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ABSTRACT 

Cutaneous melanoma accounts for 90% of all skin cancer deaths (Balch et al., 2010) and is 

responsible for 3.6% of deaths from cancer in Australia (Australian Institute of Health and Welfare, 

2016). Whilst early detection and successful surgical removal of primary melanomas have 

improved survival rates (DeSantis et al., 2014), approximately 30% of these patients will have 

disease recurrence at some point in their lives (Soong et al., 1992; Soong et al., 1998). This is 

despite being considered disease free following treatment, which may have included surgical 

removal of the primary and/or its metastasis/es, radiation and/or systemic therapy. Whilst the risk of 

melanoma recurrence may correlate to some extent with the stage of the primary melanoma in terms 

of its size and thickness and whether it has metastasised (Shaw et al., 1987; Soong et al., 1992; 

Soong et al., 1998), recurrences occur even after thin melanomas (associated with low-risk for 

recurrence) that have been completely excised (Dalal et al., 2007; Jones et al., 2013; Leiter et al., 

2012; Meier et al., 2002; Salama et al., 2013; Soong et al., 1998). Melanoma may recur at any point 

in time, even 10 or more years after a primary melanoma has been excised (Crowley et al., 1990; 

Dong et al., 2000; Hohnheiser et al., 2011; Kalady et al., 2003; Tsao et al., 1997). Recurrences may 

present in the same or in areas adjacent to the primary melanoma, however the majority of 

recurrences appear in lymph nodes or other organs, at which point the disease is among the most 

aggressive and treatment-resistant of all human cancers (Kenessey et al., 2012; Luke et al., 2017; 

Mocellin et al., 2013; Sanmamed et al., 2015; Ti'mar et al., 2013). In the metastatic setting, 

resective surgery of solitary metastases is associated with the most favourable outcome (Chua et al., 

2010; Petersen et al., 2007; Sanki et al., 2009; Wasif et al., 2011), however systemic therapy 

options are dramatically improving survival of patients with unresectable metastases (Garbe et al., 

2016).  Overall, the greatest treatment efficacy is associated with a low disease burden at time of 

therapy (Hodi et al., 2010; Luke et al., 2017; McArthur et al., 2016; Sosman et al., 2011) and 

therefore early detection of melanoma recurrence is critical for improved survival. 
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To date, there are no reliable early markers of melanoma recurrence. Radiological imaging 

techniques and sentinel lymph node (SLN) biopsies (SLNB) are currently the methods employed to 

stage primary melanomas and detect metastases. Positron emission tomography (PET) with a 

labelled glucose analogue fluorine 18 fluorodeoxyglucose (18F-FDG) combined with computed 

tomography (CT) scans (FDG-PET/CT), are used routinely to determine disease burden. These have 

limited sensitivity however for the detection of early stage melanoma micro-metastases (Meyers et 

al., 2009; Pfannenberg et al., 2015), thus cannot provide timely clinical evidence of disease 

recurrence (Belhocine et al., 2002; Hindié et al., 2011; Krug et al., 2008). Fluorine 18 

fluorodeoxyglucose Positron Emission Tomography combined with Computed Tomography (FDG-

PET/CT) may be used routinely for monitoring of melanoma patients at high risk of disease 

recurrence, but it is expensive (Gellén et al., 2015) and subjects patients to excessive radiation 

exposure (Rueth et al., 2015). Whilst routine SLNBs offer a survival advantage in monitoring 

recurrence in patients with >1.0mm thick melanomas (Faries et al., 2017; Morton et al., 2014), they 

are relatively invasive for routine monitoring (Agnese et al., 2003; Lens et al., 2002). Early stage 

melanoma patients who are considered disease free and are not at high risk for a recurrence, are not 

routinely assessed by SLNB, or PET/CT or LNB, but rather by physical examinations (Australian 

Cancer Network Melanoma Guidelines Revision Working Party, 2008). Thus, an additional 

monitoring regime that can be performed regularly and in conjunction with physical examinations 

could lead to timely interventions resulting in improved treatment options that will positively 

impact on the patient’s quality of life and survival.  

 

The detection and analysis of mutant specific circulating tumour DNA (ctDNA) is an emerging tool 

for detection of residual disease and for prognosis and monitoring of different cancers (Bettegowda 

et al., 2014; Dawson et al., 2013; Gray et al., 2015; Spindler et al., 2012). There is however, limited 

use of ctDNA for monitoring of residual disease and recurrence in clinically disease free patients 
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(Oshiro et al., 2015; Tie et al., 2016) and to date, this has not been assessed in melanoma. In 

melanoma, mainly V-raf murine sarcoma viral oncogene homolog B1 (BRAF) and to some extent, 

neuroblastoma RAS viral oncogene (NRAS) mutant ctDNA are utilised to monitor patients during 

therapy in the research setting (Ascierto et al., 2013a; Girotti et al., 2015; Gray et al., 2015; 

Sanmamed et al., 2015; Santiago-Walker et al., 2015). Notably, telomerase reverse transcriptase 

(TERT) promoter mutations are present in 50-70% of melanomas and confer a significantly poorer 

prognosis if found concurrently with BRAF or NRAS mutations relative to the occurrence of each 

mutation alone. Thus, the ability to monitor patients at all disease stages for the presence of BRAF, 

NRAS as well as TERT mutant ctDNA, would be advantageous even in BRAF and NRAS wild-type 

patients.  

 

The overall aim of this thesis was to further develop existing tools that could regularly, 

inexpensively and non-invasively monitor melanoma patients for melanoma recurrence. Firstly, we 

focused on increasing the number of patients that could be monitored through ctDNA analysis. To 

do this we developed a new and innovative ddPCR TERT mutation assay and investigated its 

sensitivity alongside current assays in detecting mutations in melanoma tissue containing a small 

fraction of tumour cells. The significance of ctDNA for patient monitoring relative to current 

methods of clinical monitoring was then investigated in relation to melanoma recurrence. Finally, 

we conducted a retrospective analysis of ctDNA levels relative to metabolic tumour burden (MTB) 

derived from FDG-PET/CT to determine the lower limit of disease burden detectable by ctDNA 

using ddPCR. 

 

In the first study of this thesis, a novel droplet digital PCR (ddPCR) assay for the concurrent 

detection of C228T and C250T TERT promoter mutations was designed and developed to display a 

lower limit of detection (LOD) of 0.17%. The assay was validated using 22 matched plasma and 
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tumour samples and showed a 68% concordance rate, with a sensitivity of 53% (95% CI, 27%-

79%) and a specificity of 100% (95% CI, 59%-100%). Plasma samples from 56 metastatic 

melanoma patients and 56 healthy controls were tested for TERT promoter mutations confirming a 

specificity of 100% (95% CI, 94%-100%). Importantly, we not only detected TERT mutant specific 

ctDNA in 4 BRAF mutant cases, but this assay allowed ctDNA quantification in 11 BRAF wild-type 

cases, which allows for an increased number of patients to be monitored using ctDNA.  

 

To monitor patients for recurrence using ctDNA, the mutational profile must first be determined 

from a patient’s tumour. However, this may be difficult to obtain from tumours that have limited 

and/or low tumour cellularity and high heterogeneity, particularly when sourced from SLNB and 

fine needle aspiration biopsies of metastatic sites. Consequently, only limited, low-quality DNA 

may be isolated for use on different mutation detection platforms, each with varying analytical 

sensitivities. Limited previous studies focused predominantly on assessment of the BRAF V600 

mutation (as the only actionable mutation), and, notably, in tumour samples with more than 50% 

cellularity. Given the prevalence of TERT promoter mutations which, together with BRAF and 

NRAS mutations provide prognostic significance, the ability to assess the presence of such 

mutations in patient tumours, at high sensitivity, would dramatically improve assessment of 

mutations. In the second study presented here, we evaluated the sensitivity of detection of BRAF, 

NRAS and TERT promoter mutations in 40 melanoma tissues, using ddPCR relative to Sanger 

sequencing and pyrosequencing. Tumour cellularity in our samples ranged from 5-50% (n=28) and 

50-90% (n=12). Overall, ddPCR was the most sensitive, detecting one of the tested hotspot 

mutations in a total of 77.5% (31 of 40) of cases, including in 12.5% and 23% of samples deemed 

as wild-type by pyrosequencing and Sanger sequencing, respectively. The ddPCR sensitivity was 

particularly apparent among samples with less than 50% tumour cellularity. Therefore, 

implementation of ddPCR based assays could facilitate mutation detection of early stage tumours 
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and support research aimed at using ctDNA to improve early detection of residual disease and 

disease recurrence or progression. 

 

In the third paper presented here, we assessed the sensitivity of ctDNA to detect disease recurrence. 

A cohort of 139 patients diagnosed with AJCC stages 0-III in the preceding 10 years were enrolled 

in the study between January 2015 and February 2017. A blood sample was collected at enrolment 

and on average 11 months thereafter. Patients were followed up for disease progression for a 

median time of 50.2 months. From the remaining cohort, three patients developed metastatic 

disease. The median follow-up from diagnosis of the primary tumour to stage IV disease was 34.4 

months. The remaining patients had no clinical evidence of disease recurrence at last follow-up or at 

death from other causes. We analysed the primary tumour of 37 patients for mutations in BRAF, 

NRAS and TERT, and identified mutations in 30 patients (three patients with recurrence and 27 

patients without recurrence). Using our proven, highly sensitive ddPCR tests we analysed BRAF, 

NRAS and TERT promoter mutated ctDNA in all available blood samples. Three serial plasma 

samples were available for each of the three patients who had recurred. CtDNA was detected at the 

time of radiological or biopsy confirmation of metastases in all three patients. Moreover, ctDNA 

was detectable in earlier plasma samples from one of the three patients; in this one patient, ctDNA 

was detected four months prior to clinical detection of gastric and ileum metastases by gastroscopy 

and biopsy. We detected no mutant specific ctDNA at any time point in the patients without 

recurrence. Whilst this data is limited because of the limited number of patients and the limited 

rates of recurrence in early disease stages (2.15%), it provides proof of concept that ctDNA may be 

a valuable tool to monitor early disease recurrence. Additionally, our assessments were limited by 

our knowledge of the level of sensitivity of the ctDNA analyses. There was therefore, a robust need 

to understand the correlation between ctDNA levels and the patient’s tumour burden as assessed by 

metabolic activity using PET.  
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Given that the metabolic activities of tumours are measured routinely during clinical disease 

monitoring by assessment of FDG uptake using PET/CT (Larson et al., 1999), we hypothesised that 

if ctDNA levels correlate with metabolic tumour burden (MTB) derived from FDG-PET/CT scans 

in melanoma patients, we could determine the limit of detection (LOD) of ctDNA to signify disease 

recurrence which would indicate the limitations of ctDNA as a biomarker to identify low disease 

burden. Thus, the indications of ctDNA in the clinical setting will be more clearly identified OR, 

the need to improve the sensitivity of ctDNA is therefore apparent. Consequently, in the fourth 

paper of this thesis, we conducted a retrospective analysis of the ctDNA levels in 32 stage IV 

melanoma patients with active disease prior to systemic therapy. Corresponding FDG-PET/CT 

scans were examined and the MTB was determined from metabolic tumour volume (MTV) and 

tumour lesion glycolysis (TLG) (Larson et al., 1999; Winther-Larsen et al., 2017). Within this 

cohort of patients, ctDNA was detected in 72% of cases with the number of mutated copies per mL 

of plasma ranging from 1.6 to 52,440. A significant correlation between the MTB and allele 

frequency was found (P<0.001). Finally, ctDNA was not detectable in patients with a MTB value of 

less than 10 cm3 and therefore we determined this as the lower LOD of ctDNA by ddPCR. 

 

Overall, ctDNA tests were developed to monitor TERT promoter mutations in cell free DNA 

(cfDNA) in addition to those currently available for BRAF and NRAS therefore maximising the 

number of patients whose disease status can be monitored using ctDNA. We also demonstrated that 

ddPCR is a highly sensitive method for detection of BRAF, NRAS and TERT promoter mutations in 

tumour tissue. Using these tests, we identified a strong correlation between the level of ctDNA and 

metabolic tumour burden, suggesting, for the first time in melanoma, that ctDNA reflects melanoma 

disease burden. We also detected ctDNA in early stage melanoma patients that suffered disease 

recurrence. Prospective studies are now warranted to serially assess the amount of ctDNA after 

resective surgery to determine if the presence of ctDNA can detect residual disease, and whether 
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rising levels of ctDNA in the blood can detect disease recurrence earlier than current clinical 

methods. This will ultimately provide a sensitive method with which to monitor patients, to ensure 

timely, earlier interventions thereby improving melanoma survival rates. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

Cutaneous melanoma (melanoma) is an aggressive skin cancer arising from transformed 

melanocytic cells in the basal layer of the epidermis. This transformation is the result of an 

accumulation of mutations in genes that would normally regulate cell division and proliferation, 

resulting in the uncontrolled growth of melanocytes (Dutton‐Regester et al., 2012; Peyssonnaux et 

al., 2001; Ward et al., 2012). In Australia, although melanoma accounts for only 3.6% of all skin 

cancers (AIHW, 2013a), it is responsible for 90% of all skin cancer related deaths (Balch et al., 

2010), presenting a considerable burden to public health (Rigel et al., 2000). A significant 

contributing factor to melanoma deaths is disease recurrence. Approximately 30% of patients 

experience recurrent melanoma despite having been disease free for a period of time, with 78% 

presenting as regional or distant metastases rather than local recurrences (Soong et al., 1992; Soong 

et al., 1998). Advances in systemic therapies for metastatic melanoma have resulted in increased 

median overall survival, from approximately nine months prior to 2011, to between 25.5 to 32 

months in 2017 (Luke et al., 2017; Robert et al., 2017). Whilst two and three-year overall survival 

rates have been reported at 64% (Hodi et al., 2016) and 58%, respectively (Wolchok et al., 2017), 

timely treatment is fundamental to ensure enhanced response rates (Luke et al., 2017). Given the 

ongoing threat of lives lost from disease recurrence, routine monitoring and early detection of 

recurrence is of vital importance. 

 

1.1 Melanoma Incidence and Mortality 

In the last 50 years, melanoma incidence has increased steadily worldwide and is predicted to 

continue to rise (AIHW, 2012a). These increases have been particularly evident amongst fair 

skinned individuals, particularly in males above 60 years old (Akushevich et al., 2013; Garbe et al., 

2009). In 2008 almost 200,000 new cases were diagnosed worldwide resulting in 46,000 deaths 

(Ferlay et al., 2010). The countries with the highest incidence and mortality rates are Australia and 

New Zealand (Baade et al., 2015; Sneyd et al., 2013). In Australia, melanoma is the third most 
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common cancer in both men and woman accounting for an estimated 12% in men and 9% in 

women of all newly diagnosed cancers (AIHW, 2017).  In 2010, 11,405 new cases of melanoma 

were diagnosed in Australia  and it is estimated that 14,000 and 17,570 new cases will be diagnosed 

in 2017 and 2020, respectively with an estimated 1,800 deaths in 2017 alone (Australian Institute of 

Health and Welfare, 2013b).  In 2013, the incidence rate of melanoma amongst fair skinned people 

in Australia was 62 cases for men and 40 cases for women per 100,000 persons (AIHW, 2017). In 

the USA incidence rates range from 16.9 to 25.4 per 100,000 in women and men, respectively 

(Kohler et al., 2011). In Europe, in 2012, the estimated incidence was 11.0 and 11.4 per 100,000 in 

woman and men, respectively although wide variations were apparent between different 

geographical locations (Ferlay et al., 2013).  

 

Whilst the incidence of melanoma continues to rise, five-year survival rates have increased from 

40% in the 1940s (Rigel et al., 2000) to 85.8% and 90.7% for the periods 1982–1987 and 2006-

2010, respectively (AIHW, 2012b). Such increases in survival rates are largely due to early 

detection and successful surgical removal of primary melanomas (DeSantis et al., 2014; Rigel et al., 

2000).  Despite these improvements, a significant percentage of early stage patients considered 

clinically disease free, later develop metastatic disease and die within 10 years of initial tumour 

resection (Balch et al., 2010).  Once melanoma metastasises, it is among the most aggressive and 

treatment-resistant of all human cancers (Kenessey et al., 2012; Mocellin et al., 2013; Sanmamed et 

al., 2015; Ti'mar et al., 2013). As such there is a need for the development of techniques that 

identify patients at risk of disease recurrence as early as possible after resection of the primary 

tumour. 

 

1.2 Classification and Staging of Primary Melanoma 

Primary melanoma generally presents as one of four different histological subtypes: superficial 

spreading melanoma, nodular melanoma, lentigo maligna melanoma and acral lentiginous 
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melanoma (Bastian, 2014).  Each subtype has characteristic clinical features (Schaffer et al., 2000) 

and typical ages of occurrence (Chang et al., 1998). Within fair skinned populations, superficial 

spreading melanoma is the most common (59%), followed by nodular melanoma (21%), lentigo 

maligna melanoma (11%) and acral lentiginous melanoma (4%) (Garbe et al., 2009).  

 

Superficial spreading melanoma predominantly arises on the trunk in men and on the lower 

extremities in women (MacKie et al., 2002). This form of melanoma has an association with a pre-

existing naevus (Garbe et al., 2009) as well as exposure to UV rays and is more commonly found in 

young and middle-aged individuals (Black, 1988; Thomas et al., 2007). Nodular melanoma is 

notoriously invasive since it is rarely diagnosed in the early stages. It does not have a distinct 

intraepidermal growth pattern but comprises melanocytic nests within the epidermis and 

subcutaneous tissue. It can be found at any anatomical site (Menzies et al., 2013), and is more 

commonly found in elderly men with sun-damaged skin (Malvehy et al., 2012; Menzies et al., 

2013). Lentigo maligna melanoma is typically seen in older people and occurs most commonly on 

the face, head and neck (Pralong et al., 2012; Reed et al., 2011). Although it is the least common of 

the four subtypes (Piliang, 2011), acral lentiginous melanoma is the most common subtype among 

Asians (Kim et al., 2014), Hispanics and dark skinned individuals (Wu et al., 2011). Lesions 

typically arise on skin surfaces not usually exposed to the sun such as the soles of the feet and 

palms of the hands (Pereda et al., 2013).  

