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Using a Bayesian change-point statistical model
with autoregressive terms to study the monthly
number of dispensed asthma medications by
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Abstract

In this paper, it is proposed a Bayesian analysis of a time series in the presence of a random
change-point and autoregressive terms. The development of this model was motivated by a data
set related to the monthly number of asthma medications dispensed by the public health services
of Ribeirão Preto, Southeast Brazil, from 1999 to 2011. A pronounced increase trend has been
observed from 1999 to a specific change-point, with a posterior decrease until the end of the
series. In order to obtain estimates for the parameters of interest, a Bayesian Markov Chain
Monte Carlo (MCMC) simulation procedure using the Gibbs sampler algorithm was developed.
The Bayesian model with autoregressive terms of order 1 fits well to the data, allowing to estimate
the change-point at July 2007, and probably reflecting the results of the new health policies and
previously adopted programs directed toward patients with asthma. The results imply that the
present model is useful to analyse the monthly number of dispensed asthma medications and it
can be used to describe a broad range of epidemiological time series data where a change-point
is present.
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1. Introduction

In many situations, epidemiological data come in the form of time series. Disease noti-
fications, hospitalizations due to a specific disease and mortality rates over a given time
interval are examples of variables which can be studied as time series. Statistical models
are useful to describe patterns of these series, such as temporal trends and seasonal fluc-
tuations. These models can be also used to predict future observations after observing
a series of longitudinal data, thus supplying information to aid in the surveillance and
management of events of public health interest.
Change-point models (Jensen and Lautkebohmert, 2007; Lee, 2010) have been in-

creasingly used in a broad spectrum of applications, such as in econometrics (Hackl,
2012), medicine (Ghosh and Vaida, 2007) and environmental studies (Achcar et al.,
2010; Achcar, Rodrigues and Tzintzun, 2011). These models are statistical tools used
in practical problems where a random variable indexed by time has modified their be-
haviour at one or more time instants. Thus, these models are useful when the interest of
the analyst lies in determining whether the observed time series is homogeneous over
the time interval. As an example, Achcar et al. (2008) considered a change-point anal-
ysis for the incidence of tuberculosis cases in New York City from 1970 to 2000, when
the number of cases of the disease presented three trends. In the first period of time, the
trend of declining incidence was probably associated with good control programs. In the
second period, there were increasing incidence rates, and in the third period there was a
new trend of declining rates. Modern Bayesian methods of inference by using Markov
Chain Monte Carlo (MCMC) techniques have been used to fit time series data in the
presence of one or more change-points (Achcar and Loibel, 1998; Barry and Hartigan,
1993; Carlin, Gelfand and Smith, 1992; Dey and Purkayastha, 1997; Lavielle and Lebar-
bier, 2001), including multiple change-point models where the number of change-points
is unknown (Chib, 1998; Fearnhead, 2006).
The present article introduces a single Bayesian model for change-point detection

including autoregressive terms to be applied to the monthly number of asthma medi-
cations dispensed by the public health services of Ribeirão Preto, Southeastern Brazil.
Climatic variables are included as independent variables.

2. Methods

2.1. Field of study and dataset

The present study is part of a larger research on dispensation of medications to treat
pulmonary diseases in the public health services of Ribeirão Preto, a city located in the
northwest region of the State of São Paulo, Brazil. Ribeirão Preto is ranked the eighth
largest city in the State of São Paulo, with about 600 thousand inhabitants (IBGE cen-
sus data, available from www.censo2010.ibge.gov.br/sinopse/). The city belongs to the
health coverage area of the XIII Regional Health Department of the Health Secretariat
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of the State of São Paulo, being considered a regional health care centre reference for
interventions of medium and high complexity and attending more than 1.2 million peo-
ple, of which approximately 62% depend exclusively on the Brazilian National Health
System (SUS) (Bittar, Mendes and Magalhães, 2011). The public healthcare network in
Ribeirão Preto is composed by municipal, state and philanthropic services, involving 36
pharmacies providing pharmaceutical care according to the National Drug Policy guide-
lines (GM Ordinance number 3916 of November 30th, 1998) and currently offering to
the population over 260 medications indicated for the treatment of various diseases,
including asthma.

Table 1: Monthly data on the number of dispensed medications (salbutamol sulfate tablets of 2 mg) in
Ribeirão Preto, Brazil, from February 1999 to December 2011.

Year Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.

