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Abstract 

 

Production plants used in modern process industry must produce products that meet stringent 
environmental, quality and profitability constraints. In such integrated plants, non-linearity and 
strong process dynamic interactions among process units complicate root-cause diagnosis of 
plant-wide disturbances because disturbances may propagate to units at some distance  away 
from the primary source of the upset. Similarly, implemented advanced process control 
strategies, backup and recovery systems, use of recycle streams and heat integration may 
hamper detection and diagnostic efforts. 
 
It is important to track down the root-cause of a plant-wide disturbance because once 
corrective action is taken at the source, secondary propagated effects can be quickly eliminated 
with minimum effort and reduced down time with the resultant positive impact on process 
efficiency, productivity and profitability. 
 
In order to diagnose the root-cause of disturbances that manifest plant-wide, it is crucial to 
incorporate and utilize knowledge about the overall process topology or interrelated physical 
structure of the plant, such as is contained  in Piping and Instrumentation Diagrams (P&IDs). 
Traditionally, process control engineers have intuitively referred to the physical structure of 
the plant by visual inspection and manual tracing of fault propagation paths within the process 
structures, such as the process drawings on printed P&IDs, in order to make logical 
conclusions based on the results from data-driven analysis. This manual approach, however, is 
prone to various sources of errors and can quickly become complicated in real processes.  
 
The aim of this thesis, therefore, is to establish innovative techniques for the electronic 
capture and manipulation of process schematic information from large plants such as 
refineries in order to provide an automated means of diagnosing plant-wide performance 
problems. This report also describes the design and implementation of a computer application 
program that integrates: (i) process connectivity and directionality information from intelligent 
P&IDs (ii) results from data-driven cause-and-effect analysis of process measurements and (iii) 
process know-how to aid process control engineers and plant operators gain process insight. 
 
This work explored process intelligent P&IDs, created with AVEVA® P&ID, a Computer 
Aided Design (CAD) tool, and exported as an ISO 15926 compliant platform and vendor 
independent text-based XML description of the plant. The XML output was processed by a 
software tool developed in Microsoft® .NET environment in this research project to 
computationally generate connectivity matrix that shows plant items and their connections. 
The connectivity matrix produced can be exported to Excel® spreadsheet application as a basis 
for other application and has served as precursor to other research work. The final version of 
the developed software tool links statistical results of cause-and-effect analysis of process data 
with the connectivity matrix to simplify and gain insights into the cause and effect analysis 
using the connectivity information. Process knowhow and understanding is incorporated to 
generate logical conclusions. 
 
The thesis presents a case study in an atmospheric crude heating unit as an illustrative example 
to drive home key concepts and also describes an industrial case study involving refinery 
operations. In the industrial case study, in addition to confirming the root-cause candidate, the 
developed software tool was set the task to determine the physical sequence of fault 
propagation path within the plant.  
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This was then compared with the hypothesis about disturbance propagation sequence 
generated by pure data-driven method. The results show a high degree of overlap which helps 
to validate statistical data-driven technique and easily identify any spurious results from the 
data-driven multivariable analysis. This significantly increase control engineers confidence in 
data-driven method being used for root-cause diagnosis. 
 
The thesis concludes with a discussion of the approach and presents ideas for further 
development of the methods. 
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1 Introduction  

 
 
This thesis presents findings from the research conducted into establishing innovative ways to 

capture and manipulate information from a process schematic in order to give an automated 

means of diagnosing plant-wide performance problems and performing process cause and 

effect analysis. The core objectives of the research work presented were to: 

 

 Automate the process of capturing electronic connectivity information in large plants 

such as petroleum refineries. 

 Manipulate connectivity information computationally to generate the connectivity 

matrix. 

 Link connectivity information with results from data-driven cause-and-effect analysis 

of the process measurements. 

 Incorporate process know-how to draw logical conclusions about the causes of 

disturbances. 

 Produce a fully documented and tested software tool with good graphical user 

interface to demonstrate practical application of research findings. The software tool 

is a key deliverable required by the project sponsor. 

 Validate research outputs with case studies. 

 

Connectivity information refers to a specification of items in the plant and the connections 

between them in the form that can be manipulated algorithmically. An example of process 

know-how is the existence and mechanism of the destabilization that heat integration can have 

on a process. According to Thornhill & Horch (2007), a plant-wide process diagnosis 

approach implies that the distribution  of a disturbance is mapped out across the plant, and 

the location and nature of the cause of the disturbance are determined with a high probability 

of   being right the first time. Oscillations in process variables are a common form of plant-

wide disturbance (Choudhury, et al., 2008). 

 

The remaining sections of Chapter one are organized as follows. Section 1.1 introduces the 

problem addressed in the thesis. It provides background information necessary for the 
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understanding of the origin and nature of the problem. Section 1.2 discusses the motivation 

behind the research work while section 1.3 enumerates specific outputs and contributions 

from the research work. Sections 1.4 and 1.5 discuss the research scope and the approach 

adopted to accomplish the research objectives. Section 1.6 provides a roadmap for the 

remaining part of the thesis. The chapter ends with a summary of the material discussed. 

 

1.1 Background to the Problem 

 

One of the fundamental objectives of process control is to transfer variability away from key 

process variables to less critical variables where such variability can be accommodated such as 

a buffer tank (Luyben, et al., 1999). However, due to the high level of interactions among plant 

units and the highly-coupled design nature of modern chemical process plants optimised to 

utilise recycle streams, heat integration and operate with reduced inventory, disturbances, such 

as oscillations, originating from a localized source simply propagate and manifest in other 

units within the plant as secondary upsets (Thornhill and Horch, 2007). Academic and 

industrial solutions have focused mostly on an individual control loop or equipment unit. 

 

1.1.1 Single-Input Single-Output (SISO) Process Unit Control 
Strategy 

 

The illustrations presented in this section are based on or taken from the data-driven root-

cause diagnosis work reported by Thornhill, et al., (2003). Using data-driven analysis and 

knowledge about the process structure, the authors found a sticking valve as the root-cause of 

the plant-wide oscillations. Figure 1 is a SISO process unit taken from the process in Figure 2. 

When considered as an isolated unit, any deviation (variability) from the decanter’s fluid level 

and its set point (reference) will be corrected by the level controller LC2 by adjusting the 

control valve. The plots on the right hand side of Figure 1 show the controller output, LC2op 

and the proxy flow measurement through the valve. The plots show that both LC2op and 

flow measurements exhibit oscillatory behaviour.  
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Figure 1: Level control in an isolated single-input single-output process unit. Adapted from 
Thornhill, et al.,  (2003) 

 
However, since the decanter unit is an integral part of the overall process plant, actions taken 

by LC2 in order to maintain the correct fluid level in the decanter do propagate and affect 

other units within the plant as evidenced by process variables time trends in Figure 3. The 

locations of the disturbed tags are identified as black dots placed by hand in Figure 2. A tag is 

the name given to a measurement of calculated variable (such as controller output) that is 

recorded in the control system. The SISO decanter unit shown in Figure 1 is marked with a 

red hexagon on Figure 2. 

 

Research and development in techniques for diagnosing and improving SISO control loop 

performance assessment and benchmarking is mature and well established in process 

industries (Harris, et al., 1999; Jelali, 2006; Qin, 1998; Yu, et al., 2010). This control and 

performance assessment mechanisms considers individual control loop and thus assumes that 

the units downstream of the unit under control remain unaffected by the controller action.  
 

1.1.2 Plant-Wide Approach to Disturbance Detection and Diagnosis 

 

Thornhill, et al., (2003) analysed routine data of process in Figure 2 and found LC2 (tag 22) as 

the root  cause of the plant-wide disturbance. By plotting the valve input in LC2 control loop 

and the proxy flow F13 (tag 29) through the valve, the authors found LC2 control loop valve 

to be sticking, causing persistent limit cycle oscillation across the plant. Knowledge about the 

process layout was utilized in reaching the conclusion that tag 29 marked with a green 

hexagon in Figure 2 is a proxy measurement for the flow through tag 22 marked with a purple 

hexagon in Figure 2.  The time trends of measured process tags are shown in Figure 3. 
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Figure 2: Process schematic showing distributed plant-wide disturbances as a result valve 
stiction in tag 22 (Thornhill, et al., 2003). 

 
The time trends of the process measurements in Figure 3 show that other tags are oscillating 

as well. The challenge is to verify that there is a mechanism for the oscillation to propagate 

plant-wide from the suspected root-cause candidate suggested by data-driven root-cause 

diagnosis LC2 (tag 22) and affect other process variables as indicated in the data analysis and 

time trends. The root-cause diagnosis procedure is not complete until a feasible mechanism of 

oscillation propagation to all the tags suffering from secondary oscillations is explained 

(Thornhill, et al., 2003). The knowledge about process fluid flow path that eventually led to a 

decision about proxy measurement was gathered by manual inspection of the process 

schematic. For large processes, this analysis can quickly become very complicated and 

challenging to perform manually. Thus an automated approach would be much more suitable 

and desirable. 

 

The interconnectivity and highly coupled nature of process plants means a localized process 

disturbance inevitably become a plant-wide problem due to the mechanisms of cause-and-

effect and fault propagation along process fluid flow e.g. in recycle streams and control signals 

lines.  
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Figure 3: Time trends of process variables of the process described by Thornhill, et al., 
(2003). The plots show a plant with a troublesome plant-wide oscillation. 

 
For example, Figure 4 shows two possible propagation paths from the decanter labelled ‘A’. 

The path in red colour shows the propagation sequence from the suspected root-cause tag 22. 
 
Uneven flow through the control valve of LC2 would propagate and affect variables along the 

red path, for example tag 29 and some other variables through recycle streams. The path 

coloured blue indicates another possible independent propagation path from the decanter.  
 
 

- 

Figure 4: Possible disturbance propagation paths (Yim, et al., 2006) 
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The existence and confirmation of propagation paths among disturbed variables help narrow 

down some of the hypothesis generated by the data-driven root-cause analysis. The conclusion 

from the illustrative example above from Thornhill, et al., (2003) is that knowledge about 

process schematic is needed to complement data-driven analysis in order to complete the 

diagnosis.  

 

1.2 Motivation 

 

One of the key benefits of isolating root-causes of process upsets such as oscillations that 

manifest plant-wide is that it focuses maintenance efforts on the appropriate process 

equipment or control loop that needs it and avoids fire fighting or trial and error approaches 

(Thornhill, et al., 2003). This subsection discusses the motivation behind the research project. 

 

1.2.1  Overview 

 

As shown in section 1.1, a purely data-driven technique for plant-wide root-cause diagnosis is 

incomplete without the information on the overall structural and connectivity information of 

the process under consideration. In order to complete the diagnosis in the illustrative example 

above, information about the process structure and connectivity was manually combined with 

the data-driven result, for example in choosing a proxy measurement point for the fluid flow 

through LC2 valve.  

 

Traditionally, process control engineers referred to the physical layout of a plant by reading 

static/printed process schematics, tracing possible causes to effects. However, recently, novel 

ways of capturing pertinent information about process connectivity with directionality 

information have been devised and developed (Fedai and Drath, 2005; Laud, 2011). The 

techniques prescribed and developed allow information about the connections and directions 

among various process plant items to be captured in an electronic format amenable to 

manipulation algorithmically in a computer program. 

 

As originally pointed out by (Mohindra and Clark, 1993), an automated means of process 

diagnosis is appealing because an automatic diagnostic system delivers consistent and reliable 

performance in the face of complexity. The process models and reasoning methods are 
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explicitly known so that systematic analysis can be used to find and correct malfunctions.  

Since then, many other authors have commented on the subject including (Kankar, et al., 2011; 

Nandi, et al., 2005; Thornhill, et al., 2003; Thornhill and Horch, 2007; ). Equipping process 

plant operators and control engineers with tools that will automate and facilitate this manual 

process of path tracing will save considerable human effort and equipment downtime. As 

highlighted by  Nimmo,  (1995), the U.S. economy is losing at least $20B annually from 

preventable losses from unexpected process disruptions. Automating process diagnosis using 

connectivity information is at the core of the research reported in this thesis. 

 

The ability of process plant operators and control engineers to make quick and correct 

decisions in identifying and isolating root-cause(s) of a plant-wide disturbance will save 

considerable human efforts and equipment downtime. As highlighted by Pinotti, et al., (2008); 

Li, et al., (2007) and Cochran, et al., (2011), the time saved translates directly to economic gains. 

Edwards and Whitaker (2007) reported that more than eighty percent of network downtime is 

spent looking for root-causes of network problems, while less than twenty percent is spent 

actually fixing them. The findings highlight the attendant economic implications associated 

with effective root-cause diagnosis 

 

Connectivity information from a process schematic combined with data-driven techniques has 

been successfully demonstrated and utilised in diagnostic applications (Scherf, 2006; Yim, et 

al., 2006). Thambirajah (2009) described a parser application that extracts plant items and 

connectivity information from process schematics using the computer aided engineering 

exchange (CAEX) standard. The tool was able to find physical propagation paths between two 

chosen plant elements.  This thesis built upon and extended these three previous works using 

ISO15926 standard and incorporated process know-how on an industrial scale.  

 

The approach is to capture connectivity and directionality information derived from process 

schematic such as P&ID. Such information will provide useful insights into possible 

disturbance propagation paths and direction. The connectivity and directionality information 

combined with results from signal analysis tools prune down spurious statistical correlations 

among plant variables (hypothesis) suggested by data-driven tools alone.  

 

One of the major challenges is to capture connectivity and directionality information 

automatically from available sources such as P&ID. There is neither de facto nor de jure standard 

for representing process information across the process industry even not among sites within 
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the same organisation. For example, various symbols and standards, such as the ISA-5.1-1984 

(R1992) as well as proprietary industry standards are used for P&ID drafting. There is also the 

problem of dealing with legacy systems. 

 

This thesis describes innovative techniques for enhancing data-driven root-cause diagnosis of 

disturbances in large chemical processing plants such as a refinery using connectivity and 

directionality information such as contained in process intelligent piping and instrumentation 

diagrams (iP&ID). An iP&ID carries extra information about the drawing entities in a 

database so that such additional information can be extracted and exported.  iP&IDs are 

discussed further in Section 1.2.4 and Section 3.2 of the thesis. 

 

1.2.2 Economic Implication 

 

One way of identifying the potential benefits of detection and elimination of disturbances 

such as oscillations through improved process control and monitoring strategy is to examine 

the decreased product variability resulting from the application of process control strategy 

(Gunther, et al., 2007). However, many of the developed and implemented approaches at 

present such as minimum variance and advanced controller tuning are based on individual 

control loop and are localised. As pointed out Section 1.1, the propagated effects are often not 

addressed.  

 

To illustrate how a localised detection and diagnosis of process upset such as oscillation can 

add benefit to the process, consider Figure 5 (Kinney, 2005) which shows a typical pattern of 

product variability over time for a process unit. The multiplying effect of the economic 

implication in a plant-wide disturbance situation will become obvious at the end of this 

illustration.  

 

As shown in Figure 5, high variability in product quality on the left hand side of the graph 

prevents the plant from being operated at optimal set point. The limit represents a hard 

constraint that should not be violated, such as product specification or unacceptable impurity 

level. Typically, product profitability is inversely proportional to variability in process variables 

of interest.  
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Kinney (2005) found process interaction due to product recycle and energy integration 

responsible for the high variability. The propagated secondary effects can be felt in control 

loops downstream. Halfway through the graph at about time 1000, the source of plant-wide 

process interaction was detected and corrective action taken. The variability in product quality 

is drastically reduced which allows the plant to be operated close to specification limit, thus 

improving process efficiency.  The set point (blue line) is raised closer to the specification limit 

on the right hand side of the graph with the corresponding decrease in energy usage (green 

line), thus minimizing production cost and  maximizing process profitability. 

 

 

Figure 5: Process optimization by detecting the source of process interaction and taking 
corrective action. High oscillation on the left hand side results in process inefficiencies. 
Reduced variability on the right hand side leads to optimal performance, reduced energy 
usage and thus higher profitability. Adapted from Kinney (2005) 

 
The product quality specification in this drying process case is the moisture content of the 

product which is set at 14% maximum represented by the dotted line. To avoid violating this 

limit, the set point (blue line) must be lower than the specification limit so that the typical 

variation in moisture content does not violate this limit i.e. exceed 14%. With high variability, 

much of the product is over-dried (moisture content much less than the specified 14%) which 

ultimately results in high energy consumption. However, with reduced variability on the right 

hand side of the graph, the plant can be operated at higher set point close enough below the 
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specification limit without violating set constraints. Fuel consumption (fuel flow) is reduced 

resulting in energy savings and of course, money.  

 

When product quality specification, i.e. moisture content in this example, is less than 14% 

energy is wasted to produce unwarranted over-dried product while product with moisture 

content higher that 14% is off specification and must be either recycled or re-blended to meet 

specification limit. This process of reproducing products of poor quality has production 

overheads associated with it. The illustrated drying process can be applied to other processes 

where process variables oscillate. Minimization or elimination of process variability generates 

significant economic and environmental benefits for the process industries. 

 

This thesis addresses a wider, plant-wide problem as opposed to individual control loops or 

units by utilizing connectivity and directionality information captured electronically from 

intelligent process P&ID. The distinction between traditional P&IDs and intelligent P&IDs is 

highlighted in section 1.2.4. 

 

1.2.3 Requirements for Plant-Wide Diagnosis 

 

Several authors have identified the requirements for a plant-wide approach to control loop 

performance analysis, detection and diagnosis at an industrial scale (Desborough and Miller, 

2002; Paulonis and Cox, 2003; Perry, et al., 2000; Qin, 1998). These requirements include: 

 

 Facility-wide benchmarking and standardization of control systems; 

 Characterisation of performance faults; 

 Detection of the presence of one or more periodic oscillations; 

 Detection of non-periodic disturbances and plant upsets; 

 Determination of the locations of the various oscillations/disturbances in the plant 

and their most likely root-causes; 

 Incorporation of process knowledge such as the role of each controller; 

 Automated model-free causal analysis to find the most likely root-causes. 

 

A number of approaches and techniques in quantitative and data-driven methods have been 

employed in dealing with the first five of the bullet-point requirements above. For example 
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the methods described in the reviews by Harris, et al.(1999), Thornhill and Horch (2007), 

Venkatasubramanian, et al., (2003a), Venkatasubramanian, et al., (2003b) and 

Venkatasubramanian, et al., (2003c) provide comprehensive approaches in literature for 

meeting the industrial requirements for process plant-wide diagnosis listed above. The 

traditional approach of interpreting results from data-driven analysis by process control 

engineers can be speeded up and enhanced by automating the process. The automation 

process ensures logical, consistent and documented reasoning. Requirements 6 and 7 have 

been demonstrated in prototype tools (Scherf, 2006; Thambirajah, et al., 2009; Yim, et al., 

2006). This thesis describes a much larger, industrial scale plant-wide approach using vendor 

and platform independent ISO15926 extensible mark-up language (XML) description of 

process topology. 

 

1.2.4 Traditional “dumb” P&IDs versus “intelligent”/“smart” P&IDs 

 

This section highlights the distinction between traditional, two-dimensional raster-based 

P&ID graphics and the new generation of intelligent, vector-based, three-dimensional-capable, 

database-driven P&IDs.  The section serves as an introduction to intelligent P&IDs to be 

discussed in detail later in the thesis in chapter 3. 

 

Intelligent P&IDs (iP&IDs) are relevant to the work of the thesis because they allow electronic 

capture of process schematics in a platform and vendor independent text-based format that 

allows for algorithm manipulation by a computer program to generate connectivity matrix 

automatically. The connectivity matrix shows the directional connections among plant items 

and utilizes the directional links as contained in the electronic iP&IDs. XML and connectivity 

matrix are discussed in detail in chapter 3. 

 

Historically, P&ID drawings have contained just two dimensional arcs and lines known as 

dumb P&IDs (Walker, 2009). An example is shown in Figure 6 showing the drawing graphics. 

Traditional P&IDs are physical sequence of symbols, arcs and lines representing plant’s 

equipment, piping and instrumentation.  

 

There have been significant recent developments in computer aided design (CAD) and 

drawing methods for P&IDs allowing CAD tools to create P&IDs which are considered 
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intelligent ( also referred to as smart P&IDs). Intelligent P&IDs integrate much more data and 

information than their dumb counterparts.  

 

In addition to the graphic display on the drawing tool, drawings on intelligent P&ID have 

database connectivity behind them which is a repository of such information as engineering  

rules, standards compliance, and export of drawings in text-based formats such as XML, 

automatic design validation, integration with design and calculation packages (DARATECH, 

2004). An example of additional information provided by intelligent CAD drawings is shown 

in Figure 7. 

 

 

 

Figure 6: A Piping and Instrumentation Diagram example. (Source 

http://www.aveva.com/products_services_aveva_plant_pid.php) 

 
 

Options for converting dumb P&IDs to intelligent P&IDs are discussed in Section 3.3 of the 

thesis. Both manual and automated approaches are discussed, hence using intelligent P&IDs 

in this thesis is not restrictive because most new P&IDs in future will be prepared with 

intelligent CAD tools, and legacy drawings can be converted. Intelligent P&ID exported as 

vendor and platform independent XML representation is used as one of the input to Process 

Connectivity Analyser software tool developed in this work.  
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Figure 7: Intelligent P&IDs carry extra information that can be extracted and exported to 
other software packages. The P&ID was created with AVEVA® P&ID running on AutoCAD® 

 

1.3 Overview of Research Output and Contribution 

 

This section enumerates tasks accomplished in order to meet research objectives and lists 

specific outputs from the research.  

 

The following steps were taken in order to meet research objectives:  

 

 Survey of the literature in order to understand the scope of the research objectives set 

out above. 

 Comparison of commercial vendors of computer aided design (CAD) tools for 

creating intelligent P&IDs and conversion of dumb P&IDs to intelligent P&IDs. 

 Research into the outputs from various CAD tools to ensure that they conform to 

international standards such as ISO15926. 

 Coding of a parser to construct connectivity matrix from a text-based, vendor and 

platform independent extensible mark-up language (XML) description of the process. 

An example of XML is shown in Figure 9. 
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 Devising of algorithms that link the connectivity matrix with results of cause-and-

effect analysis of process data and process know-how and understanding to gain 

insights into operation of the process and generate logical conclusion. 

 Creation of a documented application program in Windows environment (Microsoft 

.NET) to test and validate research findings (see Figure 12, Figure 13, Figure 14, 

Figure 16 and Figure 19 for screenshots of the tool developed).  

 

1.3.1 Research Output 

 

A considerable amount of time and efforts was spent on software engineering process because 

the project sponsor (BP) required a non-trivial software deliverable at the end of the research 

project. 

 

Consequently, research objectives enumerated in the introductory section of chapter 1 have 

been analysed and implemented as a software tool. The main components of the software tool 

and data input sources are shown in integrated block diagram in Figure 8.  

 

The section begins with a description of the input data, namely an XML file and results from 

pure data-driven analysis. This is followed by a brief introduction to Process Connectivity Analyser 

software tool also referred to as connectivity tool, the final output from the project engineered 

with the research findings.  

 

Detailed description of the steps involved in using the PDA and Process Connectivity Analyser 

tools are explained in chapter 5  

 



15 
 

 

Figure 8: Block diagrams representing the integration of research objectives 

 
XML Input Data File Describing Process Connectivity and Directionality Information from P&ID 

 

An example of process description in XML format is shown in Figure 9.  Detailed 

specification and description of XML is discussed in chapter 3. A standardized, text-based, 

platform and vendor independent XML file describing plant’s items and directional 

connectivity among them is an input file to the Process Connectivity Analyser tool. 

 

 

Figure 9: An example of XML process description 
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Input Data File Containing Results from Process Historical Data-Driven Analysis  

 

Many signal processing and analysis tools are available in the market to extract useful 

information from enormous quantities of measurement data generated on regular basis from 

process plants. Examples of such tools are the PlantTriage® from ExperTune® and  

those listed in Table 1. Most of these tools acquire real time data from distributed control 

systems (DCS) of the plant to continuously monitor the state of the plant. The commercial 

data-driven tools are discussed further in Section 6.1.1 of the thesis. 

 

A number of key performance assessment indices are calculated for each control loop for 

monitoring several controller properties. Each assessment is calculated at each assessment 

period and plant operator can select which performance metrics are to be used to create the 

loop health assessment which gives an indication of the overall health of the control loop and 

ultimately health of the plant. Process control engineers diagnose malfunctions by examining 

and comparing the chosen key performance indices (KPIs) with the best achievable standard 

already in place and requests corrective action on the loops with a poor performance. 

 

Table 1: Commercial software and vendors for process diagnostics and monitoring 

Software Vendor 

PlantTriage® ExperTune® 

Loop Performance Manager® ABB® 

LoopScout® Honeywell® 

Control Performance Monitor® Matrikon® (owned by Honeywell® ) 

Loop Analysis® (formerly Control Wizard®) PAS® 

PID Watch® Aspentech® 

PDA® ABB® 

Performance Watch® Invensys® 

Control Monitior® Control Arts® 

PCT Loop Optimizer® ProControl Technology® 

PROBEwatch® 

INTUNE+  

Control Loop Performance 

Plant ESP 

DeltaV Insight 

rCAAM (RoviSys Control  

Assessment and Monitoring) 

ISC® 

ControlSoft 

Capstone Technology 

Control Station 

Emerson 

RoviSys 
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The procedures for using KPIs generated by signal processing tools by plant operators and 

engineers to diagnose malfunction will be automated and combined with connectivity 

information derived from process representation such as a P&ID to design and develop the 

proposed root-cause diagnostic tool in the PhD work. 

 

The purpose of historical data analysis is to detect and diagnose oscillations and distributed 

disturbances across the plant. A wide variety of algorithms such as principal component 

analysis and commercial data-driven analysis tools are available. The tool for data analysis 

described and used in this project is a calculation tool for plant disturbance analysis (PDA) 

based on signal processing algorithms developed at the Imperial/UCL Centre for Process 

Systems Engineering (Bauer, et al., 2007; Bauer and Thornhill, 2008; Thornhill, 2005; 

Thornhill, et al., 2003; Thornhill, et al., 2002) and now commercialized by ABB. An example of 

a PDA screenshot showing results of data analysis is shown in Figure 10. 

 

 

Figure 10: Time series and bubble plot causality analysis suggesting the order of events in 
the process. This screenshot implies that changes in F_17.SP, F_18.SP, and F_19.SP are the 
causes of changes in the other tags and that F_70.PV is last in the causal chain. 
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The reason for using the PDA tools is that PDA is readily available in the university for 

research. Any other data-driven analysis tool such as PlantTriage® from ExperTune® that 

seeks to find root-cause of plant-wide disturbance will also suffice. The aim typically is to 

detect and diagnose root-cause of plant-wide disturbances using purely data-driven analysis. 