 

Currently the diagnostic process includes biopsy and histopathological assessment of the lesion to 

classify and stage the melanocytic lesion based on the American Joint Commission on Cancer 

(AJCC) guidelines. Staging of the tumour according to the TNM (tumour / [lymph] nodes/ 

metastases) staging system is based on histological features, including the thickness of the primary 

tumour, the mitotic rate and the level of ulceration, as well as on the presence or absence of 

metastases (Balch et al., 2009).  The invasiveness and thickness of tumours have been 
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independently described by both Clark (1969) and Breslow (1970): The Clark classification is based 

on the anatomical level of invasion whilst the Breslow classification describes the vertical thickness 

of invasion in millimetres. Following the recommendations of the AJCC (Edge et al., 2010), the 

primary tumour staging is now based on the Breslow classification (Leilabadi et al., 2014). 

Additional histological features of the primary lesion, such as ulceration and the number of mitoses 

per square millimetre provide further prognostic and sub-staging information (T1-4). Depending on 

the T-sub stage, the thickness of the lesion is currently an important prognostic indicator. The N-

stage refers to the pathological status of the lymph nodes, with the number of nodes involved and 

the distinction of micro or macro-metastasis being the measure of sub-stage. Macro-metastasis is 

defined as clinically palpable or radiologically visible lymph nodes and micro-metastasis is defined 

by the identification of tumour cells by conventional histopathology (Balch et al., 2009; Balch et al., 

2011). The M-stage of the TNM staging system represents the metastatic stage, with sub-staging 

being determined by the anatomical site of the metastases together with lactate dehydrogenase 

(LDH) serum levels (Balch et al., 2009; Balch et al., 2011; Gershenwald et al., 2010; Piris et al., 

2011).   
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Table 1: American Joint Committee on Cancer: Staging of Cutaneous Melanoma  

 

 

 

 

 

 

 
a Micro-metastases:  Diagnosed after sentinel lymph node biopsy and complete lymphadenectomy (if performed) 
bMacro-metastases:  Clinically detectable nodal metastases that exhibit either gross extra capsular extension or are confirmed by 

therapeutic lymphadenectomy 

*Lactate dehydrogenase (LDH) 

(Adapted from Balch et al., 2009 and 2011 and Aitken et al., 2008) 

Patho-

logical 

Staging 

TNM  Tumour 

Thickness 

(mm) 

Ulceration  Mitoses No. of      

positive 

nodes  

Nodal Mass Sited Metastasis  

Stage 0 Tis <1 n/a  0 - - 

Stage IA T1a ≤1.0 No <1/mm2 0 - - 

Stage IB T1b ≤1.0 Yes ≥1/mm2 0 - - 

 T2a 1.01-2.0 No  0 - - 

        

Stage IIA T2b 1.01-2.0 Yes Any 0 - - 

 T3a 2.01-4.0 No Any 0 - - 

Stage IIB T3b 2.01-4.0 Yes Any 0 - - 

 T4a >4.0 No Any 0 - - 

Stage IIC T4b >4.0 Yes Any 0 - - 

        

Stage IIIA N1a Any No Any 1 Microa - 

 N2a Any No Any 2-3 Microa  

Stage IIIB N1a Any Yes Any 1 Microa - 

 N2a Any Yes Any 2-3 Macrob - 

 N1b Any No Any 1 Macrob - 

 N2b Any No Any 2-3 Macrob - 

Stage IIIC N1b Any Yes Any 1 Microa - 

 N2b Any Yes Any 2-3 Macrob - 

 N3 Any Any Any 4 Either - 

        

IV M1a Any Any Any Any Any Distant skin, 

subcutaneous or 

distant lymph nodes 

 M1b Any Any Any Any Any Lung metastases 

 M1c Any Any Any Any Any All other visceral 

metastases or any 

metastates combined 

with elevated LDH* 

level 
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1.3 Primary Melanoma: Risk Factors  

Although the cause of melanoma and associated risks are complex, one of the most recognised risk 

factors for primary melanoma is exposure to solar ultraviolet (UV) radiation (Caini et al., 2009; 

Chang et al., 2009; Gandini et al., 2005; Gilchrest et al., 1999; Hodis et al., 2012). Both intermittent 

intense and chronic cumulative amounts of sun exposure have been shown to play a role in the 

pathogenesis of melanoma (Gandini et al., 2005).  Other factors which are associated with primary 

melanoma risk include, but are not limited to, phenotypic features such as fair skin, red hair, light 

eye colour, a high number of naevi, a family history and genetic predisposition (Rastrelli et al., 

2014).   

 

1.4 Genetics of Melanoma  

Whilst all cancers are caused by somatic mutations, melanoma has the highest prevalence of 

somatic mutations, with the exception of non-melanoma skin cancer (Alexandrov et al., 2013). The 

landscape of genomic alterations in melanoma has been well described from primary and/or 

metastatic melanomas and is depicted in Figure 1 (Cancer Genome Atlas Network., 2015; Curtin et 

al., 2005; Hodis et al., 2012; Luke et al., 2017). Based on the pattern of the most prevalent and 

significantly mutated genes, four sub-types provide a framework for genomic classification; mutant 

BRAF, mutant NRAS, mutant neurofibromatosis type 1 (NF1) and triple wild-type (WT). The 

mutations commonly identified affect fundamental signalling pathways involved in cell growth, 

proliferation, cell-cycle control and restoration of DNA damage (Bosenberg et al., 2014; De Luca et 

al., 2012; Haluska et al., 2006; Hayward, 2003) and play a vital role in tumour formation and 

growth (Bosenberg et al., 2014; Keller et al., 2010; Romeo et al., 2013; Shaw et al., 2006).  
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Figure 1: Frequency and overlap of driver and tumour-suppressor genes associated with melanoma  

Categorisation of advanced-stage melanoma according to mutations in either BRAF, RAS, NF1 or triple negative (Red 

Box). Additional driver mutations are also found in other genes such as CDKN2A and PTEN. Adapted from Cancer 

Genome Atlas Network., 2015.  

 

One of the most recognised pathways involved in melanoma initiation and progression is the 

mitogen-activated kinase (MAPK) pathway (Figure 2), regulated by receptor tyrosine kinases, G-

protein-coupled receptors and cytokines. The rat sarcoma viral oncogene (RAS) protein, which is 

situated at the plasma membrane, is activated by the c-Kit receptor and in turn activates V-raf 

murine sarcoma viral oncogene homolog (RAF) A1 (ARAF), B1 (BRAF) and C1 (CRAF). This in 

turn phosphorylates and activates the mitogen-activated protein kinase (MEK). MEK activates the 

protein kinase extra-cellular-signal-regulated kinase (ERK) which activates transcription factors 

that result in gene transcription and therefore cell cycle regulation. This pathway is active in all 

cells including normal melanocytes (Yajima et al., 2012). In 90% of melanomas however, ERK is 

hyper-activated by mutated RAS and RAF proteins (Davies et al., 2002).  

 

Mutations in NRAS have been identified in approximately 20% of melanomas (Griewank et al., 

2013; Jakob et al., 2012; Yajima et al., 2012). The most common mutations in NRAS occur at codon 

61 resulting in replacement of a glutamine residue by an arginine (Q61R) or lysine (Q61K) in the 

encoded protein (Exon 3) (Jakob et al., 2012; Platz et al., 2008). Other NRAS mutations observed in 

melanoma include genetic changes that result in substitution of glutamine at position 61 by leucine 

(Q61L) or histidine (Q61H) or substitution of glycine at position 12 or 13 by aspartic acid 
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(G12D/G12D). Under normal circumstances, the RAS oncoprotein induces MAPK/ERK 

phosphorylation to initiate cell proliferation and as such, mutated NRAS will result in constitutive 

activation of the MAPK signalling pathway resulting in increased cell proliferation and 

advancement of tumour growth.  
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Figure 2: MAPK signalling pathway in melanoma 

Proteins in red are affected by gain-of-function mutations and those in blue are affected by loss-of-function mutations in 

encoding genes. Adapted from Bastian (2014) and Bogenrieder et al. (2011).  

 

Aberrant or constitutive activation of the RAF proteins, particularly BRAF in melanoma lead 

directly to abnormal differentiation, proliferation and inhibition of apoptosis in melanocytes. BRAF 

mutations are found in 50 to 60% of all melanomas (Boni et al., 2010; Hauschild et al., 2012; Ribas 

et al., 2011; Rubinstein et al., 2010b; Santarpia et al., 2012; Trunzer et al., 2013). A single base 

missense substitution in BRAF which is present on chromosome 7q34,  (T to A at nucleotide 1,799) 

(GTG to GAG in exon 15), results in the substitution of a valine for a glutamic acid at codon 600 
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(V600E) in the encoded protein and this is the most common mutation, accounting for 

approximately 80% to 90% of BRAF mutations found in melanoma (Hauschild et al., 2012; Lovly 

et al., 2012; Wu et al., 2014). Interestingly BRAF V600E is also expressed in 80% of benign naevi 

and has been shown to drive senescence (Michaloglou et al., 2005; Pollock et al., 2003), 

contradicting the notion that such an early event would have an impact on tumour development 

(Long et al., 2011). Another mutation at codon 600 (nucleotides 1,798 and 1,799 where two bases 

GT are replaced by AA) encodes the BRAF V600K mutation, resulting in substitution of valine by 

lysine (Busam et al., 2013). This mutation is present in 5-12% of melanomas (Lovly et al., 2012; 

Rubinstein et al., 2010b). Interestingly, BRAF V600K mutated melanomas are present at a relatively 

higher frequency in Australia (Amanuel et al., 2012; Long et al., 2011) and are more prominent in 

melanoma patients ≥ 70 years (Menzies et al., 2012). Other mutations found in melanoma include 

but are not limited to V600R (valine - arginine), V600D (valine - aspartic acid), V600G (valine - 

glycine), V600M (valine - aspartic acid) and K601E (lysine - glutamic acid). Such mutations are 

however rare (Greaves et al., 2013).  

 

BRAF codon 600 and NRAS codon 61 are the most commonly reported hotspot mutations detected 

in proto-oncogenes in melanoma. Notably, these same mutations detected in the primary tumour are 

almost always maintained in the corresponding metastases (Omholt et al., 2002; Omholt et al., 

2003; Platz et al., 2008). Whilst BRAF and NRAS mutations are mostly mutually exclusive in 

melanoma (Davies et al., 2002; Omholt et al., 2002; Platz et al., 2008; Tsao et al., 2015), co-

occurrence of these mutations has been reported in primary melanomas and in patients with 

acquired resistance to BRAF inhibitors (Edlundh-Rose et al., 2006; Goel et al., 2006; Gray et al., 

2015; Jovanovic et al., 2010; Long et al., 2014a; Nagore et al., 2016a; Rizos et al., 2014). 

Generally, the frequencies of BRAF and NRAS mutations are different among the histological 

subtypes and sites of origin of melanoma (Lee et al., 2011).  
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On average among the four histological melanoma subgroups, the highest frequencies of BRAF 

mutations are found in superficial spreading, followed by nodular melanomas on intermittent sun 

exposed anatomical sites.  In contrast, NRAS mutations are found more frequently in nodular 

followed by superficial spreading melanomas from continuously sun exposed anatomical sites (Ball 

et al., 1994; Edlundh-Rose et al., 2006; Lee et al., 2011; Saldanha et al., 2006).  Furthermore, a 

significantly lower mean age at diagnosis has been registered among patients with BRAF mutated 

melanomas compared to NRAS mutations (Edlundh-Rose et al., 2006) and a more chronic pattern of 

UV exposure is evident in NRAS mutated melanomas (Devitt et al., 2011; Jakob et al., 2012). NRAS 

mutation status is also an independent predictor of shorter melanoma specific survival than BRAF 

mutant melanomas (Jakob et al., 2012).  

 

NF1 is the third most frequently mutated gene in melanoma and has been shown to be present in up 

to 46% of melanomas WT for BRAF and RAS mutations (Krauthammer et al., 2015). In contrast to 

BRAF and NRAS, NF1 has no associated hotspot mutations, but rather aberrations occurring 

throughout the gene in the form of point mutations and small indels only (nonsense, frameshift, 

splice site and missense) (Hayward et al., 2017).  

 

Another gene implicated in melanoma is the TERT gene. This gene encodes the catalytic subunit of 

telomerase which is a ribonucleioprotein responsible for maintaining telomere length (Counter et 

al., 1998). The replicating lifespan of most adult somatic cells is limited due to the silencing of 

TERT. In cancer however, TERT expression is reactivated which consequently permits replication 

immortality. Two cancer-specific hotspot mutations at chr5: 1,295,228 C>T and 1,295,250 C>T 

occur in the TERT promoter, hereafter termed C228T and C250T. These mutations result in a 

cytidine to thymidine transition in the TERT promoter region upstream of the ATG start site and 

result in the creation of novel E26 transformation-specific (ETS) transcription factor binding motifs 

(Figure 3). The presence of either one of these mutations has been reported in 33% and 85% of 
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primary and metastatic melanoma tissues, respectively  (Horn et al., 2013). Moreover they are 

linked to fast growing melanomas and a poor prognosis (Griewank et al., 2014; Nagore et al., 

2016b). Furthermore, 55% of melanoma cases harbour co-existing TERT promoter and BRAF or 

NRAS mutations, with co-existence related to poor disease-free survival (Nagore et al., 2016a).   

 

 

Figure 3: Schematic illustration showing the TERT gene on chromosome 5 and its promoter (from ATG to-

1000).   

Cancer specific TERT promoter mutations C250T and C228T at SP1 binding sites create ETS1 binding motifs adjacent 

to an E-box. Adapted from Liu et al., (2016). 

 

1.5 Recurrent Melanoma: Risk Factors and Prognosis 

Approximately one third of all melanoma patients will experience a recurrence in their lifetime 

(Soong et al., 1998), despite having been disease free for a period of time, with 65% of these 

occurring within three years of surgical removal of the primary tumour (Geere et al., 2012). 

Furthermore, between 5 to 30% of patients diagnosed with AJCC stage I or II melanomas develop a 
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recurrence at some point in their lives (Balch et al., 2009; Salama et al., 2013; Turner et al., 2011). 

Survival outcomes from 17,000 melanoma patients from a variety of countries are shown in Table 

2. 

 

Table 2: Survival Rates for Melanoma by TNM Staging 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(adapted from Balch et al., (2001) and Aitken et al., (2008)) 

 

Currently the AJCC sub-staging classification is the most accurate predictor of recurrence (Turner 

et al., 2011). The majority of primary melanomas (approximately 70%) are thin ≤ 1.0mm 

(Howlander et al., 2012), with a low metastatic propensity (Mays et al., 2010) yet 4 to 7% of these 

Stage Five-year 

survival rate 

(%) 

10-year survival 

rate (%) 

T1a 95.3 87.9 

T1b 90.9 83.1 

T2a 89.0 79.2 

T2b 77.4 64.4 

T3a 78.7 63.8 

T3b 63.0 50.8 

T4a 67.4 53.9 

T4b 45.1 32.3 

N1a 69.5 63 

N2a 63.6 56.9 

N1a 52.8 37.8 

N2a 49.6 35.9 

N1b 59.0 47.7 

N2b 46.3 39.2 

N1b 29.0 24.4 

N2b 24.0 15.0 

N3 26.7 18.4 

M1a 18.8 15.7 

M1b 6.7 2.5 

M1c 9.5 6.0 
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patients die from metastatic disease (Bartlett et al., 2014; Gimotty et al., 2004; McKinnon et al., 

2003). Given the high incidence of melanoma, this is a significant number of deaths. 

 

Jones et al. (2013) followed 515 AJCC stage I-II melanoma patients in the United States of America 

(USA) for a median of 61 months to analyse the predictors and patterns of recurrence of melanoma 

in patients with early stage disease. Despite a negative SLNB, 83 from 515 patients (16%) 

experienced a recurrence. A deeper primary lesion (mean thickness, 2.7 vs. 1.8 mm, p<0.01) with 

ulceration (32.5% vs. 13.5%; p<0.001) was significantly associated with recurrence. Moreover, a 

recurrence was more likely to occur in patients with a primary lesion located in the head and neck 

region compared with all other locations combined (31.8% vs. 11.7%; p<0.001). They also showed 

that an older age at diagnosis (mean 57 years vs. 49 years) is significantly associated with a 

recurrence and that males are more prone to recurrence than females (Males 21% vs. Females 9%; 

p<0.001).  

 

Whilst local and regional recurrences are associated with a higher five-year survival rate (by 

approximately 20%)  than  systemic recurrences (Reintgen et al., 1992), a local recurrence is 

correlated with systemic spread and may still harbour a poor prognosis (Meier et al., 2002). Meier 

(2002) and colleagues followed a cohort of 3001 patients in Germany diagnosed with a primary 

melanoma (stage I or II), for a median time of 10 years. Within this time frame, 15.5% of patients 

developed a recurrence. Follow-up was carried out at regular intervals; every three months for the 

first five years and thereafter at six monthly intervals. Recurrences were classified as satellite or in-

transit (21.7%), regional lymph (50.2%) and distant metastasis (28.1%). Of those patients who were 

first diagnosed with a satellite or in-transit recurrence, 4.5% went on to develop regional lymph 

node metastases and 11% distant metastases. Of those patients who were first diagnosed with 

regional lymph metastases, 58.9% further progressed to distant metastases.  
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Later disease stages have a higher risk of recurrence and lower survival rates (Leiter et al., 2012; 

Romano et al., 2010). From follow-up data of 33,384 patients in Germany, Leiter at al. (2012) 

recorded 4,999 cases of recurrence (14.9%) after complete resection of a primary melanoma or a 

loco-regional metastasis. Stage III patients had a higher recurrence rate (51%) than stage II (39.5%) 

and stage I (7.1%). The follow-up period for this study was variable with the minimum surveillance 

period recorded as three months and the maximum as 10 years, with the median follow-up time to 

first recurrence being 44 months. The probability of recurrence free survival at one year was 98.4%, 

86.2% and 68.3% and at three years was 95.3%, 71.8% and 52% for AJCC stages I, II and III, 

respectively. Within TNM stage III patients alone, later sub-stages have a higher risk of recurrence 

(48%, 71% and 85% for stages IIIA, IIIB and IIIC, respectively) and lower survival rates (20% for 

each stage IIIA and IIIB and 11% for stage IIIC) (Romano et al., 2010). Similarly, the maximum 

micro-metastasis size is associated with progression free survival (PFS) as shown by Baehner et al., 

(2011) who reported five-year PFS rates of 86.7% and 26.7% for patients with a maximum 

metastasis size of <0.6 mm and >5.5 mm, respectively. 