1999 2,376 2,900 1,699 2,066 4,329 5,486 5,651 7,732 5,505 4,267 3,843
2000 6,855 7,809 7,659 6,386 6,822 8,297 5,936 8,255 6,171 7,119 4,980 7,523
2001 9,563 9,269 9,605 10,150 11,867 10,482 11,718 12,412 9,183 13,667 12,046 9,150
2002 10,641 11,975 10,651 6,089 13,843 15,336 16,418 15,401 12,518 12,960 11,295 13,100
2003 11,756 5,043 2,057 9,131 13,654 12,785 15,071 10,549 11,633 9,085 12,884 11,218
2004 10,477 12,671 18,303 17,445 15,606 15,011 19,448 17,124 15,132 13,218 17,054 14,596
2005 14,433 12,569 17,053 16,110 18,346 19,218 18,847 19,209 15,435 18,274 17,313 18,392
2006 13,411 12,675 18,597 16,258 20,357 20,457 16,339 18,552 16,910 20,617 19,634 23,567
2007 21,981 22,981 25,914 21,607 30,083 19,008 23,103 21,893 16,974 20,066 17,606 15,846
2008 18,134 18,578 18,306 17,982 21,032 19,222 19,274 15,841 13,864 14,600 13,431 12,865
2009 11,722 10,862 14,184 13,414 15,257 16,914 13,906 14,752 14,762 14,305 12,590 14,843
2010 11,876 12,284 14,468 13,505 13,765 11,929 4,313 10,475 11,644 11,837 9,949 10,040
2011 9,328 9,095 8,998 7,987 8,161 9,278 7,343 7,672 6,082 5,678 6,141 4,951

Data on the number of dispensed medications were provided by the HygiaWeb In-
formation System, a health information system which has been used by the Municipal
Health Secretariat of Ribeirão Preto since 1992. This system enables to record informa-
tion on health services in the entire municipal public healthcare network. In 1998, the
implementation of a medication management module in the HygiaWeb System enabled
the recording of data on dispensation of medications and pharmaceutical care. There-
fore, it has been possible to retrieve secondary information about the dispensation of
the main medications for asthma treatment since 1999, covering the whole city. For the
purposes of the present study, data on only one drug used to alleviate the symptoms of
asthma have been considered for developing the statistical model, namely, salbutamol
sulfate tablets of 2 mg. Full data on the number of dispensed medications, from Febru-
ary 1999 to December 2011, are listed in Table 1. In addition, data on temperature and
precipitation in the city of Ribeirão Preto were obtained from the Integrated Agromete-
orological Information Center of the Agronomic Institute (CIIAGRO, Centro Integrado
de Informações Agrometeorológicas do Instituto Agronômico).
The local Research Ethics Committee has approved the present study (CEP/CSE/

FMRP/USP, protocol number 453) and the permission to access and use the records from
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the HygiaWeb System was granted by the local representative of the Health Department
(document 248/11-GS RAS/ras).

2.2. Statistical model

Let yt be the number of dispensed medications at the month t, t = 1, . . . ,n, where n is
the number of months in the time series. The proposed model is given in a general form
by

yt = α+g1I[1,θ](t)+g2I(θ,n](t)+St+ εt ,

where

gk(t) = βk (t− θ)+
R∑
r=1

ψkr (xrt − xr)+
p∑
j=1

γk j (yt− j− y) , k = 1,2,

α is an intercept term, I{A}(t) denotes an indicator function such that I{A}(t) = 1 if
t ∈ {A}, and 0 otherwise, θ is the change-point to be estimated such that θ is an integer
number in the interval [1,n], x1t ,x2t , . . . ,xRt are observations of R covariates at the month
t, xr denotes the mean of xr1, . . . ,xrn, r = 1, . . . ,R, ψ1r and ψ2r are the effects of the
covariate xrt on yt before and after θ, respectively, y denotes the mean of y1,. . . ,yn, the
terms γ11, . . . ,γ1p,γ21, . . . ,γ2p, are autoregressive parameters of order p to be estimated
and the random error terms are represented by εt . In addition,

St = η1 sin

(
2πt
12

)
+η2 cos

(
2πt
12

)
is a monthly periodic function for estimating seasonal patterns, where η1 and η2 are
real numbers. By using this model, it is assumed that the terms εt , t = 1, . . . ,n, are
independent and follow the normal distribution with mean 0 and variance depending on
the change-point θ, or say,

εt ∼ N
(
0,σ21I[1,θ](t)+σ

2
2I(θ,n](t)

)
.

Thus, σ21 and σ
2
2 are the variances of εt before and after the change-point, respectively.

This model formulation corresponds to the following likelihood function:

f (y|θ,ξξξ) =
n

∏
t=1

(2πλt)
− 1
2 exp

[
−

n∑
t=1

(yt −μt)2
2λt

]
,

where
λt = σ21I[1,θ](t)+σ

2
2I(θ,n](t), (1)

μt = α+g1I[1,θ](t)+g2I(θ,n](t)+St , (2)
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y= (y1,y2, . . . ,yn)
T and ξξξ = (α,β1,β2,γ1,1, . . . ,γ1,p,γ2,1, . . . ,γ2,p,ψ1,1, . . . ,ψ1,R, ψ2,1, . . .,

ψ2,R,σ
2
1 ,σ

2
2 ,η1,η2)