The results produced form the basis for root-cause hypothesis against which test can be 

carried out to confirm the real root-cause.  Spurious results can be eliminated when plant 

connectivity information from the process schematic is combined with the results from data-

driven analysis to enhance the understanding of disturbance propagation through the plant. 

 

The PDA root-cause diagnosis tool is based purely on data because the PDA tool is not 

capable of knowing the physical layout and relationships between the tags. From experience, 

the analyses often are partly correct, in that the true root-cause is among two or three 

candidates identified as possibilities. Therefore the diagnosis is generally indicative rather than 

definitive, and the hypotheses generated by root-cause analysis have to be tested carefully to 

ensure they make sense. At present, this is done manually by locating the affected tags in the 

process schematic and applying chemical engineering principles.  

 

The steps involved in data analysis are: 

 

 A spectral cluster analysis is based on the automated comparison of the spectra for 

detecting similarities, hence it groups tags with similar spectral features. The method 

used is the spectral principal component analysis as detailed in (Thornhill, et al., 2002). 

Comparing spectra for detecting similarities may be done visually in small scale cases 

with a small number of tags. In larger scale cases the automated spectral clustering 

method becomes a necessity.  

 

 A second method looks for clusters of oscillating measurements. The output is a list of 

clusters of tags characterized by their oscillation period. The oscillation detection uses 

signal processing methods described in (Thornhill, et al., 2003).  
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Process Connectivity and Graphs 

 

One of the core objectives of the thesis is to demonstrate how connectivity matrix of process 

plant topology can be generated automatically. A graph shows the various interacting 

components of a physical system and the connections among them. Graphs have strong 

theoretical background and have been studied for centuries (Mah, 1983). Graph theory will be 

discussed in section 2.3.4. A directed graph, a subset of graph, is shown on the right hand side 

panel in Figure 11, with its connectivity matrix on the left hand panel. The connectivity matrix 

on the left hand side shows the nodes on the rows and columns of the square matrix. The 

entries in the matrix (arcs of the graph) are either a one or zero, depending on whether there is a 

direct connection between the elements of the intersection. A one indicates direct connection 

between the element at the row and column of the intersection while a zero indicates no 

connection.  

 

 

 
Figure 11: Connectivity matrix created manually from a directed graph on the right hand 
side  

 
 
The connectivity matrix is a practical and convenient way to store and manipulate topology of 

the process plant algorithmically. However, the greatest challenge is how to automatically 

generate the connectivity matrix of large and complex real life processes. This has been 
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accomplished in this work with the possibility to export connectivity matrix of very large 

processes to Excel application as shown in Figure 15. 

 

1.3.2 An Introduction to Process Connectivity Analyser Tool 

 

This section provides an overview of the Process Connectivity Analyser tool developed from the 

findings of the thesis. Detail description and operational procedures are presented in Section 

5.3. Process Connectivity Analyser tool is the main deliverable required by the project sponsor.  

 

Figure 12 shows the start-up/home page of Process Connectivity Analyser, the tool developed.  A 

list of basic steps to be followed in using the tool for analysis is presented on the first window. 

The start up window also displays a calendar with the current date highlighted. 

 

Upon request, the navigation-based Process Connectivity Analyser   presents the user with the 

main control panel shown in Figure 13.  

 

 

Figure 12: Start-up window of Process Connectivity Analyser tool 
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Figure 13: Process Connectivity Analyser’s main control panel 

 
 

The user interface shown in Figure 13 allows the user to carry out major operations such as 

file(s) loading, physical path-finding, root-cause diagnosis, export of connectivity matrix to 

Excel application and running a check on the original P&ID drawing to ensure that all plant 

items drawn are fully connected.  

The window also displays plant items sorted into categories as equipment, controller or 

indicator.  A search conducted to check physical propagation path between two chosen plant 

items is displayed on another window as shown in Figure 14. 
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Figure 14: A search result from one plant item to another to check for physical propagation 
path 

 
 
 

 
Figure 15: Automated connectivity matrix exported by Process Connectivity Analyser tool 
as a stand-alone module to Microsoft® Excel© application 

 
 
Figure 16 is a separate window in Process Connectivity Analyser for conducting diagnostic and 

other analysis. It allows the user to combine process topology information with statistical-

based results from data-driven analysis.  
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Figure 16: Root-cause hypothesis testing window 

 
 
Figure 19 provides a facility to cross check process drawing for any loose ends. A loose end is 

encountered when a drawing entity and piping system appear to be physically connected on 

visual inspection but there is no actual physical connection upon export as an XML. A 

simplified and magnified illustration is provided in Figure 17. This might look easy to pick up 

manually in this illustration but in a real process P&IDs, it is almost impossible to manually 

detect these gaps. 

 

This can be due to the drawing scale making all connection invisible to human eyes or simply 

an error in the drawing. Such incorrect drawings with loose connections produce 

wrong/misleading conclusions in the analysis. It is important to check for this before using 

the XML export. This facility is provided by Process Connectivity Analyser through the user 

interface shown in Figure 18 and Figure 19. 
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Figure 17: Process schematic drawing illustrating existence of loose ends (top panel) and 
fully connected drawing (lower panel) 

 

Figure 18 shows a scenario where the connectivity tool detected two loose ends in a drawing 

and presented the findings as unidentifiedItem3 and unidentified4 while Figure 19 depicts a fully 

connected drawing. 

 

 

Figure 18: An example of loose end detection due to incomplete drawing of exported P&ID 
drawing  

 

Loose ends 
detected 
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Figure 19: Facility for checking exported P&ID drawing to ensure all plant items are 
connected with appropriate directionality information 

 

 

1.3.3 Research Scope 

 

The primary objective of the thesis is to establish new and innovative ways to capture and 

algorithmically manipulate large electronic process plant topology and interconnections among 

plant items such as a crude oil refinery for the purpose of diagnosing root-cause of plant-wide 

disturbances. Process topology is commonly contained in engineering design and construction 

document such as a P&ID.  

 

Continuous processes are designed to be operated around the steady state point such that any 

deviation from the steady state but within some allowable limits (normal) can be handled by 

implemented control systems. In some cases, corrective actions taken by one control system 

simply upsets another process variable, triggering corrective action from another controller. 

The overall effect is a persistent dynamic cycle. Controller output at limit and valve stiction or 

hysteresis will lead to similar sustained disturbance that could propagate plant-wide.   In the 

case of shut-down, start-up or abnormal operations, the deviations from the normal operating 

point are considered not to be small hence, it is necessary to install devices to handle such 



26 
 

situations in addition to applying intuition, experience and sound engineering judgement. Such 

devices include blowdown systems, start-up heaters or hazard prevention systems(Umeda, et 

al., 1980). The thesis finds application in persistent, dynamic normal plant-wide upset.  

 

The process models generated from process P&IDs are qualitative and static in nature. To 

take its full advantage however, a model that encapsulates dynamic behaviour of the plant has 

to be incorporated such as signal-based empirical analysis as well as knowledge about the 

process as demonstrated by (Di Geronimo Gil, 2010; Thambirajah, et al., 2009; Yim, et al., 

2006).   

 

In addition to the research’s primary objective of utilizing topology and connectivity 

information for root-cause diagnosis, the output from the research would find alternative uses 

as enumerated in Section 7.3 of the thesis. For example, the tool developed from the research 

can be used to find which part of the production plant that would be affected when a unit 

such as a feed pump was shut off prior to carrying out a maintenance or repair work on the 

plant. 

 

1.3.4 Research Contributions 

 

Key contributions of the research are enumerated below. 

 

 A fully documented software tool in a Windows environment. This is the key 

requirement from the project sponsor. 

 An automated, practical, large-scale, plant-wide process plant topology (ISO15926 

based intelligent P&ID) and connectivity information extraction and representation in 

the form of connectivity matrix. The connectivity matrix is amenable to computational 

manipulation and could serve as precursor for other applications. For example in 

automated calculation of degree of freedom analysis(Alabi, 2010) for control structure 

design and evaluation. 

 An automated electronic processing of P&ID for cause-and-effect analysis obviates 

the need for manual examination of printed P&IDs to get process insight and locate 

root-causes of process upset. Traditional signal analysis methods only consider 

measurements points (indicators). The conventional approach will require paper 
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tracing on process P&ID to locate process equipment or controllers closest to the 

observed disturbed measurement points as the possible source of disturbance.  

 A modular approach allows for as many process P&IDs as necessary to be merged for 

analysis, creating a true plant-wide analysis for large-scale plants.  

 Research findings opening up opportunities to integrate process structural 

representation with traditional process models for deeper process insights (Di 

Geronimo Gil, 2010). 

 Connectivity information capturing process variables (measurement points) as well as 

processing equipment. Past researched approaches considered cause-and-effect 

relationships among process variables. Faults, however, typically don’t emanate from 

passive plant elements such as a measuring instrument but from processing units 

necessitating manual examination of process P&ID for equipment closest to the 

measured root-cause upset. 

 Demonstration of the possibilities of mixing process qualitative models with other 

process models. 

 Showing that research findings can be engineered into a user-friendly software tool to 

demonstrate research key concepts and algorithm.  

 

1.3.5 Conference and Journal Papers 

 

In addition to writing three technical reports, several presentations slides and numerous 

meeting minutes for the industrial sponsor, the research has also produced/in the process of 

producing the following conference and journal paper: 

 

 Di Geronimo Gil, G.J., Alabi, D.B., Iyun, O.E. and Thornhill, N.F., 2011, Merging 

process models and plant topology, Advanced Control of Industrial Processes (ADCONIP 

2011), Hangzhou, China, May 23-26 2011. 

 A journal paper on the Tennessee Eastman Process (in progress). 
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1.4 Outline of the Thesis 

 

This chapter has provided a broad overview of the research problem, the motivation and 

challenges. The chapter also introduced the concept of dumb and intelligent P&IDs and 

described high level features of the software tool developed from the research. The chapter 

concluded with the key contributions of the research work. 

 

 Chapter two reviews existing literature on process modelling approaches and 

application in process plant diagnosis. The chapter considers model-based approaches- 

quantitative and qualitative as well as analysis of process signal historical data.  

The chapter describes the concept of graph theory, its application, connectivity matrix, 

reachability matrix, intelligent piping and instrumentation diagrams and XML. It 

considers techniques from artificial intelligence methods relevant to the thesis. The 

chapter also discusses the concept of model mixing (hybrid systems) as a way of 

compensating for shortcomings in individual modelling approach. A table presenting 

world experts and centres of excellence of the main players in fault detection and 

diagnosis of chemical plants and the main topics of current interest is presented. 

 

 Chapter three focuses on extraction of engineering information from process P&IDs 

for operational purposes. It also enumerates various industry standards and 

commercial vendors of intelligent P&IDs. Analytical and iterative steps followed in 

choosing an intelligent CAD tool for generating ISO15926 compliant XML 

description of process plants from a variety of commercial vendors based on the needs 

and requirements of the project are discussed. The chapter presents an illustrative 

example of a refinery crude heating unit to drive home the points discussed in the 

chapter and proceeding chapters. 

 

 Chapter four describes the software development process. It considers software 

development lifecycle including requirements definition, requirements specification, 

design, coding, unit and system testing.  

 

 Chapter five begins with an in-depth description of the various functionalities of the 

software developed from the research findings and a guide on how to use the 

software. The chapter presents practical demonstrations of the software developed in 
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the project to drive home key concepts and applicability in real life situation using an 

illustrative example, industrial and academic case studies and discusses major findings.  

 

 Chapter six discusses industrial linkages and considers practical application of the 

tool in real world environment. The chapter considers the potential for the software 

integration with other software packages-such as those that are purely data-driven. The 

chapter concludes with alternative uses to which the software developed in the 

research project can be applied. 

 

 Chapter seven distils major conclusions from the report with a summary and 

suggestions for improvement on the current work and possible future research ideas. 

The chapter also discusses alternative uses to which the tool developed can be put to 

within the process industry. There are references in alphabetical order.  

 

1.5 Chapter Summary 

 

This chapter served as an introduction to the topic and layout of the thesis. It highlighted the 

need and motivation for the research project from both academic and industrial points of 

view. The chapter also reviewed the various challenges and approaches to be adopted in 

arriving at solutions to the research problem. A roadmap for the rest of the thesis was 

provided to aid navigation through the thesis. 



30 
 

2 Literature Review 

 
 
This chapter presents a review of prior work in order to establish the background for the 

project from the literature. It explores various approaches used in previous work and the 

motivation. The relevance of the reviewed papers to the research was to evaluate the various 

techniques that have been used by various researchers in the field of process analysis and 

diagnosis in order to gain an insight into and utilize some of the established techniques. 

  

The chapter begins with a high level overview of different techniques of representing physical 

systems such as a chemical plant in order to carry out analysis, for example for detection and 

diagnosis of process anomalies, on such systems. Two basic approaches of representing 

physical systems are considered. These approaches for representing physical system are:  

 

 classifications based the type of output presented, and  

 classifications based on the nature of process knowledge available such as the laws of 

physics.  

 

These two paradigms of process description and analysis are discussed in Section 2.2. 

Generally, the distinction in the classifications are based mainly on the source of data used in 

the analysis, for example those methods utilizing measurements from the process plant and 

those techniques employing physical structure and process units interconnections are classified 

differently. A list of various sources of data and information for process description and 

analysis are provided Section 2.1.1. 

 

Depending on the approach considered, real physical processes can be represented as one or a 

combination of physical (mock-up), quantitative, qualitative, historical data or mental 

description for analysis.  

 

A list of experts and centres of excellence pertinent to the research field accompanies the 

review.  
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2.1 Process Abstraction and Representation  

 

This section introduces various approaches for representing physical systems. Methods for 

representing physical systems fall broadly under those that are model-based and model-free. A 

model is an abstraction or incomplete representation of the real world in order to make the 

physical system amenable to analysis. For example, a perfect sphere can be used to model the 

planet earth. The essence of a model is the question or set of questions that the model can 

reliably answer for us (Buede, 2009).  

 

The section begins by introducing the modelling process and sources of data/information for 

modelling in chemical process industry.  The model and model-free methods of representation 

are further broken down in a hierarchical order to explain various techniques under the broad 

categories. The concept of model cross breeding is also discussed. 

 

2.1.1 Process Modelling  

 

In order to study steady state and dynamic behaviour of physical systems it is often 

convenient to reduce the system into a representation simpler than the original system in 

order to make the system amenable to analysis. This process of simplification and abstraction 

of necessary details from real world systems is called modelling. In other words, every model 

distorts the system under study in order to simplify it.  According to Lee (1999),  the following 

three defining characteristics must be present in a model: 

 

 Representation: a model needs to represent all important aspects of an underlying 

system for a given intended purpose. 

 Prediction: a model needs to allow for estimation of how a system will perform in a 

given situation. 

 Explanation: in order to increase confidence in the predicted results of a model, it 

must be possible to explain or justify their derivation and relate prediction results to 

the real world. 

 

In most physical systems such as a chemical reaction model, it may be necessary to simplify 

the process description as long as sufficient details are abstracted from the real system with 
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caution. However, care is required while interpreting the model’s predictions  to ensure that 

the model makes sense in describing the real physical system (Puccia and Levins, 1985). To 

model a system is to replace it by something which is simpler and easier to study and 

equivalent to the original system in all important respects. Frank at al.(2000) pointed out that 

models needed for fault detection and isolation can be simpler than those for control as only 

the pertinent parts of the model which reveal the faults of interest are considered.  

 

In order to establish a model that adequately describes the process under consideration, a wide 

variety of rich information sources are available to model builders. These include: 

 

 Principles of physical and chemical engineering science 

 Piping and Instrumentation Diagram (P&ID) 

 Process Flow Diagram (PFD) 

 Process flow sheet 

 Process history and real time data  

 Equipment and instrument specification sheets 

 Empirical relationship from regression of data 

 Experience of operating personnel 

 Event trees and fault trees 

 Equipment and instrument specification sheets   

 

The aim in this thesis is to utilize information obtainable from one or a combination of 

sources from the list above to describe the physical system under consideration.  

 

One of the factors to be considered in choosing one or more data/information sources is the 

ease with which the data/information can be obtained. Considering the list of sources above, 

it appears that information contained in process P&ID and historical process measurement 

data are readily available for carrying out analysis.  

 

Effective practical diagnostic techniques in an industrial setting require a combination of 

information from various domains such as those listed above. Evidence for this assertion is 

based on the fact that industrial process P&IDs contain information for analysis and anomaly 

diagnosis purposes, they are readily available and non-invasive. Export and import of 

electronic P&IDs are now possible on a wide variety of application such as the AutoCAD® 
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from Autodesk®. Similarly, real time and offline process measurements data are industrially 

available and are also non-invasive during analysis. Commercial software tools, such as 

PlantTriage® from ExperTune® and algorithms, such as principal component analysis (PCA), 

used for process characterization and dimensionality reduction in huge measurement data 

space are available and already at advanced levels(Bauer and Thornhill, 2008; Thornhill and 

Horch, 2007; Thornhill, et al., 2002).  

 

Process control engineers and process operators possess a great deal of knowledge about the 

process system under consideration. This can be further utilized for diagnostic purposes.  The 

underlying physical and chemical laws relating to the process can also be integrated in building 

an effective diagnostic tool.  

 

2.2 Classification of Process Models 

 

This section discusses and classifies models used in process description and representation 

based on the: 

 final outputs or answers from the model 

 type of available knowledge about the process.  

 

2.2.1 Classification Based on Outputs Presented from Models 

 

One way of classifying models is to consider the kind of answers or final presentations such 

models provide (Buede, 2009). Using this criterion, the following categories, depicted in 

Figure 20, can be identified: 

 

 Physical models: present the real world as an entity in three-dimensional space and 

can be divided into full-scale mock-up, sub-scale mock-up, breadboard and electronic 

mock- up. Full-scale mock ups are usually used to match the interfaces between 

systems and components of the system. An example is a chemical pilot plant. Subscale 

models are commonly used to examine the behaviour of specific issue such as flow in 

pipes and other chemical process unit operations. A breadboard is a board on which 

electronic and mechanical prototypes are built and tested. 
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 Quantitative models: provide answers that are numerical. Models can be either 

analytic, simulation or judgemental in nature. Analytic model is based on underlying 

systems of equations that can be solved to produce a set of solutions. These solutions 

can be developed in a closed form. Simulation methods are used to find a numeric 

solution when analytic methods are not realistic. Judgemental models provide 

representations of real world outcomes based on expert opinions. Judgemental models 

could serve as precursor and basis for other quantitative activities. 

 

 

Figure 20: Models classification based on answers they provide 

 
 

 Qualitative models: outputs from qualitative models could be symbolic, textual or 

graphic. Symbolic models are typically based on logic or set theory. Textual models are 

based on verbal descriptions of the real world. An example is the use of one or more 

paragraphs to describe a system’s requirements. Graphical models use either elements 

of mathematical graph theory or simply artistic graphics to represent hierarchical 

structures or the dynamic interaction of the system’s components. The use of artistic 

graphics as modelling approach is often termed “view graph” engineering. Most 

engineers consider graphical models as one step above textual models. If graphical 

models can be based on mathematical graph theory, then these qualitative models can 

be powerful additions to the analysis toolkit of the system as utilized in this thesis. 

 

 Mental models: these are human abstractions of thought such as used by a plant 

operator for controlling and predicting plants performance and behaviour. Outputs 

from mental models may lack objectivity as two people may have different mental 

model of the same real physical system. However, other models, such as quantitative 

models, are developed through mental process of one or more people and are the 
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product of their mental models. It can be a mistake to ascribe objectivity to models, 

for example even complex mathematical models often have subjective assumptions 

throughout their equation and data. 

 

Classification of Models Based on Available Knowledge 

 

The three series reviews by (Venkatasubramanian, et al., 2003a; Venkatasubramanian, et al., 

2003b; Venkatsubramanian, et al., 2003c) provide a detailed and comprehensive review of 

process analysis techniques, with a bias on fault detection and diagnosis, based on available a 

priori knowledge for model-based quantitative and qualitative analysis and a posteriori 

knowledge for data-driven, process history-based methods. The overall hierarchical 

classification with additions from (Thornhill and Horch, 2007) is shown schematically in  

Figure 21. The classification approach groups process analysis broadly under model-based and 

model-free or data-based. Subsequent subsections review the pertinent research work from 

this classification.   

 

2.3 Model-Based Approach 

 

Model-based approach to physical process representation, such as chemical reaction kinetics, 

utilizes fundamental knowledge about the system under consideration.  Such model 

development includes: 

 

 First principles approach, which captures process dynamics and are typically based on 

fundamental underlying physics of the process being analysed.  

 State-space model or Transfer function, which is a linear representation of the input-

output relationship of the underlying physical system under consideration.   

 

Model-based approach to process description can be classified under two broad categories as 

quantitative and qualitative. This subsection reviews the various model-based process 

modelling paradigms with emphasis on fault detection and diagnosis application.    
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Figure 21: Overall hierarchical classification of process modelling and analysis. (Thornhill 
and Horch, 2007; Venkatasubramanian, et al., 2003a; Venkatasubramanian, et al., 2003b; 
Venkatsubramanian, et al., 2003c)  

 

2.3.1 Quantitative Model-Based Methods  

 

Quantitative model-based methods have been traditionally used to model physical and 

engineering systems. Depending on the purpose of the model, physical models derived 

quantitatively could be detailed or simplified. Building quantitative models of physical and 

engineering systems require a priori fundamental understanding of the physical system under 

consideration. By comparing process measurements with analytically computed values from 

the process models, any statistically significant deviation that signifies the occurrence of a fault 

can be identified (Kosebalaban and Cinar, 2001). Some applications of quantitative model-

based diagnosis are depicted in Figure 22.  Detailed knowledge of the physical relationships 
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and characteristics of all components in a system are represented as a set of mathematical 

equations based on mass, energy, momentum and stoichiometric balance to build a detailed 

model of the system under consideration. The model is then used to estimate process 

parameters. 

 

 

Figure 22: Quantitative model-based techniques for fault detection and diagnosis 

 
Figure 23 depicts one way of classifying quantitative models as a collection of mathematical 

relationships among process variables. The sets of mathematical equations representing the 

system are then arranged, solved and interpreted as shown in Figure 24, which summarises the 

iterative steps involved in developing and using a mathematical process model and simulation. 

  

The power of this method lies in the fact that models are built on sound physical and 

engineering principles and transient dynamic behaviour of the system can be analysed. 

Quantitative models also have higher predictive power than qualitative methods. 

 

Over the past two decades, a large number of techniques for plant-wide fault detection have 

been developed using quantitative or data-driven methods. Prominent among these are: 

 

Observers and Parity Space: 

 

The use of models for detection and diagnosis typically involves comparison of process 

measurements with values calculated by the model. Parity relations involve checking the values 

calculated by the process models with the output measurement data from the sensors for any 

inconsistency or residuals. Theoretically, a smoothly running plant without any disturbance 

will generate zero residual. However, in real life situations, noise in sensor measurements 

seldom produces zero residual even in fault-free situation (Kosebalaban and Cinar, 2001). 
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Hence, it is imperative to apply statistical tests to differentiate deviations due to noise from 

actual faults. Patton and Chen (1994) provide the state of the art review of parity space fault 

diagnosis with application in aerospace domain.  The paper addresses the issue of robustness 

in deploying parity space for residual generation across a wide range of application. Frank 

(1994) reviewed the structural equivalence between parity-based methods and observer-based 

methods for residual generation and extended the discussion to incorporate enhanced 

robustness by using adaptive thresholds. 
 
 
 

 
Figure 23: Classification of quantitative model characteristics. Adapted from Iyun(2005)  

 
 

 

 

Figure 24: Quantitative process modelling strategy 
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Extended Kalman Filtering (EKF):  

 

Kalman filter is a state estimation algorithm typically for linear dynamic system. The method 

has been modified in various forms under Extended Kalman Filtering (EKF) to suit various 

applications. For example, Villez et al., (2011) applied EKF in fault detection and identification 

in chemical process system to account for process non-linearities.  The authors observed that 

EKF provides superior performance over traditional Kalman Filtering when dealing with non-

linearity in   state estimation of chemical processes. The algorithm employs local linearization 

approximation of the non-linear system under consideration. The states of the system are 

considered as a set of points that are deterministically selected from an approximate Gaussian 

distribution. Several authors including Farrell & Ioannou (2001), Julier, et al.,(2000) and Ricker 

& Lee (1995) have also commented on the adaptations to EKF to suit various application 

areas  and  to enhance EKF algorithm efficiency. 

 

 

Particle Filtering 

 

Kalman Filters and their extended versions assume that the posterior probability density at 

every time step is Gaussian and hence, parameterized by a mean and variance. For non-

linear/non-Gaussian state estimation problems, particle filtering techniques have been 

successfully applied (Prakash, et al., 2011). Particle filters are sequential Monte Carlo methods 

based on point mass (“particle”) representations of probability densities and require a 

proposal distribution. The choice of proposal distribution is the fundamental design issue in 

the application of particle filters (Arulampalam, et al., 2002; Prakash, et al., 2011) 

 

 

Shortcoming of Model-Based Quantitative Approach: 

  

The complexity of modern engineered systems, such as a large petrochemical refinery, with 

superficial human knowledge of the resulting complex systems hide the necessary details 

needed to build a detailed quantitative model and in situations where complex models result 

from complex systems, the required computational resources are non- trivial. The scope and 

depth of the purpose for a model will determine the ultimate complexity of the final 

mathematical description.  
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One way to get around the constraint of incomplete or uncertain knowledge of complex 

systems, without using purely qualitative methods, is the use of qualitative physics-based 

techniques (De Kleer and Brown, 1984; Kuipers, 1986; Sharma, 1997). The key advantage of 

qualitative physics-based models is that they enable conclusions about a process without exact 

expressions governing the process and precise numerical inputs. In some cases, partial 

conclusions can be reached from incomplete and uncertain knowledge of the system under 

consideration. Fault detection and diagnosis (FDD) based on quantitative models is unlikely to 

emerge as the method of choice in the near future because of the weaknesses pointed above, 

but simplified physical models will continue to make inroads into FDD applications 

(Katipamula and Brambley, 2005).  

 

2.3.2 Qualitative Model-Based Approach 

 

Representing a physical process qualitatively does not involve detailed mathematics but 

provides useful insight into the fundamental understanding of the process under 

consideration, such as a large chemical plant. Qualitative approaches to modelling, such those 

based on logic and qualitative states (De Kleer and Brown, 1984; Forbus, 1993; Kuipers, 1986) 

have the advantage of easy understanding, reduced modelling efforts and computational 

resources but at the expense of exact diagnostic resolution when compared with their 

quantitative counterparts. One approach to classification of qualitative model-based methods 

is depicted hierarchically in Figure 25.   

Causal qualitative model and its connectivity matrix representation are the backbone of the 

thesis. These concepts are discussed in details in Section 2.3.3. 

