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Abstract 
Intrusion-detection systems employ machine learning techniques to classify traffic into attack and legitimate. 

Network flooding attacks can leverage the new web communications protocol (HTTP/2) to bypass intrusion-

detection systems. This creates an urgent demand to understand HTTP/2 characteristics and to devise customised 

cyber-attack detection schemes. This paper proposes Step Sister; a technique to generate an optimum network 

traffic feature set for network intrusion detection. The proposed technique demonstrates that a consistent set of 

features are selected for a given HTTP/2 dataset. This allows intrusion-detection systems to classify previously 

unseen network traffic samples with fewer false alarm than when techniques used in literature were employed. The 

results show that the proposed technique yields a set of features that, when used for network traffic classification, 

yields low numbers of false alarms. 

Keywords:  HTTP/2, feature selection Denial of Service, machine learning 

INTRODUCTION 

Hypertext Transfer Protocol (HTTP) has been the standard for web browser communication since the end of the 

20th century. Until recently, most web communications were reliant on HTTP version 1.1, which was designed to 

transfer texts. As current web sites render large sized content such as audio and video, users routinely experience 

slow web browsing experience through HTTP/1.1.  Hence, the new version, HTTP/2 (Belshe, Peon, & Thomson, 

May 2015), was designed to deliver web services at higher transfer rates, enhancing the end-user experience. 

HTTP/2 has been accepted as the next generation standard for web communications. The protocol had its 

preliminary version deployed in 2010, was formally published in 2015, and is currently deployed by approximately 

10 million websites globally, or 19% of all the websites (Usage of HTTP/2 for websites, November 2017). Major 

web browsers such as Mozilla, Chrome and Microsoft Edge support the protocol; and popular web sites such as 

Google services, Facebook and Twitter operate their web services employing the protocol.  

As with all technological advances, the threat posed by the adversary class is ever existing. Adversaries can send 

a large volume of HTTP traffic towards a target HTTP/2 web service, causing resource exhaustion and eventual 

prevention of access for legitimate users. Such exploit is commonly known as a flood-based attack, or a Denial of 

Service attack. To detect flood-based attacks, previous studies have applied machine learning techniques. These 

techniques can learn from data samples, adapt to new environments, produce rule sets, and predict the class of 

unseen data. In detecting flood-based attacks, these known techniques construct a model of legitimate (normal) 

traffic, and classify attack traffic as instances where feature values extracted from the network traffic deviate from 

the baseline legitimate model. 

A selection of studies that have previously classified traffic into flood-based and normal (Moore & Zuev, 2005; 

Mukherjee & Sharma, 2012; Baig, Sait, & Shaheen, 2013; Katkar & Kulkarni, 2013; Al-Jarrah et al., 2014) 

employed feature ranking and selection techniques to reduce the complexity associated with large scale data 

classification. Techniques such as Information Gain (Kullback & Leibler, 1951) and Gain Ratio are commonly 

used for feature ranking. The higher the rank of a feature, the more relevant the features are for the traffic 

classification process. Subsequently, the order of the rank number can be applied to select a set of most relevant 

features. 

The main issue introduced with feature ranking and selection based on the above techniques is that they do not 

always yield the same subset of relevant features for varying datasets (Witten & Frank, 2005, p. 154). Specifically, 

different members of {1 . . . n} features are yielded, given different datasets. Over time, additional dataset samples 

are required to extend previous knowledge, to construct models that represent the current situation, and to classify 

with an acceptable degree of accuracy. Hence, there is a need to select a chosen set {1 . . . n} of features that will 
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yield a consistent list of members in the set, regardless of the data set choice. This study proposes a feature selection 

technique to address the aforementioned need. Specifically, this study proposes selection of a chosen set of 

features, given two different datasets that describe the characteristics of HTTP/2 traffic, to perform better than 

when HTTP/1.1 features are processed and ranked. The significance of this study is twofold: first, it proposes a 

novel feature selection technique for HTTP/2 traffic; and second, it examines how the technique can be applied to 

analyse HTTP/2 traffic based on variable datasets. 