T is the vector of parameters. By definition, f (y|θ,ξξξ) denotes the
joint probability density function of the sample Y = (Y1,Y2, . . . ,Yn). In the Bayesian
analysis, it is assumed that the parameters of the vector ξξξ and θ have distributions
based on previous knowledge (the prior distributions), which are updated by using the
data (represented by f (y|θ,ξξξ)) to produce the posterior distributions. This is formal-
ized by the Bayes’ theorem, given by f (θ,ξξξ|y) ∝ f (y|θ,ξξξ) p(θ,ξξξ), where p(θ,ξξξ) is
the joint prior distribution and f (θ,ξξξ|y) is the joint posterior distribution. The prior
distributions can be “non-informative”, with little effect on the posterior distribution.
Thus, the following prior distributions for the parameters of the vector ξξξ are consid-
ered: α ∼ N(0,c1), β1 ∼ N(0,c2), β2 ∼ N(0,c3), γ1, j ∼ N(0,c4, j), γ2, j ∼ N(0,c5, j),
j= 1, . . . , p, η1∼N(0,c6), η2∼N(0,c7),ψ1,r ∼N(0,c8,r), ψ2,r ∼N(0,c9,r), r= 1, . . . ,R,
σ21 ∼ IG(c10,c11) and σ22 ∼ IG(c12,c13), where c1, . . . ,c13 are known values for the
hyperparameters of the prior distributions, N(0,c) denotes a normal distribution with
mean 0 and variance c, and IG(h1,h2) denotes an inverse gamma distribution with mean
h2/(h1− 1) and variance h22/[(h1− 1)2(h1− 2)]. Large values of c1, . . . ,c13 yield non-
informative prior distributions for their respective parameters. It is further assumed prior
independence among these parameters. In addition, it is assumed a categorical prior dis-
tribution for the change-point θ such that the prior probabilities of the values 1,2, . . . ,n
are assumed to be equal to 1/n.

Alternatively, it can be considered that the terms εt follow a non-standardized Stu-
dent’s t-distribution with υ degrees of freedom, a location parameter μt , a scale pa-
rameter λt and variance λ2t υ (υ−2)−1 for υ > 2. In this case, the model formulation
corresponds to the following likelihood function:

f (y|θ,υ,ξξξ) =
n

∏
t=1

⎧⎨⎩ Γ
(
υ+1
2

)
Γ
(
υ
2

)
λt
√
πυ

[
1+

1
υ

(
yt −μt
λt

)2]−υ
2

⎫⎬⎭ ,

where Γ(·) is the gamma function, and λt and μt are given by (1) and (2), respectively.
For the Bayesian analysis, one can consider the same prior distributions assumed for the
previous model and a continuous uniform prior distribution for υ, or say, υ ∼U(2,cυ),
where cυ is a known hyperparameter (cυ > 2). In order to perform a brief sensitivity
analysis, we have also considered fixed values for υ.

A Bayesian Markov Chain Monte Carlo (MCMC) procedure using the Gibbs sam-
pler algorithm (Casella and George, 1992) was used to estimate the posterior distribu-
tions of the parameters of interest and variance components (Carlin and Louis, 1996).
The Gibbs sampler algorithm was run for 510,000 iterations and sampled in every 10th
simulation. To eliminate the effect of the initial values, the first 10,000 iterations were
discarded as a “burn-in-sample”. In this way, 50,000 final Gibbs samples were used
for inferences. The 95% credible intervals (95%CI) were obtained from the 2.5% and
97.5% percentiles of the posterior samples of the parameters. The 95% credible inter-
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vals are the Bayesian equivalent of the traditional 95% confidence intervals, expressing
the central 95% of the range of values that are credible for the respective estimated
parameter. Usual diagnostic methods were employed to check the convergence of the
MCMC calculations (Carlin and Louis, 1996). After the model fitting, the assumption of
independence between the successive random error terms εt was graphically verified by
plotting their respective autocorrelation and partial autocorrelation functions in relation
to different lags. The estimation was performed by using the MCMC algorithm imple-
mented in the freely available OpenBUGS software (Lunn et al., 2000). The OpenBUGS
code used for this analysis is given in the Appendix A.

2.3. Model specifications

In the absence of covariates, three different models were fitted to the data as described
below.

• Model 1: In this model, the autoregressive terms γ1,1, . . . ,γ1,p,γ2,1, . . . , γ2,p were
discarded, and consequently, gk = βk (t− θ), for k = 1,2. This model does not
consider the presence of covariates, nor the monthly periodic function St .

• Model 2: This model is similar to Model 1 but it considers the autoregressive
terms γ1,1, . . . ,γ1,p,γ2,1, . . . ,γ2,p.

• Model 3: This model is similar to Model 2 but it considers the monthly periodic
function St .

Models 1 to 3 were fitted based on the assumption that the residuals εt follow a
normal distribution or a Student’s t-distribution. In addition, Model 4 is defined as
follows:

• Model 4: This model is similar to Model 3, but it includes an independent vari-
able. The following variables were considered: average monthly temperature (oC),
maximum and minimum monthly temperature (oC) and average monthly precip-
itation (mm). Due to its highly skewed distribution, a log transformation was
applied to the measures of average monthly precipitation. These variables were
selected due to their known effects on the asthma admissions in various popula-
tions (Ivey, Simeon and Monteil, 2003; Chen, Xirasagar and Lin, 2006). Under
this formulation, four different models were fitted to the data, one for each inde-
pendent variable, thus avoiding problems of collinearity between variables.