 

2.3.3 Qualitative Causal Models  

 

This section discusses causal qualitative approach to process modelling in detail due to its 

relevance to the thesis. It describes graph theory, a fundamental of the directed graph and 

connectivity matrix methods used in the thesis. The chapter extends discussions on graphs to 

usability of directed graphs with respect to process schematics and in the storage and 

processing of graphs representations in computer programs. This section also explains 

connectivity matrix and XML because of their fundamental importance to the thesis. The 

section concludes with an illustrative example.   
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Cause-and-Effect Analysis 

 

Studies in most physical systems involve the determination of cause-and-effect relationships 

among variables making up the system or events taking place within the system. For example, 

an increase in temperature (cause) of a confined gaseous system under an ideal gas law and 

constant volume leads to an increase in pressure (effect). The two variables are said to be 

correlated.  

 

Detection of correlation by itself does not allow causality to be inferred. However, analysis of 

the time trends of process measurements has additional information because of the time 

dimension. Hence causal correlations can be detected such as by looking for cases when the 

correlation is maximized if one time trend is time-shifted relative to another.  

 

It is important to derive appropriate methodology for deriving such relationships from 

available information sources such as process data history and process plant connectivity 

information as contained in the process P&IDs. 

 

Cause-and-effect analysis is a systematic and well-documented diagrammatic technique 

designed to unearth the root-cause of problems and subsequent effects (MindGenius, 2008). It 

shows the effect of one process variable on the other. Effective cause-and-effect analysis can 

create extremely valuable benefits to process plant operator and control engineers in gaining 

insight into process analysis and diagnosis of root-causes of distributed faults in a process 

plant.  
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Qualitative 
model-based approach

Causal models
Qualitative physics

-de Kleer and Brown (1984)
-Kuipers (1986)
-Iwasaki and Simon(1986)
-Shama(1997)

Digraphs and signed digraphs
-Iri et al.(1979)
-Umeda et al.(1980)
-Shiozaki et al.(1985) 
-Kramer and Palowitch(1987) 
-Oyeleye and Kramer(1988)
-Mohindra and Clark(1993)
-Vedam and Venkatasubramanian(1997)
-Zhang et al.(2011)

Fault trees
-Lapp and Powers(1977)
-Bossche(1991)
-Kavcic and Juricic(2001)

Multi Flow Modelling
-Lind(1999)
-Jorgensen(1993)
-Ohman(2000)
-Petersen(2000)
-Ouyang et al.(2005)

Flowsheet modelling
-Waschler et al.(2002)
-Maurya et al.(2004)
-d'Anterroches and Gani(2004)
-Ishii and Otto(2008)
-Walker(2009)

CAEX (XML-based and IEC/PAS 62424 compliant) 
-Fedai and Drath(2005)
-Scherf(2006)
-Yim et al.(2006)
-Beez et al.(2008)
-Thambirajah et al.(2009)

Adjacency / Connectivity Matrix
-Yim et al.(2006)
-Thambirajah et al.(2009)
-Jang et al.(2009)

Intelligent P&ID (XML- based and ISO 15926 compliant)
-Alabi et al.(2011)

Rule-based
Expert systems

First principle based

Limit and alarm

 

Figure 25: Qualitative model-based classification. The research remit is located at the lower 
levels of the hierarchy on the left hand branch 
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Causation is a relation between particular events: something happens and causes something 

else to happen. An event A can have more than one cause, none of which alone suffice to 

produce A. An event A can also be over determined: it can have more than one set of causes 

that suffices for A to occur. It is assumed (Spirtes, 2010) that causation is (usually)  

 

(i) transitive  

(ii) irreflective, and  

(iii) antisymmetric.  

 

This implies that: 

 

 if A is a cause of B is a cause of C, then A is a cause of C 

 event A can not cause itself, and 

 if A is a cause of B, then B is not a cause of A  

 

Causal modelling can be useful to the plant operator in the following ways: 

Firstly, it provides a structured, systematic, methodical approach, ensuring that no important 

cause is overlooked. Secondly, it focuses on identifying contributing factors and causal effect 

to the problem, assuring that all causes are identified and the root-cause of the fault is 

identified so that appropriate action can be taken. Thirdly, it allows visual identification of 

possible causes, implying that once the plant operator sees the causes laid out, more thoughts 

are triggered and gaps are identified. Diagnostic problems infer system malfunctions from 

observables using abductive reasoning, which is a process of generating a plausible explanation 

for a given set of observations of facts.  
 

2.3.4 Graphs 

 

One way of representing physical systems qualitatively is the use of graphs. The use of 

directed graph (DG or “digraph”) and signed directed graph (SDG), in particular, is a well 

researched and accepted approach of representing causality and finds application in fault 

detection, propagation and diagnosis(Gao, et al., 2010). For instance, DG can be used to 

generate connectivity matrix of various plant items, connections and direction within a process 

plant (Jiang, et al., 2009; Thambirajah, et al., 2009). Causal search techniques can be used to 

trace process malfunctions to their root source.  
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2.3.5 Fundamentals of Graph and Digraphs 

 

This sub-section provides an introduction to basic graph theory in order to establish its 

relevance to the current work. The subject of graph theory has a very strong mathematical 

foundation which has been studied for and has been successfully applied in process 

engineering practice to estimate cause-and-effect relationships among process variables and 

relationships among plant items (Maurya, et al., 2003). Due to different terminologies and 

denotations used to describe graphs and graphs representations, the terminologies used in this 

thesis closely follow those used by Gross and Yellen (2004). 

 

Basic Terminology of Graph Theory 

 

This section presents relevant terminologies used in describing a graph and its properties such 

as those shown in Figure 26.   

 

D1: A graph G = (V, E) consists of an ordered pair (V, E)  

 The elements of V are called the vertices 

 The members of E called the edges, which are pairs of vertices (an ordered pair in a 

directed graph and unordered in an undirected graph).  

 Each edge has a set of one or two vertices associated to it, called its endpoints. An 

edge is said to join its endpoints. 

 

D2:  If vertex v is an endpoint of edge e, then v is said to be incident on e, and e is incident on v  

 

D3: A vertex u is adjacent to vertex v if they are joined by an edge. 

 

D4: Two adjacent vertices may be called neighbours. 

 

D5: Adjacent edges are two edges that have an endpoint in common. 

 

D6: A proper edge is an edge that joins two distinct vertices. 

 

D7: A multi-edge is a collection of two or more edges having identical endpoints. 



45 
 

 

D8: A simple adjacency between vertices occurs when there is exactly one edge between them. 

 

D9: The edge-multiplicity between a pair of vertices u and v is the number of edges between 

them. 

 

D10: A self-loop is an edge that joins a single endpoint to itself.  

 

D10: A simple graph is a graph that has no self-loop or multi-edges. 

 

In signed directed graphs, the path between two vertices is assigned sign ‘‘+” if it represents 

positive influence (reinforcement) and sign “-” if it represents negative influence 

(suppression). 

 

Illustration of Fundamentals of Graph Theory 

 

A graph is an ordered pair <V, E >, where V is a set of vertices, and E is a set of edges. The 

members of E are pairs of vertices (an ordered pair in a directed graph and unordered in an 

undirected graph). For example, the edge A  B is represented by the ordered pair <A, B >.  

 

In directed graphs, the ordering of the pair of vertices representing an edge in effect marks an 

arrowhead at one end of the edge. Formally, a graph is an ordered triple <V, M, E > where V 

is a non-empty set of vertices, M is a non-empty set of marks , and E is a set of sets of 

ordered pairs of the form {[V1, M1], [V2, M2]}, where V1 and  V2   are in V,   V1  ≠ V2,     

and    M1 and M2 are in M.  

 

For illustrations, consider Figure 26, undirected (i) and directed (ii) graphs respectively, 
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                           (i)     (ii) 

   Undirected graph-contains only                    A directed graph, containing only         

                    undirected edges.(e.g. A - B)                        directed edges. (e.g. A   B ) 

Figure 26: Schematic representation of (i) undirected and (ii) directed graphs 

 
If G = <V, M, E >, G is said to be over V. From the right panel (digraph) in Figure 26,  

G can be represented as: 

 

G = < {A, B, C, D, E}, {EM, >}, {{[A, EM], [B,>]}, {[A, EM], [E,>]}, {[A, EM],  

[D >]}, {[D, EM], [B >]}, {[D, EM], [C, >]}, {[B, EM], [E, >]}, {[B, EM], [C, >]},  

{[C, EM], [E, >]}}> 

 

Each member {[V1, M1], [V2, M2]} of E is an edge and represents the number of 

connections among the various nodes or vertices. 

 

Each vertex V1 of edge {[V1, M1], [V2, M2]} is called an end point of the edge. (E.g. A is an 

endpoint of {[A, EM], [B,>]}). V1 and V2 are adjacent in G if and only if there is an edge in 

E with endpoints V1 and V2.  E.g. A and B are adjacent, but A and C are not. 

 

Undirected graph implies that set of marks M = {EM}, whereas, directed graph has  

M = {EM, >}, and for each edge in E, one edge-end has mark “EM” and the other edge-end 

has mark “>”. For example, an edge {[A, EM], [B,>]} is a directed edge from source A, to 

sink B of the path. An edge {[A, M1], [B,>]}, is into B while and edge {[A, EM], [B, M2]} is 

out of A. 

 

If there is a directed edge from A to B, then A is a parent of B and B is a child of A. Indegree of 

a vertex V is equal to the number of its parents and outdegree is equal to the number of its 

children and the degree is equal to the number of vertices adjacent to V. This is equal to the 

sum of indegree and outdegree in a directed graph. For instance, in the right hand panel of Figure 
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26, B’s parents are A and D and B’s children are C and E. Hence, B is of indegree 2, outdegree 2, 

and therefore, degree 4. 

 

Sets of edges of path <A, B, C, D > will be {[A, EM], [B,>]}, {[B, EM], [C, >]}, {[C,>], [D, 

EM]}. 

An edge {[X, M1], [Y, M2]} is in path U if and only if X and Y are adjacent to each other (in 

either order) in U. 

 

Acyclic path contains no vertex more than once else it is cyclic. Intersection of two paths 

occurs if they have a vertex in common, called a point of intersection. 

 

A subgraph of <V, M, E > is any graph <V’, M’, E’ > such that V’ is included in V, M’ is 

included in M and E’ is included in E. Figure 27 are subgraphs of Figure 26 (right hand panel) 

 

 

Figure 27: Decomposition of directed graph in Figure 26 into two sub graphs 

 

In signed directed graphs, the path between two vertices is assigned sign ‘‘+” if it represents 

positive influence (reinforcement) and sign “-” if it represents negative influence 

(suppression). 

 

Bond Graphs (BG) 

 

Another type of graph, known as a Bond Graph (Beez, et al., 2008; Bouamama, et al., 2006; 

Bouamama, et al., 1997) provides a domain-independent topological representation that 

captures energy-based interactions among the different physical processes that make up the 

system. The vertices in the graph represent subsystems modelled as generic physical processes. 

 



48 
 

2.3.6 Application of Graph Theory in Process Analysis and Fault 
Diagnosis 

 

Several researchers (Gao, et al., 2010; Kramer and Palowitch, 1987; Wakeman, et al., 1997) 

have used directed graphs for other diagnostic purposes. The goal of the diagnosis methods 

using signed directed graph (SDG) is to determine the fault set (Mohindra & Clark, 1992). It is 

imperative, however, that true process faults must be an element of the fault set provided the 

SDG model is complete. The fault sets will, however, probably contain extra elements since it 

provides all the possible explanations. Shiozaki et al., (1985) utilized a SDG in a fault 

diagnostic algorithm. However, the time complexity of the algorithm during implementation 

was very high. Kramer & Palowitch Jr. (1987) converted a SDG representing a physical 

process into a concise set of logical rules which provided a framework for addressing the issue 

of improved diagnostic resolution and reduced computational time. Processing time for a 

SDG comprising 99 nodes and 207 branches in Shiozaki et al., (1985) work took five minutes. 

However, with the technique of Kramer & Palowitch Jr. (1987), the processing time was 

reduced to a few seconds on a similar machine.  

 

Directed graphs, such as the one shown in the left hand panel of Figure 28 can be utilized in 

the generation of the connectivity matrix, right hand panel of Figure 28 of a process plant. 

 

2.3.7 Connectivity Matrix from Directed Graphs 

 

The left hand panel in Figure 28 depicts a directed graph and its corresponding, on the right 

hand panel, connectivity matrix. The intersection of two nodes (row, column) denoted by “1” 

represents connection between the nodes while a “0” indicates no connection. One of the key 

objectives of the PhD work is to generate the connectivity matrix automatically from process 

schematic such as P&ID. The next subsection discusses connection matrices because of their 

importance to the thesis. 

 

Connection Matrices 

 

Most process structures can be reduced to interconnections of arcs and nodes as contained in 

P&IDs and illustrated mathematically by a matrix. The allocation of nodes and arcs to the 
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rows and columns of the resulting matrix determines the type of matrix produced (Hartmann 

& Kaplick, 1990). The following types of connection matrix can be identified: 

 

Connectivity matrix: the nodes are assigned to the rows and columns of the matrix. 

 

Arc adjacency matrix: the arcs are assigned to the rows and columns. 

 

Incidence matrix: the arcs are assigned to the rows and nodes to the column. 

 

In the variants of connection matrices above, the following premises hold: 

 

 
 

Figure 28: Directed graph and corresponding connectivity matrix 

 

 

Connectivity matrix,  Cij = 

 

 

Arc adjacency matrix,  Aij = 

          

 

 

Incidence matrix, Iij = 

 
 

1 if there is an arc from node xi to node xj 

0 if there is no arc from node xi to node xj 

1 if there is a node connecting arc ui to arc uj 

0 if there is no node connecting arc ui to arc uj 

-1 if arc uj springs from node xi 

1 if arc uj ends in node xi 

0 if arc uj is not connected to node xi 
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  Where, 

                 node X = (x1…xn)  and  arc U = (u1…um) 

 

2.3.8 Reachability Matrix 

 

If Λ represents the connectivity matrix containing N nodes and K, the sum of the successive 

powers of Λ up to the power of N, the reachability matrix, R, due to Mah(1983) and 

demonstrated with adjacency matrix by Jiang, et al., (2009) is defined as follows: 

 

       K = Λ + Λ2 + Λ3+…+ ΛN   

 

The power to which Λp is raised indicates the number of p-step edge sequence traversed in 

moving from element i to j in matrix Λp. 

 

 

       R = (K)#  = 

 

 

As an illustrative example, consider the simple directed graph G shown and the corresponding 

connectivity matrix M depicted in Figure 29 

 

 

     

 G =    M =  

 

 

 

Figure 29: Simple directed graph with corresponding connectivity matrix 

 

 

Matrices representing successive powers of M are shown in Figure 30-M2, M3, M4, M5, M6. K is 

the sum of M through to M6 and R is the reachability matrix of M.  

 

  V1 V2 V3 V4 V5 V6 
V1 0 1 0 0 0 0 
V2 0 0 0 0 1 0 
V3 0 0 0 0 0 1 
V4 1 0 0 0 0 0 
V5 0 0 1 1 0 0 
V6 0 0 0 0 1 0 

if K( i , j ) = 0; R( i , j ) = 0 

if K( i , j ) ≠ 0; R( i , j ) = 1 

V1 

V6 
 

V5 
 

V4 
 

V3 
 

V2 
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  M2                                          M3 

 

  V1 V2 V3 V4 V5 V6 
V1 0 1 0 0 1 0 
V2 0 0 1 1 1 0 
V3 0 1 0 0 1 0 
V4 1 0 0 0 0 1 
V5 1 0 1 1 0 1 
V6 0 0 1 1 1 0 

 

      M4                    M5 

 

 

 

  V1 V2 V3 V4 V5 V6 
V1 0 0 1 1 1 0 
V2 1 0 1 1 0 1 
V3 0 0 1 1 1 0 
V4 0 1 0 0 1 0 
V5 1 1 0 0 1 1 
V6 1 0 1 1 0 1 

 

       M6 

 

 

 

K = M+M2+M3+M4+M5+M6   =   

           

 

 

  V1 V2 V3 V4 V5 V6 
V1 0 0 0 0 1 0 
V2 0 0 1 1 0 0 
V3 0 0 0 0 1 0 
V4 0 1 0 0 0 0 
V5 1 0 0 0 0 1 
V6 0 0 1 1 0 0 

  V1 V2 V3 V4 V5 V6 
V1 0 0 1 1 0 0 
V2 1 0 0 0 0 1 
V3 0 0 1 1 0 0 
V4 0 0 0 0 1 0 
V5 0 1 0 0 1 0 
V6 1 0 0 0 0 1 

  V1 V2 V3 V4 V5 V6 
V1 1 0 0 0 0 1 
V2 0 1 0 0 1 0 
V3 1 0 0 0 0 1 
V4 0 0 1 1 0 0 
V5 0 0 1 1 1 0 
V6 0 1 0 0 1 0 

  V1 V2 V3 V4 V5 V6 
V1 1 2 2 2 3 1 
V2 2 1 3 3 3 2 
V3 1 1 2 2 3 2 
V4 2 2 1 1 2 1 
V5 3 2 3 3 3 3 
V6 2 1 3 3 3 2 
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  R = (K)#  = 

 

 

 

Figure 30: Iterative steps for transforming connectivity matrix into reachability matrix 

 

The reachability matrix provides a method of determining which elements can be reached from 

a particular starting point by examining the non-zero row entries. For the illustrative example 

in Figure 30, the recheability matrix R has non-zero entry indicating that every node can be 

reached from any starting node. Using the reachability matrix, it is possible to trace which 

elements are connected and how many steps or elements lay along the path. For example, M3 

in Figure 30 suggests that there are three-step edge sequences from: 

 

V1 to V3  (V1       V2      V5      V3 )  

V1 to V4  (V1        V2       V5       V4)  

V2 to V6 (V2        V5       V3       V6) 

                         V5 to V5 (V5       V3         V6     V5) - a loop 

 

The practical application is that it is possible to do a quick check on items of equipment along 

a path by specifying the starting element and thus give an insight into possible propagation of 

disturbance along the direction of process fluid and signal flow.  

 

The concept of reachability matrix will be applied to the Tennessee Eastman case study in 

Section 5.7 to give an insight into the process. 

 

2.3.9 Comparison of Full Process Model with Connectivity Model 
for Fault Diagnosis 

 

Table 2 compares the effectiveness of full process models, such as physical and empirical 

models with connectivity model generated from connectivity and directionality information 

such as contained in process P&ID.  A “√” indicates strength while “X” denotes shortcoming. 

  V1 V2 V3 V4 V5 V6 
V1 1 1 1 1 1 1 
V2 1 1 1 1 1 1 
V3 1 1 1 1 1 1 
V4 1 1 1 1 1 1 
V5 1 1 1 1 1 1 
V6 1 1 1 1 1 1 

if K( i , j ) = 0; R( i , j ) = 0 

if K( i , j ) ≠ 0; R( i , j ) = 1 
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It can be concluded from the comparisons in Table 2  that there are merits and disadvantages 

inherent in either of the approaches. 

 

Table 2: Comparison of relative strengths and weaknesses of full process model against 
connectivity model for fault diagnosis.  √ indicates strength and X indicates weakness 

Requirement      Full process model              Connectivity model 
Suitability √ X 
Robustness X √ 
Human interpretation X √ 
Quick detection and diagnosis X √ 
Isolability X √ 
Novelty identifiability √ X 
Error classification √ X 
Adaptability X √ 
Explanation facility √ √ 
Modelling requirement X √ 
Storage and computational 
requirements 

X √ 

Multiple fault identification √ X 
 

 

The graph- based methods discussed above seem very powerful as shown by Jiang, et al., 

(2009) for example. However, their application is limited at present by the bottleneck of 

creating the graph or connectivity matrix from the drawing. Generation of connectivity matrix 

in an automated fashion and on a very large scale from readily available electronic process 

schematics has been accomplished in this thesis.   

 

2.3.10 Manipulation of Connectivity Matrix 

 

The next task after extraction and storage of items of interest and their connectivity 

information from process schematic is to manipulate the connectivity matrix created. This 

section describes established algorithms for searching graphs and graph related objects. A 

modified version of traditional graph traversal technique used in this thesis is presented. 

 

Depth First Search: The depth-first search approach utilizes last in first out (LIFO) data 

structure.  The starting element is put on a stack while an adjacent element not yet visited is 

explored continuously until the last item has been visited. The search then backtracks to the 

previous element visited to explore any unvisited element. An implementation of depth first 
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search algorithm due to Thambirajah et al., (2009) used in this thesis is depicted in Figure 

31.The figure shows the search from Element-006  to Element-001.. 

 

Figure 31: Depth-first search used to compile a list of forward path elements (From 
Thambirajah et al., 2009) 

 
All the elements connected to a starting element on the first column is depicted by a “1” entry 

in the connectivity matrix. 

 

Breadth First Search:  This is an alternative search strategy to the depth first approach. Here, the 

graph traversal makes use of queue data structure – first in first out (FIFO). The starting 

element in the array of items to be searched is put on the queue while all elements connected 

or adjacent to the first element is visited. Each element visited is added to the queue as it is 

visited until all elements have been exhausted. Each element on the queue is visited to explore 

its adjacent elements until all items on the queue have been visited 

 

2.3.11 eXtensible Mark-up Language (XML) 

 

One of the aims of the thesis is to manipulate connectivity matrices for the purposes of 

tracing the root-cause of a disturbance along the direction of process fluid and information 

flow with a view to confirming the root source of the disturbance and eliminating spurious 

results from data-driven analysis. Consequently, it is important to pay attention to the 
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automated generation of such matrices from available information sources such as a PFD or 

P&ID. 

 

This section describes XML, a text-based platform and vendor independent data description 

for storage, transmission and integration of data from a variety of sources. Plant description 

using the XML provides greater flexibility in computer manipulation of process schematics 

when compared with the graphic format. 

 

Hence, for any engineering drawing such as a PFD or P&ID to be amenable to algorithmic 

manipulation in a computer program, such drawings must be converted and represented 

electronically in a format that a computer program can read and operate on. One of such 

useful computer representation of engineering drawings is the XML.  

 

The following subsections explain the structure of an XML file because XML is used 

extensively and feature prominently in the thesis.  

 

XML is a system and hardware independent language for expressing data and its structures 

within an XML document and conforms to ISO/IEC standardization (w3.org, 2011). An 

XML document is a text file that contains the data together with mark-up that defines the 

structure of the data for easy data communication from one computer to another.  

 

An XML document basically consists of two parts, a prolog and a document body. The prolog 

provides information necessary for the interpretation of the contents of the document body. 

It contains two optional components, and since both components can be omitted, the prolog 

itself is optional. The two components in the sequence that must appear are: XML declaration, 

which defines the version of the XML and may specify the particular unicode character 

encoding used in the document; document type declaration (DTD), which specifies an external 

DTD that identifies mark-up declarations for the elements used in the body of the document, 

or explicit mark-up declaration, or both. The document body contains the data. It comprises one 

or more elements where each element is defined by a begin tag and end tag. The elements in 

the document body define the structure of the data. There is always a single root element that 

contains all other elements.         

 

An XML document must be well-formed and valid before being processed by an XML processor, 

which may be validating or non-validating. A well-formed XML document implies that the 
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<variable temperature= “120” pressure= “48” flowrate= “160” ></variable> 
 
<!--This would normally be written in the shorthand form, like this:  --> 
 
< variable temperature= “120” pressure= “48” flowrate= “160” />  

<elementname attribute= “Attribute value”> 
 
</elementname>  

document conforms to the rules for writing XML, as defined by the XML specification. A 

valid document is a well-formed document that has an associated DTD. A DTD essentially 

defines a mark-up language for a given type of document and is identified in the DOCTYPE 

declaration in the document prolog.  Below is an example of a well-formed and valid XML 

document for describing a process plant. 
 
 
 
 
 
 
 
 
 
 
 
 
The document consists of a root element that defines the plant with a prolog above the root 

element. The value of “yes” assigned to standalone implies that the document is independent 

on any external definition of mark-up, which means the document is self-contained. The 

default value of standalone is “no”, so this can always be left out when a document is not 

standalone. The name that appears in the DOCTYPE declaration, in this case Plant must 

always match that of the root element for the document.  XML mark-up divides the contents 

of a document up into elements, Plant in this simple example, by enclosing segments of the data 

between tags, a start tag and an end tag. Document comments can go anywhere in the prolog 

or document body, but not inside a start tag or an end tag or within an empty tag, for instance, 

a comment might go like this: 

 
 
 
 
 
 

 

 

 

Additional information can be put within an element in the form of one or more attributes. 

An attribute is defined by an attribute name, and the value is specified as a string between the 

quotes as:  

 

 
  

<?xml version="1.0" encoding="UTF-8" standalone=”yes”?> 
 
<!DOCTYPE Plant  SYSTEM “ProcessPlant.dtd ”> 
 
<Plant PlantID= “Reformer101” > 
 
</Plant>  
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2.4 Process History-Based Methods 

 

Advancements in computer data processing capabilities coupled with ever decreasing costs of 

hardware have taken computer data processing capabilities and extraction of useful 

information from measured process data to a higher level.   

 

In contrast to model-based approaches where a priori knowledge (known or assumed ahead of 

time) about the model (quantitative, qualitative or both) is assumed; in process history-based 

methods, only the availability of a large amount of historical process data is assumed 

(Venkatasubramanian, et al., 2003b). When large quantities of data generated from process 

measurements are analyzed using algorithms such as the PCA technique to reduce the 

dimensionality of the data, it produces valuable information and insights regarding the state of 

the process under consideration. It can also be used to extract certain features about the 

process which can be fed as a priori knowledge to a diagnostic tool. A hierarchical classification 

of some methods for data-driven analysis based on (Thornhill and Horch, 2007) is presented 

in Figure 32. The classification considers process history based analysis under two broad 

headings-qualitative and quantitative methods. 

 

In process history-based or data-driven methods, both process inputs and outputs are 

measured at regular intervals called sampling time. The sampled data are either used instantly 

in real-time operations or archived for process monitoring and auditing. Several researchers 

have exploited process data history to perform FDD and to find direction of fault propagation 

(Bauer and Thornhill, 2008; Thornhill and Horch, 2007). 

 

Process History-based Fault Detection 

 

The use of process measurements to detect process anomalies is an active research area and 

the various techniques developed have been successfully deployed in the industry. For 

example, AlGhazzawi and Lennox (2008) described a real-time, recursive multivariate 

statistical analysis based on PCA to detect sub-optimal process performance. The technique 

was able to capture dynamic characteristics of the process, a weakness in static PCA models. 
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Figure 32: Classification of methods for data-driven plant-wide disturbance based on 
Thornhill & Horch (2007) 

 
 
The classification in the lower layer of Figure 32 groups plant-wide disturbances into those 

oscillating, non-oscillating and non-stationary with the methods for detecting each 

classification of disturbance. However, experience has shown that the most commonly 

encountered form of disturbance in process industry is that of oscillation. 