 

In stage IV melanoma, Sosman et al. (2011) reported a 90% recurrence rate in a prospective 

multicentre study in the USA. They followed 64 completely resected stage IV melanoma patients 

for a median of five years. The median relapse-free survival was reported as five months despite 

treatment (local and/or systemic) and the median overall survival was reported as 21 months. 

Overall, survival at three years was 36% and at four years was 31%.  

 

The prognosis for patients experiencing a recurrence is also dependant on the time of recurrence. 

Median survival rates are significantly lower for those with a recurrence in the first five years after 

primary tumour excision (59.8%), compared to those without a recurrence within five years 

(92.5%). Similarly, the survival rates are significantly lower for those with a recurrence in 10 years 

(38.9%) compared to those without a recurrence in the same time frame (84.3%) (Salama et al., 
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2013).  Moreover, the prognosis is dependent on the type of recurrence; five-year survival rates 

decline from 55% to 51% and 20% for local, regional node and systemic recurrence, respectively 

(Balch et al., 2010; Reintgen et al., 1992).  

 

The majority of patients who develop a recurrence will do so within the first two years of initial 

diagnosis (Dong et al., 2000; Hohnheiser et al., 2011; Romano et al., 2010), however recurrences 

have been reported after 10 years (Dong et al., 2000; Hohnheiser et al., 2011). In a retrospective 

analysis of 9,223 stage I or II melanoma patients in the USA, Dong (2000) and colleagues showed 

7% of patients developed a local recurrence. Within those that developed a local recurrence, more 

than half were evident within two years, 80% within five years, 5% after 10 years and 2% after 15 

years. Similarly, Hohnheiser et al. (2011) showed that from a cohort of 2487 AJCC stage I, II and 

III melanoma patients, a recurrence was observed in 523 patients (21%), the majority of which 

occurred within two years, 81.6% within five years and 6.5% after 10 years.  

 

In summary, approximately 5% to 30% of TNM early stage melanoma patients (stages I and II) 

experience disease recurrence within two to three years following excision of their tumour, half of 

which are reported as a regional recurrence where the disease presents in the lymph nodes after the 

patient has been disease free for a period of time. A quarter of recurrences are local, appearing 

within 2.5cm of the resected primary melanoma and another quarter are distant recurrences, where 

the disease presents in distant organs after the patient has been disease free for a period of time. The 

majority of recurrences are evident within 24 months after the initial diagnosis. In TNM stage III 

patients, 50% of patients will experience a recurrence, with the majority being evident within 12 

months. In TNM stage IV patients, 90% will recur, with the median time to recurrence being five 

months. The majority of recurrences in TNM stage III and IV patients are systemic.     
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1.6 Systemic Therapies for Melanoma  

Since the introduction of chemotherapeutic agents such as dacarbazine in 1975 and immunological 

therapies such as interferon-alpha in 1995 and interleukin-2 (IL-2) in 1998, the treatment of 

melanoma has changed dramatically (Luke et al., 2013). Dacarbazine has low response rates of only 

5-15% and a median durability of six to 12 months (Chapman et al., 1999) and given its highly 

toxic nature, IL-2 is only suitable for selected fit patients (Atkins et al., 1999). Since the 

introduction in 2011 of small molecule inhibitors of BRAF or MEK and immunotherapy agents 

which target cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell-death 

protein (PD-1), the treatment landscape for melanoma has improved dramatically (Luke et al., 

2017).  

 

1.6.1 Targeted Therapies 

Highly prevalent hot-spot mutations in V600 codon of BRAF have directed the development of 

BRAF inhibitors such as vemurafenib and dabrafenib. In a randomized phase III trial comparing 

vemurafenib to dacarbazine (Chapman et al., 2011), the objective response rate (ORR) was 48% for 

vemurafenib compared to 5% for dacarbazine and PFS and median overall survival (OS) reported in 

an extended follow-up study were 5.3 months versus 1.6 months and 13.3 months versus 10.0 

months, respectively (McArthur et al., 2014). Whilst initial tumour regression is dramatic, long-

term response is hindered by acquired resistance in many patients, with a number of mechanisms 

having been identified (Emery et al., 2009; Jiang et al., 2011; Wagle et al., 2011). For example, 

resistance to vemurafenib is mediated through the reactivation of the MAPK pathway as well as the 

activation of the AKT signalling pathway.  An acquired mutation MEK1-C121S (downstream of 

BRAF) suppresses the MAPK pathway inhibitory activity of vemurafenib (Wagle et al., 2011).  

Additionally, mutually exclusive PDGFRβ upregulation or NRAS mutations are associated with 

acquired resistance (Nazarian et al., 2010).  
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Another BRAF inhibitor, dabrafenib was developed soon after vemurafenib and showed similar 

ORRs of 50% versus 6% and PFS of 5.1 months versus 2.7 months for dabrafenib when compared 

to dacarbazine (Hauschild et al., 2012). Whilst the PFS was longer for patients on dacarbazine in 

the dabrafenib/dacarbazine study compared to the vemurafenib/dacarbazine study, the 

dabrafenib/dacarbazine study was smaller with only 63 dacarbazine patients compared to 338 

dacarbazine patients in the vemurafenib/dacarbazine study. Furthermore, with the primary endpoint 

of the dabrafenib/dacarbazine trial being PFS, dacarbazine patients were allowed to cross over to 

dabrafenib at time of progression.  At data cut off (12 months from the start of the trial), only 14 

patients remained in the dacarbazine group. Whilst this data suggests that dabrafenib treatment for 

BRAF V600 mutated melanoma provides a benefit in PFS, the small cohort raises concerns relating 

to reliability.  

 

With the understanding of the downstream phosphorylation cascade causing a stepwise activation of 

MEK 1/2, a MEK inhibitor, trametinib was developed. In the phase III METRIC trial (Flaherty et 

al., 2012b), the median PFS was reported as 4.8 months and ORR of 22% for trametinib alone. 

ORR was then further improved when BRAF and MEK inhibitors were administered in 

combination. For the phase I/II study of dabrafenib in combination with trametinib an improved 

ORR of 76% was reported. Furthermore, an increased median PFS of 9.4 months (Flaherty et al., 

2012a) and a median OS of 27.4 months were demonstrated (Flaherty et al., 2014). In phase III 

clinical trials, (Long et al., 2015; Robert et al., 2015)  combined dabrafenib and trametinib showed 

similar ORR, PFS and OS to those observed in the phase I/II study. Similar results were also 

observed with the combination of vemurafenib and cobimetinib (a MEK1/2 inhibitor) (Ascierto et 

al., 2016; Larkin et al., 2014; McArthur et al., 2015; Ribas et al., 2014). Consequently, a 

combination of BRAF and MEK inhibitor therapy has become the standard of care for patients with 

BRAF-mutant melanoma (Luke et al., 2017).  
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Given that RAS mutations alone do not initiate oncogenic transformation and appear to require other 

co-operating genetic events (Fedorenko et al., 2013), the development of NRAS targeted therapy has 

remained elusive. The clinical benefit of MEK inhibitors for patients with NRAS Q61-mutant 

melanoma, although reserved (Ascierto et al., 2013b; Dummer et al., 2017), have resulted in 

regulatory approval of this drug for NRAS mutant patients (Luke et al., 2017). Furthermore, current 

evidence (Atefi et al., 2011; Ji et al., 2012; Kwong et al., 2012) suggests that MEK-inhibitor-based 

combination therapies are warranted (Luke et al., 2017). Additionally, with new insights into the 

high prevalence of TERT promoter mutations in melanoma and the identification and understanding 

that mutant TERT promoters cause reactivation of TERT, it is likely that development of TERT 

targeted therapy is imminent (Akıncılar et al., 2016). 

 

1.6.2  Immunological Therapies  

Immunological therapies such as interferon-alpha and IL-2 cytokines have historically been used to 

treat non-BRAF mutant metastatic melanoma patients, however they have shown modest response 

rates of 10-20% with substantial toxicity (Atkins et al., 1999; Coit et al., 2012; Kirkwood et al., 

1996). The modern immunotherapy agents such as ipilimumab, pembrolizumab and nivolumab 

have undergone rapid clinical development and trials (Figure 5) (Luke et al., 2017). Ipilimumab is a 

human IgG1 monoclonal antibody that blocks the interaction of CTLA-4 with its ligands 

augmenting T-cell activation and proliferation (Yervoy ™, 2011). Pembrolizumab and nivolumab 

target PD-1 antibodies inhibiting T cell proliferation and cytokine production (KeytrudaTM, 2017; 

OpdivoTM, 2017).  

 

Since 2011, several clinical trials and research studies have included the use of monotherapy agents 

pembrolizumab, nivolumab, or ipilimumab and a combination of ipilimumab and nivolumab. In a 

large phase I study of 655 enrolled patients, single agent pembrolizumab was associated with an 

overall response rate (ORR) of 19% (Robert et al., 2016), whilst a phase I trial of concurrent 



41 

 

ipilimumab plus nivolumab was associated with an ORR of 40% (Wolchok et al., 2013). A phase 

III trial which studied pembrolizumab versus ipilimumab with the primary end points being PFS 

and OS, reported PFS rates of 47.3% and 46.4% for patients receiving different dosing regimens of 

pembrolizumab. PFS was 26.5% for patients in the ipilimumab group. After a minimum follow-up 

of 12 months for all patients, the OS rates were 74.1% and 68.4% for the different dosing regimes 

in the pembrolizumab group and 58.2% in the ipilimumab group. Furthermore, the anti-PD-1 

antibody was associated with less high-grade toxicities than the CTLA-4 checkpoint inhibitor. From 

a multicentre trial whereby 945 patients underwent equal randomisation, combined nivolumab and 

ipilimumab was shown to exhibit the best OS at three years of 58%. This is relative to the OS when 

administered individually of 52% for nivolumab and 34% for ipilimumab. The progression free 

survival over this period was 39% in the combination therapy group, 32% in the nivolumab group 

and 10% in the ipilimumab group  (Wolchok et al., 2017).  

 

In summary, systemic treatments have dramatically improved patient outcome with the 

development of targeted and immunotherapy agents. The introduction of immunotherapy agents has 

provided a therapeutic option for patients who are not candidates for targeted therapy and provide 

an alternative option as second line therapy for BRAF positive patients.  

 

1.7 Current Clinical Methods of Diagnosing Recurrence/Metastasis 

Monitoring guidelines for melanoma are not uniform and differ from centre to centre as well as 

country to country (Leiter et al., 2012; Trotter et al., 2013). In Australia and New Zealand, 

monitoring guidelines are stage-specific (Australian Cancer Network Melanoma Guidelines 

Revision Working Party, 2008). Stage I melanoma patients should be monitored every six months 

for five years and thereafter annually, with a physical examination, including a full skin and lymph 

node examination. It is recommended that examinations of the skin and lymph nodes are conducted 

by a healthcare professional. Self-examinations are also recommended, and patients should be 
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properly educated on how to perform them. Stage II and III melanoma patients should be monitored 

every three to four months by physical examination (as for stage I patients) for the first five years 

and thereafter annually. Again, self-examinations are recommended. Radiological investigations are 

indicated for stages IIb, IIc to detect metastatic disease, using whole body PET or CT scans of the 

chest, abdomen and pelvis. There are however no guidelines to suggest how frequently these scans 

should be performed. Due to disseminated metastasis in stage III and IV patients, it is recommended 

that these patients be monitored on a case by case basis, although generally they are monitored by 

FDG-PET/CT three- monthly (Australian Cancer Network Melanoma Guidelines Revision Working 

Party, 2008).  

 

1.7.1 Sentinel Lymph Node Biopsy 

In patients without palpable nodal involvement but with lesions >0.76mm thick and with a mitotic 

rate of >C1/mm2, a SLNB may be performed to determine metastatic spread (Bartlett et al., 2014). 

SLNB provides important prognostic information and can identify patients with nodal metastases. 

Moreover, routine SLNB to monitor recurrence in patients with >1.0 mm thick melanomas offers a 

survival advantage (Faries et al., 2017; Morton et al., 2014), although the use of SLNB in all 

patients would be prohibitive financially (Agnese et al., 2003). Morton et al., (2014) evaluated the 

outcomes of 2001 TNM stage I or II melanoma patients and reported no significant treatment-

related difference in the 10-year melanoma-specific survival rates between biopsy and observational 

groups: the mean (±standard error (SE)) survival rate for those with 1.2 to 3.5mm melanomas who 

underwent a SLNB was 81.4±1.5% and those who underwent nodal observation alone was 

78.3±2.0% (p=0.18). The mean (±SE) survival rate in the biopsy group with >3.5mm melanomas 

was 64.4±4.6% compared to the observational group with a mean (±SE) survival rate of 58.9±4.1% 

(p=0.56). They did however report a significantly higher 10-year disease-free survival rate in the 

biopsy group compared to the observational group. The mean 10-year disease-free survival in the 

observation group with intermediate-thickness (1.2 to 3.5mm) melanomas was significantly lower 
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than in the group that underwent a SLNB (p=0.01) as was that for patients with thick melanomas 

(>3.5mm) (p=0.03). Similarly, Faries et al., (2017) have shown no benefit in melanoma-specific 

survival when comparing 1934 patients who underwent completion lymph-node dissection 

compared to 1755 patients who received nodal observation with ultra-sonography. 

 

Dalal et al., (2007) analysed the patterns of recurrence and post-recurrence survival from a cohort of 

1046 stage I and II patients with ≥ 1mm Breslow thickness who underwent a SLNB. Following a 

median follow-up of 36 months, 14.3% of SLN-negative patients experienced their first recurrence 

after a median time of 24 months, whereas 47% of SLN-positive patients experienced their first 

recurrence after a median time of 13 months. Postoperative follow-up was comprehensive with 

physical examinations being conducted between three to four months in the first 12 months, 

between three to six months for the following year and between six to 12 months thereafter. A 

complete blood count and serum LDH level were completed annually for the first two to three years 

of follow-up. Where clinically indicated, PET and CT scans were conducted. The pattern of 

recurrence was similar for both groups with approximately half of the first recurrence being 

systemic and one third as in-transit or local disease. Morton et al., (2014) also showed the pattern of 

first recurrence to be similar in both groups, although SLN negative patients experienced recurrent 

disease less frequently and far later than SLN positive patients. Whilst recurrences were more 

evident in the cohort with thicker melanomas (P<0.001), the pattern of recurrence was similar for 

both thin and thick melanomas which is consistent with other reports (Balch et al., 2000; Clary et 

al., 2001). In considering post-recurrence survival, the only independent indicator was the site of 

first recurrence, with systemic recurrence being associated with a shorter post-recurrence survival.  

 

Bartlett et al., (2014), examined the role of SLNB in patients with thin melanomas  (≤ 1.0mm). 

Within this cohort (n=781), they found SLN positivity to be low (3.7%) which is less than the 

complication rate associated with the procedure (Karakousis et al., 2007; McKinnon et al., 2003; 
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Murali et al., 2012; Wright et al., 2008). Whilst the presence of mitoses and Clark level was 

associated with SLN positivity in a multivariate analysis, the SLN positivity however was merely 

0.7% in the absence of mitoses.  

 

Only specific points in the node are tested in SLNB and since melanoma malignancy has a tendency 

to metastasise in small groups of cells or as single cells (Cook et al., 2008), it is likely that sites 

containing tumour cells may go undetected. By testing a set of three sections (each stained with S-

100 protein, haematoxylin and eosin (H&E) and HMB-45) obtained from each of three specific 

points within the biopsy at 250µm intervals, the detection rate of SLN positivity was 71% in stage 

III melanoma patients (Spanknebel et al., 2005). Although the procedure is considered to be 

minimally invasive (Morton et al., 2014), it is prohibitively expensive for routine monitoring 

(Agnese et al., 2003; Lens et al., 2002), time consuming (Sabel et al., 2000) and is unlikely to be 

repeated often. Thus, SLNB is ineffective at diagnosing recurrence or disease progression in 

patients with thin melanomas, until such time that the disease has progressed, and the patient is 

categorised into a stage with a poorer prognosis (i.e. stage III). Despite a significantly shorter PFS 

and OS being evident with increasing microscopic tumour burden in LNs (Baehner et al., 2011), the 

impact on patient outcome of microscopic tumour burden in SLN cannot be ignored, therefore 

underscoring the need for better methods to detect recurrences from early stage disease.  

 

1.7.2 Positron Emission Tomography / Computed Tomography Scans 

FDG-PET/CT provides valuable information on the location and metabolic activity of suspicious 

cancerous lesions through real-time whole-body imaging (Gellén et al., 2015). CT alone provides 

information on the locality of any lesions within internal organs, whilst PET alone provides detail 

on normal and abnormal tissue metabolism. Being a radio-labelled glucose analogue, 18F-FDG 

accumulates in tissues with high glucose utilisation, thereby revealing the metabolic activity of 

tumour cells. The principal advantage of radionuclide imaging is the high tumour to non-tumour 
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contrast providing functional information about tumours (Bai et al., 2013). A combination of PET 

and CT technologies in oncology helps to identify and localise functional abnormalities (Blodgett et 

al., 2007) and is commonly used to diagnose systemic metastasis, being highly effective (up to 

90%) in detecting and differentiating distant metastases in melanoma (Friedman et al., 2004; Larson 

et al., 2006; Rodriguez Rivera et al., 2014). FDG-PET/CT is also used routinely to assess therapy 

response in melanoma and other cancers (Juweid et al., 2006; Ott et al., 2006; Schwarz et al., 2005; 

Strobel et al., 2008).   

 

The diagnostic performance of FDG-PET/CT to monitor patients was assessed in a retrospective 

study of 250 stage II and III melanoma patients. Reinhardt et al. (2006) used FDG-PET/CT, PET 

alone and CT alone to assess metastatic disease, recurrence and treatment evaluation. With regards 

to nodal staging of melanoma, the differences between efficacy of FDG-PET/CT, PET alone and 

CT alone, were marginal. They found however, that there were significant differences between the 

technologies when restaging to diagnose metastatic disease and for treatment evaluation. FDG-

PET/CT was superior at 97.2%, PET alone at 92.8% and CT alone showing accuracy of 78.8% for 

assessment of nodal and metastatic disease, which is considerably superior to detection rates using 

SLNB. 