2.4. Model selection

The deviance information criterion (DIC) is widely used for Bayesian model compar-
ison (Spiegelhalter et al., 2014). However, the proposed model is interpreted by the
OpenBUGS as a mixture model, and this software is not able to calculate the DIC value
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in this situation. Another criterion for model selection is derived from the conditional
predictive ordinate (CPO) statistics ( Gelfand, Dey and Chang, 1992). For the i-th ob-
servation, theCPOi is given by

f
(
Di|y[i]

)
=

∫
f (Di|Θ) f

(
Θ|D[i]

)
dΘ,

where Θ is the complete vector of parameters, Di is each instance of all data D , D[i] is
D without the current observation i and f (Θ|Di) is the posterior density of Θ givenD[i],
i = 1, . . . ,n. Thus, the CPO statistics expresses the posterior probability of observing
the value or set of values of Di when the model is fitted to all data exceptDi. A MCMC
approximation ofCPOi (Chen, Shao and Ibrahim, 2000) is given by

ĈPOi =

[
1
B

B∑
b=1

1
f (Di|Θb)

]−1

where B is the number of iterations during implementation of the MCMC procedure
after the burn-in period andΘb is the vector of the samples obtained at the b-th iteration.
Thus, approximate CPO statistics can be directly computed with OpenBUGS by defin-
ing nodes for f (Di|Θb)

−1. Assuming approximate normality, inverse values for ĈPOi

larger than 40 can be considered as possible outliers and higher than 70 as extreme
values (Ntzoufras, 2009). The log pseudo marginal likelihood (LPML) is a Bayesian
measure of fit or adequacy which is defined based on the CPO statistics (Geisser and
Eddy, 1979). For a given model, the LPML value is given by ̂LPML=

∑n
i=1 logĈPOi.

The larger is the value of LPML, the better is the fit of the model. The corresponding
pseudo Bayes’ factor (PBF) comparing models m and m′ is

PBFmm′ = exp
(
̂LPMLm− ̂LPMLm′

)
.

In addition, the discrepancy between the data and an estimation model can be mea-
sured by the sum of squared residuals (SSR) given by

SSR=
n∑
i=1

ε2i =
n∑
i=1

(yi− μ̂t)2 ,

where μ̂t is obtained by replacing the parameters in (2) by their respective estimates.
For fits of different models to a given dataset, a smaller SSR value indicates a better fit
to the data.
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Figure 1: Monthly number of dispensed medications (salbutamol capsule, 2mg) by the public health ser-
vices of Ribeirão Preto, Brazil, from February 1999 to December 2011.

3. Results

The graph in Figure 1 shows a time series of the number of monthly dispensations of
the salbutamol from February 1999 to December 2011. This graph gives evidence of the
presence of a change-point for the time series. It is observed an increase in the number
of dispensations of the medication at the beginning of the considered period and a great
reduction in March 2003, probably due to the short period when the drug was missing,
followed by a further increase in the number of dispensations, until May, 2007. There-
after, it is observed that the number of dispensed medications decreases until the end of
the period of observation. A great reduction in the number of dispensations was also
observed in July 2010. However, in the analysis of these data, only one change-point
in the time series will be considered. The reductions in the number of dispensations
observed in March 2003 and July 2010 will be treated as months with atypical numbers
of dispensed medications, instead of instants in which the trend behaviour of the series
has been modified.
In the Bayesian analysis, non-informative prior distributions were considered for all

parameters of the model. In this way, it was considered that c1 = c2 = c3 = c4, j = c5, j =
c6 = c7 = c8,r = c9,r = 106, j= 1, . . . , p, r = 1, . . . ,R, in the prior distributions for α, β1,
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β2, γ1, j, γ2, j, ψ1,r and ψ2,r, and c10 = c11 = c12 = c13 = 0.1 in the prior distributions for
σ21 and σ

2
2. In the case of the model with Student-t errors, it is also considered cυ = 50,

or say, υ ∼ U(2,50). The number of monthly dispensed medications was divided by
1,000 in order to facilitate the convergence of the computational algorithm.
Tables 2 and 3 show the results for the Models 1 to 3 obtained by using the Open-

BUGS software. The results in Table 2 consider that the residuals of the models follow a
normal distribution, while Table 3 shows results from models with residuals that follow
a Student’s t-distribution with υ degrees of freedom. In the case of the Models 2 and 3,
they were fitted considering one, two or more autoregressive orders, but it was observed
that models with order p equal to or greater 2 did not improve the goodness of fit. Thus,
we considered p= 1 in all the cases.
Table 2 shows that the results of Model 3 have the lowest SSR value and the highest

LPML value, suggesting that this model provides the best fit to the data among these
three models. The PBF value comparing the Models 3 and 2 is 6.05. In all the fitted
models, the estimates for β1 are positive and the estimates for β2 are negative, showing
that the number of dispensed medications is increasing over time until the change-point
θ is reached, but decreasing from this value. The 95% credible intervals for γ1,1 and
γ2,1 do not contain the value zero, evidencing the significance of the autoregressive
parameters of order p = 1. The results of Model 3 also show that the 95% credible
interval for η2 do not contain the value zero, suggesting the evidence of a yearly seasonal
pattern in the series.

Table 2: Results from the Bayesian change-point statistical models, with residuals following a normal
distribution.