 

In an attempt to deal with the problems of measurement noise, missing values, outliers and 

time delays in measurements used for signal analysis, Thornhill, et al., (2002) used spectral 

analysis  of process signals in their study. The signal decomposition analysis was carried out by 

subjecting the signals in the time domain to Fourier analysis resulting in frequency domain 

analysis.  The resulting multivariate analysis was carried out in the frequency domain. The 

steps involved in the procedure are summarized and depicted in Figure 33.  
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The reason for explaining the algorithm in detail is that the methods have been implemented 

in the signal processing tool, plant disturbance analysis (PDA®) used in process measurements 

analysis in this thesis, hence fundamental understanding of the algorithm is essential.  

 

 

Figure 33: Signal decomposition to constituent sinusoids using a Fourier Transform 

 

Fast Fourier algorithm (FFT) is used to carry out efficient signal transforms from time domain 

to frequency domain. The result of FFT application is summarized in Figure 34  which shows 

the frequency components of the original signal.  

 

 

Figure 34: Output from Fast Fourier Transform of process signal 
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The constituent sinusoids resulting from signal decomposition shows the amplitude on the 

vertical axis and frequency on the horizontal axis. The time component of the original signal 

has been eliminated, hence, the analysis is unaffected by time delays and noise which are 

advantageous over time domain analysis. 
 
Each process measurement was decomposed into its respective frequency spectrum up to the 

Nyquist frequency (one-half of the sampling frequency) which was used to create a matrix, X 

whose rows are the single-sided power spectra of the signals.  

 

PCA analysis decomposes X as a sum of orthogonal basis functions, W, called the loadings, 

ranked according to weightings, T, called the scores. X can be rewritten as X = TW as 

illustrated in Figure 35.  

 

In the analysis carried out by Thornhill, et al., (2002), a three principal components model 

(three basis functions, w) captured 90% of the variance and the plot in 3-D plot and showed 

clusters with each cluster containing possible root-cause(s) of oscillation within the process. 

 

 

Figure 35: Signal decomposition and transformation into spectra for PCA analysis 

 

Process History-Based Fault Diagnosis  

 

 Thornhill et al., (2003) used measured process data to derive a numerical non-linearity index 

which was subsequently used to detect a disturbance that propagated plant-wide and to 

identify the root-cause of a process disturbance. Non linearity is strongest at the root source 

of the disturbance under consideration.  The underlying concept in reaching a conclusion 

about root-cause in the work is based on the observation that non-linearity reduces due to the 

filtering nature of the process as the disturbance propagates away from the root-cause.  Bauer 
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& Thornhill (2008) applied cross correlation function to estimate time delay between process 

measurements which was used to derive the propagation path in the form of a causal map. 

These works and others show the potential of applying process history data in FDD. 

 

The relevance of  the discussions above stemmed from the fact that the PDA tool used for 

finding data-driven root-cause hypothesis that are subsequently tested against the process 

topology’s connectivity and directionality information captured in this thesis used spectral 

PCA algorithm calculations for data analysis. 

 

2.5 Approaches to Fault Detection and Diagnosis (FDD) 

 

Various paradigms have been used by several authors to implement FDD tools, such as those 

that combine knowledge about the process under consideration (model-based) with process 

measurements (model-free) from sensors and instruments. Irrespective of the technique 

adopted, it is important to be able to build robust tools capable of effectively diagnosing 

process upsets under various conditions coupled with reusable components that can be 

integrated with existing or new tool to enhance rapid and cost effective industrial FDD tool 

development (Struss, et al., 2010).  Table 3 summarises some of the monitoring tools 

developed with a combination of the various methods. 
 
 

Table 3: Some FDD methods and tools 

FDD Method FDD Tool Faults Considered Intended End User 
FDD based on 
performance indices 
and expert rules 
 

Performance 
validation tool 
 

Poor controller tuning, 
faulty flow and temperature 
sensor, faulty actuators 
 

Plant operators / 
maintenance  personnel 
 

Statistical analysis 
and minimization of 
mass and energy 
balance residual 
 

Offline sensor 
validation 
 

Bias and drift in 
temperature and flow rate 
sensors 
 

Maintenance engineer, plant 
operators and 
commissioning engineers 
 

FDD based on 
stochastic qualitative 
reasoning 
 

Performance 
monitoring 
support system 
 

Actuator, sensor and 
controller failures 
 

Plant operators 
/maintenance  personnel 
 
 

FDD based on 
qualitative causal 
reasoning and sign 
directed graphs 
 

Performance 
monitoring 
support system 
 

Actuator, sensor and 
controller failures 
 

Plant operator/maintenance  
personnel 
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FDD based on 
statistical analysis of 
residuals 
 

Embedded 
performance 
monitoring 
system 
 

Stuck damper 
 

Plant operator 
 
 

FD based on fault 
direction space 
method. FD using 
physical models and 
analysis of filtered 
residuals 
 

Performance 
monitoring tool 
 
 

Stuck or leaking heating and 
cooling coil valves, low 
heating steam supply 
temperature, reduced 
(increased) cooling water 
flow, incorrect flow rate  
 

Plant operator 
 
 

Qualitative model-
based fault detection 

Performance 
monitoring tool 
 

Valve stuck, or with 
restricted range, sensor 
offset, excessive control 
signal 
 

Plant operator 
 

FDD using an expert 
system 
 

Performance 
monitoring  
(audit) tool 
 
 

Wrong pressure, 
simultaneous heating or 
cooling, defective sensor 
 

Plant operator 
 

Detection based on 
fuzzy expert rules 
and generic fuzzy 
models  
 

Performance 
monitoring and 
automated 
commissioning 
tool 
 
 

Leaky valve, fouled coil, 
valve stuck, open, midway 
or closed 
 

Commissioning engineer, 
plant operator 
 

FD based on 
statistical analysis of 
residuals 
 

Performance 
validation tool 
 
 

Blocked valve, stuck valve, 
partially open valve, faulty 
sensor 
 

Maintenance personnel, 
process plant operator 
 
 

FD based on fault-
symptom tree expert 
rules 
 

Performance 
monitoring 
system 
 

High energy 
consumption(energy 
efficiency), poor control 
performance 
 

Plant operator 
 
 

 
 

One conclusion to be drawn from the list in Table 3 is that a combination of techniques is 

adopted for most FDD tools. The approach of combining techniques compensates for 

deficiencies in a single technique and thus produces superior results as demonstrated by 

(Chiang and Braatz, 2003; Iyun, 2005; Lee and Yoon, 2003). 

 

Yim et al., (2006) described a tool developed by combining electronic description of the plant 

structure with results from signal-based analysis to isolate root-cause of plant-wide 

disturbance. In the work reported by Norvilas et al., (2000), multivariable statistical analysis 

was combined with a knowledge-based system for monitoring chemical process operation. 

Kosebalaban & Cinar (2001) employed MSPM, contribution plots, and parity space fault 

diagnosis techniques for detecting abnormal operation of dynamic processes and diagnosis of 

sensor and actuator faults. Thornhill et al., (Thornhill, 2005; 2003; Thornhill, et al., 2003) 
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derived and used non-linearity index, zero crossings of auto covariance function (ACF) and 

spectral principal component analysis (PCA) from routine process measurements to detect 

and diagnose plant-wide oscillations. From the reviews, it is evident that a combination of 

techniques (hybrid) is widely employed and recommended in developing effective FDD tools.  

 

Christofides et al., (2007) posited that a unified and effective approach to fault detection is 

elusive in practice because of changing conditions of data and plant operation. However, the 

various approaches to FDD in its most abstract form with some modifications in their 

implementation can be defined as a two-step task. The two steps can be considered as fault 

detection and identification or isolation. 

 

 Step 1. Compares the actual behaviour of a process, as manifested by the values of the 

operating variables, against the behaviour predicted by a model or measurements, and 

generate the residuals which reflect the impact of faults. This is the fault detection stage.  

 

 Step 2. Evaluates the residuals and through an inversion process, identify the inputs (i.e. 

faults) that caused the observed behaviour. The inversion process could be analytic or take 

on various forms of a decision process, such as hypothesis testing, logical testing against 

thresholds, pattern recognition (syntactic, or quantitative) and so on. This is the fault 

isolation step. 

 

Methods for isolating faults include model-based and data-based methods. Model-based 

approaches use mathematical or logical representation of the process to design dynamic filters 

and compute residuals that cause specific faults. Data based methods on the other hand utilise 

measured data from the process variables to find and compare the location and direction of 

the system in the state-space with past behaviours.  

 

Factors that are typically considered when applying the above generic approach to FDD 

include: sources of faults under consideration; failure modes to include for each source; types 

of models used to describe process behaviour; representation of process signals and 

computation of residuals which is usually defined by the type of process model used. 
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2.6 Hybrid (Model-Mixing) Approach 

 

It can be emphasised that data, models, knowledge, and experience all have critical roles to 

play in effective fault isolation and management. This implies that any means of combining all 

these elements for better and improved diagnostic should be sought. This gives rise to the idea 

of model mixing or hybrid systems.  Development of improved modelling paradigms that 

exploit process data and various forms of prior knowledge tends to produce a better 

diagnostic result. Iyun, (2005); Chiang & Braatz, (2003) and Lee, et al., (2003) among several 

other authors have concluded that the use of qualitative and quantitative techniques offers 

superior diagnostic performance. 

 

2.6.1 Justification for Model-Mixing 

 

Operations in process industries are typically non-linear. Interruptions and disturbances occur 

randomly and may move the process to a new operating point where the nonlinearity becomes 

apparent. Identifying and isolating faults plant-wide in the face of such nonlinearities, 

externally imposed variability and increasingly complex process plants  becomes a challenge 

for process control engineers and plant operators using conventional FDD 

approaches(Chiang and Braatz, 2003). Novel, intelligent and robust techniques capable of 

coping with such plant complexities and non-linearity are needed.  

 

Table 4 (Venkatasubramanian, et al., 2003c) summarises the effectiveness of various diagnostic 

methods in meeting expected goals. It can be inferred from the comparison table that no 

single technique meets all the desired criteria for fault diagnosis because no single method has 

all the desired properties. The conclusion to be drawn from the analysis is that a combination 

of methods stands a better chance of dealing more effectively with fault detection and 

isolation. Consequently, a hybrid approach or combination of techniques, therefore, looks 

very promising in overcoming inherent drawbacks in single FDD technique. This serves as a 

motivation for adopting a hybrid approach as used in the thesis to detect the root-cause of a 

plant-wide disturbance.  
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Table 4: Comparison of relative strengths and weaknesses of various diagnostic methods. 
The table indicates that no single approach satisfies all the diagnostic requirements (based 
on Venkatasubramanian, et al., 2003c) 

 
Requirement Digraph Expert 

system 

PCA NN QTA Observer Abstraction 

hierarchy 

Quick detection 

 and diagnosis 

 

?          ? 

Isolability 

 

X          X 

Robustness 

 

             

Novelty 

 identifiability 

 

  X    ? ?   

Error  

classification 

 

X X X X X X X 

Adaptability 

 

  X X X ? X   

Explanation  

facility 

 

    X X   X   

Modelling 

requirement 

 

         ?   

Storage and 

computation 

 

?          ? 

Multiple  

fault 

identification 

  X X X X     

 = strength                                         X   = weakness                                        ? = unknown 
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2.7 Fault Diagnosis in Process Industry 

 

This section puts fault diagnosis into the context of process industry. Process plants used in 

the conversion of raw materials to finished products, such as a refinery, are typically non-linear 

and complex in nature, both in construction and operation. The plants generally make use of 

recycle streams and achieve energy efficiency through heat integration for maximum 

performance.  

 

Process plants evolve over time and throughputs are dictated by prevailing economic and 

technological conditions. For example, a sudden demand on a particular product stream such 

as gasoline might require process and instrumentation modification to cope with the change. 

Similarly government regulation on effluent composition might change prior to discharge to 

the environment. The new requirements from existing process plant imply that modifications 

to the plant such as addition of instrumentation or modifications to operating mode become 

inevitable.  The various changes can complicate root-causes of disturbances that have 

propagated plant-wide due to the complex nature of the resulting plant. 

 

As shown in Table 5, possible sources of process plant upset can be broadly classified under 

four factors:  

 

1. Sources due to process operation: this includes use of recycle streams, heat 

integration, fluctuations in raw material composition, start up and shut down 

operations. 

 

2. Faults emanating from process equipment: process equipment has design capacity 

beyond which further output cannot be obtained from the asset. In some severe cases, 

attempts to operate beyond design capacity could lead to equipment breakdown and 

possible material release. An example is the maximum operating pressure of a reactor 

vessel. Other examples include valve saturation, equipment degradation due to wear 

and tear and equipment in poor state of repair or maintenance. 

 

3. Process upsets from control systems: controllers rely on measurements taken from 

key process variables to take action. When such measurement data from sensors and 

other instruments are noisy, inaccurate or corrupt, controller performance is adversely 
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affected. Other factors that could cause a control system to exhibit and propagate 

process upset include poor controller parameter(s) (proportional integral derivative, 

PID) settings (tuning), controllers interacting with one another where output from one 

controller disturbs another controller, and valve fully opened or closed (saturation) 

and advanced control design implementation issues such as cascade control.  

 

4. Unknown or unpredictable sources: these are the most difficult to deal with since 

neither the source nor the dynamic is known. It is usually difficult to model or predict 

such sources of upsets in real processes. There are numerous sources unknown 

process disturbances and few the sources include random changes in ambient 

operating conditions such as temperature and humidity, rain showers on process plant 

located in the open and thunderstorms.  

 

Table 5:  Causal factors in process plants. Sources of faults are broadly classified under 
four major headings: operation, equipment, control systems and unknown sources 

Sources of faults in process plants 

Operation Equipment Control Systems 
 

Unknown 

 Use of recycle stream 
 Heat integration 
 Start up* 
 Shut down* 
 Change in raw material 
 
 
 
 
 
 
 
* special process operation 

 Equipment operating at 
design limits such as 
valve saturation 
 Equipment degradation 
over time due to wear 
and tear 
 Equipment in poor 
state of repair  

 Poor control structure 
design 

 Bad controller design 
 Noisy measurements 
 Poor controller tuning 
 Interactions among 

controllers 
 Advanced control 

strategy 
 Controller output at 

limits such as valve 
saturation 

 Fluctuations in ambient 
temperature and 
humidity 

 Rain showers 
 Thunderstorm 
 Non-linearity 
 Fluctuations in power 

supply 
 Utility stability 

 
 

 

 

2.8 Human Approach to Reasoning about Fault Diagnosis 

 

Humans are capable of reasoning about their environment and subsequently draw conclusions 

in order to take an action without complete or accurate information about the environment.  

This is essentially similar to the process by which a computer system used in process 

automation takes control action viz: sensing, comparison with a reference and action. 
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However, humans unlike computer system do not require exact quantitative mathematical 

relationship about the world in order to reason and act accordingly.  Humans are also capable 

of utilizing knowledge and information from a variety of sources to an overall image of the 

physical system under consideration. With time, humans are also able to learn from past 

experience and apply such knowledge in dealing with novel problems. Humans are highly 

flexible in their problem solving approach, are able to collaborate and communicate their 

findings to colleagues.   

 

Despite the above listed qualities in humans’ ability to reason about their environment in the 

face of insufficient data and uncertainty, an automated system is still preferable because 

humans suffer from a number of limitations. Humans’ cognitive capability varies widely due to 

their levels of training and experience. When subjected to stressful conditions, repetitive tasks, 

large amount of data and information, humans’ capability and capacity to reason degrades 

drastically.  Similarly when experienced humans, with some fundamental knowledge of the 

process system leave a job or retire, all the experience and knowledge also goes with them. An 

automated diagnostic tool on the other hand can be used to train new operators and can cope 

with human limitations above-such as performing a boring or repetitive task. 

 

2.8.1 Application of Artificial Intelligence (AI) Techniques and 
Expert System 

 

This subsection introduces the application of AI in the research work, especially the 

knowledge-based system. AI techniques that have been successfully used and those with 

potential for use in FDD are also discussed. One advantage of AI techniques, such as artificial 

neural networks (ANN), over traditional approaches is the ability to offer novel solutions to 

problems devoid of a conventional solution.  

 

The complex, non-linear and dynamic nature of engineered systems with incomplete 

knowledge about the resulting complex systems requires non-conventional approaches to 

control and monitoring. Output from researches in the field of AI, such as expert systems, 

neural networks and fuzzy logic have been able to help to some extent in coping with 

uncertainties and superficial knowledge about complex systems required for modern 

demanding and sophisticated systems. Expert systems, fuzzy logic and ANNs are some of the 

areas in the field of AI with increasing applications in complex systems whose problems are 
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ill-defined or not thoroughly understood. These techniques can be used in diagnosing such 

complex systems as a chemical plant. 

 

In process industries, the use of AI tools such as knowledge-based systems have continued to 

yield favourable results, especially in the area of control and optimization. Choosing the right 

AI tool for application in process industry is critical to the success of such AI approach and 

this approach in turn depends on the specific application. The right search algorithm should 

also be chosen. Forward and backward chaining search shown in Figure 36 are typically 

employed. For diagnostics tasks, such as utilized in expert systems, backward chaining 

searches are usually employed. This involves searching and reasoning from the conclusion 

(effect) backward, using sub-goals until the cause is discovered. 

 

   

 

 

 

 

 

 

 

 

Figure 36: Search strategy for locating cause-and-effect in diagnostic tasks 

 

Kokawa et al., (1983) used backward chaining technique to propose possible causes by 

working backward from all abnormal measurements to find common explanations.  

Prediction, on the other hand, uses forward chaining, reasoning from the known (cause) 

toward a solution. For example, Kramer & Palowitch (1987) propose possible root-causes for 

observed symptoms, and then examine each hypothesis by searching in the direction of 

digraph arcs.   

 

 

 

 

 

Forward Chaining 

Cause  Effect 

Backward Chaining 
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Expert Systems 

 

This subsection discusses expert systems because of its relevance to FDD and by extension 

the current work. An expert system is used as a repository of knowledge and experience 

gained by process plant operators and control engineers. The fundamental laws of physics and 

chemistry can also be encoded for use in resolving diagnostic ambiguity and reaching a 

conclusion regarding the root- cause of a distributed, plant-wide disturbance.  

 

Expert systems are computer-based applications used to deploy the knowledge, insights, 

advice and guidance of experts in a particular field. It implies that consistent expert knowledge 

can be formalized and reproduced when needed in the future for drawing conclusions. In 

building expert systems, the knowledge of domain expert is usually elicited through interviews 

with a knowledge engineer who later process and assemble the knowledge gathered in a 

knowledge base.  

 

LINKman (ABB, 2002) is an expert system that has been successfully deployed in cement 

manufacturing plants and known to have brought about improvement in overall process 

performance, higher product quality and significant reduction in energy usage. A review of 

expert systems applications in a broad range of industries including mineral, chemical, nuclear 

power and brewing have been reported (Bearman and Milne, 1992).  

 

Choices available for the development of expert systems include; (i) Conventional 

programming language (such as C++, C#, Java, C); (ii) AI programming language (especially, 

LISP and Prolog); and (iii) Expert system shells. Expert systems are usually deployed using 

expert system shells.  Table 6 compares the various development tools available in order to 

make an informed decision about the suitability of one or more of the tools for a particular 

task. 

 

Expert system tools have been developed and deployed for practical use in many engineering 

domain such as the process industry. Increase in the use of expert systems in various 

applications underscores the significant progress made since its inception as a unique branch 

of AI in the late 1960’s from mere laboratory trials.  
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Based on comparisons in Table 6, it appears an expert system shell for encoding knowledge 

and physics of the process meets more of the diagnostic requirements in order to draw 

conclusions about the root-cause of process upset.  
 
 

Table 6: Comparison of various development tools for expert system 

 
 
A survey of some commercial expert system shells produces Table 7.  

Table 7: Comparison of some commercial expert system shells 

 G2® JESS® ACQUIRE® 
Platform Windows®, UNIX 

(Vs. 8.3 supports  .NET) 
Windows®, UNIX 
(Supports JVM not .NET 
directly) 
 

Windows®, UNIX  

Real time capability Yes No No 
 

License issues Academic/ Educational 
use available: -20% of list 
price excluding 
maintenance -
maintenance is 15% of 
list price -12 monthly use 

Academic research only 
with no distribution rights 

 Academic/ Educational 
use with discount 
available 

Embedability Integrates with other 
applications 

Usually with Java® 
applications 

Integrates with other 
applications 
 

Object oriented Supports O-O technology Supports O-O technology 
 

No information 

Inference mechanism Forward and Backward 
chaining 

No information Forward and Backward 
chaining 
 

Network capability Excellent Excellent-via  
Java® API 

Needs further service 
subscription 

 

Conventional 
Programming 
Language  
(E.g. C++, C#, 
Java, C) 

AI programming 
Language  
(especially, LISP & 
Prolog ) 

  
Expert System 
Shells 

Development 
efforts/time required 

High Fair Fair 

 
Flexibility 

 
High 

 
High 

 
Low 

 
Inference power 

 
Low 

 
Low 

 
High 

 
Maintainability 

 
Poor 

 
Poor 
(usually requires input 
from specialists) 

 
Very good 

 
Explanation facility 

 
Fair 

 
Poor 

 
Good 

 
Graphics capability 

 
poor 

 
Poor 

 
Good 
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2.9 World Experts and Centres of Excellence in Fault Diagnosis  

 

     Table 8 provides a list of experts in the field of process fault detection and diagnosis with 

their research centres. Also included in the table are particular topics of specialisation within 

the field.   

 

     Table 8: World experts and centres of excellence in process FDD 

Institution Research area(s) Researcher 
Centre for Process Systems Engineering 

Department of Chemical Engineering and 

Chemical Technology 

Imperial College 

South Kensington, London 

United Kingdom 

 

URL: http://www3.imperial.ac.uk 

 

Process automation,   Plant-wide 

disturbance detection and characterisation,   

Linear and non-linear root-cause diagnosis 

e.g. oscillations due to disturbance and 

limit cycles, Spectral decomposition and 

clustering e.g. PCA, ICA, NMF, auto 

covariance, surrogates, Control loop 

performance  evaluation and         

assessment utilizing spectra analysis 

 

 

Thornhill, N. F. 

 

Department of Chemical & Biological 

Engineering 

Illinois Institute of Technology 

Chicago, Illinois,  USA 

 

URL: http://www.iit.edu 

 Multivariable Process Monitoring, 

Bifurcation  Analysis and Complexity in 

Large Distributed Systems, Performance 

Assessment, Fault   Diagnosis, Fault  

Tolerant Control Multi-agent System for 

Modelling,  Supervision and Control of   

Distributed  Adaptive Systems  

 

 

Cinar, A. 

 

Purdue University 
School of Chemical Engineering 
Forney Hall of Chemical Engineering 
480 Stadium Mall Drive 
West Lafayette, IN 47907-2100  
 
URL: http://www.purdue.edu 
 

Artificial Intelligence, Statistical 

Mechanics, Complex Adaptive Systems,  

Flow sheet   Analysis, Fault Diagnosis, 

SDG    

 

 

Venkatasubramanian, 

V. 
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Department of Chemical Engineering and 

Materials Science 

University of Southern California 

925 Bloom Walk, HED 211 

Los Angeles, CA 90089-1211  USA    

URL: http://chems.usc.edu 

 

Process Monitoring, Fault Diagnosis, 

System    Identification 

 Data Analysis & Control, Model 

Predictive Control, Sensor Validation                                         

    

 

Qin, S. J. 

 

Department of Bioengineering & San 

Diego Supercomputer Center 

University of California, San Diego, 9500 

Gilman Drive, La Jolla CA 92093-0412. 

URL: 

http://www.sdsc.edu/~mano/index.html 

 

Formerly at: 

Department of Chemical Engineering 

Purdue University 

Indiana, USA 

URL: http://www.purdue.edu 

 

Flow sheet  Analysis, SDG, Process 

Design, Control, Monitoring and Fault 

Diagnosis, Modelling, Simulation and 

Optimization, Data Mining and 

Statistical/Machine Learning, Artificial 

Intelligence, Parallel Computing 

 

 

Maurya, M. R. 

 

Department of Chemical Engineering 

MIT 

Cambridge, USA 

URL: http://www.mit.edu 

 

Fault Diagnosis 

SDG 

(Active research in the 80s to mid 90s) 

 

Kramer, M. A. 

 

MIT 

77 Massachusetts Ave, Rm. 66-372, 

Cambridge, MA 02139 

http://web.mit.edu/braatzgroup/index.ht

ml 

 

Formerly at: 

Chemical & Biomolecular  Engr. 

University of Illinois at Urbana-

Champaign  

Urbana, Illinois USA 

 

URL: http://www.uiuc.edu 

 

Fault detection using statistical analysis of   

process data simulation, design, and 

control of multiscale  systems 

 

 

Braatz, R.D. 
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Department of Chemical Engineering 

Texas Tech University 

6th and Canton  

Mail Stop 3121 

Lubbock, TX 79409-3121 

URL: 

http://www.depts.ttu.edu/che/faculty/rre

ngasamy/rrengasamy.php 

 

Formerly at: 

Department of Chemical Engineering 

Clarkson  University 

Potsdam, New York, USA 

 

URL: http://www.clarkson.edu 

 

Multi-Scale Modelling and Optimization,  

Controller Performance Assessment and 

Process Fault Diagnosis , Flow sheet  

Analysis, SDG 

 
 

 

Rengaswamy, R. 

 

Chemical and Materials Engineering, 

University of Alberta 

Edmonton, Alberta  

CANADA T6G 2G6 

 

http://www.ualberta.ca 

 

 

Multivariate statistical analysis of plant 

data for control loop performance 

assessment, process monitoring, fault 

diagnosis, and development of new 

control-relevant identification algorithms 

for use in the design of model-based 

predictive controllers. 

Computer Process Control 

 Process Automation 

 

 

Shah, S. L. 

 

University of Michigan  

Computer Science and Engineering  

2260 Hayward Street  

Ann Arbor, MI 48109-2121 

URL:http://eecs.umich.edu/~kuipers/ 

 

Formerly at: 

Department of Computer  Science 

University of Texas at Austin Round Rock, 

Texas 78681 

Austin, Texas  

http://www.cs.utexas.edu 

 

Qualitative Modelling  and Simulation 

 

 

Kuipers, B. 
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Department of Chemical Engineering 

University of Texas 

Texas, USA 

 

URL: http://www.engr.utexas.edu 

 

Control System Monitoring, Single and 

Multi Loop PID, MPC 

 

 

 

Edgar, T. F. 