BACKGROUND 

In detecting HTTP/1.1 flood-based attacks, reported studies have found that attack traffic showed higher number 

of packets when compared to the number of TCP connections that were established for a given target web service 

(Jung, Krishnamurthy, & Rabinovich, 2002; Ni, Gu, Wang, & Li, 2013). The introduction of HTTP/2 changed this 

concept significantly. The novel HTTP/2 mechanisms for communicating parties can be leveraged by adversaries 

to create previously unseen attack vectors to disrupt these services.  

A recent study (Adi, Baig, & Hingston, 2017) showed that HTTP/2 flood-based attacks can be modelled to mimic 

the number of TCP connections observed on legitimate network traffic. The flood traffic, when examined through 

methods known in the literature to detect such attacks (Kumar, Joshi, & Singh, 2007; Lakhina, Crovella, & Diot, 

2005; Rahmani, Sahli, & Kamoun, 2012), yielded a high number of False Alarms, indicating that the attack traffic 

mimicked normal traffic, thereby bypassing intrusion-detection systems. This showed that an urgent challenge 

exists to understand the characteristics of HTTP/2 flood-based attack traffic. 

The above study (Adi et al., 2017), henceforth named Stealthy Attack Model, also proposed a set of 42 features as 

input to machine learning techniques to differentiate attack from normal network traffic. The study showed that 

the proposed set of features yielded fewer False Alarms compared to when HTTP/1.1 features were ranked and 

used for classification. These features were obtained from the statistical properties of captured HTTP/2 packets, 

which were grouped based on 3 features, namely, count, size, and lapse. The count features were obtained from 

the number of packets captured in an instance of time. The size feature was the total number of bytes of packets 

captured in an instance. The lapse feature was the time difference between the connection initiation of a packet 

(indicated by a SYN packet) and the time when the packet was captured. The study ranked the features with both 

Information Gain and Gain Ratio techniques, and analysed machine learning classification performance when 

applied on varying sets of ranked features. It showed that machine learning techniques such as Naïve Bayes, 

Decision Trees, JRip, and Support Vector Machines can be employed to classify HTTP/2 traffic into attack and 

normal class with good accuracies. 

 

False Alarms is a notable performance measure employed by studies in the field of intrusion detection, to classify 

traffic into flood-based and normal (Wang, Zhang, Hei, Ji, & Ma, 2016; Manzoor, Kumar, et al., 2017; Suhasaria, 

Garg, Agarwal, & Selvakumar, 2017; Suganya, 2016; Osanaiye, Choo, & Dlodlo, 2016; Latif, Abbas, Latif, & 

Masood, 2015). False Alarms, described by the equation shown below, is defined as the percentage of instances 

incorrectly classified out of the total number of the whole instances S in a dataset. The False Positive FP is the 

ratio of normal traffic that a machine learning technique incorrectly identifies as attack traffic. The False Negative 

FN is the ratio of attacks that the technique incorrectly identifies as legitimate traffic. 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 =
FP + FN 

S
 × 100% 

The percentages of False Alarms are illustrated on the Y-axis of a graph, as a function of 1 to {1 . . . n} features, 

presented on the X-axis of the graph. A lower percentage of False Alarms implies a better performance of the 

classifier. Observations based on human intervention are required to analyse which set of features are best 

employed for classification tasks to yield the lowest percentage of False Alarms. This was demonstrated in the 

Stealthy Attack Model analysis: different features sets were chosen to obtain the desired performance when 

different machine learning techniques were employed (Adi et al., 2017, Sec. 5.3). 

The aforementioned study demonstrated that the results were observed and analysed to compare the performance 

when different sets of features were selected. On the other hand, the study reported in this paper places the 

observation before the classification results are obtained. The study also highlights that relationships exist between 

various features of a data set, and leverages this relationship to select relevant features. 
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DATA PROCESSING AND FEATURE SELECTION 

Machine learning performance can be optimised through analysing relationships that exist in the data (Witten & 

Frank, 2005, p. 78). Learning involves examining relationships between objects rather than between instances. Of 

particular interest in this study is the concept of a sister in any family. Traditionally, when translated to a dataset 

representation, a sister is technically described as when two people can be labelled as sister = yes or sister = no. 