Model 1 Model 2 Model 3

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 20.80 (20.01 , 21.59) 17.67 (16.18 , 19.13) 18.11 (16.61 , 19.58)
β1 0.166 (0.149 , 0.182) 0.094 (0.062 , 0.125) 0.104 (0.072 , 0.135)
β2 −0.268 (−0.297 , −0.240) −0.178 (0.230 , −0.127) −0.191 (−0.242 , −0.141)
θ 100.5 (99.0 , 103.0) 102.3 (100.0 , 107.0) 101.9 (100.0 , 107.0)
γ1,1 − − 0.444 (0.282 , 0.607) 0.401 (0.237 , 0.564)

γ2,1 − − 0.295 (0.099 , 0.500) 0.236 (0.041 , 0.439)

σ21 7.82 (5.88 , 10.36) 6.51 (4.87 , 8.65) 6.24 (4.64 , 8.29)

σ22 4.09 (2.73 , 6.16) 3.57 (2.32 , 5.53) 3.40 (2.22 , 5.22)

η1 − − − − 0.464 (−0.024 , 0.954)
η2 − − − − −0.585 (−1.107 , −0.068)

LPML −364.8 −354.7 −352.9
SSR 967.2 805.2 758.4
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Table 3: Results from the Bayesian change-point statistical models, with residuals following a Student’s
t-distribution with υ degrees of freedom.

Model 1 Model 2 Model 3

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 20.88 (20.11 , 21.64) 17.76 (16.26 , 19.19) 18.19 (16.75 , 19.57)
β1 0.166 (0.150 , 0.183) 0.096 (0.064 , 0.128) 0.104 (0.073 , 0.135)
β2 −0.263 (−0.292 , −0.235) −0.177 (−0.228 , −0.124) −0.190 (−0.237 , −0.141)
θ 99.9 (97.0 , 102.0) 101.9 (95.0 , 107.0) 102.0 (97.0 , 106.0)

υ (df) 11.1 (3.1 , 40.6) 13.2 (3.4 , 43.8) 9.2 (2.9 , 34.7)
γ1,1 − − 0.423 (0.258 , 0.590) 0.383 (0.220 , 0.543)

γ2,1 − − 0.303 (0.104 , 0.510) 0.244 (0.063 , 0.437)

σ21 5.40 (3.22 , 8.22) 4.90 (2.94 , 7.23) 4.35 (2.62 , 6.59)

σ22 3.11 (1.70 , 5.16) 2.68 (1.43 , 4.56) 2.16 (1.13 , 3.76)

σ21υ (υ−2)−1 7.85 (5.27 , 12.29) 6.60 (4.53 , 9.82) 6.69 (4.38 , 10.70)

σ22υ (υ−2)−1 4.55 (2.65 , 8.00) 3.63 (2.07 , 6.49) 3.35 (1.81 , 6.20)

η1 − − − − 0.510 (0.062 , 0.951)
η2 − − − − −0.631 (−1.091 , −0.161)

LPML −472.8 −442.8 −465.4
SSR 968.0 808.8 766.9

The results in Table 3 indicate that the estimates obtained from the models with
residuals following a Student’s t-distribution are close to those found when considering
a normal distribution (Table 2). The graphs in Figure 2 illustrate the simulated poste-
rior Gibbs samples for the change-point in each of the three assumed models. In addi-
tion, plots of the autocorrelation function (ACF) and the partial autocorrelation function
(PACF) of the residuals of the Models 1 to 3 are shown in Appendix B. The ACF and
PACF of residuals of the Models 2 and 3 at different lag times were not significantly
different from zero. From equation (1), the variances of εt before and after the change-
point are given by σ21υ (υ−2)−1 and σ22υ (υ−2)−1, respectively. Estimators for these
quantities are also presented in Table 3, and we can note that they are very similar to
those for σ21 and σ

2
2 obtained from the fit of the models based on the normal distribution

(Table 2). Alternatively, we also considered models based on the Student’s t-distribution
with fixed values for υ ranging from 2 to 50. For each possible choice of υ, we obtained
the correspondent values for LPML and SSR considering the Models 1 to 3 (results not
shown in the tables). We did not find important differences when compared the LPML
and SSR values obtained from models with fixed values for υ ranging from 2 to 50.
However, we noted a better fit to the data (i.e. higher LPML values and lower SSR val-
ues) for values relatively higher for υ, such as υ = 100 or υ = 200, thus suggesting that
models based on the normal distribution can be more adequate for the monthly number
of dispensed medications.
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Figure 2: Plots of the simulated posterior Gibbs samples for the change-point in each of the three assumed
models.

