library appears to be a legacy crypto library the use of which has been

identified and discussed in [14].

A further six of the API calls were related to filesystem operations. These included calls

to scan directory structures for files, examine file types, sizes and set pointers to allow

the ransomware to read and write file contents. Five out of six file operations were

detected through API call frequency analysis indicating that while non-malicious

activities also resulted in file activity, the rates observed in ransomware significantly

exceeded (x ̅+3σ) the call rates during normal system operations.

Internet and socket connections were surprisingly absent from normal non-malicious

operations. It appears that the coding patterns employed by windows and open-source

software developers do not often create direct network sockets or connections. Socket

operations tend to be low-level in nature, which means coding complete network

protocols using sockets is likely to be a laborious task. Socket programming is useful

for limited and specific tasks that require lightweight network listeners or clients with

well-defined communications protocols [15][16].

Four ransomware strains utilized NdrClientCall2 which is associated with the Windows

Remote Procedure Call (RPC) interface. RPC is used to create client server applications

without the need to manage the underlying network protocols and communications [17].

13

For example, RPC could allow ransomware developers to establish command and

control server communication without resorting to socket level programming.

CoCreateInstance was used non-exclusively in eight out of the fourteen ransomware

strains. CoCreateInstance appears to be used by ransomware to access Windows COM

objects through unique class and instance identifiers. Developers may use

CoCreateInstance to obtain access to a COM handler instance that can perform a wide

range of windows actions including creating file links, spawning shells and scheduling

start-up items. While this is a perfectly legitimate programming technique, it appears

to be rare among legitimate baseline samples. It has also been observed in ransomware

examples to obfuscate code being executed and provide a mechanism to bypass

Microsoft’s Antimalware Scan Interface [18][19].

5. Conclusion

In this work, we have successfully identified Windows API calls that differ

significantly in their usage between normal non-malicious operations and ransomware

activities. These low-level system calls may be useful in identifying ransomware

without specifically identifying code signatures within the ransomware executable. The
goal of this research was to investigate API calls that could allude toward
ransomware infection. Based on the findings reported in this paper, we can have
a now better understanding of what the ransomware strain is actually doing on
the system in terms of API calls. Our research results obtained in this work will
help in the future development of better anti-virus software, additional security
controls including Intrusion Detection System (IDS), or even in hardening kernels
by allowing them to detect multiple API calls.

Given the nature of many of the identified Windows API calls, detection of ransomware

activity may be possible at the operating system level. Our research found several API

calls of interest that were predominantly present in ransomware. By further combining

the detection of these API calls it would be possible to further reduce the false positive

rate and increase the detection rate.

As the Windows APIs that have been discussed operate as low-level calls of the

operating system, we expect that circumventing detection by using different APIs will

be a complex process requiring developers to statically link complex file system and

network code into their malware binaries. This type of code embedding would greatly

increase the size of malicious executable and would funnel API calls to even lower

levels. We believe this approach is unlikely to be successful for ransomware developers

because the execution of code that directly calls low level drivers and file system APIs

is uncommon and would lead to easy detection.

References

[1] Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S. Bitcoin and

14

Cryptocurrency Technologies: A Comprehensive Introduction, Princeton
University Press, 2016.

[2] Hampton, N., Baig, Z., Ransomware: Emergence of the Cyber-Extortion
Menace, In Proc. Of the Australian Information Security Management Conference,
Perth, Australia, 2015.

[3] Luo, X., Liao, Q., “Ransomware: A new cyber hijacking threat to enterprises,”
Handbook of Research on Information Security and Assurance, 2009.

[4] Marhusin, M., Larkin, H., Lokan, C., Conrnforth, D., An Evaluation of API
Calls Hooking Performance, In Proc. of the Intl' Conf. on Computational
Intelligence and Security, Suzhou, China, 2008.