 

Such radiologic assessments in stage I and II melanoma have not been well regarded as they fail to 

provide clinical evidence of disease recurrence or prognostic information (Belhocine et al., 2002; 

Hindié et al., 2011; Krug et al., 2008). In a prospective study that compared SNB to PET imaging in 

stages I, II and III cutaneous melanoma patients, Wagner et al., (1999) reported sensitivity and 

specificity of 94.4% and 100%, respectively for detecting occult lymph node metastases by SNB 

compared to 16.7% sensitivity and 95.8% specificity using FDG-PET/CT. Conversely, Danielsen et 

al., (2016) assessed the utility of FDG-PET/CT in detecting melanoma metastasis of newly-

diagnosed high-risk primary melanoma patients. As part of their initial staging, 32 of 167 patients 
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had a positive scan, with FDG-PET/CT detecting regional metastatic disease in 18 clinically node-

negative patients. Whilst the yield of positive PET/CT scans was relatively high, it is important to 

note that the patient cohort was selected for their high-risk of metastatic disease. Additionally, there 

has been much disagreement regarding the cost-effectiveness and utility of FDG-PET/CT in the 

initial staging of early stage melanoma patients (Bastiaannet et al., 2012; Bastiaannet et al., 2009; 

Haddad et al., 2013; Wagner et al., 1999; Wagner et al., 2005; Wagner et al., 2011). In summary, 

because these imaging techniques are unable to detect micro-metastases (Meyers et al., 2009; 

Pfannenberg et al., 2015), are associated with high costs (Gellén et al., 2015) and additional 

radiation exposure (Rueth et al., 2015), they are used less commonly for routine monitoring of 

patients with early stage melanoma. 

 

1.7.2.1 Quantitative Analysis of FDG-PET/CT Scans 

Whilst qualitative visual interpretation of FDG-PET/CT scans is the most commonly used 

assessment and is highly effective (Juweid et al., 2007; Wahl et al., 2009), quantitative assessment 

of FDG-PET/CT images is the most accurate measure of disease burden (Bai et al., 2013). The 

fundamental basis of PET scanning uses the positron decay of a variety of isotopes to provide a 

positive image relative to a background rate of 18F-FDG uptake in normal tissue. A radioactive 

nucleus produces a positron which travels a short distance until it reaches an electron. The resultant 

mass is then converted into two 511 keV photons which travel in opposite directions. Small 

scintillation crystals (detectors) record the decay. Reconstruction algorithms are then used to 

compute the tracer distribution image (Bai et al., 2013). The first quantitative measurement values 

were calculated by the administered radiotracer dose per gram of tissue however the results were 

dependant on the size of the patient (MTV) (Woodard et al., 1975). More recently, the standardised 

uptake value (SUV) is used which takes into account the size of the patient (in terms of body 

weight, surface area or lean body mass) with a calculation based on the decay-corrected tumour 

activity concentration and the amount of radiotracer administered (Strauss et al., 1991). Whole-
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body MTB assessed by SUV from FDG-PET/CT scans will predict a more accurate patient outcome 

than tumour uptake alone (MTV) (Bai et al., 2013). Consequently volume based PET parameters 

which measure MTV, calculated semi-automatically by the software, have now been introduced 

(Winther-Larsen et al., 2017). MTV multiplied by the mean SUV of each delineated lesion provides 

the TLG, which when added together for all evaluable lesions, provides the overall MTB at any one 

time within a patient (Larson et al., 1999). Furthermore, such quantitative analysis has been shown 

to be more effective than qualitative analysis in distinguishing between ineffective and effective 

treatment in the early stages of systemic therapy (Lin et al., 2007; Wahl et al., 2009). In a study 

assessing 92 patients with newly diagnosed diffuse large B-cell lymphoma, Lin et al., (2007) 

showed that 15% of patients who were considered positive for ongoing tumour presence, on visual 

analysis, were in fact good responders and thus had reduced tumour size, which was evident when 

quantitatively analysed for metabolic rate. Similarly, quantitative assessment of tumour uptake and 

changes in tumour uptake, have been shown to predict survival in oesophageal and non-small-cell 

lung cancer NSCLC (Sasaki et al., 2005; Yanagawa et al., 2012). Whilst quantitative measurements 

of FDG-PET/CT have recently been described (Bai et al., 2013; Lin et al., 2007; Sasaki et al., 2005; 

Winther-Larsen et al., 2017; Yanagawa et al., 2012), they have not yet been reported in melanoma.  

 

1.8 Alternative Methods of Detecting Residual Disease and Disease Progression in Melanoma 

Measuring cellular components, shed from tumour cells into the blood stream, such as microRNAs 

(miRNA), circulating tumour cells (CTCs) or ctDNA, commonly referred to as a “liquid biopsy”, 

have been used more recently to provide some insight into the level of disease burden, therefore 

providing some understanding of an individual’s prognosis (Gray et al., 2015; Khoja et al., 2014; 

Klinac et al., 2014; Kopreski et al., 1999; Stark et al., 2015). Table 3 shows a comparison of these 

three “liquid biopsy” methods. 
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Table 3: Comparison of “liquid biopsy methods” 

Method Source Strength Limitation 

miRNA Plasma, urine, 

saliva 

Non-invasive 

Highly sensitive 

Low specificity 

Not tumour specific 

    

CTCs Peripheral blood Non-invasive 

Approved by FDA in 

clinical practice 

(CELLSEARCH) 

Very rare events 

Difficult to detect 

Low sensitivity 

Low specificity 

Requires enrichment step (size or 

immunomagnetic) 

 

ctDNA Serum or plasma Non-invasive 

Heightened abundance 

Highly sensitive 

Highly specific  

Cancer-specific aberrations must first be 

determined for PCR based assays. 

Large background of wild-type DNA 

 

    

 

1.8.1  Circulating microRNAs (miRNAs) 

miRNAs are non-coding, small (approximately 22 nucleotides) RNAs which regulate gene 

expression. Primarily contained in micro-vesicles or exosomes, or bound to the miRNA-mediated 

silencing complex (AG02) (Allegra et al., 2012; De Guire et al., 2013), they have been shown to be 

released by tumour cells into the circulation (Mitchell et al., 2008) and as such are considered 

potentially valuable as a prognostic biomarker for melanoma recurrence (Fleming et al., 2015; Stark 

et al., 2015). In a retrospective analysis, Fleming et al., (2015) reported that a 4-miRNA signature 

panel could distinguish between recurrent and non-recurrent melanoma cases. Having classified 

patients into high and low risk recurring groups, they observed sensitivities of 80.9% and 84.6% 

and the specificity was 60.1% and 66.1%, respectively. The negative predictive value for the two 

cohorts was 87.4% and 90.2%, respectively. Recently, Stark et al., (2015) detected the presence of 

melanoma (relative to controls) using a 7-miRNA panel (MELmiR-7) with 93% sensitivity and 

82% specificity when at least 4 miRNAs were expressed. Additionally, they were able to better 
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characterise the OS of melanoma patients using this melanoma specific panel, compared to 

serological markers such LDH and S100B. Due to the limited availability of serially collected 

samples to detect recurrence however, there were no markers associated with time to recurrence and 

as such further studies will be required to strengthen this data. 

 

Contradictory to the abovementioned studies, it has been shown that miRNAs may not always be 

shed directly from the tumour, with more recent studies showing a discrepancy between circulating 

miRNA levels in serum and miRNA levels in tumour tissue (Selth et al., 2013; Wulfken et al., 

2011).  

 

1.8.2  Circulating Tumour Cells (CTCs) 

A cancerous tumour is the result of an over proliferation of cells during which time some cells may 

separate from the tumour and are consequently transported through the lymphatic system or 

bloodstream. These intact cells that are shed from a primary tumour or its metastases found 

circulating in the peripheral blood of patients, are referred to as circulating tumour cells (CTCs) 

(Fernandez et al., 2014). These appear to persist for a short period of time in the circulation as 

evidenced by analysis of prostate cancer patients who had detectable CTCs prior to surgery, but 24 

hours after surgical resection had no evidence of CTCs (Stott et al., 2010). Although CTC 

quantification has been correlated with overall survival in metastatic melanoma patients (Khoja et 

al., 2014; Khoja et al., 2013) and are a valuable monitoring tool to evaluate treatment efficacy in 

melanoma patients (Gray et al., 2015; Klinac et al., 2014), they commonly occur at very low 

concentrations such that one tumour cell is found in a background of 1x106 blood cells. In 

metastatic cancer patients, there are generally fewer than 10 CTCs per 1mL of blood (which 

normally contains 1x109 red blood cells and 1x106 white blood cells) (Haber et al., 2014). 

Consequently, the detection of CTCs and their characterisation necessitate exceptionally sensitive 
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and specific analytical methods (Pantel et al., 2013) that can sift through substantial numbers of 

blood cells without damaging or loosing CTCs and then identify the CTCs using 

immunophenotyping, cytopathology or molecular genetics (Haber et al., 2014).  

 

Regardless, CTCs have been shown to be a key indicator of metastatic disease, disease recurrence, 

overall survival and treatment response in a number of different metastatic cancers (Cristofanilli et 

al., 2004; Cristofanilli et al., 2005; Danila et al., 2007; de Bono et al., 2008; Giuliano et al., 2011; 

Hayes et al., 2006; Hou et al., 2012; Krebs et al., 2011; Liu et al., 2009; Miller et al., 2010).  

 

Few studies have focused on CTCs in patients with non-metastatic or early stage cancer (Lucci et 

al., 2012; Uen et al., 2008), however few have been in the melanoma setting (Freeman et al., 2012; 

Gray et al., 2015). Furthermore, none have monitored CTC levels over time in an attempt to 

diagnose disease recurrence. In breast cancer, Lucci (2012) and colleagues established a significant 

correlation between the number of CTCs and disease stage using the CellSearch® platform. Of the 

302 patients, 89% were staged as TNM stage I or II. Whilst ≥2 CTCs predicted a worse overall 

survival, they also showed that ≥1 CTC per 7.5ml of blood is an independent predictor of relapse or 

death in chemotherapy naive patients with non-metastatic breast cancer and the hazard ratio for 

disease progression increased with the increasing number of CTCs in 7.5ml of blood.   

 

Similarly, during a follow-up period of 44 months, Uen (2008) and colleagues identified 

postoperative relapse in 29% of their colorectal cancer patients and 28% of their colon cancer 

patients using CTCs. They used a membrane array method to detect CTCs and found that the 

persistent presence of CTCs (1 day prior to surgery and 1 week post-surgery) in TNM stage I to III 

colorectal (n=438) and colon (n=282) cancer patients was significantly correlated with a shorter 

relapse-free survival period (Uen et al., 2008).  Additionally, patients with detectable levels of 

CTCs prior to surgery and undetectable levels of CTCs three months post-surgery were found to 
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have a longer relapse free survival period. The sensitivity level for this detection method was set at 

5 CTCs per 1ml of blood.   

 

By contrast, Thalgott and colleagues (2013) reported that there was no significant difference in the 

number of CTCs present in healthy controls and prostate cancer patients. Amongst the prostate 

cancer patients, they demonstrated that more than or equal to three CTCs was associated with a 

shorter overall survival rate than more than three CTCs isolated using the CellSearch® system. The 

low detection rate of CTCs (5%) may however be due to the selective targeting of only 1 marker 

(EpCAM) which is inherent to the CellSearch® System. Additionally, the length of time between 

blood draw and processing (96 hours) may have an effect on the CTC counts; CTC counts have 

only been shown to be stable for up to 72 hours with the CellSearch® platform (Riethdorf et al., 

2007).  

 

1.8.3 Circulating Tumour DNA (ctDNA) 

It is well established that during cellular turnover, or other forms of cell death, fragments of DNA, 

cfDNA, are shed into the bloodstream (Stroun et al., 2001). Under normal circumstances, necrotic 

or apoptotic cells are cleared by infiltrating phagocytes, resulting in relatively low levels of cfDNA 

in the blood stream of healthy individuals (Crowley et al., 2013). However, in certain conditions, 

such as following exhaustive exercise, myocardial infarction or surgery where inflammation or 

tissue injury result, cfDNA levels can be considerably increased (Antonatos et al., 2006; Beiter et 

al., 2011; Chang et al., 2003; Haber et al., 2014). In the case of myocardial infarctions, tissue injury 

as a result of prolonged ischemia ultimately leads to necrosis and thus the potential for cfDNA to be 

released into the circulation (Chang et al., 2003). Intense exercise has been shown to be associated 

with an inflammatory response (Fehrenbach et al., 2000) and metabolic muscular damage 

(Brancaccio et al., 2010), which may induce the release of intracellular contents such as cfDNA 

after the cellular membrane has been damaged as a result of necrosis. 
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Due to increased cell death and necrosis in cancer, increased levels of cfDNA are present in the 

blood of cancer patients (Delgado et al., 2013; Diaz et al., 2014; Hashad et al., 2012; No et al., 

2012; Park et al., 2012) but these levels can vary widely, depending on the stage of disease (Perkins 

et al., 2012).  In cancer patients, a small fraction (between <0.1% to 10%) of total cfDNA is purely 

tumour derived (Diehl et al., 2008; Haber et al., 2014). This is referred to as ctDNA (Jen et al., 

2000) and emanates from either a primary tumour, metastasis or CTCs (Haber et al., 2014) (Figure 

4) and can be identified through the detection of cancer specific mutations.  

 

 

 
Figure 4: Release and collection of circulating tumour DNA from blood 

CfDNA is released from cells undergoing apoptosis or necrosis in diseased, inflamed or healthy tissue and can be 

extracted from plasma. Tumour specific genetic aberrations such as point mutations (DNA strands represented by 

consecutive purple, red, green and blue), copy number variations (red segment of chromosomes) and structural 

reorganisation (green and red DNA strands can then be quantified). Abbreviations: cfDNA, cell free DNA; ctDNA, 

circulating tumour DNA. Adapted from Crowley et al., 2013. 

 

CtDNA has a relatively short half-life (ranging from 16 minutes (Lo et al., 1999) to approximately 

two hours (Diaz et al., 2014{Diehl, 2008 #2127)) which allows for real-time monitoring of tumour 
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changes. The detection and quantification of tumour-specific genetic aberrations in ctDNA 

therefore have many potential clinical applications which have been demonstrated at various stages 

of lung, breast and colorectal cancers from early diagnosis (Bettegowda et al., 2014; Newman et al., 

2014) to detection of residual disease (Garcia-Murillas et al., 2015; Tie et al., 2016), and can be 

utilised for prognosis determination (Bettegowda et al., 2014; Dawson et al., 2013) and monitoring 

response to therapy (Dawson et al., 2013; Sundaresan et al., 2016; Wang et al., 2017; Zheng et al., 

2016). Studies have shown that ctDNA can serve as a surrogate marker for tumour burden, with 

ctDNA levels corresponding with clinical course in several cancers, including melanoma, breast, 

lung and colorectal (Abbosh et al., 2017; Dawson et al., 2013; Diehl et al., 2008; Garcia-Murillas et 

al., 2015; Gray et al., 2015; Lipson et al., 2014; Murtaza et al., 2013; Sanmamed et al., 2015). 

Levels of ctDNA decline after successful pharmacological therapy and rapidly increase with disease 

progression (Dawson et al., 2013; Diehl et al., 2008; Forshew et al., 2012; Girotti et al., 2015; Gray 

et al., 2015). The presence of mutant-specific ctDNA strongly correlates with overall survival prior 

to treatment in stage IV melanoma patients (Gonzalez-Cao et al., 2015; Gray et al., 2015; Knol et 

al., 2016; Lee et al., 2017a; Sanmamed et al., 2015; Santiago-Walker et al., 2015) and may also 

prove to be a valuable monitoring tool at various disease stages in  melanoma. Importantly 

however, Bettegowda et al. (2014) have shown that the detection of ctDNA may depend on the site 

of metastases as tumours confined to the central nervous system and those with mucinous features 

(eg. Brain, bone marrow) often present with undetectable ctDNA. This suggests that the blood-brain 

barrier and mucin could pose as physical obstacles which prevent ctDNA from entering the 

circulation (Bettegowda et al., 2014).  

 

In a seminal study of 223 patients with localised colorectal, gastrooesophageal, pancreatic and 

breast cancer, with no clinical or radiographic evidence of distant metastases, Bettegowda et al. 

(2014) detected ctDNA in 55% of cases using the BEAMing platform to measure a subset of 

mutations at known ‘hotspots’ of Kirsten rat sarcoma viral oncogene homolog (KRAS), NRAS, 
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Phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), and BRAF 

genes. The number of patients with detectable ctDNA and the ctDNA concentration correlated with 

TNM stage; ctDNA was detected in 47%, 55% and 69% of patients with any cancer tested at stages 

I, II and III, respectively.  

 

Research in colorectal patients has shown that following complete resection, ctDNA levels drop 

sharply, although in many cases they remain detectable (Diehl et al., 2008). In patients with no 

detectable ctDNA levels post-surgery, patients remained disease free, whilst all but one of the 

patients with disease recurrence had detectable ctDNA levels. More recently, Tie et al., (2016) 

demonstrated that the presence of ctDNA after resection of stage II colon cancer, provides direct 

evidence of residual disease and identifies patients at very high risk of recurrence, who may require 

chemotherapy to prevent recurrence. Based on these results, a randomized, ctDNA-driven clinical trial 

in stage II colon cancer (DYNAMIC) has been recently initiated. 

 

Few ctDNA studies have focused on early stage cancer (Beaver et al., 2014; Bettegowda et al., 

2014; Oshiro et al., 2015; Phallen et al., 2017; Sozzi et al., 2001). From these studies, only one 

study has monitored ctDNA levels over time and found that ctDNA quantification and 

characterisation are suitable for detecting recurrence (Sozzi et al., 2001). CtDNA quantification and 

analysis in 84 patients with non-small cell lung cancer (stages I - III of which 16.6% were stage Ia, 

38% were stage Ib, 17.8% were stage II and 27.3% were stage III), showed that ctDNA was 

measurable in 96% of patients at baseline. A decline in ctDNA levels was evident in relapse-free 

individuals when assessed in serial blood samples taken within one to six months post-surgery. 