The upper panel of the Figure 3 shows the observed number of dispensed medica-
tions and the predicted values obtained from Model 1. Considering the results from the
Model 1 with residuals that follow a normal distribution, the predicted values linearly
increase up to the change-point θ estimated by t = 100.5 (Table 2), corresponding to the
month of May, 2007, with a 95% credible interval ranging from April 2007 to August
2007. After this change-point, the predicted values linearly decrease with the coefficient
β2 estimated by -0.268. Considering the Model 1 with residuals that follow a Student’s
t-distribution, the change-point θ is estimated by t = 99.9 (Table 3). However, auto-
correlation plots (not shown) for the residuals from Model 1 evidence significant serial
correlation between successive values of εt , that is, the assumption of independence
between the residuals was not attained. Therefore, Model 1 is useful to describe the
linear trend of the time series before and after the change-point, but inferences for the
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Figure 3: Comparison between the observed time series and the time series estimated from the Models 1
to 3, with residuals following a normal distribution and a Student’s t-distribution with υ degrees of freedom.
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parameters of the model can be harmed from this lack of independence for the residuals.
Results from the fit of the Models 2 and 3, considering autoregressive terms of order 1,
are also shown in Tables 2 and 3 and visualized in the Figure 3. Considering the fit
with residuals that follow a normal distribution, the change-point was now estimated
by t = 102.3 (Table 2), corresponding to the month of July, 2007, with a 95% credible
interval ranging fromMay, 2007, to November, 2007. Autocorrelation plots (not shown)
for the residuals from Models 2 and 3 did not evidence significant serial correlation
between successive values of εt , indicating a good fit of the model to the data. The
central and lower panels of the Figure 3 show the predicted values obtained fromModels
2 and 3, respectively. In both models, the estimate for the variance σ21 was greater
than the estimate for σ22, suggesting a higher dispersion of the number of dispensed
medications before the change-point.
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Figure 4: Comparison between inverse values for CPO obtained from the Model 3 considering residuals
following a normal distribution and a Student’s t-distribution with υ degrees of freedom. The horizontal
dashed lines pass through the values 40 and 70, identifying possible outliers and extreme values, respec-
tively.

Examination of a plot of inverse values for CPO values can identify possible outliers
in the model fitting, thus allowing for comparisons between models. Considering the
results from the Model 3, the graph in Figure 4 corresponds to the plot of inverse values
for CPO, where the two horizontal dashed lines in the figure pass through the values 40
and 70, identifying possible outliers and extreme values, respectively (see Subsection
2.4). This graph compares the inverse values for CPO obtained from the Model 3 con-
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sidering residuals following a normal distribution and a Student’s t-distribution with υ
degrees of freedom. We can note that the number of the extreme values is greater when
considering the model with residuals following a Student’s t-distribution, thus reinforc-
ing that the model with errors following a normal distribution is the model that best fits
to the data.
We also fitted alternative models that do not take into account the presence of a

change-point, but consider the presence of autoregressive effects of high order. How-
ever, we observed that these models did not fit well to the data. For example, for models
with residuals following a normal distribution and autoregressive effects of orders 4 and
5, we obtained LPML values given by−357.9 and−354.9, respectively, and SSR values
given by 891.2 and 866.4, respectively. In addition, for models with residuals follow-
ing a Student’s t-distribution and autoregressive effects of orders 4 and 5, we obtained
LPML values given by−436.7 and−435.4, respectively, and SSR values given by 892.6
and 868.1, respectively.

Table 4: Results from regression models that considers the monthly maximum and minimum absolute tem-
peratures as independent variables.

Maximum absolute temperature
(oC)

Minimum absolute temperature
(oC)

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 18.41 (16.85 , 19.94) 18.1 (16.58 , 19.58)
β1 0.110 (0.076 , 0.142) 0.103 (0.071 , 0.135)
β2 −0.199 (−0.254 , −0.147) −0.191 (−0.243 , −0.140)
θ 101.4 (100.0 , 106.0) 102.0 (100.0 , 107.0)
γ1,1 0.384 (0.218 , 0.548) 0.403 (0.238 , 0.566)

γ2,1 0.202 (0.005 , 0.413) 0.241 (0.042 , 0.447)

σ21 6.13 (4.53 , 8.19) 6.34 (4.71 , 8.47)

σ22 3.51 (2.29 , 5.37) 3.42 (2.22 , 5.29)

η1 0.164 (−0.497 , 0.814) 0.453 (−0.044 , 0.944)
η2 −0.413 (−0.985 , 0.164) −0.433 (−1.42 , 0.551)
ψ1 −0.195 (−0.470 , 0.084) −0.025 (−0.196 , 0.145)
ψ2 −0.132 (−0.436 , 0.174) −0.030 (−0.207 , 0.147)

LPML −353.8 −354.9
SSR 740.6 759.5

Tables 4 and 5 show the results from regression models (Model 4) in which monthly
maximum and minimum absolute temperatures, average monthly temperature and
monthly average precipitation are independent variables. These models assume that
the residuals follow a normal distribution. For all these independent variables, we can
observe that the 95% credible intervals for the parameters ψ1 and ψ2 include the value
zero. This implies that we do not have evidence that these climatic variables are as-
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Table 5: Results from regression models that considers the monthly average temperature and precipitation
as independent variables.