However, this representation can be prohibitive in terms of storage cost: describing the sister relationship of 100 

people would require 1002 = 10,000 instances. Describing such a relationship in real datasets poses a further 

problem: the number of objects that form relationships in datasets are unknown (Witten & Frank, 2005, p. 48). 

The solution to this problem is to inspect the objects and their relationships in the dataset before selecting features, 

to identify whether the two objects have the same parents (Witten & Frank, 2005, p. 48). This is illustrated in 

Table 1. 

Table 1. A representation of a sister relationship 
Name Parent 1 Parent 2 Name Parent 1 Parent 2 Sister 

P A B Q A B Yes 

Table 1 also lists P and Q as two objects, to examine if they are sisters. For the purpose of simplicity, the illustration 

ignores the gender of the objects. The table describes that P and Q are sisters because they have the same parents. 

This observation serves as the framework of the proposed feature selection technique, which is presented in the 

next section. 

PROPOSED FEATURE SELECTION TECHNIQUE 

This study observes that a sister relationship exists between count and size feature groups of the two datasets that 

were acquired from the Stealthy Attack Model (namely Stealthy Attack-1 and Stealthy Attack-2 that are discussed 

in the next subsection). 

Referring to Table 1 as the framework, this study proposes that P = count and Q = size. These two parameters are 

sisters since they have the same parents. Parents were defined based on features of network traffic. One parent (A) 

was defined from packets generated by bots, that are uniform in their number of packets and packet sizes, compared 

to those generated by heterogeneous devices. In the Stealthy Attack Model, the bots were implemented by at most 

two C-libraries, i.e. curl (Stenberg, 1996–2016) and nghttp2 (Tsujikawa, 2015). This contrasts with real network 

traffic which is generated by different devices from different manufacturers, having different hardware/software 

implementations. Real network traffic generates heterogeneous packet sizes. Instead, the bots were generated 

through a model that dictates how client-to-server packets are formed. Particularly, Stealthy Attack Model 

launched only one HTTP/2 packet type (namely window update packet), where the packet size was defined by the 

C-libraries that implemented the bots. Furthermore, there were a limited number of bots that generated such 

network packets, causing the model to generate a less dispersed number of packets compared to normal traffic. 

This is illustrated in Figure 1, which is adapted from the Stealthy Attack Model study (Adi et al., 2017, Sec. 5.2). 

 

Figure 1. Distribution of attack (grey) and normal (black) feature values 

Figure 1 illustrates the distribution of two different feature values, in this example, the count_syn (the number of 

SYN packets in an instance) and the size_rstAck (the total size of RST ACK packets in an instance), for the stealthy 

attack dataset. The X-axis represents various ranges of feature values, while the Y-axis describes the number of 

instances in the dataset that encompass such range of values for a given feature. The grey bars represent attack 

traffic generated by bots, while the black bars represent normal traffic. Figure 1 shows that the normal traffic is 

more distributed than the attack traffic: the black bars span wider than the grey bars; while the black bars forms a 

distributed bell-curve, the grey bars are lower relative to the black bars, and plane relative to the X-axis. This 

illustrates that the attack traffic is less heterogeneous in terms of packet count and sizes, when compared to normal. 

The other parent (B) was defined as attacking bots attempting to mimic normal flows of normal data traffic. In the 

Stealthy Attack Model, two parameters were defined to mimic normal traffic: a stealthy factor and a delay between 

connections. The stealthy factor sf was defined as a flood of HTTP/2 packets launched with a probability of 1/sf. 
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A delay between connections of d was prescribed as d ms added between successive TCP connections of a given 

session. These parameters defined the bots capable of controlling the number of packets launched from a malicious 

client towards a target server. As the bot traffic was controlled (i.e., operated below the radar), the number of 

packets and their sizes are less heterogeneous than those of normal traffic (as Figure 1 shows). 