Conversely, in 4 patients who experienced metastasis, local recurrence, or a new primary tumour 

within two years following surgery, there was a two to 20-fold increase in ctDNA in their second or 

third blood sample taken between seven and 23 months after surgery.   
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Similarly, Oshiro et al. (2015) showed that ctDNA levels were able to predict breast cancer 

recurrence more frequently in PIK3CA mutant ctDNA positive patients (n=25) than in ctDNA 

negative patients (n=85). The study used a digital PCR (dPCR) assay, with serum from 110 

PIK3CA mutant breast cancer patients (TNM stage I to III) collected prior to primary surgery. 

Recurrence free survival was significantly lower in ctDNA positive patients compared to ctDNA 

negative patients (P=0.0029). Furthermore, they found that the greater the number of mutant copies 

(copy number range was 13-2500 copies/ml), the greater the trend towards a recurrence.  

 

The ability to detect ctDNA in early-stage patients was assessed in a prospective study of 29 early-

stages (TNM stage I and II) breast cancer patients (Beaver et al., 2014). In this study pre and post-

surgery blood samples were tested as opposed to serial monitoring until a recurrence occurred. The 

authors demonstrated that high fidelity PCR followed by ddPCR enabled ctDNA with PIK3CA 

mutations to be detected in blood samples from 13 patients’ pre-surgery, with 93.3% sensitivity and 

100% specificity. Post-surgical blood samples were collected between 8 and 72 days after surgery 

from 10 of these PIK3CA positive patients and detectable levels were found in 5 patients despite 

these patients having no clinical evidence of disease. Of the patients with detectable mutant ctDNA 

levels post-surgery, 40% (n=2) experienced a recurrence within 36 months.  

 

Using ctDNA at a single post-surgical time-point or with serial follow-up plasma samples, Garcia-

Murillas et al., (2015) were able to predict, with high accuracy, metastatic relapse in patients with 

early stage breast cancer. Moreover, an increased sensitivity for predicting a relapse was evident, 

with a median lead-time of 7.9 months when mutation tracking in serial samples was used. The 

study focused on detecting ctDNA in plasma of 55 patients after curative surgical treatment. 

Notably, the patients in this series had no regular imaging scans during follow-up which the authors 

suggest would be required for future prospective studies. 
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Other tumour biomarkers such as miRNA and CTCs have provided limited sensitivity and 

specificity and as such are unlikely to meet clinical requirements (Yong et al., 2014; Bettegowda et 

al., 2014). The specificity of miRNAs has been reported as low as 60.1% (Fleming et al., 2015) 

which is considerably lower than the specificity of ctDNA at 100% (Gray et al., 2015). Similarly, 

the detection rate of ctDNA in breast cancer patients reached 97%, whereas CTC detection rates 

were only 78% (Dawson et al., 2013). In a study conducted by Bettegowda and colleagues (2014), 

13 of 16 cancer patients were ctDNA positive whilst only 3 of 16 patients were CTC positive.  

Additionally, in patients that tested positive for both CTCs and ctDNA, the ctDNA value was 50-

fold more than the CTC value. Together these studies suggest that ctDNA is more sensitive than 

miRNA and CTCs. 

 

While several studies have determined ctDNA as a marker of recurrence and it has been suggested 

as a surrogate marker for tumour burden, the level of sensitivity of ctDNA relative to quantitatively 

assessed MTB has not been assessed, until recently. Winther-Larsen (2017) and colleagues studied 

the correlation between ctDNA and MTB  in NSCLC. In this study, TLG was calculated for all 

lesions where the SUV was at least 1.5 times the mean liver SUV. The MTB was calculated as the 

sum of all TLG which correlated significantly with the frequency abundance of mutated cfDNA 

determined by next generation sequencing (NGS) (Ion AmpliSeq Colon and Lung cancel panel v2). 

In a subset of 24 patients, with positive ctDNA, a significant correlation was observed between the 

allele frequency of ctDNA and MTB (P=0.001). Additionally, a significantly shorter median overall 

survival was recorded in patients with a positive ctDNA result relative to those with a negative 

ctDNA result. Whilst ctDNA detection in this cohort was not performed by ddPCR, this study 

suggests for the first time, that ctDNA could be used as an indirect measure of tumour burden and 

as a complimentary modality to functional imaging. Understanding the extent to which ctDNA 

correlates with MTB in melanoma would indicate the level of sensitivity of ctDNA and provide 
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evidence that a simple blood collection could facilitate more frequent disease assessment and as 

such should be considered a priority in melanoma research.   

1.8.3.1 Methods for Detection of ctDNA 

There are a number of different techniques available for detecting low levels of tumour associated 

genetic aberrations in cfDNA, including next generation sequencing (NGS) (Dawson et al., 2013; 

Forshew et al., 2012; Winther-Larsen et al., 2017), whole genome sequencing (WGS) including 

tagged amplicon deep sequencing (Dawson et al., 2013), allele-specific PCR and digital PCR 

(dPCR), (Diehl et al., 2008; Gray et al., 2015; Sanmamed et al., 2015; Yung et al., 2009). Whilst 

each has its own advantages and disadvantages, costs, availability of tumour samples, the quality 

and quantity of available DNA, practicality, sensitivity and specificity are significant factors 

affecting the relative success of each detection method. The analysis of ctDNA utilises various 

amplification and sequencing methods which can be separated into two groups based on whether 

the objective is to examine all genes in an untargeted approach or monitor specific genes or 

mutations in a targeted approach.  

 

Whole exome sequencing (WES) and WGS are untargeted approaches to measuring ctDNA where 

a disease specific mutation is not evident. In this case, all genes are interrogated which involves 

high costs, requires high quality DNA and extensive data analysis which must be performed by a 

bioinformatician (Chan et al., 2013; Crowley et al., 2013). Where a disease is predominantly 

characterised by mutational hotspots (as is the case in melanoma), the need for WGS is not always 

necessary, however such sequencing approaches may be useful in initial mutation discovery for 

subsequent use with more sensitive target approaches. 

 

Various targeted sequencing methods have been reported at varying levels of sensitivity, such as the 

Ion AmpliSeq panel (Ion Torrent Technology) at 0.5% (Rothe et al., 2014), tagged amplicon deep 
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sequencing (Tam-Seq) at 2% (Forshew et al., 2012) and  CAPP-Seq, at allele frequencies as low as 

0.02% (Newman et al., 2014).  

 

Digital PCR (dPCR) is another targeted approach for measuring ctDNA however it offers a more 

robust sensitivity (Li et al., 2006). dPCR is based on a concept of limiting dilutions, where the DNA 

of interest is separated within oil-water droplets and then each droplet is amplified using PCR, 

followed by quantification using poisson distribution (Sykes et al., 1992). Briefly, PCR uses DNA 

polymerase to synthesise new strands of target DNA, bounded by primers at the ends of the 

sequence to be amplified, resulting in amplification of that particular region of DNA into billions of 

copies (Hue-Roye et al., 2008). Although the sensitivity of dPCR platforms allows for the detection 

of low frequency mutations which cannot be quantified by quantitative PCR (qPCR), pre-

identification of gene targets is necessary. The two most widely used dPCR platforms are digital 

droplet PCR (ddPCR) and BEAMing (beads, emulsion, amplification, magnetics) PCR. Briefly, the 

BEAMing platform is composed of 4 components; beading, emulsification, amplification, and 

magnetics. DNA molecules are bound to magnetic beads coated with primers and the reaction is 

separated into droplets containing one molecule of DNA and one magnetic bead. Following PCR 

amplification, the resulting bead-DNA complex is separated using a magnet. The DNA is denatured 

and allowed to hybridize with fluorescent probes specific to each template and measured using flow 

cytometry. This method has been shown to detect mutated alleles in a background of wild-type 

alleles with a sensitivity of 0.01% (Li et al., 2006).  

 

Once a mutation is identified in patient tissue, cfDNA isolated from patient blood can be tested for 

the relevant mutant-specific ctDNA using the QX200 ddPCR system (Bio-Rad). DdPCR allows 

detection of a single mutant allele in amongst 10,000 wild type alleles (Crowley et al., 2013; 

Richardson et al., 2012). Moreover, this technique allows the quantification of normal and mutant 
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DNA in any given plasma sample (Higgins et al., 2011; Richardson et al., 2012) at sensitivities as 

low as 0.001% (Hindson et al., 2011; Reid et al., 2015).  

 

DdPCR initially involves the separation of DNA together with a reaction mixture into 

approximately 20,000 droplets (Figure 5) separated by emulsions of oil, water and stabilizing 

chemicals. A PCR reaction then takes place in each droplet in separate reaction chambers 

containing 0-5 molecules of target DNA. Amplified DNA in each droplet is assessed for target 

DNA (Figure 6). Positive droplets display increased fluorescence over negative droplets. 

QuantaSoft analysis software (Bio-Rad) measures the number of positive and negative droplets in a 

sample for each fluorophore. The fraction of positive droplets, fitted to a Poisson distribution, 

enables the target DNA molecules to be quantified in units of copies/µL (Bio-Rad Laboratories, 

2017; Sanmamed et al., 2015). The software allows visualisation of the data in a variety of formats 

including a 2-D plot of droplet fluorescence (Figure 7).  

 

 

Figure 5: DdPCR droplet partitioning  

A single PCR sample is partitioned into approximately 20,000 droplets each with 0-5 template copies (Bio-Rad 

Laboratories, 2017).  
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Figure 6: DdPCR reading using a two-colour fluorescence system 

The fluorescence measurements are used to count the number of positive and negative droplets in each sample (Bio-Rad 

Laboratories, 2017). 

 

 

 

Figure 7: QuantasSoft 2-D plot of droplet fluorescence 

Channel 1 fluorescence (FAM) is plotted versus Channel 2 fluorescence (VIC or HEX) for each droplet. The droplets 

are clustered into four colours with each colour representing the positivity of the fluorescence: Blue – positive/positive, 

orange – positive/negative, green – negative/negative (wild-type), black – empty. 

 

Due to high sensitivity and specificity, ddPCR has been recognised as one of the most accurate and 

reliable tools to examine genetic aberrations in a wide variety of cancers (Olmedillas-López et al., 

2017). From studies assessing the utility of ctDNA as a biomarker of disease status in stage IV 

melanoma, the prognostic sensitivity of ddPCR appears similar to that of the BEAMing method, 
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with positive identification of ctDNA in late stage melanoma patients ranging from 73% to 89% 

(Ascierto et al., 2013a; Bettegowda et al., 2014; Chang et al., 2016; Gray et al., 2015; Sanmamed et 

al., 2015). This is not surprising considering that both platforms amplify DNA templates within 

water-oil droplets before quantification. Importantly, a 100% agreement in the detection rate of 

BRAF V600 mutations in stage IV melanoma patients has been shown between ddPCR and 

BEAMing (Janku et al., 2015). Although ddPCR and BEAMing generate comparable results, 

ddPCR was selected for the purposes of this study given availability of the methodology and 

instrumentation in our laboratory.   

 

Given the sensitivity of ddPCR to detect mutant-specific ctDNA in metastatic patients has not yet 

reached 100%, and the lower limit of tumour burden detectable by ddPCR, as well as the recent 

development of platforms to quantitively calculate MTB from PET/CT scans (as discussed earlier), 

a correlation between ctDNA levels and MTB would determine the efficacy of ctDNA in measuring 

disease burden. This will provide us with the lowest limit of disease burden that ctDNA can detect.  

 

1.8.3.2  CtDNA in Melanoma 

Few studies have addressed the value of ctDNA quantification in melanoma relative to disease 

status. Rather the focus of ctDNA in melanoma has resided in the metastatic setting specifically 

with regards to measurements of treatment response and resistance (Ascierto et al., 2013a; Chang et 

al., 2016; Girotti et al., 2015; Gray et al., 2015; Lipson et al., 2014; Sanmamed et al., 2015; 

Santiago-Walker et al., 2015; Tsao et al., 2015; Wong et al., 2017).  

 

Gray et al. (2015) have shown that mutant-specific ctDNA levels can be used to track treatment 

response. In patients with advanced metastatic melanoma, ctDNA was measured in 48 patients prior 

to treatment with either targeted therapies or immunotherapies. Tumour-specific ctDNA was 

detectable by ddPCR in 73% of patients and response to therapy was significantly associated with 
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lower baseline levels of ctDNA (median 21.2 copies per ml) compared to non-responders with 

median levels of 225 copies per ml (P=0.048). PFS of longer than six months was also significantly 

associated with a lower median ctDNA level of 10.5 copies per ml, compared to 152.5 copies per 

ml for those with PFS of less than six months (P=0.019). Prominently, mutant-specific ctDNA 

levels dropped according to response to treatment and was detectable prior to or at the time of 

progressive disease evidenced by radiological imaging. NRAS mutations have previously been 

detected in patients with acquired resistance to BRAF inhibitors (Long et al., 2014a; Rizos et al., 

2014; Shi et al., 2014). Similarly, circulating NRAS mutations were detected in 43% of patients who 

developed acquired resistance to BRAF inhibitors, despite no mutated NRAS ctDNA being 

detectable prior to the commencement of treatment (Gray et al., 2015). 

 

Similarly, Girotti et al., (2015) have shown by serial analysis (using next-generation sequencing) 

from 101 patients, that mutant-specific ctDNA tracks the genomic evolution of cutaneous, acral, 

mucosal or uveal melanoma in response to therapy and provides early evidence of acquired drug 

resistance. Furthermore, ctDNA usually revealed the disease change prior to imaging.  

 

More recently, Wong et al., (2017) showed ctDNA as a complementary modality to radiological 

imaging to provide real-time monitoring of tumour burden as well as genomic changes throughout 

treatment in metastatic melanoma patients. The study included serial analysis of FDG-PET/CT 

scans and ctDNA by next-generation sequencing and dPCR from 52 patients undergoing systemic 

therapy. Mutant NRAS, BRAF and TERT ctDNA levels correlated with metabolic disease burden as 

quantified on FDG-PET/CT scans by adapting the PET Response Criteria in Solid Tumours 

(PERCIST) recommendations (Wahl et al., 2009). Interestingly, cerebral and subcutaneous disease 

sites were not depicted well in the plasma (Wong et al., 2017). As with previously mentioned 

studies by Gray et al. (2015) and Girotti et al. (2015), Wong et al. (2017) showed that early changes 

in ctDNA were indicators of treatment response and PFS. Moreover, the inclusion of FDG-PET/CT 
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scans in the Wong et al., study, has shown the extent to which ctDNA reflects changes in metabolic 

disease burden. Additionally, the authors demonstrated that ctDNA comprehensively captures the 

genomic heterogeneity across multiple disease sites by comparing multiregional biopsy specimens 

at autopsy with the genomic configuration of plasma.  

 

1.9 Rationale for this Study 

Early stage melanoma patients are never safe from the possibility of disease recurrence and yet 

there are no effective means of detecting disease recurrence until the disease has progressed to 

levels that are associated with a poor prognosis. The convenience of a blood sample that could 

facilitate frequent assessment of disease presence and progression would be particularly 

advantageous for melanoma patients.   Additionally, the detection limit of ctDNA in patients’ needs 

to be identified and correlated with current imaging techniques so that we can classify the limit of 

sensitivity of ddPCR in clinical samples and confirm the level of disease burden that can be 

detected by ctDNA analysis. A correlation between MTB measured by FDG-PET/CT and levels of 

ctDNA in melanoma patients would underscore the role of ctDNA as a non-invasive, 

complimentary method to FDG-PET/CT for real-time monitoring of tumour burden and hence the 

detection of disease recurrence. 

 

Mutant-specific ctDNA  is an emerging tool for detection of residual disease and for the prognosis 

and monitoring of different cancers (Bettegowda et al., 2014; Dawson et al., 2013; Garcia-Murillas 

et al., 2015; Newman et al., 2014; Tie et al., 2016). To date, the focus of ctDNA measurements has 

primarily been on BRAF and more recently NRAS mutations. Given new insights into the high 

prevalence of TERT promoter mutations in melanoma, the likely development of TERT targeted 

therapies (Akıncılar et al., 2016), and the potential for using ctDNA to detect disease recurrence, a 

sensitive method for detection of TERT promoter mutations in melanoma tumour tissue and cfDNA 

is warranted.   
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Before ctDNA levels can be tested and monitored, the patient’s specific mutation profile must first 

be identified from either the primary or metastatic tumour. This however can be challenging, 

particularly where tumours contain limited and often low-quality DNA, with low cellularity and 

high tumour heterogeneity. Different methods of mutation detection tolerate different degrees of 

DNA quality (Chen et al., 2015). Although micro or macro-dissection and careful selection of 

tumour tissue is commonly employed when using primary or bulky metastatic tumour tissues, in 

specimens such as SLNB and fine needle aspiration biopsies of metastatic sites, tumour cellularity 

can be extremely low and macro-dissection can be challenging or impossible (Chen et al., 2015). 

This highlights the need to determine the most sensitive method of detecting mutations in 

melanoma tissue biopsies for improved patient treatment decisions, using only a small number of 

tumour cells.   

 

It is evident that ctDNA can be detected in the blood of both early and late stage cancer patients. 

Moreover, the presence of ctDNA after surgery is associated with disease recurrence or progression 

in many cancers and may therefore provide a useful marker of early disease spread in melanoma 

particularly when FDG-PET/CT and SLNB have little efficacy. Ultimately, a method that is non-

invasive, can be performed at regular intervals and provides early evidence of disease progression 

or recurrence, when a chance of a favourable outcome is highest, will reduce the burden of disease 

and increase overall survival. As a blood-based biomarker, ctDNA offers a non-invasive and easily 

accessible method of providing a real-time snap shot of tumour burden, however the ctDNA content 

is known to differ in various tumour types and stages, and may vary between patients 

(Schwarzenbach et al., 2011). Patients with early stage melanoma, although at a far reduced risk of 

recurrence than stage IV patients, currently have no effective surveillance strategy available to them 

that can detect disease progression or recurrence until the patient has progressed to stage III or IV 

disease, at which time their prognosis becomes poor. CtDNA may serve as a useful monitoring tool 

for melanoma patients having undergone tumour resection and at risk of disease recurrence, 
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providing earlier evidence of disease progression than current methodologies and therefore needs to 

be investigated.   