 

School of Electrical and Electronic 
Engineering 
The University of Manchester 
Manchester 
M13 9PL  

 

http://www.eee.manchester.ac.uk 

Multivariate statistical process control, 

Model predictive control, Control loop 

monitoring, Monitoring and control of 

batch processes, Flow assurance in the oil 

and gas industry.  

 

Barry Lennox 

Department of Chemical Engineering 

University of Texas  at Austin 

Texas, USA 

 

URL: http://www.che.utexas.edu 

 

  Artificial Neural Networks for Fault           

Diagnosis and Data Rectification 

 

 

Himmelblau, D. M. 

 

Department of Chemical Engineering 

MIT 

Cambridge, USA 

 

URL: http://www.mit.edu 

 

SDG, Extended SDG (ESDG) 

           (80’s and early 90’s) 

 

 

Oyeleye, O.O. 

 

Department of Chemical Engineering 

Norwegian University of Science and 

Technology (NTNU) 

Norway 

 

URL: http://ww.ntnu.no/english 

 

Plant-wide control and Optimization, 

Control structure design, distillation 

column design, Process control and 

dynamics 

 

Sigurd Skogestad 

School of Engineering 

University of Glasgow 

James Watt South Building, Glasgow G12 

8QQ, Scotland 

United Kingdom 

 

http://www.gla.ac.uk/schools/engineerin

g/staff/johnhowell/ 

Plant-wide fault detection and diagnosis  

and other abnormal situations in process 

plants-nuclear and chemical 

 

John Howell 
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2.10  Chapter Summary 

 

This chapter has explored existing approaches to process modelling namely quantitative 

model-based, qualitative model-based and process history-based methods. The chapter 

described graph theory as one of the fundamentals of the thesis. The chapter extended 

discussions on graphs to usability of directed graphs with respect to process schematics and in 

the storage and processing of graphs representations in computer programs. The relevance of 

connectivity matrix and XML were highlighted because of their central importance to the 

thesis.  

 

Chapter 2 has also provided a review of existing work in the field of FDD. The chapter 

considered the application of a combination of approaches to develop FDD tools. One 

important observation that will find usage in the thesis is that a combination of techniques 

(hybrid), such as data-driven techniques using statistical methods and expert systems, is widely 

used and proved to be successful in developing FDD tools.  

  

The chapter concluded with a table listing the centres of excellence, researchers and area of 

specialisation in FDD which provided a useful guide to where research activities are going on 

in the field across the globe.  
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3 Access to Engineering Information for 

Process Operations 

 
 
This chapter describes the process of utilizing engineering information and data for process 

plant operational purposes. The chapter details all pertinent standards and commercial 

vendors of computer aided design (CAD) tools capable of producing intelligent piping and 

instrumentation diagrams (iP&IDs). 

 

The chapter explores the concept of iP&ID as background to the research. International 

standards relevant to iP&IDs are ISO 10303-221 (also called AP221), ISO 15926 and IEC 

PAS 62424. The ISO 15926 is used in this thesis because this standard has been widely 

implemented by leading commercial CAD vendors. IEC PAS 62424 is a similar standard to 

ISO15926 and is discussed in details in this chapter as well. The reason for delving into IEC 

PAS 62424 is that it was extensively used at the early stages of the research. These standards 

permit interchange of iP&ID information between different tools. The chapter also describes 

the relevance of these standards to the thesis. 

 

The issue of legacy CAD drawings, such as those drawn with AutoCAD®, which may require 

conversion to intelligent P&IDs is also discussed. Finally, the chapter considers the 

requirements of the project and reviews computer-aided tools for the preparation and export 

of iP&IDs in a form suitable for use within the project. A decision is needed about whether to 

employ such a tool and which one to choose. 

 

An illustrative example is included to demonstrate the capability of the tool developed in 

accessing and using intelligent P&ID information. 
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3.1 Engineering Data and Information during Process Design 

and Construction 

 

A vast amount of engineering design data and information are generated during the 

construction of a process plant. The data and information are contained in documents which 

become part of important industrial intellectual property (Daratech, 2004). An example of 

such document is a process P&ID. After the plant has been commissioned and is on-stream, 

most of these design data and information are seldom put into use mainly due to the storage 

and retrieval issues. 

 

3.1.1 Motivation and Need for Interoperability 

 

In 2002, the National Institute of Standards and Technology (NIST, 2004) estimated the 

annual cost of poor interoperability and data exchange in the US capital facilities industry 

alone at USD 15.8 billion while the McGraw Hill ENR Technology for Construction 2007 

report on interoperability estimates the cost to be twice as much as the 2002 NIST report 

(ENR, 2005). Standards have been and are being developed to deal with the problem of 

interoperability and ensure more efficient systems integration and workflow. 

 

With the advancement in computer processing power capability, decreasing digital media 

storage device coupled with rapid evolution of information technology, process industries and 

CAD tool vendors are devising means to leverage the engineering information for better 

information management. These developments include maintaining data integrity and 

management of change, enhancing information exchange, and promoting work flow in multi-

disciplinary project.  

 

The advancement in process information technology has led to development of what is now 

referred to as intelligent P&IDs which are traditional drawings with data repositories that are 

not visible on the graphic coupled with relevant associated international standards.  

Engineering data and information that were, hitherto, inaccessible for operational purposes 

are now possible such as the use of XML to store, retrieve, transmit and exchange engineering 

data and information. 
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3.2 Intelligent P&IDs  

 

A P&ID is a drawing of a process showing items of equipment and the connections between 

them. It generally conforms to established conventions and standards for the layout and 

symbols. An intelligent P&ID, example shown in Figure 37, stores additional information and is 

able to exchange information about the items, their layout and connections with a data base 

and with other engineering tools. 

 

The ability of iP&ID to exchange drawing data and information in a text-based format as 

XML allows computer processing and algorithmic manipulation for automating the generation 

of process connectivity descriptions such as digraphs and connectivity matrices which are 

needed for the project.  

 

 

 

Figure 37: An intelligent P&ID drawn with AVEVA P&ID® CAD tool running on AutoCAD® 

 

The core concept behind an intelligent P&ID is the data model. The data model is a structured 

description of types of objects and the properties of specific objects. An iP&ID stores tagged 

items, quantities, connectivity and directionality data independently of the drawing and hence 

can export information about items of equipment and the links between them into other 
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formats. Most iP&ID tools store their data model in a proprietary format, but there is user-led 

pressure for future tools to comply with open standards which most leading commercial CAD 

vendors are subscribing to trend (Laud, 2011). 

 

The main commercial products for creating iP&IDs are: 

 AutoCAD P&ID which is based on AutoCAD 

 Aveva P&ID which is based on AutoCAD 

 Bentley AutoPlant P&ID which is based on AutoCAD 

 Innotec Comos P&ID 

 Intergraph SmartPlant 

 

Some features of these commercial CAD tools will be reviewed in Section 3.7 

 

3.3 Options for Converting dumb P&IDs to intelligent P&IDs 

 

Traditional drawings such as legacy drawings in earlier versions of AutoCAD tools are called 

dumb P&IDs and they do not store additional information besides the arcs and line graphics 

shown in the drawings. Old and extant P&IDs (or control and flow diagrams, CFDs) lack the 

data model which makes a CAD intelligent. With most brown field process plants designed 

and drawn using traditional CAD drawing tools, there is, obviously an issue of the conversion 

of the legacy dumb P&IDs to intelligent P&IDs. Effective means of dealing with and 

managing legacy data issues are unarguably the biggest problem facing the process industries 

(Gartner, 2008). Options available for converting dumb P&IDs to intelligent P&IDs include 

manual, semi-automatic and automatic conversions. These options will be explored in the 

succeeding sections. 

 

3.3.1 Manual Conversion 

 

The amount of work depends on how old the drawing is and whether the engineer conformed 

with good practices when creating the drawing. All the tools listed in section 3.7 offer some 

assistance with conversion. In general, they use rules to identify items of equipment and can 

partially populate a database. The user may have to intervene and make some manual 

decisions. The amount of effort required is greatest here and the possibility for the 
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draughtsman to make a mistake is higher. Further, extant drawings might have an outdated 

standard of practice. 

 

3.3.2 Automated Conversion 

 

Several CAD vendors claim to have tools for automatic conversion of dumb P&IDs to full or 

partial intelligent P&IDs on their respective websites. For example, the Noumenon tools can 

partially convert dumb AutoCAD® drawings (Laud, 2011). At present, a data base can be 

populated with items of equipment but direction links are not extracted. These tools are under 

development, however. Intergraph offers a commercial conversion service from dumb 

AutoCAD® drawings to SmartPlant® drawings for a fee plus a one-off set-up fee. The service 

is partly automated and the manual steps are done by Intergraph. 

 

3.4 Relevant Standards 

 

There are standards relevant to iP&IDs, and which also cover the concept of an engineering 

data warehouse (EDW). Computer-aided tools which combine iP&ID and EDW offer the 

generation and open interchange of information about items of process equipment and their 

connections. 

 

3.4.1 ISO 15926 

 

POSC-Caesar Association  (PCA, 2011), a global, non profit organization initiated ISO15926 

and is committed to its development, maintenance & enhancement. ISO 15926 is an 

international organisation for standardization (ISO) standard for seamless exchange and 

integration of industrial data. ISO 15926 is formally called Industrial automation systems and 

integration - Integration of life-cycle data for process plants including oil and gas production facilities. ISO 

15926 is implemented using standards from worldwide consortium (W3C) and standardizes 

terminology, information organization and how systems connect and exchange information.  

 

The development project within ISO is undertaken and overseen mainly by the advancing 

development of ISO15926 (ADI) and intelligent data sets (IDS) groups. It specifies a data 
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Figure 38: Relationship between intelligent P&IDs and an engineering data 
warehouse, cited from Leal, 2005 

model for information for the engineering, construction and operation of process plants. The 

aim is to mitigate the current high cost of rekeying and reformatting information to move it 

from one proprietary system to another (PCA, 2011). This data model is the engineering data 

warehouse defined earlier. A key feature illustrated in Figure 38 is the sharing and integration 

of information amongst all parties involved in the plant's life cycle including contractors, 

automation vendor and end-user. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Information that enables engineering projects to proceed smoothly such as parts lists and 

process diagrams (intelligent P&IDs) are built from information in the data model. For 

instance, querying an item such as a pump in a drawing or parts list should bring up additional 

information about it from the data base, for instance the type and size of pump and the 

manufacturer. The data model can be populated from a drawing and can be updated by 

making changes to the drawings. 
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3.4.2   ISO 10303-221 

 

ISO10303-221 Functional Data and Their Schematic Representation for Process Plants (also called 

AP221) is a protocol for the exchange of intelligent schematics between different software 

applications. It can be used for the exchange of iP&IDs between a contractor and a plant 

owner or between an automation supplier and the contractor. ISO10303-221 specifies the 

construction of drawings such as P&IDs and also is used for exchange of data between an 

intelligent P&ID system and an EDW defined in accordance with ISO15926. Figure 39 shows 

the way in which ISO1030 and ISO 15926 overlap to achieve this task. As indicated in Figure 

39, the drawing captures the plant as it is, there is a shared data model containing information 

about the items of equipment in the drawing, and ISO 15926 records both the present and 

past states of the plant. According to Leal (2005) from whom the illustrations have been 

taken, the ability of the ISO 15926 data model to record changes is its defining feature. 

 

 

 

 

 

 

 

 

 

 

3.4.3 IEC PAS 62424 

 

 

3.4.4 IEC PAS 62424 

 

IEC PAS 62424 is called Representation of process control engineering requests in P&IDs and data 

exchange between P&ID tools and PCE - CAE (Process Control Engineering - Computer Aided 

Engineering tools). IEC/PAS stands for international electrotechnical commission/publicly 

available specification. This specification has a focus on control and instrumentation and 

describes how process control engineering functionality is to be represented in P&IDs. The 

Figure 39: The roles of AP221 (ISO10303-221) and ISO 15926 in 
maintaining information about the plant, taken from Leal, 2005 
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idea is to indicate the category and processing function, independent from the physical 

realization (distributed control systems (DCS), wireless, pneumatic). It also specifies the flow 

of data between a P&ID tool and a process control engineering (PCE) tool by means of an 

XML data transfer language called computer aided engineering exchange (CAEX). CAEX 

specifies items of equipment and directional links between them. This standard is discussed 

further with some examples in section 3.10. 

 

3.4.5 Other Standards 

 

There are also other relevant standards that specify the symbols to be used in P&IDs and 

naming/numbering conventions. These standards are: 

 ISO 10628 Graphical symbols for process equipment 

 ISO 14617 Graphical symbols for diagrams 

 

3.5 History of the Standards 

 

This subsection provides an overview of the standardization. It provides the evolutionary 

nature of the standards as well as the efforts put into their development at various stages by 

working groups responsible for specifying the standards. 

 

3.5.1 ISO 10303 and ISO 15926  

 

The ISO 10303 and 15926 standards originated with POSC Caesar, a non-profit European 

organization that works on open specifications for standards to allow interoperability of data 

and software. A US industry consortium called FIATECH has adopted ISO 15926 as a way to 

integrate and automate the execution of large capital projects. Since 2010 POSC Caesar has 

been collaborating with FIATECH to implement a joint operational reference data (JORD) as 

a more robust alternative to the existing POSC Caesar openly available reference data library 

(RDL).Both POSC Caesar and FIATECH are developing case studies and demonstrations.  
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3.5.2 IEC PAS 62424 and CAEX  

 

IEC 62424 and CAEX emerged from an initiative called AutomationML®. The objectives are 

similar to those above, namely to establish an open format to allow communication between 

different engineering tools. The emphasis has been on mechanical, electrical, robotics, and 

automation equipment. CAEX describes the properties and relations of objects in their 

hierarchical structure and is the data transfer language for carrying information between 

different engineering tools.  

 

3.5.3 Harmonization between CAEX and ISO 15926 

 

The ISO 15926 and CAEX approaches seem to be developing in parallel and without 

reference to each other and harmonization between ISO 15926 and CAEX is needed (Koning, 

2007). Similarly, a Google® search for pages including both AutomationML® for CAEX and 

XMpLant for IS0 15926 implementations returned no hits as the time of writing this thesis. 
 

3.6 Data Export and Interchange 

 

This section describes data transfer and information exchange formats among various 

engineering design tools as executed in compliance with ISO 15926 and IEC PAS 62424 and 

CAEX. 

 

3.6.1 Data Exchange in ISO 15926 

 

The specifications in Part 7 of ISO 15926 standard deals with methods of data transfer and 

information exchange between different engineering tools. It is based on languages used for 

the world-wide web called resource description framework (RDF) and web ontology language 

(OWL). ISO 15926 Part 7 has some way to go before full implementation, however. 
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3.6.2 Data Exchange using CAEX 

 

CAEX is an XML schema for export from tools that comply with the IEC PAS 62424 

standard(Fedai and Drath, 2005). As far as can be ascertained, only Comos P&ID is known to 

have XML export that conforms to the CAEX schema. 

 

3.6.3 XMpLant Export 

 

An organization called Noumenon Consulting Inc. provides ISO 15926-compliant data 

transfer tools based on XML according to a schema called XMpLant. Noumenon provides 

interchange of intelligent P&IDs between several of the iP&ID tools listed in section 3.2. 

Figure 40, from the web pages of Noumenon Consulting Inc. shows how mapping files are 

used to convert between the native formats and the open XMpLant format. 
 
 

 

 

 

Figure 40: XMpLant data model overview showing the mapping of intelligent P&IDs between the 

P&ID applications of different vendors. Cited from Laud (2006) 
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3.6.4 Data Exchange by Other Means 

 

Most of the P&ID tools listed in Section 3.7 have proprietary formats for storing and 

representing their data model and for export of the data model (i.e. of the equipment lists and 

connections). The web site of AutoCAD P&ID, for instance, says that the model is exported 

in an Excel spreadsheet. 
 

3.7 A Review of Commercial Products 

 

Table 9 outlines commercial products that meet some or all of the requirements of the project, 

namely: 

  

 to handle intelligent P&IDs,  

 to provide export of the items of equipment and links between them,  

 to convert dumb P&IDs to intelligent P&IDs. 

 

Table 9: Comparison of commercial products against their level of suitability for the 
requirements of the research project 

Tool Intelligent 

P&ID 

Standards Export Dumb-Intelligent 

Conversion 

     SmartPlant 

P&ID 

Own intelligent 

P&ID and Oracle 

or MSSQL data 

base 

Fully ISO 15926 

compliant , see  

 http://www.intergraph 

.com/ppm/iso15926.aspx 

Noumenon 

XMpLant is 

available 

Service available from 

Intergraph  at a fee 

     

Comos P&ID Own Intelligent 

P&ID and Oracle 

or MSAccess or 

MSSQL data base 

Moving to ISO 15926, 

working with FIATECH 

XML  

(CAEX schema) 

Users can convert 

dumb AutoCAD P&ID 

     

Bentley 

AutoPlant 

P&ID 

Based on 

AutoCAD 2008 

with Intelligent 

P&ID features 

Not ISO 15926, 

proprietary system 

Noumenon 

XMPlant export is 

not yet available 

Users can convert 

dumb AutoCAD 

drawing 
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Bentley 

OpenPlant 

P&ID 

Own intelligent 

P&ID and a data 

base. It is not 

available until 2009 

Fully ISO 15926 Export to any ISO 

15926 data 

warehouse 

None, but it can import 

from AutoPlant 

     

Aveva VPE 

P&ID 

Based on 

AutoCAD 2010 

with Intelligent 

P&ID 

Not ISO15926 ISO 15926 and 

XMpLant are 

available 

Users can convert 

dumb AutoCAD 

     

AutoCAD 

P&ID 

Based on 

AutoCAD 2010, 

Intelligent P&ID 

Not ISO 15926 Noumenon 

XMPlant export is 

available 

Users can convert 

dumb AutoCAD 

     

XMplant  It is a mapping tool 
that converts 
proprietary 
formats to and 

from ISO 15926. 

Fully ISO 15926 ISO 15926 

XMPlant Schema 

Can partially convert 

dumb AutoCad (items 

only, no connections). 

It can read intelligent 

P&IDs from Aveva and 

AutoCAD P&ID 

 

 

 

3.8 Discussion of CAD Commercial Tools within the Context of 

the Project Requirements 

 

The project has a basic requirement to extract a list of plant items and the directional connections 

between them from a CAD drawing. The research has indicated that besides a full process 

P&ID, a high-level drawing of the process such as a process flow diagram (PFD) or control 

and flow diagram (CFD) can also be used to obtain connectivity and directionality information 

from process topology. Items to be extracted include equipment, signal lines, instruments and 

controllers as well as pipes, and piping components. 

 

At the Academic Level:  The price of commercial tool and interest in academic collaboration is a 

major determinant in choosing the appropriate software tool for the research.  

 



89 
 

At the Industrial Level: The selected method should be automated, future-proof and also be able 

to handle legacy drawings.  

 

3.8.1 Software Selection 

 

At the Academic Level: The research work has demonstrated a range of solutions for getting a 

connectivity description from a P&ID. These include CAEX based on IEC PAS 62424 

standard and XMpLant schemas based on ISO15926 standard. 

 

At Industrial Level: There would be the need to consider long-term solution for getting 

connectivity information from CAD drawings. The export from selected CAD tool should 

conform to a widely used international standard and should be vendor and platform 

independent. 

 

For Both: Given the requirement to re-use legacy AutoCAD drawings, one of the intelligent 

P&ID tools based on AutoCAD appears to be a good choice.  

 

The project sponsor prefer ISO15926 standard to CAEX 62424 because ISO15926 is the 

main standard used in North America and has been implemented by more major CAD tool 

vendors than the CAEX standard. The wider coverage and implementation of ISO 15926 

provided a much more challenging PhD project. 

 

Aveva and Noumenon Consulting are both suitable project partners to deploy intelligent CAD 

tool. These considerations informed our decision to choose Aveva® P&ID software tool for 

creating intelligent P&ID in this research. 

 

3.9  Generation of a Connectivity Description of a Process 

 

For the purposes of the research project, any export of an intelligent P&ID that contains the 

information about equipment and instrumentation with directional links will suffice. Options 

for generating process connectivity from plant structure include: 

 

 



90 
 

 Using an AutoCAD P&ID Excel description of the drawing 

 Parsing an XML description of the drawing (CAEX or XMpLant schema) 

 Creation of the connectivity information by hand 

 

The XML description of the process is chosen because XML is becoming the de facto neutral 

standard for information storage, retrieval and transmission in the industry. For example, the 

adoption of Microsoft Office open XML formats such as docx, xlsx and pptx extensions is an 

eloquent testimony of the acceptance of XML standards(Microsoft, 2006).  

 

3.9.1 ISO 15926 XML Output 

 

This section presents a simple intelligent process P&ID with a level control loop. The purpose 

for its inclusion is to show how various elements of process schematics are described and 

represented using text based XML compliant with ISO15926 and XMpLant Schema(Laud, 

2011) implemented in AVEVA P&ID®. 

 

The section discusses connectivity representation as well as description of individual 

components shown visually in Figure 41. A control loop is described as a composition of the 

various elements making up the loop, namely, measurement device, controller and final 

control element such as a pneumatic valve. 

 

 
Figure 41: Process schematic created with AVEVA P&ID® 
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Connectivity Description in XML 

 

In Figure 41, temperature indicator TI-002(35CB) is connected to the vessel V-01(346F) by a 

process link (25D6) with no nozzle. This shows up in the XML as a virtual nozzle (346F-

35D6). System generated unique identifiers are quoted in brackets. The process link (35D6) 

shows the connection between the vessel V-01 (346F) and TI-002 (35CB) XML description of 

the connectivity described above is given below. 

 

Below are the details of the loop L-001 and constituent instruments. 

 

The L-001 loop XML description: 

 

 

 

 

 

 

 

 

 

Loop L-001 constituents 

 

LT-001 XML description 
 
 
 
 
 
 
 
 

LIC-001 XML description 
 
 
 
 
 
 
 

 

 

Loop L-001 

constituents 
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LCV-001 XML description 
 
 
 
 
 
 
 
 
 

 

Connections from V-01 to TI--002  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Virtual nozzle (346F-35D6). Not shown on the drawing  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



93 
 

 

Connections from V-01 to LIC-001  

 

      Nozzle to LT-001                   LT-001 to LIC-001 

 
 
 
 
High level Hierarchical Structure 

 

The AVEVA® P&ID hierarchical description breaks down process plant drawing into a 

PlantModel root element. Under the root element are other sub-elements, along with their sub-

elements, attributes and directional connections into the following pertinent elements: 

 

 Piping NetworkSystem 

 Equipments 

 Instruments 

 

Figure 42, Figure 44, Figure 45, Figure 46 and Figure 47 produced with Stylus Studio XML 

viewer show the high level hierarchical structure of process P&ID as described by AVEVA® 

P&ID ISO15926 XML export. The relevant top-level hierarchical topologies as defined by 

AVEVA® P&ID CAD tool are shown in the Figure 42  to Figure 47 . 
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Figure 42 : Overall plant hierarchical structure in Stylus Studio XML viewer 

 
The reason for showing the hierarchical structure is that it gives a clearer picture of the XML 

structure in a condensed form when compared with the XML text in Figure 43  

 

 

Figure 43: An example of XML text output 

Top level elements 
 PipingNetworkSystem 
 Equipment 
 Instrument 
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Figure 44: PipingNetworkSystem (left panel) and PipingNetworkSegment (right panel). 
PipingNetworkSegment is an element under PipingNetworkSystem  

 
 
 
 

 
Figure 45: Process equipment and attributes 
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Figure 46: Nozzle (left panel) and nozzle attributes 

 
 
 
 

 
Figure 47: Instrument item and attributes 
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3.9.2 Connectivity Matrix from XML 

 

The XML file produced from intelligent CAD drawing contains all the necessary information 

required to create a connectivity matrix. An example is shown in Figure 48. The process of 

extracting relevant data from XML file is known as parsing. The process of creating a 

connectivity matrix from an XML description of process plant with “Process Connectivity 

Analyser” tool is demonstrated with an illustrative example in section 5.4  

 

 

Figure 48: An example of connectivity matrix (on the right hand side) from process XML 
description 

  

3.10 CAEX Compliant XML Output 

 

CAEX is another relevant schema for encoding and structuring vital engineering data locked-

up in documents generated during the design and construction of process plants. CAEX was 

considered as an alternative to ISO15926 at the early stage of the PhD work, hence its 

inclusion in the thesis. CAEX is an XML schema for mark up declaration. It is a platform and 

vendor independent object-oriented data model for machine information exchange and 

storage.  

 

3.10.1 Background 

 

CAEX started as a university project at the RWTH Aachen at the chair of process control 

engineering (Epple, et al., 2002) with the industrial support of the ABB corporate research 

Ladenburg and developed by a committee of ABB engineers and others (Fedai and Drath, 

2005) In 2004, CAEX was published as part of the DIN V 44366. After a positive 
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international voting, CAEX has been published as part of the IEC PAS 62424 in May 2005. In 

2007, the next IEC standardization step has successfully been passed, it is published as IEC 

62424 CDV -committee draft for voting  (Schleipen et al.,2008) 

 

CAEX defines structures for the definition and storage of objects with their characteristics 

and relationships. CAEX supports object oriented concepts such as encapsulation, classes, 

class libraries, instances, instance hierarchies, inheritance, relations, attributes and interfaces in 

storing vendor independent hierarchical object information. CAEX supports three types of 

classes and corresponding libraries: 

 

System Unit Classes: describe physical or logical plant objects or units including their technical 

realization and internal architecture. SystemUnitClasses are collected in libraries of the type 

SystemUniClassLib. 

 

Role Classes: these are abstractions of concrete technical realization of physical or logical plant 

objects. RoleClasses do not describe the concrete internal implementation of the object. It is 

used in order to define the requirements for a plant catalogues. They are packaged in 

RoleClassLib.  

 

Interface Classes: describe types of interfaces. InterfaceClasses comprise a set of specific attributes 

used for specifying interfaces for example, RoleClasses and SystemUnitClasses. They are required 

in order to define relations between objects. InterfaceClasses are packaged in InterfaceClassLib.   

 

XML that conforms to the CAEX schema can be constructed with the aid of an XML 

visualisation tool such as Stylus Studio. The XML documents can also be created from 

engineering drawings by computer-aided engineering (CAE) tools such as ComosPT® from 

Innotec®.  

 

3.10.2 CAEX Plant Items Specification 

 

Figure 49 specifies all the necessary elements needed to completely describe items and 

connections, in a CAEX format, in a typical process P&ID.  The following terms immediately 

become evident and useful in the process topology specifications: 
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Product Connections:  symbolize the coupling of two pieces of equipment with the possibility of 

material transfer between them (pipe-pipe, pipe-vessel). 

 

Process Connection Line: symbolizes the information flow from the control world to the physical 

process or vice versa. The ProcessConnectionLine symbolizes the functional coupling between a 

PCE request and the material balance point, but not the actual layout in the plant 

 

Signal Line: symbolizes the functional influence between PCE requests, and not electrical 

wiring. 