Henceforth, P and Q are sisters, since they both were derived from non-heterogeneous bots that attempted to mimic 

normal traffic. 

Step Sister Algorithm 

This study proposes the Step Sister technique to select a set of features based on inter-sister relationships, given 

two different datasets. The precondition of the algorithm is to have two sets of ranked features. In this study, the 

datasets Stealthy Attack-1 (S1) and Stealthy Attack-2 (S2) were ranked through application of the Information 

Gain technique (Kullback & Leibler, 1951).  

The output of the algorithm is to have a ChosenSet of features; this set is initially assigned to an empty set. While 

there is no definition of how many features is sufficient, a finite number of 5 features was considered in this study 

for demonstration.  

Two sets of ranked features were employed from the Stealthy Attack datasets (Adi et al., 2017). These are the 

Stealthy Attack-1 dataset and the Stealthy Attack-2 dataset. These features were ranked through application of the 

Information Gain technique, resulting in two ranked lists, S1 and S2, respectively. For the purpose of this study, 

the two features chosen to analyse HTTP/1.1 traffic, i.e. the count_app and the count_syn features (explained in 

the next subsection), were not selected as part of the ChosenSet. Furthermore, because this study observed that the 

count group has a sister association with the size group, this study disregarded the size_app and the size_syn 

features. These are shown on lines 5 - 7 of the algorithm. 

To define a sister relationship, the algorithm examines the feature groups and feature types. Feature groups are 

features that share the same characteristics such as “count” and “size”. Feature types signify the packet types where 

the features were extracted from. For example, rstAck is a feature type, which is extracted from a network packet 

carrying RST ACK flag. Hence, a feature named count_rstAck is obtained from the number of packets (i.e. count) 

carrying RST ACK flags, observed in an instance of time. The sister association is found to be true when a feature 

f from one of the ranked list S being examined belongs to the “count” group, and the same type of feature where 

its group is “size” is found in the ChosenSet. The converse situation where f belongs to the “size” group, also 

demonstrate a sister association when the same type of feature of group “count” is found in the ChosenSet. 

Henceforth, the Step Sister algorithm can be simplified as follows. The first step is to clean the two ranked list S1 

and S2, by eliminating a feature is its sister is already in the ChosenSet, starting from the highly ranked feature 

from each list. It selects a feature from the two lists S1 and S2 that is ranked higher. These steps iterate until there 

is a handful number of features in the ChosenSet with size n. 

Stealthy Attack Datasets 

The two attack models proposed in the Stealthy Attack Model were named Stealthy Attack-1 and Stealthy Attack-

2. The Stealthy Attack datasets described attack and normal HTTP/2 traffic classes: the attack data was generated 

out of two attack models; and the normal data was obtained from simulating 5,200 bots that mimicked human 

behaviour when online. 

The Stealthy Attack-2 dataset extended the Stealthy Attack-1 dataset through employing attacking bots that 

mimicked the distribution value of a highly relevant feature observed from the Stealthy Attack-1 data analysis. In 

both datasets, the features were ranked through employing both Information Gain and Gain Ratio algorithm. The 

result showed that 42 features could detect HTTP/2 flood-based attacks better, i.e. fewer False Alarms than when 

two HTTP/1.1 features were employed. The two HTTP/1.1 features used as a comparison were count_app, i.e. the 

number of Application Data packet observed in an instance, and count_syn, the number of TCP connection 

initiation observed in an instance. 

RESULTS AND ANALYSIS 

The ChosenSet from the Step Sister algorithm yielded the following set of features: 

 size_rstAck, is the total size (in KB) of packets carrying RST-and-ACK TCP flags observed in one 

instance. 
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 size_tlsKey, is the total size (in KB) of TLS packets carrying key exchange observed in one instance 

 count_encryptedAlert, is the total number of TLS packets carrying Encrypted Alert flags observed in one 

instance. 

 lapse_rstAck max, is the maximum duration of time between packets carrying RST-and-ACK TCP flags 

within an observed instance, and a packet carrying SYN flag signifying its first connection initiation. 

 size_tlsHello, is the total size (in KB) of TLS packets carrying Hello packet type observed in one instance. 