1.10 Aims  

The overarching aim of this project was to develop a tool that could regularly, inexpensively and 

non-invasively monitor early stage melanoma patients for melanoma recurrence.  

 

The specific aims of the project were: 

Aim 1: To develop a ddPCR probe-based assay to simultaneously detect multiple TERT promoter 

mutations in melanoma tumours and plasma cfDNA to allow for an increased number of patients 

who could be monitored through ctDNA analysis. 

  

Aim 2: To compare the sensitivity and specificity of ddPCR relative to other commonly utilised 

methods to detect mutations in melanoma tissue containing a small fraction of tumour cells. 

 

Aim 3: Investigate the presence of BRAF, NRAS and/or TERT promoter mutant ctDNA in early 

stage melanoma patients using ddPCR to determine if ctDNA will serve as a prognostic biomarker 

for melanoma recurrence. 

 

Aim 4: Use comparative analysis to assess the correlation between ctDNA levels and MTB derived 

from 18F-FDG FDG-PET/CT to determine the efficacy of ctDNA in measuring disease burden as a 

complementary modality to 18F-FDG FDG-PET/CT. 
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2.1  Abstract  

Background 

Currently mainly BRAF mutant ctDNA is utilized to monitor patients with melanoma. TERT 

promoter mutations are common in various cancers and found in up to 70% of melanomas, 

including half of BRAF wild-type cases.  Therefore, a sensitive method for detection of TERT 

promoter mutations would increase the number of patients who could be monitored through ctDNA 

analysis. 

 

Methods 

A ddPCR assay was designed for the concurrent detection of chr5:1,295,228 C>T and 

chr5:1,295,250 C>T TERT promoter mutations. The assay was validated using 39 melanoma cell 

lines and 22 matched plasma and tumour samples. In addition, plasma samples from 56 metastatic 

melanoma patients and 56 healthy controls were tested for TERT promoter mutations. 

 

Results 

The established ddPCR assay detected TERT promoter mutations with a lower LOD of 0.17%. Total 

concordance was demonstrated between ddPCR and Sanger sequencing in all cell lines except one, 

where a second mutation within the probe binding site. tissue was 68% (15/22), with a sensitivity of 

53% (95% CI, 27%-79%) and a specificity of 100% (95% CI, 59%-100%). A significantly longer 

PFS (p=0.028) was evident in ctDNA negative patients. Of significant importance, our TERT 

promoter mutations ddPCR assay allowed detection of ctDNA in 11 BRAF wild-type cases. 

 

Conclusions 

The TERT promoter mutation ddPCR assay offers a sensitive test for molecular analysis of 

melanoma tumours and ctDNA, which has the potential to be applied to other cancers. 
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TERT encodes the catalytic subunit of telomerase, a ribonucleoprotein responsible for maintaining 

telomere length of chromosomes which play an integral role in cell immortality. Using linkage 

analysis and high-throughput sequencing, Horn et al. (2013) reported somatic mutations in 74% of 

metastatic melanoma human cell lines, 85% of metastatic melanoma tumour tissues and 33% of 

primary melanomas. These mutations are the result of a cytidine to thymidine transition in the 

promoter of the TERT gene, at chromosome 5: 1,295,228 C>T and 1,295,250 C>T, hereafter termed 

C228T and C250T. These mutations create a putative consensus ETS (E26 transformation-specific) 

/ternary complex factor binding motif (GGAA/T), which is associated with an increase in TERT 

expression (Horn et al., 2013; Kumar et al., 2014). The presence of these mutations in cutaneous 

melanoma is associated with fast growing melanomas (Nagore et al., 2016b) and poor prognosis 

(Griewank et al., 2014). The co-existence of TERT promoter mutations with BRAF or NRAS 

mutations (in 55% of cases) is associated with poor disease-free and melanoma-specific survival 

(Nagore et al., 2016a). TERT promoter mutations occur frequently in a number of other cancers: 

80–90% of glioblastoma multiforme, 60% of hepatocellular carcinoma, 60% of bladder cancer, 

70% of basal cell carcinoma, 50% of cutaneous squamous cell carcinoma and up to 30% of thyroid 

cancers (Borah et al., 2015; Killela et al., 2013; Liu et al., 2014; Liu et al., 2013b; Nault et al., 2013; 

Vinagre et al., 2013) and are associated with aggressive disease in thyroid carcinoma (Yin et al., 

2016), glioblastoma (Huse, 2014), neuroblastoma (Simon et al., 2015) and renal cell carcinoma 

(Wang et al., 2014). Therefore, it is of significant clinical benefit to develop a non-invasive and 

sensitive test that determines the TERT promoter mutation status in cancer patients. 

 

Molecular profiling of tumours to aid cancer prognosis and to identify actionable therapeutic targets 

has become routine practice in clinical oncology. Whilst tumour tissue samples are typically used 

for mutation analysis, access to the tumour for biopsy, and the quality and quantity of the sample 

may hinder detection, particularly when methods with limited sensitivity are employed. Commonly 

used methods include Sanger sequencing, melting curve analysis and pyrosequencing which have 
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limits of sensitivity of 15%-20%, 10% and 5%, respectively (Tsiatis et al., 2010). More recently, 

tumour related aberrations have been determined in plasma cfDNA (Ascierto et al., 2013a; 

Bettegowda et al., 2014; Chang et al., 2016; Diehl et al., 2008; Heitzer et al., 2015; Tsao et al., 

2015). This is referred to as “liquid biopsy”, a relatively non-invasive test that can be performed 

regularly and provides information from the sum of all tumours at any one-time point. It is, 

therefore, a valuable biomarker for monitoring disease progression and response to therapy (Gray et 

al., 2015; Heitzer et al., 2015). 

 

Whilst a variety of methods have been used to detect mutations from ctDNA, Hindson et al. (2011), 

have shown ddPCR to be a highly sensitive platform, enabling absolute quantitation of mutant 

BRAF down to 0.001% allelic fraction. Various studies have since shown the utility of testing 

mutant BRAF in plasma of melanoma patients using ddPCR (Ascierto et al., 2013a; Girotti et al., 

2015; Gray et al., 2015; Sanmamed et al., 2015; Santiago-Walker et al., 2015). In particular, our 

laboratory has demonstrated that ctDNA analysis allows tracking of patient response to therapy and 

resistance acquisition (Gray et al., 2015). Given the high prevalence of the TERT promoter 

mutations C228T and C250T in cutaneous melanoma (Heidenreich et al., 2014; Nagore et al., 

2016a), their addition to existing tests for detection of mutant BRAF and NRAS will allow 

monitoring of most melanoma patients using ddPCR. Furthermore, it has been shown that 

concurrence of mutations in the TERT promoter with BRAF or NRAS mutations predispose patients 

to fast growing and aggressive disease, thus detection of multiple mutations including mutant TERT 

could serve as a prognostic marker. 

 

We report here on the development of a ddPCR probe-based assay to simultaneously detect the 

TERT promoter mutations C250T and C228T. One probe binds the wild-type sequence overlapping 

position C228, while a second probe binds the mutant sequence resulting from C228T or C250T 

mutations, as both mutations reconstitute the putative ETS binding site (Figure 1). First, we tested 
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the concordance of this assay for the detection of TERT promoter mutations in 39 melanoma cell 

lines relative to Sanger sequencing, and in 22 plasma samples relative to patient matched tumour 

tissue. We also determined the sensitivity and specificity of this assay for the detection of TERT 

promoter mutations using plasma derived cfDNA from 56 melanoma patients and 56 healthy 

controls. 

 

Figure 1: Location of ddPCR assay probes relative to ETS1 binding motifs generated by the C228T and C250T 

TERT promoter mutations. Probes for the identification of wild-type and mutant sequences are indicated. Both mutant 

sites are detected by the same probe. 

 

2.3 Results 

The designed primer sets were tested for amplification of the genomic region of interest by end-

point PCR. Amplification conditions were optimised by testing a range of annealing temperatures 

(55-61ºC). As shown in Figure 2A, the primers failed to amplify the required fragment in the 

absence of Q-solution (Qiagen). Optimal amplification was achieved in the presence of Q-solution 

between 61-64ºC (Figure 2B). The PCR fragment obtained was subjected to Sanger sequencing to 

confirm its specificity. 

 

Next, droplet digital PCRs were performed at a gradient of annealing temperatures from 52oC to 

65oC for the detection of the C228T mutation in gDNA from 1205Lu cells (Figure 2C and D) and 

the C250T mutation in gDNA from UACC62 cells (Figure 2E and F). Optimal droplet segregation 

C250T C228T

CCCGACCCCTCCCGGGTCCCCGGCCCAGCCCCCTCCGGGC

CCCCTTCCGG

3’-AAGG-5 ’

CCCCTTCCGG

3’-AAGG-5’

ETS1 binding 
motif

Mutant Probe

Wild-type Probe CCCCCTCCGG

I I I I I I I I
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was observed at 57oC. Hereafter all ddPCR assays were performed with an annealing/extension 

temperature of 57oC. 
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Figure 2: Optimization of ddPCR for detection of TERT promoter mutations. PCR fragments from cell line 

1205Lu amplified at varying temperatures without (A) and with (B) “Q solution”. gDNA of cell lines 1205Lu-

C228T (C and D) and UACC62-C250T (E and F) were used as template for the TERT ddPCR at varying annealing 

temperatures. FAM signal from mutant probe binding to C228T (C) or C250T (E). HEX signal from binding of 

wild-type probe (D and F). 

 

To evaluate the quantitative linearity and the LOD of the ddPCR assay, serial dilutions of mutant 

gDNA from cell lines 1205Lu (C228T mutant) and UACC62 (C250T mutant) were mixed in a 

background of wild-type human gDNA to achieve a final concentration of gDNA of 20 ng/µL 

(Figure 3), with each dilution tested in 8 replicates. At 0% mutant DNA, we identified that a 

maximum of two false positive droplets were observed in some of the 8 replicates, with an 

average of 0.068 ± 0.049%. Therefore, the lower LOD was defined at 0.17%, the percentage 

false positives detectable at two standard deviations over mean background (Armbruster et al., 

2008). 
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Figure 3: Detection of TERT promoter mutations in the presence of homologous wild-type DNA. Serial 

dilutions of DNA from mutant cell lines 1205Lu – C228T (A-D) and UACC62 – C250T (E-H) were prepared in a 

constant background of wild-type human genomic DNA. 2D plots of ddPCR read out at 10% of mutant DNA (A and 

E). 1D plots indicating mutant (B and F) and wild-type (C ad G) DNA detection. Analytical sensitivity (LOD) of the 

assay (D and H). Obtained frequency abundances and standard deviations were plotted versus expected mutant 

frequencies based on input. The LOD, defined as two SD over the mean frequency abundance obtained at 0% when 

only wild-type DNA was used as input, was indicated as dashed lines in both graphs. 
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Table 1: Validation of C228T and C250T TERT promoter mutation detection in melanoma cell lines 

Cell Line Sanger Sequencing ddPCR                 

C024 wt wt 
C055 wt wt 

C092 wt wt 

C096 wt wt 

HGA wt wt 

C022 C228T C228T 

C037 C228T C228T 

C058 C228T C228T 

D41 C228T C228T 

MM409 C228T C228T 

D22 C228T C228T 

MM473 C228T C228T 

A06 C228Ta C228Ta 

C076 C228Ta C228Ta 

MM455 C228Ta C228Ta 

1205Lu C228Ta C228Ta 

A15 C250T C250T 

A14 C250T C250T 

C002 C250T C250T 

MM537 C250T C250T 

SKMEL13 C250T C250T 

MM386 C250T C250T 

D01 C250T C250T 

MM229 C250Ta C250Ta 

MM253 C250Ta C250Ta 

MM266 C250Ta C250Ta 

C001 C250Ta C250Ta 

C045 C250Ta C250Ta 

D40 C250Ta C250Ta 

UACC62 C250Ta C250Ta 

MM396 C227T/C228T wt 

A07 C227T/C228T wt 

C054 C227T/C228T wt 

C062 C227T/C228T wt 

C057 C241T/C242T wt 

C108 C241T/C242T wt 

D28 C241T/C242T wt 

SKMEL5 C241T/C242T wt 

C021 C250Tb wt 
aHomozygous 
bC021 carried an additional C253T polymorphism. 

 

To validate the assay, we tested 39 cell lines with known TERT promoter mutant or wild-type 

status (Table 1). We confirmed detection of the C228T and/or the C250T TERT promoter 
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mutation in only those cell lines identified as positive for these two mutations, while those 

previously identified as wild-type showed no positivity for TERT DNA mutations by ddPCR. 

Cell lines that harboured an alternative TERT mutation other than C228T or C250T showed as 

wild-type in our assay. In addition, the C250T mutation was not detected in cell line C021, due 

to the presence of a C253T single nucleotide polymorphism in the probe binding site 

(Supplementary Figure 1). Simultaneous C250T and C253T mutations have been reported in 2% 

of melanoma cells lines (Horn et al., 2013). 

 

Tumour tissue samples from 22 stage IV (AJCC) metastatic melanoma patients were tested for 

C228T and C250T TERT promoter mutations by ddPCR using the TERT assay (Table 2). As 

reported in the literature (Griewank et al., 2014; Hayward et al., 2017; Heidenreich et al., 2014), 

most tumour tissues tested harboured at least one of these mutations (68%, n=15); 11 harboured 

the C228T mutation and 4 harboured the C250T mutation. No tissue samples were found to 

contain both TERT promoter mutations. 

 

Table 2: Detection of TERT promoter mutations in ctDNA and paired tumour tissue. 

 Tumour Tissue  

Plasma ctDNA + - Total 

+ 8 0 8 

- 7 7 14 

Total 15 7 22 

 

Plasma derived cfDNA from these 22 patients were also tested for TERT promoter mutations. 

These plasma samples were collected from patients with active metastatic disease prior to any 

systemic therapeutic intervention. Overall, the concordance between tumour tissue and plasma 

testing was 68% (15/22). No patient was positive for a TERT promoter mutation in plasma and 

negative in its corresponding tumour tissue (100% specificity). Of 15 plasmas from patients with 

confirmed TERT promoter positive tumours, eight were identified as positive for the same 
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mutation, whereas seven cases were positive in the tissue but negative in the plasma sample 

(Table 2). Thus, the sensitivity of our TERT C228T/C250T mutation detection in plasma was 

estimated as 53% (95% CI 27%-79%). In a cox regression analysis, patients with detectable 

ctDNA at baseline (n=8) had a significantly shorter PFS compared to patients who had no 

detectable ctDNA (n=7) (p=0.028, Hazard ratio:  4.48 (CI, 1.18-17.06) (Figure 4a). 

 

To further demonstrate the detection rate of TERT ctDNA in metastatic melanoma we tested 56 

plasma samples from randomly selected stage IV (AJCC) melanoma patients (mean age 65 

years, ranging from 35 to 85 years) with known BRAF but unknown TERT mutational status and 

compared this to 56 plasma samples from healthy individuals (mean age 51 years, ranging from 

24 to 81 years). The TERT ddPCR assay detected a statistically significant difference in the 

copies of mutant TERT ctDNA in plasma from metastatic melanoma patients relative to those 

from healthy controls (p=0.006, Figure 4B). We found TERT mutant DNA in 11 of 38 BRAF 

wild-type and in four of the 18 BRAF V600E/K patients. The number of TERT promoter copies 

per mL of plasma detected in the melanoma patient cohort varied from 11.2 to 176 copies per 

mL (Figure 4B). No TERT promoter mutant DNA was detected in any of the 56 healthy control 

plasmas. Based on these results the assay specificity was estimated as 100% (95% CI 94%-

100%). 
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Figure 4: Detection of TERT promoter mutations in plasma. A. Kaplan-Meier plots of PFS probabilities of 

patients with detectable (n=8) and undetectable (n=7) ctDNA levels at baseline. Cox regression p-value, Hazard 

ratio (HR) and confidence interval (CI) are indicated. B. Copies of mutant DNA per mL of plasma were 

significantly higher in metastatic melanoma patients (MM) (N=56) compared to healthy controls (Ctrls) (N=56). 

P=0.006, Mann-Whitney U-test.  

 

2.4 Discussion 

Here we describe and validate a method to detect the two most common TERT promoter 

mutations found in melanoma tumours using ddPCR. TERT promoter mutations occur in 

melanoma as frequently as (Griewank et al., 2014), or more frequently (Nagore et al., 2016a) 

than BRAF mutations, and yet mainly BRAF mutant-specific cfDNA is being used to monitor 

melanoma patients for response to therapy and disease progression (Santiago-Walker et al., 

2015). The inclusion of TERT promoter mutations within ctDNA for monitoring would increase 

the number of patients for whom ctDNA could be used to determine disease status, particularly 

amongst BRAF and NRAS wild-type melanoma patients. This will enable large studies on the 

clinical utility of ctDNA monitoring to provide evidence of the efficacy of this marker for 

determining disease progression, to inform cessation of ineffective therapies (Girotti et al., 2015; 

Gray et al., 2015) and to guide alternative therapy. 

 

Our assay allowed for detection of mutant TERT in biologically relevant samples, such as FFPE 

tumour DNA and plasma of metastatic melanoma patients at high specificity. Using cell line 

derived DNA, we optimized the assay to detect as little as 0.17% mutant TERT DNA in dilutions 
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of wild-type DNA. This is significantly lower than limits of detection reported for other mutation 

detection platforms such as allele-specific PCR at 1% (De Castro et al., 2012) and 

pyrosequencing at 5%, melting curve analysis at 10% and Sanger sequencing at 20% (Tsiatis et 

al., 2010). While we and others have shown ddPCR to detect BRAF mutant fraction as low as 

0.001% (Hindson et al., 2011; Reid et al., 2015), we were unable to achieve this sensitivity with 

the TERT assay developed here, possibly due to the highly GC rich area of the promoter region 

of this gene, resulting in background signal and limited segregation of positive and negative 

droplets. In fact, during the development of this assay, multiple primers, probes and 

amplification conditions were tested without success. The conditions detailed here, including the 

addition of LNA at the specific nucleotides and the use of Q-solution in the amplification mix, 

were indispensable for successful amplification. 