 

Interfaces (external and internal): external interfaces are CAEX means to describe product flow (or 

signal flow) between units while internal interfaces describe flows within a unit.  

 

Standards: Pertinent standards relating to CAEX include: ISO 10628, which specifies the 

general rules for flow diagrams for process plants and IEC PAS 62424, a specification for 

PCE requests in P&ID, data exchange between P&ID tools and PCE-CAE tools. These 

standards are discussed in Section 3.4.3. 

 
 
 

 
  

 

Figure 49: CAEX specification of process P&ID. 
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3.10.3 XML Encoding of Plant Items 

 
Figure 50: External references in a CAEX complaint XML file shows the header of a CAEX 

complainant XML file as depicted in Figure 50. The header contains references to external 

libraries which are in turn compliant with the referenced international standards: ISO 10628 

and IEC 62424. This indicates that new libraries need not be defined for each and everything 

in CAEX. CAEX acts as a backbone that integrates existing libraries. CAEX explicitly 

supports accessing external files by means of the CAEX element ExternalReference. The 

definition of ExternalReference comprises relative path such as “.\ISO10628-2007.xml” as shown 

in Figure 50 and an alias name “ISO10628” that allows for internal access to the external file. 

In addition to the standards, external CAEX files can be referenced as well. 

 

 

  
 

The ability to reference remote CAEX files allows for smooth work flow and project 

integration. Examples of external interface description are shown in Figure 51 as Off Sheets A, 

D, E, C, P and W which represent process streams external to the current P&ID. Examples 

include a feed stream from a feed pre-processing unit or storage tank, product stream flow or 

effluent/waste stream flow.  
 

 
 

Figure 50: External references in a CAEX complaint XML file 
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Figure 51: CAEX external interfaces 

 
List plant elements extracted from a process P&ID is shown in Figure 52. The list of plant 

items includes equipment such as a pump, controllers, indicators, pipes and piping 

components. For example, “TC007” in Figure 52 designates the temperature controller in 

loop 007 

 

 
Figure 52: Output from Stylus Studio® - Components 

 
 
The symbol “S” is used to represent process connection line while “R” is used to represent a 

pipe. “N” is used to represent product connection interface. Some of the naming conventions 

are listed in Table 10. 
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Table 10: An example of naming convention for encoding process plant items 

Symbol Designation 

Interfaces 

S x Signal Line Interface 

P x Process Connection Interface 

N x Product Connection Interface e.g. Nozzle 

Connection lines 

S x x Process Connection Line 

S x x x Signal Line 

x = integer number 

Components 

V Valve 

R Pipe 

CM Compressor 

A Analyzer 

HS Heat Source 

HZ 

T 

Heat Sink 

Pipe joint 

Unit equipment 

HX Heat Exchanger 

RX Reactor 

CD Condenser 

SP Separator 
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Plant topology refers to unit’s entities such as equipment configuration, the connectivity 

among them and external elements or surrounding environment. The process topology 

descriptions are usually available in such forms as P&ID and other engineering drawings. 

Process schematics become more useful when they are available in electronic format so that 

computational manipulations such as search to be performed on the items process schematic 

to show the sequence of event such disturbance propagation away from a source. 

 

Figure 53 shows a schematic of a processing equipment unit RX01 and its corresponding 

XML description to its right. The figure shows that process connection line S22 is connected 

to the reactor, RX01 and level controller, LC003. The interface between S22 and RX01 is P1. 

S22 is connected to LC003 through P2 interface. Signal line S922 is connected to LC003 

through a common interface S1.The complete XML description of the unit and the 

connectivity is shown in the right hand panel of Figure 53.  

 

 
 
 

  
Figure 53: A process unit with its corresponding CAEX XML description. 

  
 
The interfaces defined and used in the XML description can be filtered out during the parsing 

of the XML file in the final connectivity analysis, leaving only the components and 

connectivity information. For example, the XML description:  
“<InternalLink Name="RX01P1_S22P1" RefPartnerSideA="RX01:P1" RefPartnerSideB="S22:P1"/> ” 

will produce “RX01--->S22” as directional link between RX01 and S22 without showing the 

interface P1. 

 

LC003 
S922 

S22 

RX01 

P1 
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3.11 Chapter Summary 

 

This chapter has presented various techniques for accessing process topology data.  Relevant 

standards have been reviewed in the context of the thesis requirements. The chapter discussed 

commercial software tools available and a selection was made based on the project 

requirements. The chapter also introduced XML exports of process plant topology. 
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4 Design and Implementation of Process 

Connectivity Analyser Tool  

 
A substantial part of the work reported in this thesis involves engineering research findings 

into a software tool with familiar and friendly user interface. This is a key project deliverable as 

required by the project’s sponsor. A substantial amount of time and effort was invested in the 

software engineering process. This chapter captures the essential details the software 

development process. Activities carried out include requirement analysis, software design, 

coding, testing and deployment. 
 

4.1 Software Development Methodology 

 

Requirements specifications for most research projects are subject to continuous changes and 

modification as new discoveries unfold. Consequently, the appropriate software practice 

would be the Agile software development methodology (AgileManifesto.org, 2011). This 

approach was adopted in the current work as it allows for continuous software development 

and modification to existing requirements based on interaction with project’s industrial 

sponsor throughout the course of the research project. 

 

For implementation, an objected oriented software development paradigm was adopted. The object 

oriented approach to software development allows complex programming problems to be 

broken down to small manageable modules (objects) that are easy to understand, maintain and 

keep bug-free( Medvidovic et al., 2002 and Warnars, 2011). Co-operation among the various 

resulting objects allows complex problems to be solved. For example, a crude oil refinery can 

be broken down into various constituent objects as distillation columns, pipes, equipments 

and instruments. Each of these components can be broken down further if necessary, 

developed, and tested independently before integration.  
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Object oriented approach to software development supports the following: 

 

 Classes:  these are the abstract template for creating similar objects. For example, a 

generic equipment class can be used to create specific equipment objects such as a 

pump with a unique tag name.  

 Encapsulation: allows internal operations of a class functionality to be hidden away from 

the programmer. Interaction with the class is achieved through a set of well defined, 

publicly available interfaces.  

 Abstraction: this is the process of capturing and representing only relevant simplified 

data structure of real-world objects. For example, a man can be represented by just his 

name, age and date of birth leaving out other details such as height, colour of his hair, 

profession and so on.  

 Inheritance: allows one class (the sub-class) to be based upon (inherited from) another 

(the super-class) and inherit all of its functionality automatically. Modifications to the   

sub-class are permitted to create a more specialised version of the class. 

 Polymorphism: this process describes the ability for an object to change its behaviour 

according to how it is being used in the program. This allows identical naming 

conventions which are distinguishable by the parameters that are passed into the 

functionality. 

 Modularity:  object-oriented programming also permits increased modularity where 

individual classes or groups of integrated classes can be thought of as a module of 

code. Modularity allows written codes to be re-used in other software projects thus 

reducing developmental efforts, time and cost. 

  

4.2 Requirements Analysis and Specification 

 

This section describes the pertinent requirements analysis and specification for the research 

project. The project went through continuous iterative changes in terms of functional 

requirements and implementation. For example, the project started with IEC 62424 standards 

using CAEX for encoding process plant schematics and connectivity information and later 

changed to ISO 15926 standards.  
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The bulk of the requirements have been tabulated Table 11 to show the position of each 

feature/requirement in priority stack. Each feature has been assigned a degree of importance 

as mandatory, desirable or optional.  

 

The end product of the research efforts is a software tool in Windows environment 

(Microsoft .Net) that enhances process control engineers’ ability to perform plant-wide 

diagnosis and performance problems using process data, directionality and connectivity 

information from process topology such as P&ID and process understanding (know-how).  

 

Table 11: Requirements analysis 

 
ID Feature Functional 

Specification 

Implementation  

( In Visual C # ) 

Priority Notes/ 

Comments 
R01 Load and parse 

ISO 15926 

compliant XML 

file 

Create an n x n 

connectivity  matrix 

where n is the number 

of parsed items 

File read from storage 

medium, pre-processed 

and tagged-items 

extracted 

 

Mandatory 

 

Implemented 

R02 Handle multiple 

XML files from a 

number of P&ID 

exports 

Combine multiple well-

formed XML files into a 

single well-formed XML 

file 

File multi-select function 

implemented, each file is 

read, filtered, 

defragmented and 

recombined  as an entity 

 

Mandatory 

  

Implemented 

R03 Provides insights 

about cause-and –

effect analysis 

from data- driven 

analysis 

Linkage of connectivity 

information with results 

from process signal 

analysis 

-defines data format 

- load and parse data 

 

Mandatory 

 

Implemented 

R04 Incorporate 

knowledge about 

the process 

Hard coded logic in C # 

or Use of Expert 

System Shell/ 

Programming  

Logic coding of Physics 

and expert knowledge via 

interviews and discussions 

on site 

 

Mandatory 

 

Implemented 

R05 Enable export of 

Connectivity 

Matrix 

Integrate  Excel 

application within the 

tool 

Import and Instantiate 

Excel application. Copy 

entries in connectivity 

matrix to instantiated 

Excel application 

 

Desirable 

 

Implemented 

R06 Path tracing User specifies a starting 

point and an end point 

Breadth-First search of 

the connectivity matrix 

 

Desirable 

 

Implemented 
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to check for feasible 

path(s) 

R07 Display results 

showing process 

variables 

(controllers and 

measurement 

points) with 

option to include 

process equipment 

and other plant 

items 

Implement a filter to 

remove or include 

process equipment 

Provide users with a 

check box to facilitate 

selection of option 

Desirable Implemented 

R08 Remote access Convert to Browser 

application  

Modify WPF XAML to 

XBAP 

Optional Implementation 

requires slight 

modification 

R09 Distinguish 

between process 

lines and utilities 

lines 

Interpret information 

embedded in tagged 

item 

 

Specify correct labelling 

during P&ID drawing 

 

Optional 

Not required in 

the current 

project. 

Implementation 

with modification 

R10 Integrates with 

existing tools 

Define interfaces that 

seamlessly integrate with 

other software tools 

Work closely with 

vendors 

 

Optional 

Requires 

collaboration with 

software vendor(s) 

 

 

4.3 Software Tool Design 

 

In order to manage and organise large programming efforts in the research, classes were 

design to encapsulate essential elements of the software functionality. Co-operation and 

interaction among various classes and the objects created by these classes allow required tasks 

to be accomplished. 

 

4.3.1 Main Classes 

 

This section describes main classes designed and implemented in Process Connectivity Analyser  

The classes are fundamental to software implementation in object-oriented environment and 

were developed specifically for the PhD project.  
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Each class representation shows the class methods, fields  as well as properties where 

implemented. 

 

One of the most important classes is the IDtoTags class whose component field, properties 

and methods are shown below after HybridPlantWideFaultDiagnosis class. The IDtoTags class is 

essentially an XML parser that loop through the XML file to extract useful elements. The 

parsing algorithm is depicted in  Figure 54. 

 

The algorithm checks for the existence of an XML file before extracting relevant tags. The 

algorithm extracts, sorts and stores tagged items under one category as a control loop, 

equipment or instrument in a re-sizable data structure. Every connection to a process 

equipment is via a nozzle either explicitly drawn on the P&ID or automatically inserted as a 

virtual nozzle when not specified/drawn on the P&ID. In either case, the nozzle is not included 

in the final parsed items as they are not required for the PhD project. 

 

 

HybridPlantWideFaultDiagnosis Class 

 

 

This class is responsible for all file handling. It reads files 

from storage location on the local machine or any portable 

drive. HybridPlantWideFaultDiagnosis class also implements 

all error checking logic associated with file reading and 

processing. For example, any attempt to read a non-   

existing file or file with incorrect format. 
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Figure 54: Flowchart for ISO 15926 XML parsing algorithm 
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IDsToTags Class 

 

IDsToTags is the workhorse of the Process Connectivity 

Analyser tool. It parses the XML file once correctly 

loaded to extract plant items and their directional 

connections.  

 

The class defines some methods (functions), a field and 

a number of properties to expose the field which is 

kept private to the class and accessed via get and set 

properties. Properties provide a level of abstraction 

which allows the field to be changed without affecting 

the external way they are accessed by other classes.  

 

However, properties are not always required to 

encapsulate the field. The properties can return values 

on their own accord. 

 

 

 

SearchAlgorithm Class 

 

SearcchAlgorithm class manipulates the connectivity 

matrix and  implement a depth-first search algorithm to 

find physical path from a chosen starting element to the  

end element. 
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The classes described above interact and co-operate to perform the various tasks set out in 

Table 11. Figure 55 shows how the classes written in this project reference external libraries. 

The external libraries are resources packaged within Microsoft Visual Studio’s  integrated 

development environment as part of .NET framework 3.5 technology to perform routine low 

level functions such as reading and writing of data to streams so that developers can 

concentrate the actual task of software development 

 

 

PathSearchResult Class 

 

 

This class is responsible for pre-processing and 

display of search results. Pre-processing includes such 

operations as filtering, merging and removal of 

redundant elements. Display involves data-binding of 

items to view to windows presentation foundation 

(WPF) controls. 
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ExcelFiller Class 

 

This class handles calls to Microsoft Excel® spreadsheet 

application and filling the spreadsheets with the connectivity 

matrix already created by the ConnectivityMatrixGenerator class 

 

 

 

 

 

  

 

 

Figure 55: Reference to .NET framework class libraries 

Detailed interaction among classes written in the project is depicted schematically in Figure 56. 

Uses 
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Figure 56: Classes interaction automatically generated with Visual Studio 2010 software 
development tool 
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4.4 Requirements for a Standalone Software for Creating and 

exporting Process Connectivity Matrix- A Stripped-down 

Version of the Final Software tool 

 

This section describes the requirements for a standalone software component, a lightweight 

version of the overall software tool that automatically converts XML exports of electronic 

process piping and instrumentation diagram (P&ID) into a connectivity matrix. The 

connectivity matrix produced can be exported to Microsoft Excel application as a standalone 

application or processed further. Automated creation of a connectivity matrix is given special 

consideration here due to its central importance to the project. The software described here 

functions as a standalone tool capable of exporting process connectivity matrix to Microsoft 

Excel application. 

 

The reason for the inclusion of this lightweight version of the software under a separate 

heading is that the software was used by two MSc students who carried out rigorous and 

systematic testing on the software against a set of requirements. The results of these tests are 

presented in Section 4.6. 

 

 

4.4.1 Purpose and Scope 

 

The main purpose of this section is to identify the requirements and constraints that the 

component software tool required for automatic conversion of process description in XML to 

connectivity matrix must satisfy. The proposed component software should be designed, 

implemented and tested under various scenarios with sample process P&ID to ensure that it 

meets all the requirements. It should provide interface that allows user to upload an electronic 

copy of a P&ID XML file. The parsed file should generate a connectivity matrix for further 

processing by the tool software in Microsoft .NET environment. The requirements of the 

component software tool will be considered under the following categories: functional 

requirements, interface requirements, software integration requirements, converted files 

integration, directionality requirements and quality attribute requirements.  
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4.4.2 User Characteristics 

 

The user of the final software tool will be a process plant operator who will not necessarily be 

a computer expert. The user should not be bogged down by trying to understand how the tool 

works but should be easier for the operator to use and understand and analyse the result 

produced.  

 

4.4.3 Dependencies 

 

The project that will make use of the component software and connectivity matrix output will 

be developed in Microsoft .NET environment. Integration and compatibility of the 

technology used in this work with Microsoft .NET technologies will be an essential 

requirement.   

 

4.4.4 Constraints 

 

AutoCAD DWG files contain drawings of structures like tanks. These lines can look like 

signal lines or pipelines. Attempt should be made to use tag naming to identify the entity type 

on the P&ID. This is usually based on the ISA 5.1 standard.  However, not all P&IDs comply 

with the standard. Typically, the ISA standard is used with some minor variations for the 

instrumentation symbols in almost every P&ID. There is usually a first page on the set of 

P&ID symbols which normally gives the legend for the drawing and is mostly similar to the 

ISA standard.  

 

 

4.4.5 Requirements 

 

This section describes the requirements and attributes of the AutoCAD conversion software 

for generating a connectivity matrix from XML description of the process schematics. 
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Functional Requirements (FRQ) 

 

FRQ 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FRQ 2: 

 

 

 

 

 

 

 

 

 

 

 

 

ID                                                                                                                           FRQ1 

PURPOSE:  Uploading XML file 

PRIORITY: HIGH 

DESCRIPTION: The software tool should allow the user to 

browse to and upload electronic process P&ID in XML format 

structured according to ISO 15926 standard. Facility must be 

provided for loading a single or multiple XML files in batches 

for the purpose of parsing the file(s) and generating 

connectivity matrix of specified elements in the drawing.    The 

user should be able to do this through a user-friendly graphical 

user interface (GUI). 

INPUT: XML file compliant with ISO15926 standard 

OUTPUT: The user should receive a confirmation that the 

file has been successfully loaded, otherwise and error message 

should appear, indicating what went wrong.   

ID                                                                                                                           FRQ 2 

PURPOSE:  Deletion and modification of uploaded file 

PRIORITY: MEDIUM 

DESCRIPTION: User should have a means of removing / 

deleting an uploaded file with a warning message to the user 

before deletion is effected. The user should be able to re-

arrange the order in which uploaded files are stored and 

eventually converted. 

INPUT:  XML file compliant with ISO15926 standard 

OUTPUT: The user should receive a confirmation that the 

file has been successfully loaded, otherwise an error message 

should appear, indicating what went wrong.   
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FRQ 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FRQ 4: 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

ID                                                                                                                           FRQ 3 

PURPOSE:  XML files merging 

PRIORITY: HIGH 

DESCRIPTION: XML files exported from process P&IDs 

of a plant could contain several batches of files and spread 

over several sheets of paper when printed out. These 

files/sheets are linked by off-sheet labels. The software tool 

should be able to link the files together and produce a unified 

connectivity matrix for different file batches using the off-sheet 

labels as the interface. E.g. a pipe should run continuously 

from one sheet to the other until it reaches a target.   

INPUT: Several batches of XML files from P&ID drawings 

with interface for connection. 

OUTPUT: Integrated file and ultimately, a unified 

connectivity matrix representing the entire plant entity.   

ID                                                                                        FRQ 4 

PURPOSE:  Directionality  

PRIORITY: HIGH 

DESCRIPTION: Flows in pipes and signals from control 

instruments follow a specific direction. This information 

should be inherent in the connectivity matrix formed. For 

example the order in which elements are connected should be 

preserved. It should be obvious if Unit A is directly connected 

to Unit B and not the reverse. This should be reflected in the 

connectivity matrix formed.  

INPUT: Integrated XML file from process schematic that 

conforms to ISO 15926 standards. 

OUTPUT: Unified connectivity matrix representing the entire 

plant entity with directionality information captured.   
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Interface Requirements (IRQ)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software Integration (SIRQ) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID                                                                                                                             IRQ  

PURPOSE:  Usability  

PRIORITY: NORMAL 

DESCRIPTION: Here, simplicity is the key word. Proposed 

tool should be user-friendly and provide help functions. The 

user should not spend a lot of time figuring out how to use the 

tool e.g. looking for the ‘browse’ button to upload a file. It 

should be easy to learn and use.   

SUGGESTED FUNCTIONALITY: Help facility should be 

provided that will help a novice or confused user. 

RELEVANCE: The tool is targeted at both computer experts 

and non-experts alike and as such should be usable by any user 

independent of the user’s computing knowledge.   

ID                                                                                                                              SIRQ  

PURPOSE:  Integration with other software  

PRIORITY: NORMAL 

DESCRIPTION: The tool will be an integral part of a larger 

ongoing project and should therefore be easily integrated into 

the final tool. The final tool will be developed in a Microsoft 

.NET IDE so it is essential that this tool comply with the 

requirements for such integration to take place.    

ACHIEVABLE: Microsoft .NET platform integration of 

multiple programs written in various high level languages.  

RELEVANCE: A unified software tool is the overall goal of 

the entire project. Therefore individual component software 

developed along the line must be incorporated into the larger 

project.   
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Reliability and Performance Requirement (RPRQ) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maintainability and Evolution Requirements 

 

The tool should be easy to maintain by providing adequate documentation and well 

commented code. The software should be able to adapt and incorporate additional 

functionality as the need arises in the future.  

 

4.5 Implementation 

 

This section describes the technology (.NET framework), software development tools 

(Microsoft Visual Studio 2010) employed and the high level programming language (C #) used 

in coding the software requirements. 

 

 

ID                                                                                                                           RPRQ  

PURPOSE:  Robustness and high throughput  

PRIORITY: HIGH 

DESCRIPTION: The tool should be very stable and process 

input data within a reasonable period of time.   

ACHIEVABLE: In addition to other requirements, reliability 

and performance characteristics of the tool will be directly tied 

to the overall quality of the software tool. Backup and recovery 

facilities should be provided to avoid any loss of valuable data 

in case of system failure. 

RELEVANCE: In order to ensure a high degree of 

confidence in the tool, a highly efficient and stable software is 

much desirable than a crashing one. Also users expect output 

within a reasonable period of time than wait for eternity.   
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4.5.1 .NET Framework 

 

The .NET framework technology (Microsoft, 2011) is the Microsoft® initiative that allows 

programmers to develop applications in different languages that can easily interoperate. As 

shown in Figure 57, application can be developed using common high level programming 

languages such as C++, C#, Visual Basic, Java and C and pre-processed into intermediate 

languages and finally to Common Language Runtime that native processor can manipulate. 

This allows for flexibility and interoperability in application development. The common 

language runtime ensures portability on various computer systems. As at the time of writing 

this thesis, the latest version of .NET framework according to Microsoft website is .NET 

framework 4. 

 

 
 
 
  
 .  .  .  
 
 
 
 
 
 
 
 
 
 
Microsoft 
Intermediate Language 
 
 
 
 
Common Language Runtime 
 
 
 
 
Machine Language 
 
 
 
 

 

 

 

 

C++ Visual Basic C # 

.NET Class Libraries 

MSIL 

CLR 

Native Processor 

Figure 57: Microsoft .NET technology framework layers 
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The core components of .NET framework technology are: 

 

 .NET Class Libraries: a library of classes, interfaces, and value types that provides 

access to system functionality and is designed to be the foundation on which .NET 

Framework applications, components, and controls are built.  

 

 Microsoft Intermediate Language: This is a language-independent and Central Processing 

Unit (CPU)-independent representation of the code written in high level language 

such as C # after compilation 

 

 Common Language Runtime: The .NET Framework provides a run-time environment 

which runs the code and provides services that make the development process easier. 

 

4.5.2 Visual Studio 

 

The Microsoft Visual Studio is an integrated development environment (IDE) that provides 

code editor, designer and compiler for developer’s chosen high level development language 

such as C #, Visual Basic or C++. 

 

 

Figure 58: Microsoft Visual Studio 2010 integrated development environment (IDE) user 
interface 
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4.5.3 The C # Programming Language 

 

Software developed from the research work utilized the Microsoft® .NET technology using 

C# as the core programming language to integrate various development components. C# is a 

powerful, object based and fully integrated into the .NET technology. Applications developed 

using C# meet the core requirements of modern applications. That is they are scalable, 

distributed, web-based and secure.  

 

While the bulk of the code was written in C #, other .NET technologies were also utilized in 

the software development. These set of technologies include: 

 

 Language integrated query (LINQ): LINQ allows for easy querying and updating of 

data, in memory and from external sources. This essentially allows for an innovative 

way of querying against data as well as objects. It uses the standard select, from, where 

syntax for querying data or objects. 

 

 Windows presentation foundation (WPF) and extensible application mark-up language 

(XAML): XAML is a declarative mark-up language. As applied to the .NET 

Framework programming model, XAML simplifies creating a user interface for a 

.NET Framework application. This can be written in text using an XML description. 

An example of XAML written to create a button user interface element is:  

 

 

 
<Button> 

<Button.Background> 
 <SolidColorBrush Color="Blue"/> 
</Button.Background> 
 
<Button.Foreground> 
 <SolidColorBrush Color="Red"/> 
</Button.Foreground> 
 
<Button.Content> 
  OK Button! 
</Button.Content> 

</Button> 
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4.6 Software Testing 

 

The software was subjected to comprehensive and systematic testing by two MSc students 

who actually used the lighter version of the software in their research work. The feedback is 

generally good as the software meets all the functional requirements. There are however some 

suggestions for improvement on a number of non-functional requirements such as its 

appearance. Table 12 and Table 13 present the summary of the structured tests carried out by 

the testers. It should be noted that each tester worked on a different project and despite the 

variability, the universality of the software have been demonstrated as each tester was able to 

find the software fit for the purpose of his respective project needs. 

 

Table 12: Summary of software testing by tester #1 

Software: Connectivity Matrix Export to Excel Application 
   

     Test Date: 20th August & 28th September 2010 
   

     Tester: David Babarinde Alabi 
   

     TEST 1         

Screen Actions taken Settings 
Results and 
bugs Comments 

     User 
Machine 

Start the Software (Executable) Double 
click on 
the 
executable 
icon 

OK, worked 
normally 

 

     
1 Press "START XML PROCESSING"  OK, worked 

normally 
 

     
2 File Pre-processing-merging, filtering etc if necessary 

for Multiple P&IDs 
Click on 
the 
appropriate 
Menu Item 
and sub-
menu to 
choose 
files to 
process  

N/A  

     
2 Multiple files selection  Press 

down 
"CTRL" 
button to 
select 
multiple 
XML files 
for pre-

OK, worked 
normally 
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processing 

     
2 Save final processed files on local machine hard 

drive (C:/) 
Choose 
this option 
as 
submenu 

OK, worked 
normally 

 

     
2 Press OK to confirm operation  OK  
     
2 Save final processed files on removable storage 

device such as USB flash pen to get around "Write 
Permission" restriction 

Choose 
this option 
as 
submenu 

OK  

     
 Pressed OK to confirm operation  OK  
     
2 Exit the operation without selecting file or files Software 

response 
No bug, exits 
normally 

 

     
2 Loading XML file to work with Click on 

the 
appropriate 
Menu Item 
and sub-
menu to 
choose 
appropriate 
XML File 

OK  

     
2 Multiple files selection  Press 

down 
"CTRL" 
button to 
select 
multiple 
XML files 
for pre-
processing OK 

      
     
2 Press OK to confirm operation Program 

response 
OK  

     
     
2 Pressed OK to confirm operation  OK  
     
2 Exit the operation without selecting file or files Program 

response 
Exits 
normally, no 
bug 

 

     
TEST 2         

Screen Actions taken Settings 
Results and 
bugs Comments 

     2 Observe Output on screen 2 after file selection All tag 
items are 
displayed 

OK  
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2 Click "Export ConnectivityMatrix to Excel" button The 

response 
depends 
on the size 
of the 
XML file 

OK  

     
2 Click "View 1:1 Connections" button  OK It could be 

nicer if the 
scroll bar for 
LHS display 
can be placed 
at the middle 
in order to 
move the two 
parts 
together 

     
3 Scroll down the list displayed on screen 2   OK  
     
3 Click the back button  OK  
     
2 Click the back button  OK  
     
1 Click the back button  OK  
     
2 click on the "<<HOME" button  OK  
     
2 Click on the "<<Help" Menu  OK The program 

could be 
made to 
display the 
help file in a 
new window 
to display all 
the texts 

     
1 Close the Window  OK What about a 

new button 
to close the 
program 
beside 'Start 
XML 
processing' 
button? 