The above set of features was employed to classify traffic described for both datasets, i.e. the Stealthy Attack-1 

and Stealthy Attack-2 datasets. The classification analysis employed Weka (University of Waikato, 1993–2016), 

software that provides a collection of machine learning techniques, to analyse the classification performance in 

terms of False Alarm. Four machine learning techniques were employed: Naïve Bayes (NB), Decision Tree J48 

(DT), JRip, and Support Vector Machines (SVM). Two other feature ranking algorithms that were employed in 

the Stealthy Attack Model, Information Gain (IG) and Gain Ratio (GR), serve as a comparison to analyse the 

classifier performance. 

The Step Sister algorithm did not aim to yield better performance than what the Stealthy Attack Model study 

yielded. This is shown in Table 2. The False Alarm yielded by the machine learning techniques was compared 

when the features were selected and ranked by the Step Sister (SS) algorithm, Information Gain (IG) and Gain 

Ratio (GR). The values obtained for the SS columns were the outcomes of this study, while the values shown for 

the IG and GR columns were the outcomes of the Stealthy Attack Model study. To compare the correct values, 

only the most relevant 5 features were selected from the list of ranked features by IG and GR. The table shows 

that the numbers in column SS are not consistently lower than the values on the other columns. Hence, the SS 

algorithm did not seek to optimise the performance obtained in the Stealthy Attack Model. 

Table 2. False Alarms produced (%) when different algorithms were employed 

 Stealthy Attack-1 Stealthy Attack-2 

IG GR SS IG GR SS 

NB 0.2892 0.2410 0.2410 0.0519 0.0519 0.0778 

DT 0.0482 0.0723 0.0482 0.0519 0.0519 0.0519 

JRip 0.0482 0 0.0723 0.0259 0.0259 0.0259 

SVM 0 0 0 0 0.0778 0 

Table 3. False Alarms produced (%) when different feature sets were employed 

 Stealthy Attack-1 Stealthy Attack-2 

HTTP/1.1 SS HTTP/1.1 SS 

NB 0.2651 0.2410 0.5189 0.0778 

DT 0.1687 0.0482 0.2335 0.0519 

JRip 0.1205 0.0723 0.2335 0.0259 

SVM 0 0 0.3373 0 

Consistent results can be seen when the machine learning performance was compared to those when the HTTP/1.1 

features were employed. This is illustrated in Table 3. All of the False Alarm yielded by the machine learning 

techniques were lower when the features were selected by the SS algorithm, compared to those when HTTP/1.1 

features were employed. Hence, the ChosenSet of five features consistently yielded better performance. 

The ChosenSet features are more consistent than the set of features employed in the Stealthy Attack Model study: 

first, the Step Sister algorithm selected the same ChosenSet of features to be employed by machine learning 

techniques. This is different to the methods employed by the Stealthy Attack Model study, where different sets of 

features {1 . . . n} must be selected. Second, in the Stealthy Attack Model study, observations were required to 

choose the size n of the set {1 . . . n}. In contrast, the same five features selected by the Step Sister algorithm in 

this study were employed by the machine learning techniques. This demonstrated the aim of the study: to yield the 

same set of features to analyse different datasets. 

CONCLUSION  

This study proposed a technique, namely, Step Sister, which yielded a set of features to aid in machine learning-

based classification of HTTP/2 flooding traffic. The analysis employed two datasets that described the 

characteristics of HTTP/2 flooding and legitimate traffic, respectively. Since the Step Sister technique yielded a 

consistent set of features for machine-learning based classification, intrusion-detection systems that employ this 

technique can operate without requiring human intervention to choose the size and members of the feature set. 

Furthermore, the proposed technique was tested on two varying datasets. The study demonstrated that the Step 
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Sister technique analysed both datasets to yield a chosen set of features. Machine learning techniques that 

employed these set of features yield lower False Alarms than when techniques known in literature were employed 

to analyse HTTP/2 traffic. 
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