 

We validated the assay in terms of accuracy and reliability by showing 97.4% concordance with 

the genotype of 39 melanoma cell lines. Of the cell lines analysed that harboured either a C228T 

or C250T mutation, 14 were heterozygous and nine homozygous. A major limitation of our assay 

is that it cannot detect other TERT promoter mutations and it can be affected by SNPs within the 

probe binding sites.  This was apparent by the results obtained from nine cell lines with known 

TERT promoter dinucleotide mutations C227T/C228T and C241T/C242T, which have been 

reported to exist in 5.2% and 10.4% of primary melanomas, respectively (Horn et al., 2013). 

Similarly, a negative result was reported for cell line CO12 which harbours a C253T SNP on the 

probe binding site. Further development of ddPCR assays to detect these other TERT promoter 

mutations (Nagore et al., 2016a) would ensure that a maximum number of patients could be 

monitored. In addition and given that SNPs in this region can also affect patient prognosis 

(Nagore et al., 2016a), germline sequence analysis should be performed complementary to the 

analysis of TERT promoter somatic mutations.  
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It is notable that all patients with TERT promoter mutations in plasma had corresponding 

mutations in matched tumour tissue and as such no false positive plasma samples were detected. 

High concordance between mutational profiles in plasma ctDNA and matched tumour tissue 

have been reported in several studies from patients with melanoma (Ascierto et al., 2013a; 

Sanmamed et al., 2015; Santiago-Walker et al., 2015), breast cancer (Bettegowda et al., 2014; 

Dawson et al., 2013; Higgins et al., 2012), non-small cell lung cancer (Narayan et al., 2012; 

Newman et al., 2014) and colorectal cancer (Bettegowda et al., 2014; Diehl et al., 2008; Misale 

et al., 2012). In our study, seven patients with TERT promoter positive tumours had no detectable 

TERT promoter mutations in matched plasma samples. This is similar to the findings by Lee et 

al, (2017a) who detected ctDNA in 53% of patients prior to treatment initiation. The lack of 

detectable ctDNA in a subset of patients may be explained by the pathophysiology of the tumour 

or its metastasis, as ctDNA concentration has been correlated with tumour size (Kamat et al., 

2006; Lee et al., 2017a; Thierry et al., 2010), metastatic spread or disease burden (Lee et al., 

2017a; Parkinson et al., 2016; Sanmamed et al., 2015), tumour vascularisation (Thierry et al., 

2016) and site of metastasis (Bettegowda et al., 2014). A retrospective analysis of PFS in this 

group of patients revealed a significant difference between patients with negative and positive 

ctDNA results. This further supports previous findings that low or undetectable level of ctDNA 

is a predictor of long term treatment benefit (Ascierto et al., 2013a; Gray et al., 2015; Lee et al., 

2017a; Sanmamed et al., 2015; Santiago-Walker et al., 2015).  

 

Previous studies have reported detection rates for BRAF V600E mutations in plasma of 

metastatic patients at 76 to 84.3% (Sanmamed et al., 2015; Santiago-Walker et al., 2015) and for 

BRAF V600K at 81 to 89% (Ascierto et al., 2013a; Santiago-Walker et al., 2015). In other 

cancers, Bettegowda et al. (2014) identified mutant ctDNA in 75% of patients with a variety of 

cancers including ovarian, breast, bladder, gastrooesophageal and colorectal cancers. 

Considering our detection rates of TERT promoter mutations in ctDNA are lower (53%) than 
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these reports, it would be necessary for this investigation to be conducted in a larger cohort 

controlling for tumour burden, metastatic sites and mutation variety. Nevertheless, our TERT 

promoter mutation assay allowed ctDNA detection in 11 of 38 BRAF wild-type tumours. Thus, 

our assay may facilitate ctDNA monitoring on BRAF wild-type cases, most of which will receive 

immunotherapy as a first line of treatment. 

 

Nagore and colleagues (2016a) have shown that melanoma patients harbouring these specific 

TERT promoter mutations, in combination with BRAF/NRAS mutations within their tumour 

tissue, have a significantly shorter disease free survival than patients without this combination. In 

fact, Li et al., (2016) have shown that TERT promoter mutations are key downstream targets of 

the RAS-ERK pathway for malignant progression of BRAF mutant melanomas. Furthermore, 

Akincilar et al. (2016) have shown that TERT transcription is driven by mediation of long-range 

chromatin interaction and enrichment of active histone marks through the recruitment of GABPA 

to mutant TERT promoters, specifically C228T and C250T. These authors have consequently 

suggested that inhibitors could be designed to hinder TERT transcription in cancer cells with 

these mutations. As such, routine genetic testing of melanoma patients for TERT promoter 

mutations in addition to mutant BRAF and NRAS would be clinically beneficial. 

 

TERT promoter mutations have been identified in numerous other cancers such as thyroid, 

bladder, hepatocellular cancer and malignant glioblastoma [6-8]. Consequently, the assay 

described here may allow ctDNA monitoring in multiple other malignancies. However, the assay 

would require validation for each of these cancers. 

 

In conclusion, we report on the development of a ddPCR assay for the detection of two common 

TERT promoter mutations in cell lines, tumour tissue and ctDNA. Our results suggest that the 
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TERT ddPCR assay could prove useful as a companion diagnostic to predict treatment benefit 

and to monitor response in melanoma patients and could be extended to other malignancies. 

 

2.5 Materials and Methods 

Ethics 

This study was approved by the Human Ethics Committees at Edith Cowan University (No. 

11543) and Sir Charles Gardner Hospital (No.2013-246). 

 

Genomic DNA extraction 

gDNA) with known TERT promoter mutations was obtained from melanoma cell lines 1205Lu 

(Wistar Institute) and UACC62 (National Cancer Institute) to be used as positive controls. In 

addition, gDNA was extracted from 39 melanoma cell lines from the QIMR Berghofer Medical 

Research Institute (Dutten-Regester et al., 2012). Wild-type gDNA was obtained from the white 

blood cell pellets collected from 4 mL whole blood from one healthy control. DNA was isolated 

using the QIAamp DNA Mini Kit (Qiagen, Australia) as per the manufacturer’s instructions. 

gDNA was eluted in AE buffer (Qiagen) and stored at 4oC until further processing. 

 

Plasma sample preparation 

Blood samples were collected from AJCC stage IV melanoma patients, prior to initiation of any 

systemic therapy, into EDTA vacutainer tubes and stored at 4oC. Plasma was separated within 24 

hours by centrifugation at 1600 g for 10 minutes, followed by a second centrifugation at 2000 g 

for 10 minutes, and then stored at -80oC until extraction. 

 

DNA extraction from plasma 

cfDNA was isolated from 5 mL of plasma from healthy donors and AJCC stage IV metastatic 

melanoma patients using the QIAamp Circulating Nucleic Acid Kit (Qiagen) as per the 
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manufacturer’s instructions. cfDNA was eluted in 40 µl AVE buffer (Qiagen) and stored at -

80oC until ctDNA quantification. 

 

DNA extraction from FFPE tissue 

Following review and macro-dissection by an experienced pathologist, gDNA was extracted 

from 10 x 5µm unstained sections of FFPE tissue using the QIAamp DNA mini kit (Qiagen) as 

per the manufacturer’s instructions. Only FFPE tissues stored at room temperature, for less than 

seven years were used. The DNA concentration and purity were determined using the NanoDrop 

ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, DE) and Qubit 2.0 

Fluorometer (Life Technologies, USA) instruments. 

 

PCR 

The following primers were used to amplify a 163bp product incorporating both hotspot 

mutations (C228T and C250T) in the TERT promoter region: 5’- AGCGCTGCCTGAAACTCG 

-3’ (forward) and 5’- CCTGCCCCTTCACCTTCCAG -3’ (reverse). Primers were synthesised 

by GeneWorks (Thebarton, SA, Australia). For optimization of the PCR amplification of TERT 

promoter mutations, we first performed end point PCRs containing, 1 x ddPCR supermix (Bio-

Rad), 900 nM of each primer and 50 ng of template gDNA, with and without 1 x Q solution 

(Qiagen). Amplifications were performed using the following cycling conditions: 1 cycle of 

95°C for 15 minutes, 40 cycles of 95°C for 30 seconds and a range of temperatures from 55°C to 

65°C for 30 seconds, followed by 68°C for 30 seconds and 1 cycle of 68°C for 10 minutes. PCR 

products of 163bp were detected by gel electrophoresis on a 1% agarose gel in Tris-acetate-

EDTA (TAE) buffer containing SYBR® Safe DNA Gel Stain (Life Technologies). 

 

Droplet digital PCR 

A probe was designed to detect both C228T and C250T mutation as both mutations result in the 

same sequencing string (Figure 1). Due to the short size of the probe, Locked Nucleic Acid 
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(LNA) bases were introduced on the bases indicated with a “+” (TERT Mut: /56-

FAM/CCC+C+T+T+CCGG/3IABkFQ/). A second probe was designed to recognize the C228 

loci, also containing LNA bases, (TERT WT, /5HEX/CCCC+C+T+CCGG/3IABkFQ/). Probes 

were custom synthesized by Integrated DNA Technologies (IDT). Amplifications were 

performed in a 20 µL reaction containing 1 x ddPCR Supermix for Probes (No dUTP, Bio-Rad), 

1x Q solution (Qiagen), 250 nM of each probe and 900 nM of each primer plus template. 

 

Droplets were generated using the Automatic Droplet generator QX200 AutoDG (Bio-Rad). 

Amplifications were performed using the following cycling conditions: 1 cycle of 95°C (2.5C/s 

ramp) for 10 minutes, 40 cycles of 94°C (2.5C/s ramp) for 30 seconds and 57°C for 1 minute, 

followed by 1 cycle of 98°C (2.5C/s ramp) for 10 minutes. Annealing/extension temperature was 

optimized using temperature gradients from 52oC to 65oC. The sample was held at 4oC until 

further processing. Droplets were analysed through a QX200 droplet reader (Bio-Rad). 

QuantaSoft analysis software (Bio-Rad) was used to acquire and analyse data. 

 

To evaluate the LOD of our TERT ddPCR assay, gDNA from cell lines 1205Lu (C228T) or 

UACC62 (C250T) were serially diluted into normal human DNA obtained from white blood 

cells of healthy controls to achieve from 100% to 0% mutant alleles. Each dilution was tested in 

a series of eight repetitions all completed in one run. 

 

Cell lines with known C228T and C250T TERT promoter mutations, as well as cell lines wild-

type for both mutations (as determined by Sanger sequencing) were used to validate the assay. 

The reaction mix was prepared as above using 50 ng of gDNA as template. 

 

For plasma ctDNA analysis, 5 µL of cfDNA (maximum template volume possible) was added 

per reaction irrespective of the cfDNA concentration. Each run included a non-template control, 
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gDNA from a healthy control and gDNA from the cell lines containing the TERT mutations: 

1205Lu (C228T) and UACC62 (C250T). Only samples with more than two positive droplets 

were considered positive. The number of mutated DNA copies per 20 µl reaction was 

extrapolated to calculate copies per mL using the following equation: 

 

Copies/mL of plasma = C*EV/TV/PV 

 

PV = Volume of plasma used for cfDNA extraction (ml) 

EV = Volume in which cfDNA was eluted (µl)  

TV = Volume of cfDNA added to the PCR reaction (µl) 

C = copies/20µl (data derived from QuantaSoft). 

 

Statistical analysis 

Sensitivity and specificity of the assay was calculated using a contingency table analysed using a 

Fisher’s exact test. Comparison between ctDNA concentrations in patient and control samples 

were performed using the non-parametric Mann-Whitney U-test. A Cox proportional hazards 

regression analysis was performed to examine association of ctDNA detection with PFS. 

Statistical analyses were performed using Statistical Package for Social Sciences for Window 

version 22 (SPSS, Chicago, IL) and plotted using GraphPad Prism version 5.  
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2.6 Supplementary Materials 
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CHAPTER 3: DROPLET DIGITAL PCR FOR MUTATION 

DETECTION IN FORMALIN FIXED PARAFFIN-EMBEDDED 

MELANOMA TISSUES: COMPARISON WITH SANGER 

SEQUENCING AND PYROSEQUENCING  

 

The remainder of this Chapter has been removed for copyright purposes. 

 

 

CHAPTER 4: MONITORING MELANOMA PROGRESSION WITH 

CIRCULATING TUMOUR DNA: A PROOF OF CONCEPT FROM 

THREE CASE STUDIES 

  

The remainder of this Chapter has been removed for copyright purposes. 

 

 

CHAPTER 5:  CORRELATION BETWEEN CIRCULATING 

TUMOUR DNA AND METABOLIC TUMOUR BURDEN IN 

METASTATIC MELANOMA PATIENTS   

 

The remainder of this Chapter has been removed for copyright purposes. 
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CHAPTER 6: GENERAL DISCUSSION AND FUTURE 

DIRECTIONS 

 

Cutaneous melanoma accounts for 90% of all skin cancer deaths (Balch et al., 2010) and a large 

proportion of these deaths are as a result of disease recurrence (Soong et al., 1992; Soong et al., 

1998)  despite the patient being considered disease free following treatment. Although the risk of 

recurrence largely correlates with thickness and invasion of the primary tumour (Shaw et al., 

1987; Soong et al., 1992; Soong et al., 1998), recurrences have also occurred 10 or more years 

after thin melanomas have been completely excised (Crowley et al., 1990; Dalal et al., 2007; 

Dong et al., 2000; Hohnheiser et al., 2011; Jones et al., 2013; Kalady et al., 2003; Leiter et al., 

2012; Meier et al., 2002; Salama et al., 2013; Soong et al., 1998; Tsao et al., 1997). Importantly, 

the majority of recurrences appear in lymph nodes or other organs, at which point the disease is 

among the most aggressive and treatment-resistant of human cancers (Kenessey et al., 2012; 

Mocellin et al., 2013; Sanmamed et al., 2015; Ti'mar et al., 2013). Given that the greatest 

treatment efficacy is associated with a low disease burden (Hodi et al., 2010; Luke et al., 2017; 

McArthur et al., 2016; Sosman et al., 2011), early detection of melanoma recurrence is critical 

for improved survival. Surveillance strategies for patients with thin melanomas however are 

limited to physical examinations alone (Australian Cancer Network Melanoma Guidelines 

Revision Working Party, 2008) and therefore an additional surveillance approach that can be 

performed regularly and in conjunction with physical examinations could lead to timely 

detection of disease recurrence allowing for earlier interventions. CtDNA represents a new 

generation of biomarkers for detection of residual disease and monitoring of different 

malignancies (Bettegowda et al., 2014; Dawson et al., 2013; Gray et al., 2015; Spindler et al., 

2012). As ctDNA has not been assessed as a marker for recurrence in clinically disease-free 

melanoma patients, our central aim was to develop a tool that could regularly, inexpensively and 

non-invasively monitor early stage melanoma patients for melanoma recurrence.  
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We addressed the central aim in four stages. The first was to develop a new assay to detect TERT 

mutations in ctDNA and tumour samples, the second to compare the sensitivity and specificity of 

ddPCR relative to other commonly utilised methods of detecting mutations in melanoma tissue 

containing a small fraction of tumour cells. The third stage investigated the presence of BRAF, 

NRAS and/or TERT promoter mutant ctDNA in early stage melanoma patients using ddPCR to 

determine if ctDNA will serve as a prognostic biomarker for melanoma recurrence.  The final 

stage involved comparative analysis to assess the correlation between ctDNA levels and MTB 

derived 18F-FDG FDG-PET/CT to determine the efficacy of ctDNA in measuring disease burden 

as a complimentary modality to 18F-FDG FDG-PET/CT.  With regards to the ddPCR TERT assay 

and the correlation between ctDNA and MTB, the work presented in this thesis is novel. 

 

In the first part of this study, we developed a ddPCR assay for the concurrent detection of C228T 

and C250T TERT promoter mutations in tumour tissue and cfDNA.  As a result of the assay 

development, we were able to detect TERT mutant DNA in 11 of 38 BRAF wild-type which 

allows for an increased number of patients who can be monitored with ctDNA particularly 

amongst BRAF and NRAS wild-type patients. Specifically, our assay may facilitate ctDNA 

monitoring of patients who may receive immunotherapy as a first line of treatment. Furthermore, 

it is likely that TERT transcription inhibitors will soon be developed (Akıncılar et al., 2016) with 

the recent discovery that TERT transcription is driven by mediation of long-range chromatin 

interaction and enrichment of active histone marks through the recruitment of GABPA to TERT 

promoters. The newly developed TERT detection assay will be highly beneficial as it will not 

only aid in determining (from tumour tissue) which patients can be treated with these inhibitors 

but will allow for ctDNA analysis to track patient response to that therapy as indicated for BRAF 

and NRAS (Gray et al., 2015). Furthermore, the ability to monitor BRAF and NRAS wild-type 

patients will increase the number of patients that can be monitored with ctDNA. 
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The detection of mutant TERT however does not only increase the number of patients that can be 

monitored but can also be used for prognostic purposes. Patients who harbour C228T and C250T 

TERT promoter mutations are associated with a poor prognosis (Griewank et al., 2014; Nagore et 

al., 2016b). In line with this, we showed significant differences in PFS probabilities of patients 

with detectable (n=8) and undetectable (n=7) TERT mutant ctDNA levels at baseline. This 

further supports previous findings that low or undetectable levels of ctDNA is a predictor of long 

term treatment benefit (Ascierto et al., 2013a; Gray et al., 2015; Lee et al., 2017a; Sanmamed et 

al., 2015; Santiago-Walker et al., 2015).  

 

We have now shown that the detection of mutant TERT in tumour tissue and plasma provides 

useful clinical information. This will enable large studies on the clinical utility of ctDNA 

monitoring to provide evidence of the efficacy of this marker for determining disease 

progression, to inform cessation of ineffective therapies and to guide alternative therapy. (Girotti 

et al., 2015; Gray et al., 2015)  

 

Whilst we fulfilled our aim to develop an assay to detect C228T and C250T mutations, one 

obvious limitation to our assay is that it cannot detect other TERT promoter mutations and it can 

be affected by SNPs within the probe binding sites. Hence further development of the assay to 

detect other TERT promoter mutations (Nagore et al., 2016a) would further increase the number 

of patients who could be monitored.   