     
2 Close the Window  OK  
     
3 Close the Window  OK  
     
TEST 3         
Screen Observation (Non-Functional Testing)   Comments 
     
1,2,3 Software Usability   The software 

was very 
suitable for 
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what I used it 
for and it 
gave me 
correct 
results 

     
1,2,3 Software aesthetic value   The aesthetic 

value is very 
nice 

     
1,2,3 Response time   Quite OK  
 

 

 

Table 13: Summary of software testing by tester #2 

Software: 
Connectivity Matrix Export to Excel 
Application 

   
     Test Date: 15/09/2010 

   
     Tester: Giovanni Di Geronimo 

   
     TEST 1         

Screen Actions taken Settings 
Results 
and bugs Comments 

     User 
Machine 

Start the Software (Executable) Double 
click on 
the 
executable 
icon 

OK, no 
problem to 
open the 
application 

Perhaps a logo to 
recognize easily 
the program 

     
1 Press "START XML PROCESSING"  OK  
     
2 File Pre-processing-merging, filtering etc if 

necessary for Multiple P&IDs 
Click on 
the 
appropriat
e Menu 
Item and 
sub-menu 
to choose 
files to 
process  

OK  

     
2 Multiple files selection  Press 

down 
"CTRL" 
button to 
select 
multiple 
XML files 
for pre-
processing 

OK  
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2 Save final processed files on local machine 
hard drive (C:/) 

Choose 
this 
option as 
submenu 

Message 
"DONE" 

Could be useful to 
provide a facility 
to introduce the 
destination of the 
file. Also perhaps 
in the final 
message would be 
useful again show 
where is the file 
(like the link in 
explorer) 

     
2 Press OK to confirm operation    
     
2 Save final processed files on removable 

storage device such as USB flash pen to get 
around "Write Permission" restriction 

Choose 
this 
option as 
submenu 

OK  

     
 Pressed OK to confirm operation  OK Could be useful to 

provide a facility 
to introduce the 
destination of the 
file. Also perhaps 
in the final 
message would be 
useful again show 
where is the file 
(like the link in 
explorer) 

     
2 Exit the operation without selecting file or 

files 
Software 
response 

Message 
"You must 
select files 
to merge" 

 

     
2 Loading XML file to work with Click on 

the 
appropriat
e Menu 
Item and 
sub-menu 
to choose 
appropriat
e XML 
File 

OK Always open the 
file in C: 
it would be good 
open in the 
previous folder 
used. Also is good 
have the option to 
open the latest 
files used 

     
2 Multiple files selection  Press 

down 
"CTRL" 
button to 
select 
multiple 
XML files 
for pre-
processing 

       
     
2 Press OK to confirm operation Program 

response 
OK  
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2 Pressed OK to confirm operation  OK  
     
2 Exit the operation without selecting file or 

files 
Program 
response 

Message 
"No file has 
been 
selected" 

The sound is a bit 
annoying 

     
TEST 2         

Screen Actions taken Settings 
Results 
and bugs Comments 

     2 Observe Output on screen 2 after file 
selection 

 OK I think all the 
results should be 
together not in 
different areas of 
the window. 
Useful the 
identification per 
category. 

     
2 Click "Export Connectivity Matrix to Excel" 

button 
 OK I have 46 items in 

my file and it took 
about ten seconds. 
I think the report 
in excel could 
include extra 
information such 
as data about the 
program, 
information about 
the file parsed 
(P&ID, Project, 
Area, etc.), 
summary of the 
parser (time, 
number of items). 
Perhaps this info 
could be in 
another sheet of 
the workbook. 
Also while the 
excel file is been 
created could be 
good show a sand 
clock to represent 
that the program 
is working. I do 
not know if the 
you should fill the 
excel open to the 
user. Perhaps you 
could fill first and 
then open to the 
user. If you 
include the name 
of the items per 
column vertical 
instead of 
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horizontal you 
could reduce the 
width of the 
columns and 
reduce space. Also 
I found that in 
some cases is 
useful do not 
choose the "0" 
and leave then 
blank (perhaps 
give options for 
the report to the 
user). It would be 
good if the 
equipments could 
be organized in 
the direction of 
the flow. 

     
2 Click "View 1:1 Connections" button  OK This window was 

very useful to 
check if the 
connections were 
OK before export 
the matrix in 
excel. I think this 
button could be 
an option for the 
user to check first 
if the connectivity 
is corrected before 
creating the 
connectivity 
matrix. However, 
it is not explicit to 
understand the 
columns for 
sources and 
destinations, and I 
do not know if 
this is important 
for the user.  

     
3 Scroll down the list displayed on screen 2   OK  
     
3 Click the back button  OK  
     
2 Click the back button  OK  
     
1 Click the back button  OK  
     
2 click on the "<<HOME" button  OK  
     
2 Click on the "<<Help" Menu  OK Perhaps you are 

already working in 
the manual of the 
application. It 
should be here 
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1 Close the Window  OK  
     
2 Close the Window    
     
3 Close the Window    
     
TEST 3         
Screen Observation (Non-Functional Testing)   Comments 
     
1,2,3 Software Usability   The program was 

very useful for the 
project. I could 
extract the 
connectivity 
matrix easily. 

     
1,2,3 Software aesthetic value   In my opinion it 

looks more like a 
website. I prefer 
all in only one 
windows. I think 
first the program 
should show the 
results in this 
window and then 
give the possibility 
to export in excel. 
I think that 
information about 
the P&ID should 
be included. 

     
1,2,3 Response time   I had 46 items in 

my file and it took 
10sec to export 
the matrix to 
excel. 

     
    Other comments 
    I have problems 

to recognize the 
control valves. I 
tried many types 
and I could not. 
The only way that 
I found was 
adding the valve 
in the drawing at 
the end of a pipe. 
For it was useful 
to recognize pipes 
and mixing and 
splitting points. 
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4.7 Chapter Summary 

 

Chapter 4 described the design and implementation of the software tool developed in this 

project. The chapter introduced the technologies and tools employed for the implementation 

of the software. The chapter presented comprehensive and systematic testing of the software 

tool results from two testers, who actually used the software in real projects.  
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5 Software Demonstration 

 
 

The software tool “Process Connectivity Analyser” is the output of research effort reported in this 

thesis and the aim is to demonstrate the concept of utilizing process connectivity information 

as contained in P&IDs for operational purposes.  

 

Although the primary aim of the research is to develop software for fault diagnosis purposes 

using process connectivity information, the tool also offers a variety of functionality besides 

fault diagnosis. Other operations that can be performed include path tracing from one tag to 

another, finding plant items upstream of a chosen tag, export of connectivity matrix to 

Microsoft Excel application among other uses. For example, if a pump was shut off for 

maintenance, process operators would like to know which portion of the production process 

would be affected by looking at plant items downstream of such pump. This tool would 

become handy in such a situation.  

 

This section drills down to the detailed functionality of the “Process Connectivity Analyser” tool 

followed by a worked illustrative example combining data-driven analysis with the connectivity 

tool for more insight and reasoning. 
 

5.1 System Overview 
 
This software tool takes input data as follows: 

 

 XML file. The XML is generated by exporting an intelligent P&ID, which is traditional 

P&ID with data repository, of the process to be analysed. The P&ID should conform 

to ISO-15926 standard. 

 Results from statistical data-driven analysis -only needed for hybrid fault diagnosis.  
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The system is composed of multiple windows with navigation button to move front and back 

from one window to another in the familiar browser- type of navigation. Results are displayed 

within the windows depending on user’s request and operation. 

 

5.2 System Requirements and Environment 

 

In order to execute the application on a computer system, the following must be in place: 

 Microsoft .NET Framework, downloadable free from Microsoft website. As at the time of 

writing this thesis, the latest version is .NET Framework version 4.  

The framework is available via this Uniform Resource Locator (URL) 

http://www.microsoft.com/downloads 

 

 Operating system: Windows XP /Windows Vista /Windows 7  

 

 Supported Architectures: x86/x64 

 

 Hardware Requirements: Minimum Pentium 1.5 GHz or higher with 2 GB RAM or more. 

Minimum 5 GB disk space (for x64) 

 

5.3 Using the Application 
 
This section describes how to start up the application, use controls and perform operations.  

 

5.3.1 Main Operations 

 

Starting up the Application 
 
The application is available as an executable and can be started by double-clicking the 

application icon. Once the application is running with the main starting window shown in 

Figure 59, follow the instruction and navigate from one window to another. 
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Main Start up Window 
 

 
Figure 59: Main start-up window 

 
After reading through some basic required steps, a user will click on   to 

continue diagnosis and other analysis. The window also displays a calendar showing the days, 

month and year. The current date is highlighted on the calendar. 
 
 
Main Control Panel   
 

Controls for major operations are located on the main control window shown in Figure 60. 

This allows the user to navigate to other windows depending on the type of operation 

selected. The various components have been labelled from functionality A to J and each 

explained subsequently. 
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Figure 60: Main control window of the process connectivity tool 

 

   Navigation buttons for moving forward and backwards within the application 

 

   Menu bar for selecting and uploading file(s). There is also a help menu on the bar as shown 

below. 

 

   For combining multiple XML files from multiple P&IDs. The 

merged files can be saved on a removable storage device or on the local hard drive of the 

machine. This functionality is discussed in detail in section 5.3.3. 

   If no pre-processing, such as files merging, is needed, the XML file can be 

loaded from any location it is stored. 

   This allows results from data-driven analysis to be loaded for diagnosis. 

This can be a plain text such as ASCII characters created using an application such as 

notepad. 

A 

B 

D 

C 

H 

G 

F 

E 

J 

I 

A 

B 
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   This allows process understanding and knowledge to be checked 

in reaching a conclusion. 

  Online help to aid user’s understanding of using the tool more efficiently. 

 

   All tagged items list box contains all tags in the P&ID XML export loaded into the tool, 

sorted in alphabetical order 

 

   This sub pane allows the user to choose a starting tag and end tag from the drop down list, 

to find if a path exists between the chosen elements and how many of such paths exist. To 

include some diagnostic report, the checkbox must be ticked before clicking Search Now 

 

 

   Buttons for major operations, to be described later in the subsequent sections, are located 

here 
 
 
 
  This pane produces a summary of tags contained in the P&ID, giving the total lump sum 

tags and     totals based on tag type 

   

   Clicking this button takes the user back to the start up screen described earlier 

 

   All equipment contained in the P&ID are listed here and sorted in alphabetical order 
 
 
   This box contains indicators from the P&ID’s instrumentation, arranged in alphabetical 

order 
 
 
   Control loops are listed here as contained in the process plant P&ID, sorted in alphabetical 

order  
 
 
 
 
 
 
 

C 

D 

E 

F 

J 

I 

H 

G 
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Search Window 
 
To perform a search operation, a valid XML file must be loaded first. The starting tag and the 

end tag must be different. The system will prevent the user from performing any illegal 

operations. Figure 61 shows one of such invalid operation. Here, the user attempted to carry 

out search operation without loading the process XML file first.  

 

 

Figure 61: Error reporting for an invalid operation 

 
In the subsequent screenshots, the results displayed are those of the illustrative example of 

Figure 77 treated in detail in Section 5.4. Figure 62 displays the error checking mechanism that 

prevents the user from choosing the same tag as the start and end tag. 
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Figure 62: Integrity check to ensure that the starting tag is different from the end tag  

 
 
Figure 63 presents a sample search results with    checked. Here, no 

path was found between the chosen tags Figure 63 shows a path search result with two paths 

found. 

  

 

Figure 63: Sample path search result with diagnostic display 
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The user has a number of options here. Each individual path can viewed. The user has the 

option to include equipment the result display. The default display list the instrument 

(indicators and controllers). The user can further choose an item in the search list to see tags 

upstream of such chosen tag as shown in Figure 64.  

 
 

 
Figure 64: Path search display 

 
 

 
Figure 65: Path list display and upstream tags display 
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The clear button on the panel   

clears the upstream display. 
 
 

Hybrid Diagnosis 

 
 
 

 
 

Figure 66: Main diagnosis window 

 
 
   Choosing a tag from this drop down list allows the user to display downstream tags from 

the chosen tag by clicking on button           . The results are displayed in  

 

 

   This button allows the user to display tags downstream of the chosen tag in         . The 

system will prevent the user from performing this operation without selecting a tag from the 

drop down list first.  
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   This is the display area for either       ,           or         button. 

 

 

   This area displays diagnostic results including “Candidate Root-Cause” of distributed, plant-

wide diagnosis.  

 

 

   This button is for viewing tag items upstream of a chosen plant item in      .  A new 

window opens to display the result. Check is in place to prevent this operation without first 

choosing an item. 

 

 

   Display area for results from operations in                            and   

 

 

   This user interface allows user to choose a tag from drop-down list to either check the tags 

position relative to a main process equipment such as a tower or vessel or to check whether 

the chosen tag is a controller, indicator or equipment. The results are displayed together or 

individually in   

 

 

   This functionality allows the user to view the relative position of a chosen tag from the list 

in         to process equipment 

 

 

The button allows the user to view the type of the item selected in           as an indicator, 

control loop or equipment.  

 

 

  This operation displays tags in data analysis results that do not fall on the physical 

connectivity path. 
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 Hybrid fault diagnosis functionality-combination of quantitative process measurement 

analysis, qualitative connectivity information and process know-how is carried out by clicking 

this button. The result obtained will depend on the user’s intent. It can be used to test 

hypothesis from data-based root-cause diagnosis, in which case, the user does not need to 

enter any input in      . The tool report the percentage of tags in data-driven analysis found 

on physical propagation path. Another use of this functionality is to find a candidate root-

cause among a cluster of disturbed tags. In this case, the user will need to enter the entry tag. 

The entry tag is the inlet measurement point of process fluid (feed) or utilities such as steam, 

into the process. If there are multiple entry points, each must be tested to determine which 

one locates the highest percentage of disturbed tags on the feasible propagation path.  The 

candidate root-cause of the report by the tool that gives highest percentage of confirmation 

will be the root-cause of such disturbed cluster of tags. 

 

This allows the user to enter an entry point as explained above. The text field is case sensitive 

which means that the entry must exactly match the starting tag the user intent to use. 

 

This functionality avails the user the opportunity to see a display of data-driven file loaded 

earlier in the main control window. 

 

An attempt to perform root-cause diagnosis by clicking on            without first loading the 

data-driven result data file results in error message shown in Figure 67. 
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U 
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Figure 67: Error report for missing data file 

 
 
Figure 68 shows a sample diagnosis result. The tool used process schematic XML format and 

data-driven cluster analysis to draw a conclusion. 

 

 
Figure 68: Hybrid fault diagnosis result 
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5.3.2 Other Operations 

 
As mentioned earlier, the tool can be used for a variety of operations besides fault diagnosis. 

For these operations, no data-driven analysis is required. The application only uses the 

connectivity information as contained in XML file loaded into the tool. This section describes 

such extra operations. 
 
Finding Tags Upstream of a Chosen Tag on the Main Control Window 
 
This functionality allows the user to view items upstream of a chosen tag on the main control 

window without going any further. This is important because if the user already knows or has 

a hypothesis about a candidate cause of a co-ordinated, distributed and plant-wide 

disturbance,  the user might simply be interested in viewing plant items upstream of such 

candidate cause especially when the suspected candidate cause is a measurement point such as 

an indicator. Any tag, as shown in figure 11, can be chosen from the left hand list box of the 

main control window to check items upstream of such chosen tag. In Figure 69, T3 is the 

chosen tag. 

 

 

 
Figure 69: Selected tag to view the tag’s upstream items 

 



146 
 

Once a tag is chosen, clicking on    button produces the 

result shown in Figure 70 
 
 

 
Figure 70: Upstream tags display window 

 
 
Checking Full Connectivity at P&ID Drawing Stage 

 

The ability to check full connectivity is very useful during the process of creating the 

intelligent P&ID to ensure that there are no loose ends. Drawings that are not fully connected 

are very difficult to visually detect on the drawing. When such a drawing is exported, the XML 

will contain insufficient connectivity information and will always produce spurious results. The 

tool allows this to be checked through the “View 1:1 Connections”    

functionality on the main control window. An example of a fully connected drawing is shown 

in Figure 71.  

 

When a loose end is detected, the loose end is replaced with UnidentifiedItem to alert the user of 

a loose end and recheck the drawing again. In Figure 72, some loose ends were discovered and 

flagged as UnidentifiedItem. Two of such loose ends are circled in the Figure 72. 
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Figure 71: Checking for a loose end in the XML export 

 
 
 
 

 
Figure 72: Process schematic P&ID drawing export with some loose ends detected as 
unidentified items 

 
 

2 Loose ends 
detected here 
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Connectivity Matrix in Excel Application 

 

One of the intermediate results of the application that can serve as a basis for other 

application is the connectivity matrix of the P&ID, with “0” at intersection indicating no 

connection between the element on the row and that on the column of the intersection.  The 

connectivity matrix can be exported to Microsoft Excel application as shown in Figure 73.  

 
Figure 73: Connectivity matrix exported to Microsoft Excel Application 

 

5.3.3 Operations on Multiple P&IDs and Modular Approach  

 

Another useful functionality provided by Process Connectivity Analyser is the ability to combine 

multiple P&IDs for analysis. This user’s option is circled red in Figure 74. Conversely, a 

section of a large P&ID can also be isolated for analysis thus providing great modular 

flexibility.  

 

 

 

Figure 74: Functionality merging multiple P&ID drawing files 

 
 
Here modularity implies that a large and complex plant can be broken down for analysis, for 

example as drawn on separate P&IDs, for a more focused analysis.  
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This concept of file merging via off sheet connectors is depicted in Figure 75. 

 

 

Figure 75: Schematic drawing to depict P&IDs merging and modularity 

 
 
Three sheets of process plant P&IDs are shown in Figure 75. Each individual drawing can be 

exported separated as XML. The XML File Pre-Processing tab combines all the three files 

together to generate a single XML file for analysis. 

 

5.4 Illustrative Example-Simplified Atmospheric Crude Heating 
Unit 

 

 This section presents an illustrative example to demonstrate and prove the concepts 

described in the thesis. The chosen example is a simple crude heating unit to aid easy 

understanding of the material. More complicated real life example follows the relatively 

simplified illustrative example discussed in this section. 
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5.4.1 Process description 

 

The example presented in Figure 76 is a process P&ID of a crude heating unit of an 

atmospheric crude distillation schematic shown in Figure 78. The process P&ID is drawn with 

intelligent CAD (AVEVA) running on AutoCAD software. The same process schematic is 

reproduced in Figure 77 for clarity. The example, circled in Figure 78, is chosen to 

demonstrate automated cause-and-effect relationships among plant items and shows that this 

can quickly become complicated even for such a simple process. The concept of downstream 

and upstream with physical propagation paths for process fluid and control and measurement 

signals will also be investigated. 

 

 

 

Figure 76: Crude heating unit process P&ID created with AVEVA intelligent CAD tool 
running on AutoCAD 
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Figure 77: Process schematic with instrumentation of a simplified crude heating unit 

 
 
For the heating unit process, desalted crude is pumped by the charge pump P-1 into a pre-

flash drum D-1. Flashed crude from the bottom of D-1 enters the feed pre-heat furnace H-1 

and the vaporized mixture is sent to the feed tray of the atmospheric tower of the distillation 

unit. Temperature of the heated crude feed to the atmospheric distillation tower is controlled 

by regulating the flow of fuel gas supply to H-1 through a cascade control system with 

temperature controller TC1 as the master controller dictating set-point values to flow 

controller FC3, the slave controller in the cascade loop. Level control loop LC1 controls the 

level of process fluid in D-1 while pressure control loop PC1 controls the pressure in D-1. 

Desalted crude flow into D-1 is controlled by flow control loop FC1. F1, T1, T2 and T3 are 

indicators.  
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Figure 78: Crude distillation schematic with crude heating section, the illustrative example, 
of the unit encircled 

 

The following sub-sections describe the sequence of steps taken to carry out analysis on the 

atmospheric crude heating unit shown in Figure 77.  

 

5.4.2 XML description of the process schematic 

 

In order to automate the analysis, the intelligent process schematic was converted to electronic 

text-based XML representation. AVEVA P&ID CAD tool has functionality that allows for 

ISO15926 compliant XML export of intelligent process P&IDs. Part of the XML 

representation is shown in Figure 79 in stylus Stylus Studio® 2007. 

 

The XML file contains all the drawn plant items, the connections among the plant elements 

and other information that are not relevant to the current work 
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Figure 79: Text-based XML representation of the simplified crude heating unit. Text view 
shown on the left hand side and grid view on the right hand side in Stylus Studio® 2007. 

 
 
The text file was loaded and processed by the parser, Process Connectivity Analyser, to 

automatically generate the process connectivity matrix, a form of computer representation of 

directed graph shown in Figure 80. The connectivity matrix can be used an independent 

module and  starting point for other application (Alabi, 2010) and (Di Geronimo Gil, 2010).  

 

 

 

Figure 80: Automated connectivity matrix of the crude heating example, exported to 
Microsoft® Excel ® application 
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5.4.3 Signal Analysis 

 

This section describes the PDA data analysis for the atmospheric crude heating unit process 

described in Figure 77. The PDA analysis described in this section is detailed because 

subsequent data analysis for the industrial case study in section 5.5 undergoes similar 

treatment without the need to repeat every step discussed here. 

 

As mentioned earlier, the PDA signal processing tool used for the data analysis is a 

commercial tool from ABB, a research output from the Imperial/UCL Centre for Process 

Systems Engineering (Bauer, et al., 2007; Bauer and Thornhill, 2008; Thornhill, 2005; 

Thornhill, et al., 2003; Thornhill, et al., 2002). The university has a PDA license in place for 

academic use. 

 

The workflow is to run data-driven analysis and to test its hypotheses with the connectivity 

and directionality information from the Process Connectivity Analyser. The combined approach is 

an example of hybrid modelling and process analysis. 

 

The Data Set 

 

Plant data were sampled from the control system for each of the measurement points. Two 

days worth of data sampled every minute was used in the PDA data analysis. A fragment of 

the data suitable for PDA tool is shown in Figure 81. The data are in an Excel spreadsheet 

with time stamps in the first column and the measurements tags in subsequent columns. The 

numerical data values start in the fourth row and the first three rows are reserved for other 

information.  

 

 

Figure 81: Data for crude heating unit example in PDA format 



155 
 

The data file in the format described above is loaded into the PDA tool for data-driven 

analysis. Figure 82 corresponds to a successfully loaded data with the details displayed on the 

PDA tool. 

 

 

Figure 82: Data loaded into PDA tool with a description of tags 

 

The data can be plotted and visualized as time trend as shown in Figure 83. This plot shows 

the absolute values; whereas subsequent plots show mean centred data scaled to unit standard 

deviation 

 

Visual examination of the plot shows that temperature TC1 is lower than temperature T3, 

while T1 and T2 are similar and lower. These observations can be tested against the topology 

to see if they make sense. Hence, knowledge about process topology can be utilized to check 

for correctness before proceeding further in the data analysis.  

 

The temperature is expected to be rising as desalted crude moves from the desalter through 

the pre-flash drum, D-1and the furnace, H-1 and ultimately to the atmospheric crude 

distillation tower. 
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Figure 83: Data visualization in PDA tool. Absolute value time trend of selected process 
variables  

 

 

Process connectivity information and know-how should indicate that temperature 

measurement of the crude feed to the atmospheric distillation tower, T3 should be the highest 

temperature of the crude. This can be verified using the connectivity tool as follows: 

 

By selecting T3 and examining all crude temperature measurement upstream of T3. T1, T2 

and TC1 should all be upstream of T3 (higher in the hierarchy with lower temperature with 

respect to T3). This is shown in Figure 84with T1, T2 and TC1 circled in red. 

 

Another observation from the time trend is that TC1 has quite large deviations compared to 

T3, T1 and T2. This is a potentially important observation because later plots hide this fact 

when showing mean centered and normalized data. 
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Figure 84: Temperature measurement points (in red circle) upstream of T3 

 

 

Data Compression for Signal Analysis 

 

The PDA tool has an inbuilt functionality to assesses whether the data are valid for analysis by 

calculating a compression factor. Compression refers to the technique of saving space in the data 

historian by only recording exceptional points, and then joining up the points with straight 

lines. If compression factor (CF) is >1 then data-driven analyses may not give the correct 

results. The analysis shows that some time trends are too compressed to be reliable.  

 

As shown in Figure 85, F1, FC1, T1 and T2 all have CF >1 and have been excluded from the 

analysis. However, in the second plot depicted in Figure 86, compressed data have been 

included for the analysis because compression was not extreme and visual examination 

suggested the features in the data were real and not artefacts caused by compression. 
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Figure 85: Time trend of uncompressed data measurements 

 

Based on this observation and personal judgement, the compressed tags have been included in 

the analysis, even though the PDA recommended they should be excluded. 

 

 

 

Figure 86: Time trend of both compressed and uncompressed data measurements 
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Analysis of Signal Frequency Content 

 

Plots in Figure 87 show the time trends and also show their corresponding frequency spectra 

on the right hand side. The spectra on the right show frequency on the horizontal axis. The 

interpretation is as follows:  

 

(i) any frequency content on the right hand side (e.g. towards 0.01 Hz) is noise in 

the measurement,  

(ii) low frequency content e.g. towards 0.00001 Hz indicates that the time trend 

has an overall slope or curve. This can be seen prominently in the first two 

tags. 

(iii)  the frequency content in the middle ranges relates to the shorter term dynamic 

features in the data, for instance the oscillatory features occurring between 

15:00h and 16:00h.  

 

 

 

Figure 87: Plots of time trends and their corresponding frequency spectra 
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It is possible to examine the middle ranges more closely by filtering the data. A band pass 

filter removes the low frequency slowly-varying trends and also the high frequency noise. For 

the spectra analysis, filter boundaries have been set to 0.0001 and 0.001 Hz. On the right of 

Figure 88 are the filtered spectra which now have no high or low frequency content. The 

middle frequencies are therefore emphasised. 

 

 

Figure 88: Plot of frequency spectra with band pass filter. The filter removes low frequency 
and high frequency noise components from the analysis 

 

When viewed in the time domain, Figure 89 shows the time trends before and after filtering. 