Monthly average temperature
(oC)

Precipitation
(log mm)

Parameter
Bayesian
estimate

95% credible
interval

Bayesian
estimate

95% credible
interval

α 18.14 (16.62 , 19.62) 18.1 (16.598 , 19.58)
β1 0.104 (0.071 , 0.136) 0.103 (0.071 , 0.135)
β2 −0.193 (−0.245 , −0.142) −0.192 (−0.245 , −0.140)
θ 101.8 (100.0 , 107.0) 102.0 (100.0 , 107.0)
γ1,1 0.401 (0.236 , 0.563) 0.403 (0.239 , 0.566)

γ2,1 0.235 (0.038 , 0.438) 0.234 (0.032 , 0.442)

σ21 6.26 (4.62 , 8.41) 6.26 (4.66 , 8.33)

σ22 3.41 (2.22 , 5.28) 3.50 (2.26 , 5.48)

η1 0.321 (−0.223 , 0.863) 0.462 (−0.035 , 0.957)
η2 −0.142 (−1.053 , 0.758) −0.718 (−1.391 , −0.035)
ψ1 −0.204 (−0.551 , 0.146) 0.061 (−0.164 , 0.287)
ψ2 −0.164 (−0.517 , 0.191) 0.054 (−0.185 , 0.296)

LPML −354.1 −354.8
SSR 751.1 755.9

sociated with the monthly number of dispensed medications. These results can be still
observed even in similar models that not include the seasonal component St . Plots of the
autocorrelation function (ACF) and the partial autocorrelation function (PACF) of the
residuals from these models are shown in Appendix B (Figure 7). The ACF and PACF
of residuals at different lag times were not significantly different from zero.

4. Discussion

Statistical methods of time series analysis are widely used in public health studies
(Zeger, Irizarry and Peng, 2006; Jornet-Sanz et al., 2017). These methods are use-
ful for detecting outbreaks, monitoring the occurrence of a disease at a regional level,
analysing epidemiological surveillance data, describing the seasonality of infectious dis-
eases, examining how climate change can affect the disease occurrence over time, and
predicting future scenarios of an event of interest. In the present article, we introduced
a Bayesian approach that can be used to estimate a change-point model with autore-
gressive terms. In the context of the monthly number of dispensed asthma medications,
this model is useful to provide a better understanding of the corresponding time series,
such as seasonal patterns, dependence on previous times and possible association with
climatic variables.
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Alternatively to the method presented here, a maximum likelihood estimate of the
change-point θ can be obtained by using the profile likelihood approach. In this case,
the profile likelihood �p(θ) for θ is defined by maximizing the likelihood function with
respect to all the other parameters in the model for a range of values for θ over which
the profile likelihood is to be evaluated. Thus, the maximum likelihood estimate for the
change-point is

θ̂ML = argθmax�p(θ) = argθmax
n∑
t=1

ln f (yt |θ,ξ̂ξξML),

where ξ̂ξξML is the vector of maximum likelihood estimates for the other parameters as-
sociated with the model. Although it is possible to implement a computer algorithm
in order to find the maximum likelihood estimate for θ, presentation of this analysis is
out of the scope of the present paper. We opted for the use of Bayesian methods, that
make it easy to incorporate prior knowledge about the change-point value. In addition,
Bayesian estimation is facilitated using the OpenBUGS software, that only requires the
specification of the distribution for the data and the prior distributions for the parameters.
As previously mentioned, the present statistical model was developed using a time

series of the dispensation of salbutamol sulfate tablets 2 mg. Currently, this presentation
form of salbutamol sulfate is no longer considered the most appropriate because it is
associated with a higher number of side effects when compared to other forms, such as
the oral spray (Sociedade Brasileira de Pneumologia e Tisiologia, 2012). Salbutamol
sulfate is also indicated for the treatment of other diseases such as chronic obstructive
pulmonary disease (COPD), preferably via inhalation. This drug can still be used in
some other situations, such as inhibition of uncomplicated premature labor in the last
gestational trimester, in which oral administration is the preferable choice (Motazedian
et al., 2010).
The graphs in Figure 2 shows that the behavior of the time series for the number

of monthly dispensations of the salbutamol sulfate tablets of 2 mg from 1999 to 2011
is interpreted in terms of the presence of a change-point. The Brazilian National Drug
Policy, introduced in October 30th 1998, established new guidelines for pharmaceutical
care in the public health by defining, among other things, a list of essential medications
according to the most common health problems reported in the population. Thereafter,
and with the decentralization process of drugs distribution for the states and cities (Or-
dinance GM 176 of March 8th, 1999), it was possible to expand the supply of medica-
tions in public health network (Botega and Santos, 2007), which explains the increased
number of dispensations of the medication at beginning of year 1999 (Figure 3). Fluc-
tuations in the monthly number of medication dispensed are observed in the Figure 2),
with some seasonality. It was hypothesised that local maximum points in the time series
are coincident with colder and drier periods, when the airway infections and episodes of
bronchospasm occur more frequently, creating a greater demand for the use of the med-
ication in specific periods of the year (Thomazelli et al., 2007; Peterson et al., 2012).
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However, the regression models used in this study do not show a significant association
between climatic variables and the number of dispensed medication.
Figure 1 shows a great reduction in the dispensation of salbutamol by March 2003