 

Monitoring patients for recurrence using ctDNA requires knowledge of the patients’ mutational 

profile. Whilst there are a variety of methodologies available for mutation profiling, each 

detection method tolerates different degrees of DNA quality. In many instances, genetic analysis 

is performed on limited and often low-quality DNA, from tumours with low tumour cellularity 

and high tumour heterogeneity. This is particularly apparent when tumours are sourced from 
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SLNB and fine needle aspiration biopsies of metastatic sites and as such we set out to determine 

the sensitivity of ddPCR on tumours of varying cellularity.  

 

In the second publication, we evaluated the relative sensitivities of Sanger sequencing, 

pyrosequencing and ddPCR in detecting common mutations in BRAF, NRAS and TERT promoter 

from FFPE tumour with a range of tumour cellularity. Although Sanger sequencing and 

pyrosequencing are the most commonly employed methods of BRAF and NRAS mutation 

detection in molecular pathology laboratories, ddPCR was the most sensitive method, detecting 

at least one mutation in 77.5% (31 of 40) of cases, including in 12.5% and 23% of samples 

deemed as wild-type for all three mutant genes by pyrosequencing and Sanger sequencing, 

respectively. Importantly, the ddPCR sensitivity was particularly apparent among samples with 

less than 50% tumour cellularity. This suggests that ddPCR may further provide the opportunity 

for assessing the tumour mutational profile in more patients, particularly where macro-dissection 

is not possible, such as sentinel lymph node biopsies and fine needle aspiration biopsies of 

metastatic sites.  

 

DdPCR is not routinely used in molecular pathology laboratories, possibly due to it being a 

relatively new methodology, however the platform has received much attention in a short space 

of time, particularly in melanoma research (Ashida et al., 2017; Chang et al., 2016; Gray et al., 

2015; Hindson et al., 2013; Huang et al., 2016; Knol et al., 2016; Reid et al., 2015; Sanmamed et 

al., 2015; Schreuer et al., 2016; Tsao et al., 2015). Considering the multiple advantages that have 

been associated with ddPCR including absolute quantification, lower susceptibility to PCR 

inhibitors which affect amplification efficiency, resilience to differences in sample quality 

particularly at low concentrations, increased precision and high reproducibility between runs 

(Dingle et al., 2013; Hindson et al., 2013; Zhao et al., 2016), it was anticipated that ddPCR 

would be the most sensitive of the three methodologies. Importantly and as expected, the results 
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showed ddPCR to be a highly suitable platform for identifying mutations at a very low variant 

allele frequency. Thus, ddPCR offers research laboratories an alternative option where the tools 

and expertise to perform macro-dissection are not available. Additionally, ddPCR offers an 

alternative option in the clinical setting when macro-dissection is not possible, such as sentinel 

lymph node biopsies and fine needle aspiration biopsies of metastatic sites. The ability of ddPCR 

to detect mutations from a tumour containing only a small fraction of neoplastic cells, may 

further provide the opportunity for assessing prognosis, recurrence, metastasis and response to 

therapy in more patients.  

 

Conversely, ddPCR has disadvantages which must be considered. This platform is limited to 

specific mutations and does not provide sequencing information, which Sanger sequencing and 

pyrosequencing are able to do. Consequently, the use of ddPCR may require multiple tests before 

a mutation is identified. This would not only require more DNA, which may be limited, but also 

additional hands-on time and therefore cost. Therefore, before such testing can be implemented 

into the clinical environment, multiplex ddPCR assays, similar to our TERT assay, that can test a 

specific exon or region will need to be developed to ensure minimal cost, hand-on time and DNA 

input is required.  

 

Finally, given its ease of use and sensitivity, implementation of ddPCR based assays could 

facilitate mutation detection in early stage tumours and support the clinical use of ctDNA to 

improve early detection of residual disease and disease recurrence or progression. Thus, for the 

inclusion of such testing to be introduced into the clinic, standardisation of technical approaches 

and storage conditions will be required. 

 

Following on from this we investigated whether ctDNA detection by ddPCR could be used to 

detect disease recurrence.  We conducted retrospective surveillance using mutant-specific 
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ctDNA for three patients with cutaneous melanoma who experienced disease recurrence at 

distant sites and 27 patients who had no clinical evidence of disease recurrence. In patients with 

no evidence of disease recurrence, ctDNA was not detectable at any time point.  CtDNA was 

however detected at the time of radiological or biopsy confirmation of metastases in all three 

patients who presented with disease recurrence. Moreover, in one case, plasma ctDNA detected 

recurrence four months prior to clinical evidence of disease recurrence. We acknowledge that the 

patient had not been having regular PET/CT scans and therefore cannot confirm if PET/CT 

would have detected disease recurrence at a similar time point to that of ctDNA, however it must 

be emphasised that the patient suffered from severe claustrophobia and as such ctDNA testing 

(had it been completed in real-time) would have prompted more thorough investigations 4 

months prior to the gastroscopy. Of particular importance, Chapter 4 supports previous studies 

that have shown that recurrences occur even after surgical removal of thin melanomas. This 

highlights the need for an additional monitoring regime that can be performed regularly and 

potentially lead to timely interventions that will result in improved treatment options ultimately 

having a positive impact on the patient’s quality of life and survival.  

 

As expected almost half of this patient cohort harboured a TERT promoter mutation and thus the 

TERT detection assay developed as part of this thesis, was utilised to determine their ctDNA 

levels. TERT mutant ctDNA however, was not detectable in those patients with no evidence of 

disease recurrence, nor in the one patient who presented with disease recurrence and who 

harboured a C228T TERT promoter mutation. Considering NRAS mutant ctDNA was detectable 

at low allele frequency in this patient, we considered that the level of tumour burden is perhaps 

too small to detect the mutant TERT ctDNA, given that NRAS mutant ctDNA was detected at 

only 1.4 copies/mL of blood.  
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CtDNA has been detected in early stage breast (Beaver et al., 2014) and colon (Tie et al., 2016) 

cancer patients following resective surgery, indicating the presence of minimal residual disease. 

This provides evidence that ctDNA can be used to identify patients at risk of disease recurrence. 

Given that no mutant-specific ctDNA was detected in any of our patients at baseline, we would 

suggest that using our current methodology, ctDNA cannot be used to evaluate minimal residual 

disease in melanoma. Possible reasons for our inability to detect residual disease earlier, is that 

unlike Tie et al., (2016), who extracted cfDNA from 10 mL of plasma we only used 5 mL of 

plasma. Considering that DNA amounts vary between 0.1 ng and 100 ng DNA per mL of plasma 

(Chiu et al., 2006; Chun et al., 2006; Fatouros et al., 2006; Lázár et al., 2006; Rhodes et al., 

2006; Schmidt et al., 2005), cfDNA yield will vary dependant on the volume of plasma in the 

first instance. Thus, to increase the sensitivity of the assays for detection of minimal residual 

disease in melanoma to guide the management of the disease, we suggest increasing the amount 

of plasma from which cfDNA is extracted. Additionally, a pre-amplification step of the target 

DNA, prior to ddPCR (Kiselinova et al., 2014; Pasternak et al., 2008) may further increase the 

sensitivity.  

 

Notwithstanding this, our study provides a proof of concept and attests to the feasibility of 

mutant-specific ctDNA analysis for early stage melanoma patients at risk of disease recurrence. 

Furthermore, ctDNA surveillance provides an alternative method of monitoring patients without 

the additional risk of radiation exposure, invasiveness and cost. With the added advantage of a 

simple blood test being minimally invasive, ctDNA surveillance could be conducted far more 

regularly than PET/CT scans.  Thus, our detection of disease recurrence at the time of clinical 

confirmation of disease recurrence suggests that ctDNA can be used to detect disease 

progression. CtDNA may therefore be assessed routinely to provide an increased window of 

opportunity for intervention that is likely to positively impact on the patient’s survival. It is 

important to know therefore, what the lowest level of disease burden is detectable by ctDNA.  
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It has been proposed that, in the main, ctDNA levels correlate with disease burden assessed by 

qualitative PET/CT assessment (Girotti et al., 2015; Gray et al., 2015; Janku et al., 2015; Knol et 

al., 2016; Santiago-Walker et al., 2015; Tsao et al., 2015; Xi et al., 2016), with low or 

undetectable levels of ctDNA having been shown as a predictor of long term treatment benefit 

(Ascierto et al., 2013a; Gray et al., 2015; Lee et al., 2017a; Sanmamed et al., 2015; Santiago-

Walker et al., 2015). Furthermore, the diagnostic sensitivity of ddPCR to detect mutant-specific 

ctDNA in metastatic patients is between 73% to 89% (Ascierto et al., 2013a; Gray et al., 2015; 

Santiago-Walker et al., 2015). Given that ctDNA is not detectable in all metastatic melanoma 

patients and based on our findings in the previous study, it was apparent that there was a robust 

need to understand the limit of detecting ctDNA in terms of tumour burden if ctDNA is to be 

used for routine monitoring of melanoma patients.  

 

Considering quantitative assessment of FDG-PET/CT images can now be used to determine 

disease burden (Bai et al., 2013), we hypothesised that if ctDNA levels correlate with MTB 

derived from FDG-PET/CT scans in melanoma patients, we could determine the LOD of ctDNA 

as a potential surrogate to signify disease recurrence. We therefore conducted a retrospective 

analysis of ctDNA levels and MTB of 32 metastatic melanoma patients and found a significant 

correlation between the number of mutated copies per mL of plasma and the MTB in cm3 

measured by FDG-PET/CT, supporting the hypothesis that ctDNA is suitable as a surrogate 

indicator of tumour burden and aggressiveness.  

 

To our knowledge this is the first correlative analysis in melanoma, to compare the level of 

ctDNA with MTB calculated from the sum of TLG for all evaluable lesions. In comparison to 

other radiologic imaging techniques, FDG-PET/CT has been hailed as the most superior in the 

management of melanoma (Akcali et al., 2007; Holder Jr et al., 1998; Reinhardt et al., 2006) due 

to its high sensitivity and specificity. As such, determining the limit at which ctDNA can be 
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detected relative to MTB provides evidence of the diagnostic sensitivity of our assays to detect 

mutant-specific ctDNA, which is pertinent to the detection of recurrence. Whilst our results 

exhibit a strong correlation between the number of mutated copies per mL of plasma and MTB, 

thus measuring both tumour burden and aggressiveness, it also illustrates its limitations in 

detecting low disease burden, which may have implications for detecting disease recurrence, 

particularly in patients with early stage melanoma. Even though approximately 80% of 

melanoma patients will harbour BRAF, NRAS and/or TERT mutations and our specific focus on 

these mutations throughout this project, none of the patients in our retrospective cohort 

harboured a TERT promoter mutation. Regardless however, we were able to determine the limit 

of disease burden that our current assay can detect. We are confident from the results from two 

cases (one with a single lung lesion and the other with nodal and liver metastases), that our 

threshold of ctDNA detection is currently at an MTB value of 10. Of particular importance is the 

ability of our assays to detect nodal disease; early evidence of such would provide the greatest 

window of opportunity for successful intervention. Interestingly, Wong et al., (2017) have shown 

that nodal involvement often displays high levels of ctDNA. Our results directly contradict this 

finding; however, it is pertinent to point out that the cohort in the Wong study (although no exact 

disclosure as to the number of nodes involved) had a higher disease burden across the board than 

we did in our study. Wong reported a median of 1,112 copies/mL of plasma (range 63-97,000) 

compared to our median of 38 copies/mL of plasma (range 1.6-52,440 copies/mL) suggesting 

that the disease burden in our patients was lower than those in the Wong study.  

 

In our cohort, only three patients presented with nodal disease alone, none of whom had 

detectable ctDNA. A few caveats however are worth mentioning; two cases had MTB below our 

threshold of 10 and in two cases, cfDNA was extracted from only 1mL of plasma which is likely 

to reduce our capacity to detect ctDNA (Sherwood et al., 2016). Similarly, we were unable to 

detect ctDNA in the patient who presented with nodal and brain metastases and in the one patient 
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who presented with brain only metastases. Given that low or undetectable ctDNA levels have 

been commonly observed in patients presenting with brain only metastases (Bettegowda et al., 

2014; De Mattos-Arruda et al., 2015; Wong et al., 2017), our results are not surprising. Stage III 

patients have a significantly better overall prognosis than stage IV patients (Aitken et al., 2008; 

Baade et al., 2015; Harries et al., 2016), and that the majority (50.2%) of first recurrences are 

seen in regional lymph nodes with 58.9% of these cases further progressing to distant metastases 

(Meier et al., 2002), therefore it is imperative to detect nodal recurrences in a timely manner. 

Interestingly, there is minimal evidence of detecting ctDNA in pre-surgery stage III melanoma 

patients (Wong et al., 2017), although ctDNA has been commonly reported in early stage lung 

(Sozzi et al., 2001), breast (Beaver et al., 2014) and colon (Tie et al., 2016) cancers.  Thus, 

further studies are required to determine if in fact, ctDNA can be regularly detected in stage III 

melanoma patients as an early measure of clinically detectable disease.  

 

Unfortunately, a limitation of this study was the number of patients where cfDNA had been 

extracted from only 1mL of plasma. As previously mentioned, the volume of plasma in the first 

instance affects the cfDNA and consequently the ctDNA yield (Sherwood et al., 2016). Whilst 

this is not relevant in the majority of cases with a high MTB, it introduces a bias that we cannot 

ignore. A total of 37.5% (n=12) of our samples were extracted from 1mL of plasma with 25% of 

these (n=3) having no detectable ctDNA. Of the 9 cases with detectable ctDNA, multiple 

metastatic disease sites were involved. Of the three cases with no detectable ctDNA, two cases 

involved nodal disease alone (a caveat previously discussed) however one case had a high MTB 

with bone metastases alone. Future studies will almost certainly require a prospective nature to 

ensure that a consistent volume of plasma is used for cfDNA extraction, thus removing any 

potential confounding affects. 
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In summary, the final stage of this thesis has directly compared the level of ctDNA with MTB to 

determine the lowest level of disease burden that our current assays can detect with ctDNA. Our 

measurements of MTB incorporate both tumour burden and tumour activity which therefore 

provides an overall perspective of the disease status of a patient. We have provided evidence of a 

significant correlation between ctDNA and MTB in treatment naïve patients which suggests that 

quantification of ctDNA between scans may provide a minimally invasive option with which to 

detect changes in disease burden in melanoma. Whilst detection of ctDNA in patients with an 

MTB≤10 will necessitate further improvements in the technology, we have defined the limit in 

global tumour burden for which ctDNA can be detected in blood.  

 

Furthermore, we have observed a significantly shorter PFS in those patients with detectable 

ctDNA. This underscores the clinical utility of ctDNA analysis to be conducted at regular 

intervals between standard FDG PET/CT imaging, or between physical examinations (as would 

be the case for patients not having routine function imaging), to ultimately provide clinicians 

with more frequent windows of opportunity where interventions can be implemented timeously.  

 

The results presented in this thesis provide a proof of principle for the potential application of 

personalised ctDNA monitoring for melanoma recurrence. Firstly the developments of a novel 

assay to detect TERT mutant ctDNA by ddPCR has allowed for an increased number of patients 

that may be monitored with ctDNA. This is exemplified by our detection of TERT mutations in 

BRAF WT patients and the detection of trackable mutations in tumour samples with minimal 

cellularity.  Finally, the detection of ctDNA in patients presenting with disease recurrence has 

been further explored by determining the lower limit of disease burden that our current assays 

can detect.  
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CHAPTER 7: CONCLUSION 

As evidenced by our work in this thesis and others (Crowley et al., 1990; Dong et al., 2000; 

Hohnheiser et al., 2011; Kalady et al., 2003; Tsao et al., 1997); (Balch et al., 2009; Brauer et al., 

2010; Faries et al., 2013), the risk of melanoma recurrence is never entirely removed and 

melanoma may recur at any point in time. As such, our central aim of this project was to develop 

a tool that could be used regularly, inexpensively and non-invasively to monitor early stage 

melanoma patients for melanoma recurrence.  

 

To do this we developed a novel assay to detect the two most common TERT promoter mutations 

found in melanoma tumours using ddPCR. TERT promoter mutations occur in melanoma as 

frequently as (Griewank et al., 2014), or more frequently (Nagore et al., 2016a) than BRAF 

mutations, and yet mainly BRAF mutant-specific cfDNA is being used to monitor melanoma 

patients for response to therapy and disease progression (Santiago-Walker et al., 2015). The 

inclusion of TERT promoter mutations within ctDNA for monitoring would increase the number 

of patients to 70-80% for whom ctDNA could be used to determine disease status, particularly 

amongst BRAF and NRAS wild-type melanoma patients. This will enable large studies on the 

clinical utility of ctDNA monitoring to provide evidence of the efficacy of this marker for 

determining disease progression, to inform cessation of ineffective therapies (Girotti et al., 2015; 

Gray et al., 2015) and to guide alternative therapy. With the TERT assay designed, we 

demonstrated the superior sensitivity of ddPCR to detect BRAF, NRAS and TERT promoter 

mutations in tumour tissue, even at low tumour content., offering research laboratories an 

alternative option where macro-dissection is unavailable to them and an alternative option in the 

clinical setting when macro-dissection is not possible, such as sentinel lymph node biopsies and 

fine needle aspiration biopsies of metastatic sites.  
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Furthermore, we detected ctDNA in early stage melanoma patients suffering with disease 

recurrence and, we recognised a strong correlation between the level of ctDNA and MTB. 

Overall these results underscore that ctDNA closely reflects disease burden and aggressiveness 

of melanoma. Further increasing the sensitivity and specificity of our ddPCR assays will improve 

the ability of ctDNA to detect a lower burden of disease.  

 

Finally, recurrent melanoma is an issue of significant public health importance and there is a 

great need for a way in which melanoma patients can be regularly, inexpensively and non-

invasively monitored, in order to improve survival.  Here we present a new and innovative 

ddPCR TERT mutation assay and validate circulating tumour DNA as a biomarker 

for the early detection of recurrent melanoma. Our results serve as a strong rationale in support 

of large prospective studies/clinical trials that will validate the clinical utility of ctDNA 

monitoring in melanoma patients. 
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Appendix 1 

 

Figure 1: Sanger sequencing chromatogram from cell line HGA 
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