[5] Shankarapani, M., Ramamoorthy, S., Movva, R., Mukkamala, S., “Malware
detection using assembly and API call sequences,” Journal in Computer Virology,
7(2), 2011.

[6] Scaife, N., Carter, H., Traynor, P., Butler, K., “Crytodrop (and Drop It): stopping
ransomware attacks on user data,” IEEE 36th Intl’ Conf. on Distributed Computer
Systems, 2016.

[7] Ravi, C. and Mahoharan, R., “Malware Detection using Windows Api Sequence
and Machine Learning,” Intl. Jour. of Computer Applications, 43(17), 2012.

[8] Ki, Y., Kim, E., Kim, H., “A Novel Approach to Detect Malware based on API Call
Sequence Analysis,” Intl. Jour. of Distributed Sensor Networks, 2015.

[9] Krishnan, R., CTB-Locker Ransomware Spreading Rapidly, Infects Thousands
of Web Servers, https://thehackernews.com/2016/02/ctb-locker-
ransomware.html, Last Accessed: 17th November, 2017.

[10] Abrams, L., TeslaCrypt shuts down and Releases Master Decryption Key,
https://www.bleepingcomputer.com/news/security/teslacrypt-shuts-down-
and-releases-master-decryption-key/ Last Accessed: 17 November, 2017.

[11] Mohurla, S. and Patil, M., “A brief study of Wannacry threat: ransomware
attack 2017,” Intl’ Jour. of Advanced Research in Computer Science, 8 (5), 2017.

[12] CryptAcquireContext function, https://msdn.microsoft.com/en-
us/library/windows/desktop/aa379886(v=vs.85).aspx, , Last Accessed: 17
November, 2017.

[13] Pietrek, M., Under The Hood,
https://www.microsoft.com/msj/1298/hood/hood1298.aspx, Last Accessed: 17
November, 2017.

[14] Palisse, A., Bouder, H., Lanet, J-L., Guernic, C., Legay, A., Ransomware and

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379886(v=vs.85).aspx
https://www.microsoft.com/msj/1298/hood/hood1298.aspx

15

the legacy Crypto API, Lecture Notes in Computer Science 10158, pp. 11-28,
2017.

[15] Avoiding Common Networking Mistakes,
https://developer.apple.com/library/content/documentation/NetworkingInter
netWeb/Conceptual/NetworkingOverview/CommonPitfalls/CommonPitfalls.ht
ml, Last Accessed: 17 November, 2017.

[16] Windows Apps Team, Networking API Improvements in Windows 10,
https://blogs.windows.com/buildingapps/2015/07/02/networking-api-
improvements-in-windows-10/, Last Accessed: 17 November, 2017.

[17] Remote Procedure Call, https://msdn.microsoft.com/en-
us/library/windows/desktop/aa378651(v=vs.85).aspx, Last Accessed: 17
November, 2017.

[18] Antimalware Scan Interface, https://msdn.microsoft.com/en-
us/library/windows/desktop/dn889587(v=vs.85).aspx, Last Accessed: 17
November, 2017.

[19] Antimalware Scan Interface,
https://enigma0x3.net/2017/07/19/bypassing-amsi-via-com-server-hijacking/,
Last Accessed: 17 November, 2017.

https://developer.apple.com/library/content/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/CommonPitfalls/CommonPitfalls.html
https://developer.apple.com/library/content/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/CommonPitfalls/CommonPitfalls.html
https://developer.apple.com/library/content/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/CommonPitfalls/CommonPitfalls.html
https://blogs.windows.com/buildingapps/2015/07/02/networking-api-improvements-in-windows-10/
https://blogs.windows.com/buildingapps/2015/07/02/networking-api-improvements-in-windows-10/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378651(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378651(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn889587(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn889587(v=vs.85).aspx
https://enigma0x3.net/2017/07/19/bypassing-amsi-via-com-server-hijacking/

	Ransomware behavioural analysis on windows platforms
	tmp.1523583077.pdf.TCkLK