and July 2010, suggesting a period of discontinuity in the supply of the medication.
Despite the good results of the decentralization policy of the pharmaceutical care, the
provision of essential medications and medicines in some special situations (drugs be-
ing part of specialized pharmaceutical care) depended largely on efforts of the Brazilian
National Health System managers (Botega and Santos, 2007), which leads to unavail-
ability of the medicament to the population. The reduction in March 2003 was followed
by a further increase in the number of dispensations, which as observed until the month
of May, 2007. In 2004, as part of the National Policy on Integral Health Care of People
with Respiratory Diseases, the cities with primary healthcare services began receiving
beclomethasone 250 mcg oral spray, beclomethasone 50 mcg nasal spray and salbuta-
mol 100 mcg oral spray from the Brazilian Ministry of Health for treatment of both
asthma and allergic rhinitis, and given that asthma and allergic rhinitis often co-exist in
the same individual, the control of one of these diseases favors the control of another,
thus contributing to the implementation of better health practices for asthma. At that
moment, aminophylline 100mg tablets were being provided by National Health Sys-
tem and now they are no longer supplied, being replaced by salbutamol spray (Botega
and Santos, 2007). Figure 2 shows a further reduction in the number of dispensations
of salbutamol sulfate from 2007 to the end of 2011, characterizing a change-point that
probably reflects the improvement of healthcare provided to patients with asthma when
the new medications were introduced.
As a final consideration, the article provides suggestions for future investigations:

(a) Possible extensions of the model in order to accommodate more than one change-
point should be considered in future research works.

(b) In the proposedmodel, we assumed constant variances before and after the change-
point. Future works can assume the effect of covariates on these variances, thus
improving the fit of the proposed model.

(c) The actual numbers for asthmamedication are huge, as discussed in this paper, and
therefore the model assumptions are very reasonable. Extensions of the proposed
model for low count data are essential for the analysis of a large broad of other
epidemiological time series.

(d) By considering the data shown in Table 1, the change-point can be seen in the
central part of the time series. Studies with simulated data can be useful to verify
the performance of the proposed model in estimating the change-point when the
period after change is short (or say, when there are few observations after the
change).
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Appendix A

The OpenBugs code used to specify the statistical model in its general form and with
residuals following a normal distribution is given below. Observations of the indepen-
dent variable are denoted by x[t]. In addition, cp denotes the change-point value and N
is the length of the time series.

model
{

for(t in 1:N) {

y[t] ∼ dnorm(mu[t], tau[J[t]])
mu[t] <- alpha + beta[J[t]]* (t-cp)
+ gama[J[t]]* (w[t] - mean(w[])) + St[t]
+ phi[J[t]]*(x[t] - mean(x[]))

k[t] <- step(t - cp - 0.5)
J[t] <- 1 + k[t]
punif[t] <- 1/N
St[t] <- eta[1]*sin(2*pi*t/12) + eta[2]*cos(2*pi*t/12)
# Likelihood function
L[t] <- 1/sqrt(2*pi*(pow(sigma[1],1-k[t])
* pow(sigma[2],k[t])))
* exp(-(y[t]-mu[t])*(y[t]-mu[t])
/(2*(pow(sigma[1],1-k[t]) * pow(sigma[2],k[t]))))

# Inverse values for CPO
PO[t] <- 1/L[t]
}

for(i in 2:N) { w[i] <- y[i-1] }

w[1] <- y[1]
pi <- 3.14159265359
# Prior distributions
prec <- 1.0E-6
alpha ∼ dnorm(0.0, prec)
cp ∼ dcat(punif[])
for(j in 1:2) {

beta[j] ∼ dnorm(0.0, prec)
eta[j] ∼ dnorm(0.0, prec)
gama[j] ∼ dnorm(0.0, prec)
phi[j] ∼ dnorm(0.0, prec)
tau[j] ∼ dgamma(0.1,0.1)
sigma[j] <- 1/tau[j]

}}
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Appendix B

Figures 5 and 6 show autocorrelation functions (ACF) and partial autocorrelation func-
tions (PACF) of the residuals of the Models 1, 2 and 3 based on the normal distribution
(Figure 5) and Student’s t-distribution (Figure 6). Dashed horizontal lines correspond
to the significance boundaries for the non-zero terms. By comparing the plots in Fig-
ures 5 and 6, we can observe that the ACF and PACF functions from the models with
residuals based on normal and Student’s t-distributions are quite close one another. The
Figures show that there was no significant autocorrelation between residuals at different
lag times for the Models 2 and 3.
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Figure 5: Autocorrelation function (ACF) and partial ACF (PACF) plots for the residuals considering the
Models 1, 2 and 3 based on the normal distribution. In each plot, two horizontal dashed lines denote two
standard error limits of sample autocorrelation function.
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Figure 6: Autocorrelation function (ACF) and partial ACF (PACF) plots for the residuals considering the
Models 1, 2 and 3 based on the Student’s t-distribution. In each plot, two horizontal dashed lines denote
two standard error limits of sample autocorrelation function.

Figure 7 shows ACF and PACF of the residuals of the Model 4, based on the normal
distribution and including the climatic variables as independent variables. The plots
show that there was no significant autocorrelation between residuals at different lag
times.
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Figure 7: Autocorrelation function (ACF) and partial ACF (PACF) plots for the residuals considering the
Model 4 based on the normal distribution and the climatic variables included as independent variables. In
each plot, two horizontal dashed lines denote two standard error limits of sample autocorrelation function.
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