The curves in tags F1 and FC1 have been eliminated to some extent, and the sharp triangular 

features in the compressed time trends have been smoothed. 
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Figure 89: Time trends of filtered signals with compressed data included in the analysis 

 

 

Root-cause Analysis 

The following sections will first analyse the unfiltered data for the root-cause and then the 

filtered data. The results obtained will be compared with and validated against the process 

topology connectivity tool. 

 

 

Root-cause analysis of unfiltered data 

 

The clustering page shown in Figure 90 is using the unfiltered data. The PDA tool suggests 

that the time trends shown in red are similar to each other.  
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Figure 90: Clustering analysis for unfiltered data 

 

However, visual inspection shows that some other tags also exhibit similar behaviour hence a 

custom cluster is created by selecting and updating additional tags in the lower left panel of 

the PDA tool page shown in Figure 91.  

 

 

Figure 91: Custom cluster created to include tags with similar behaviour 
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Figure 92 shows the root-cause analysis obtained using the custom cluster. 

 

 

Figure 92: Unfiltered data-driven root-cause analysis for the atmospheric crude heating 
example. 

 
 
The result suggests TC1 as the root-cause with T1, T3, T2, PC1 and LC1 as secondary 

propagated effects. 

 

Testing data-driven root-cause hypothesis against the process topology and connectivity 

 

The results suggested by the data-driven analysis tool need to be checked against the process 

topology to ensure that they make sense. Results from hybrid data-driven and causality 

analysis shown in Figure 93 indicates that of the five measurement points (T1, T3, T2, PC1 

and LC1) where secondary propagated effect are observed according to data-driven analysis, 

only one tag (T3) is physically connected to the suggested root-cause (TC1) representing just 

33.33% of tags where secondary propagated effects are observed.. Thus there is no physical 

propagation path from TC1 to either  T1, T2, PC1or LC1 as suggested by data-driven analysis. 
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Figure 93: Tag affected by secondary propagated effect according to process connectivity 

 
 
The result and conclusion from the topology connectivity tool is in agreement with visual 

inspection of the process P&ID.  

 

Thus, it can be concluded that the data-driven analysis has an error. A possible reason for the 

erroneous result is that the data analysis ignored PDA recommendation that some of the tags 

contained compressed data that were not suitable for analysis. 

 

 

 Root-cause analysis of filtered data 

 

The clustering page shown in Figure 94 is obtained using the filtered data. The tools suggest 

that the time trends shown in red are similar to each other. 
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Figure 94: Clustering analysis of filtered data 

 

However, visual inspection suggests that others are also similar hence a custom cluster is 

created by selecting additional tags for inclusion in the analysis: The selected tags for analysis 

are shown in Figure 95. 

 

 

Figure 95: Custom cluster for filtered data analysis 
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The Use filtered data box is ticked when calculating the causality of filtered data shown in Figure 

96.  

 

 

Figure 96: Filtered data-driven root-cause analysis for the atmospheric crude heating 
example. 

 
 
Testing data-driven hypothesis against the process connectivity 

 

The results obtained with filtered data suggests T1 is the root-cause and that the disturbance 

propagates to T1, T2 TC1 and T3 and then to PC1 and LC1.  

 

The result suggested by the data-driven analysis is tested against process connectivity tool. The 

process plant topology connectivity analysis shows that there is feasible propagation path from 

the root-cause (T1) suggested by the PDA tool to other secondary propagated measurement 

points within the plant (T1, T2 TC1, T3, PC1 and LC1.) as shown in Figure 97.  
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Figure 97: Data-driven hypothesis testing against process topology and connectivity 

 
The connectivity tool indicates that 100% of the tags suggested by the data-driven analysis as 

measurement points affected by secondary propagated effects are physically connected and 

downstream of the root-cause, T1. 

 

Visual inspection of the process schematic is in agreement with the result reported by the 

connectivity tool. 

However, as T1 is a temperature indicator, a passive measuring device it can be concluded the 

real root-cause will be upstream of T1. The connectivity tool provides the functionality to 

view plant items upstream of a suspected root-cause candidate. 

 

Discussion of Results 

 

The process topology connectivity analyser would alert the data analyst to a problem with the 

analysis of the unfiltered data. The analyst should not have included the compressed tags 

when analysing the data set, however that approach would remove most of the tags of 

interest. The correct approach is to run the data historian with no compression for a few days 

and collect new data. There is no theory that says filtering overcomes the negative effects of 

compression, however in this case it seems to have had that effect and has yielded a more 

sensible result. 
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Further Tests and Process Connectivity Analysis 

 

With the XML description of the process schematic loaded into the tool, the tool is ready to 

perform some qualitative cause-and-effect analysis of the process. Results from data-driven 

analysis could also be loaded for hybrid analysis. The user might want to gain insight into the 

process by posing questions such as: 

 

1. Could any anomaly observed in the controlled temperature, T3 (effect) of the heated 

crude feeding the atmospheric tower be attributable to slave flow controller FC3 

(cause)? As shown in Figure 98, the answer is yes through one propagation path. All 

plant items, including process equipment, are listed upon user’s request.  

 

 

 

Figure 98: Path between FC3 and T3 

 
 

2. By turning the query around to check if crude outlet temperature, T3 could be a cause 

of disturbance in slave loop FC3, the result shown in Figure 99 indicates that T3 

cannot be the cause of variations in FC3. 
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Figure 99: Path between T3 and FC3 

 
 

3. The complexity increased if we were interested in finding all the plant items that could 

potentially affect the controlled variable T3. These items will be all items upstream of 

T3 and physically connected to T3 as depicted in Figure 100.  

 

 

Figure 100: Plant items upstream of T3. Any malfunction in any of these elements would 
affect crude outlet temperature T3 

 
4. For hybrid(data-driven and connectivity) diagnosis and other operations, such as 

finding the description of a tagged item and its relative position on the process 

schematic, the interface in Figure 101 will be used. 
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Figure 101: User interface for carrying out hybrid (combination of qualitative relationship 
and results from data-driven analysis) diagnosis and other operations such finding the 
location of an item on the P&ID and determining plant item’s type. 

 

5.5 Industrial Case Study 

 

This section describes the industrial case study used to validate the connectivity tool. Due to 

the proprietary nature of the process and process plant involved, trade secrets and proprietary 

information have been protected in the discussions. 

 

The case study illustrates: 

1. the concept of plant-wide disturbance and  

2. the use of process topology connectivity to provide insight into mechanism of 

disturbance propagation from a localized source. 

 

PDA treatment of the measurements data from the plant is similar to that described in detail 

for the illustrative example in Section 5.4. 

 

The case study compares results from data-driven analysis with those obtained from the 

process plant topology connectivity in order to validate data-driven results.  
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5.5.1 Process Description 

 

The case study concerns the atmospheric crude distillation unit of Figure 102. Atmospheric 

distillation is one of the processes used for the separation of crude oil into straight- run cuts 

(fractions) by distillation under atmospheric pressure. The other process employed for crude 

separation into various fractions is the vacuum distillation.  

 

The main fractions or ‘cuts’ obtained have specific boiling point ranges and can be classified in 

order of decreasing volatility into gases, light distillates, middle distillates, gas oils and 

residuum. 

 

 

 

Figure 102: Process schematic for the industrial case study. The path followed by crude into 
the atmospheric distillation column is coloured red in the drawing. Some instrumentation 
have been omitted to aid visualization 

 

Desalted crude feedstock from V-18 in Figure 102 is pumped through a series of heat 

exchangers E-6, E-7, E-8, E-9, E-16, E-17 and E-20 collectively referred to as a preheat train to 
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raise the temperature of the crude using recovered process heat. The path followed by the 

crude is highlighted in red while process utilities such as steam and fuel gas lines are coloured 

purple on the process schematic.  

 

The crude then flows through a pre-flash drum D-99 to separate vaporized lighter 

components before passing through a direct-fired feed charge pre-heat furnace E-22 where it 

is fed into the flash zone of the vertical distillation column T-11 at pressures slightly above 

atmospheric pressure and at temperatures ranging from 650°- 700° F. Heating crude oil above 

these temperatures may cause undesirable thermal cracking. All but the heaviest fractions flash 

into vapour. As the hot vapour rises in the tower, its temperature is reduced and condensation 

takes place. At successively higher points on T-11, the various components are separated and 

drawn off through side stripper T-12 as final or as intermediate products for further 

processing. Heavy fuel oil or asphalt residues are taken from the bottom. 

 

Separation and collection of crude fractions take place predominantly on the horizontal trays 

within T-11 as illustrated in Figure 103. At each tray, vapours from below enters perforations 

and bubble caps which permit intimate contact as the vapours to bubble through the liquid on 

the tray, causing some condensation at the temperature of that tray.  

 

 

Figure 103:  An example of the section of a distillation column showing details of vapour-
liquid contact on bubble cap horizontal trays with liquid cross flow (source: 
http://www.answers.com/topic/fractionating-column ) 

 

The vapour flow pressure support the weight of the liquid on the perforated tray, preventing 

liquid on trays from dripping downwards (weeping). Condensed liquids from each tray drain 
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back to the tray below through a downcomer where the higher temperature causes re-

evaporation. 

 

The evaporation, condensation and scrubbing operation is repeated many times until desired 

degree of product purity is achieved. Product purity can be controlled by adjusting the 

distillate rate or reflux rate. There are two ways to remove heat from T-11to maintain desired 

temperature and pressure gradients within the column and thus control product quality by 

cooling and condensation of upward flowing vapours. These include the use of: 

 

 Top reflux 

 Pump around-circulating reflux stream 

 

o Top pump around 

o Bottom pump around 

 

Reflux pump around is operated in addition to top reflux to compensate for the lack of actual 

number of trays, and thus the height of the column, practically required for separation due to 

physical, design and economic consideration. The pump around and top reflux are operated to 

optimize product purification levels at the expense of reduced column height. 

 

5.5.2 Process P&ID, XML and Connectivity 

 

Intelligent P&ID of the process is created and exported as XML. The XML is parsed by the 

Process Connectivity Analyser. The parsed elements of the process are shown in Figure 104 

interface. The figure shows the list of all the plant items, a summary of the tags as well as 

categorized listing into control loops, indicators and equipment. 
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Figure 104: Plant elements of the atmospheric distillation unit as parsed from process XML 
description by the Process Connectivity Analyser 

 
 
Detailed process measurement tags listing and description are presented in Table 14. The 

location of these measurement points are shown in the process schematic described in Figure 

105.  

 

Table 14: Process measurement tags list  

 
Tag 

ID 

Tag 

Name 

Unit of 

Measurement 

Description 

1 FI12 BPH Reflux product flow indicator 

2 FI14 BPH Side stream 1 flow indicator 

3 FI8 BPH Side stream 2 flow indicator 

4 FI11 BPH Side stream 3 flow indicator 

5 FI9 BPH Side stream 4 flow indicator 

6 FI7 BPH Top reflux flow indicator 

7 FC11 BPH Upper pump around flow controller 

8 FC7 BPH Top reflux flow controller 

9 FC10 BPH Lower pump around flow controller 

10 FI22 BPH Desalted crude flow indicator 
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11 FI10 BPH Furnace charge flow indicator 

12 FI20 BPH Reduced/topped crude flow to vacuum tower 

13 PC15 PSIG Pre-flash drum pressure controller 

14 PI11 PSIG Column top pressure indicator 

15 PI14 PSIG Flash zone pressure indicator 

16 TI20 DEGF Pre-flash drum temperature indicator 

17 TI12 DEGF Top reflux temperature indicator 

18 TC77 DEGF Column top temperature controller 

19 TI61 DEGF Side stream draw 1 temperature indicator 

20 TI65 DEGF Column top tray temperature indicator 

21 TI29 DEGF TPA inlet tray temperature indicator 

22 TI62 DEGF Side stream draw 2 temperature indicator 

23 TI25 DEGF BPA inlet tray temperature indicator 

24 TI14 DEGF BPA draw temperature indicator 

25 TI63 DEGF Side stream draw 3 temperature indicator 

26 TI64 DEGF Side stream draw 4 temperature indicator 

27 TI15 DEGF Column flash zone temperature indicator 

28 TI11 DEGF TPA return temperature indicator 

29 TI13 DEGF BPA return temperature indicator 

30 LC07 % Pre-flash drum level controller 

31 LC11 % Column bottoms level controller 

32 FI06 MLBH Furnace steam flow indicator 
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Figure 105: Process schematic showing process measurement points and control loops. 

 

5.5.3 Process Signal Analysis  

 

This section describes data analysis and root-cause diagnosis results obtained from signal 

processing using PDA tool. Detailed description of steps involved data-driven analysis of 

process measurements have been presented earlier in section 5.4.3. 

 

Data for Analysis and Time Trends 

 

Two days worth of minute data is analysed from archived process data historian .The signal 

analysis is carried out with PDA tool on straight run basis. Straight run analysis implies that no 

customized configuration was applied. The PDA tool was used with its default setting in the 

analysis. Figure 106 shows absolute values time trends of some selected tags for visualization. 

The plots show the tags within the column, the pumparounds and preheat sections.  
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Figure 106: Time trend of absolute values of some selected tags 

 
Visual examination of the absolute values plots indicate that deviations are most sharp and 

also of largest magnitude in TI25. The deviations in TI13 are relatively small, a bit later and 

also smoother, suggesting they are effects, not the cause. The very sharp leading edge and the 

large amplitude in TI25 should place it at the root-cause of the distributed upsets. 

 

Figure 107 shows time trends and corresponding spectral components on the right hand side 

of process tags without filtering while Figure 108 depicts similar data visualization with 

filtering applied to remove noise interference, low frequencies and high frequency 

components from the signal spectra. 

   
   

   
   

Te
m

pe
ra

tu
re

 (n
or

m
ali

ze
d 

va
lu

es
) 



178 
 

 
Figure 107: Time trend and spectral of uncompressed and unfiltered tags   

 

 
Figure 108: Spectra with band pass filter 0.0001Hz and 0.001Hz 

 
With the application of a band-pass filter, the spectra in Figure 108 (right hand panel) reveals 

co-ordinated spectral peaks at around 0.0004Hz suggesting plant-wide oscillation among some 

process variables. A view of the time domain visualization of filtered signal in Figure 109 

reveals that some tags are oscillating in tandem, just as observed in the frequency domain. 
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Figure 109: Time series with band pass 

 

The PDA tool is able to characterise and present the tags found to be participating in plant 

wide oscillation with coordinated behaviour as a cluster. The clustered tags are shown in 

Figure 110 as red lines.  

 

 

Figure 110: Straight run PDA analysis. PDA tool clustered ten tags-red lines as participating 
in plant-wide disturbance based on spectra similarity  
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Two main methods are used to highlight the presence of possible periodic and non-periodic 

disturbances.  

 

 A spectral cluster analysis is based on the automated comparison of the spectra for 

detecting similarities, hence it groups tags with similar spectral features. The method 

used is the spectral principal component analysis as detailed in (Thornhill, et al., 2002). 

Comparing spectra for detecting similarities may be done visually in small scale cases 

with a small number of tags. In larger scale cases the automated spectral clustering 

method becomes a necessity.  

 A second method looks for clusters of oscillating measurements. The output is a list of 

clusters of tags characterized by their oscillation period. The oscillation detection uses 

signal processing methods described in (Thornhill, et al., 2003). 

 

It will be noted that this result is obtained by operating the PDA tool in its default setting as 

visual examination shows that some plots signature appear out of place while some seemingly 

similar tags have not been grouped with the cluster. However, as stated earlier on, the default 

settings of PDA will be used in the analysis. Figure 111 shows the plots of time trends of the 

clustered tags 

 

` 

Figure 111: Time trends of the ten clustered tags 

 



181 
 

The location of the tags suspected to be participating in a plant wide oscillation is depicted in 

Figure 112 as red spots placed manually. The disturbance distribution indicates that the tags 

within column as well as tags around the column are affected. 
 

 

Figure 112: Location of clustered tags on the process topology  

 

Data-driven Root-cause Diagniosis of Process Measurements 

 

The conclusions reached by the PDA tool on the possible root-cause candidate among the 

clustered tags are depicted in Figure 113.  

 

There are several tools to help with root-cause analysis in the PDA tool. General purpose 

tools include causal analysis based on time delays between measurements (Bauer and 

Thornhill, 2008) and a probabilistic assessment called Transfer Entropy (Bauer, et al., 2007) 

which is more sensitive than time delays alone in detecting causality.  
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Root-cause analysis also examines non-linearity in the measurement time trends (Thornhill, 

2005), where a non-linear time series means one which is generated by a non-linear system. 

Present values of a non-linear time series have a non-linear dependence on past values. The 

time trend within an oscillating cluster having the highest nonlinearity index can be interpreted 

as the root-cause of the oscillating disturbance. The reason is that process plants act as a low 

pass filter, i.e. a tag close to a source of nonlinearity will be more nonlinear than another tag 

further from the source. Examples include control loop limit cycles caused by sticking valves 

and fluid dynamic instability such as slugging. 

 

In Figure 113, the top lefthand side panel shows the normalized time trends of the clustered 

tags. The plot in the right hand side of the top panel shows the causality based on transfer 

entropy. 

 

 

Figure 114 shows an advanced display from the PDA tool in the form of a hierarchical tree 

constructed from an analysis of the data set using spectral PCA.  
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Figure 113: Time trends and causality analysis of measurements cluster. Causality analysis 
suggests the order of events in the process. The results displayed implies that changes in 
TI25 are causes of changes in the other tags and that FI11 is the last in the causal chain 
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Figure 114: Hierarchical spectral classification tree for the tags in the atmospheric distillation unit 

 
 
 
The height of the highest horizontal line that has to be followed to get from one tag to 

another tag is a measure of how similar their frequency spectra are. Low horizontal 

connection-lines indicate similar spectra. Clusters look like leaves on the end of branch of an 

inverted tree. 

 

5.5.4 Process Connectivity and Directionality Information from 
P&ID 

 

The process connectivity matrix is a necessary step in using process connectivity and 

directionality for analysis. The process connectivity matrix is generated from an XML file 

compliant with ISO15926 data structure. The process connectivity matrix as automatically 

generated by Process Connectivity Analyser tool is shown in Figure 115.  
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Figure 115:  A portion of connectivity matrix of the atmospheric distillation case study 
automatically generated by process connectivity analyser 

 
The complete matrix of the refinery unit case study is a 91 by 91 matrix and is much larger 

than previous studies (Scherf, 2006; Thambirajah, et al., 2009; Yim, et al., 2006). The 

functionality of the Process Connectivity Analyser which allows multiple P&ID drawings to be 

merged for analysis is a demonstration of the scalability and industrial relevance of the 

research concepts.  
 
The connectivity matrix shows one to one connections and direction among all plant items 

depending on the entry, one for connectivity and zero otherwise, at the intersection of a row 

and column matrix element.  
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Hypothesis Testing with Process Connectivity Analyser 

 

This section compares the results obtained from pure data-driven analysis against the process 

topology to ensure that the conclusion reached makes sense or otherwise. 

 

Figure 116 shows the output from Process Connectivity Analyser tool which combined process 

connectivity and directionality information with the results from data-driven analysis.  
 

 

Figure 116: Data-driven analysis hypothesis testing for root-cause using process 
connectivity and directionality information. Connectivity tool found one spurious tag among 
data analysis cluster 

 

The results shows that of the ten tags suspected to be exhibiting co-ordinated behaviour, only 

nine of such tags, representing 90% of the cluster are physically connected.  

 

Only eight tags are found to be affected by TI25 due to secondary propagated effects from the 

suspected root-cause according to data-driven analysis as ooposed to nine suggested by the 

PDA tool. Figure 117 displays the spurious tag, FI06 included in the data-driven analysis PDA 

data analysis tool. The tag is encircled in green for easy identification on the process topology 

in Figure 118. 
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Figure 117: Spurious result from data-driven analysis detected by the Process Connectivity 
Analyser tool. FI06 is not directionally connected to the suspected root-cause 

 
 
 

 
 

Figure 118: Location of suspected spurious result by signal analysis on the process 
schematic in green circle 

 
Visual inspection of the process schematic shows that FI06 is the flow measurement indicator 

of the fuel gas utility to the feed preheat furnace.The direction of flow of the fuel gas indicates 

that it can only be a cause and not effect to disturbance in tag TI25 originating from within T-

11 atmospheric fractionating tower. 
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The Process Connectivity Analyser tool allows further querrying and informationm gathering 

useful for diagnostic purpose on the suspected root-cause. An example is shown in Figure 119 

which provides additional information about FI25. For example, the fact that TI25 is an 

indicator implies that it is not likely to be the disturbance generator as an indicator is only a 

meaurement point. One may have to look upstream for a control loop or an equipment as the 

likely culprit. 
 
 
 

 
Figure 119: More information about the suspected root-cause-location and type 

 
 
 
Root- Cause Analysis 

 

The suspected root-cause from data-driven analysis tested against the connectivity tool is TI25 

tag. Further examination of this tag indicates that it is an indicator used for measurement. 

However, since data-driven analysis only considers measurement points, it is incapable of 

identifying active disturbance generator without recourse to the physical process topology to 

look for plant items upstream of the suspected measurement point as the root-cause.  

 

The red dotted circle in Figure 120 captures the first three plant elements upstream of TI25. 

TI13 is another temperature measurement indicator and thus a passive element. The first 

active plant item, capable of inducing process disturbance is the control loop FC10. 
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Figure 120: List of plant items upstream of the TI25.The first active plant element is control 
loop FC10 and heat exchanger E-6. TI23 is an indicator. 

 
FC10 is not, however, detected by data analysis to be affected by secondary propagated effects 

from the root-cause; hence it was not included in the cluster. The next item on the list is the 

heat exchanger E-6. This is a shell and tube type heat exchanger with cold crude flowing 

counter current to the bottom pumparound reflux. Cooling of the hot reflux is achieved by 

heat exchange with cold crude before returning the reflux to the tower. This process ensures 

that heat is recovered and utilized for higher plant operational efficiency. Other plant items 

upstream of TI25 are listed in Figure 120. 

 

 

Checks on Feasible Propagation Paths  

 

The Process Connectivity Analyser tool can be used to validate all secondary propagation effects 

from the root-cause as shown in Figure 121, Figure 122, Figure 123 and Figure 124. 
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Figure 121: Propagation from TI25 to TI14. There is direct connectivity between two plant 
items 

 
 
 
 
 

             
Figure 122: Propagation from TI25 to TI13. Process connectivity analyzer shows that there 
are two feasible propagation paths listed in the two panels above 
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Figure 123: Disturbance propagation path tracing visualisation from TI25 to TI13. Path 1 is 
shown on the left hand panel in green. Path 2, coloured purple, is depicted on the right hand 
panel  

 
Similar analysis can be carried out of other secondary affected tags. For example an analysis 

carried out to find out physical connectivity from suspected root-cause element TI25 to FI06 

depicted in Figure 124 shows that there is no feasible propagation path from TI25 to FI06 tag 

which was included in the root-cause analysis results from pure data-driven- analysis. 

 

 

Figure 124: Propagation from TI25 to FI06. Process connectivity analyser shows that there 
is no feasible propagation path between the two tags 
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5.5.5 Discussion of Results from Industrial Case Study  

 

Incorporation of information from the process topology has provided deeper insight into the 

process diagnosis and helped in elimination of spurious result from the data-driven-analysis 

alone. One of the secondary propagation measurement points, FI06, included in pure data-

driven analysis is found to spurious according to process topology. This was detected by the 

Process Connectivity Analyser tool with the majority, eight out of nine, of the tags in the cluster 

confirmed as physically connected to suspected root-cause. 

 

Further analysis showed that the likely real cause of the disturbance is the heat exchanger E-6 

where cold crude and bottom pumparound exchange heat energy. However, since FC10 did 

not participate in the coordinated plant wide oscillation, it can be inferred that temperature 

spike observed at TI25 within the column is due to composition changes. This can be caused 

by occasional leakage between the cold crude and the pumparound reflux which introduces 

heavier components into the upper section of the column where the bottom pump around 

enters the column.  

 

This conclusion was considered logical by process control engineers but this cannot be 

confirmed until the plant undergoes the next scheduled turn around maintenance to confirm 

the existence of a leakage within the heat exchanger.  

 

Disturbances caused by external elements such rain shower can be ruled out because no 

temperature spike disturbance was observed in other columns in the neighbourhood of the 

unit under consideration within the plant. 

 

5.6 Section Summary 

 

The section has completed an open run PDA analysis of the measurement data from 

atmospheric distillation unit of a refinery. An open run of the PDA tool means that all 

analyses are run at default settings to find major disturbances with minimum amount of 

interaction with the user. 

 

The PDA tool found a major cluster consisting of ten measurement tags and placed a 

temperature indicator within the column as the root-cause of distributed disturbances 



193 
 

affecting nine other tags within the plant. The data-driven hypothesis was tested against the 

process physical layout using the Process Connectivity Analyser developed in this project. The 

Process Connectivity Analyser suggested that the result obtained by the PDA tool is plausible and 

the suspected cause of observed distributed plant-wide disturbance identified. 

 

5.7 Academic Case Study 

 

This section presents the electronic description of the Tennessee Eastman (TE) control 

challenge, a widely accepted test bed for implementing process control strategies (Lyman and 

Georgakis (1995); Downs and Vogel, 1993). 

 

 The ISO 15926 compliant XML representation generated from intelligent P&ID of the TE 

process provides the starting point for a range of automated analysis methods including the 

extraction and manipulation of connectivity information.  As far as can be ascertained, this is 

the first time that this challenge process has been represented in such a machine-readable 

format coupled with the connectivity matrix and the manipulations associated with it such as a 

reachability matrix discussed earlier in Section 2.3.8 of this thesis.  

 

To demonstrate the efficacy  of the tool developed in this thesis, the TE connectivity 

information is used to test the hypothesis about disturbance propagation based on the TE 

plant-wide control structure recommended by Lyman and Georgakis (1995) and implemented 

by Chiang and Braatz (2003). The application will also demonstrate the versatility of the 

connectivity tool developed in this work and show that the tool is not tied to a particular data-

driven analysis tool such as the PDA used extensively in this work.  
 
 

5.7.1 Process Description 

 

It has always been a desirable goal within process control community to have a realistic, 

standard, robust and industrially relevant process control test bed to evaluate the various 

process control strategies proposed in the academic environment and several papers have 

been published on the subject  (Prett and Morrari, 1986). The classic control challenge of the 

Tennessee Eastman process (Downs and Vogel, 1993) shown in Figure 125 is used as the case 

study in this academic illustration.  
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Figure 125:  The TE process schematic 

 
 
 
The process consists of five main processing units: a reactor, a product condenser, a vapour-

liquid separator, a recycle compressor and a product stripper.  
 
Two liquid products G and H are produced from four gaseous reactants A, C, D and E. A 

recycled inert gas is added to the reactants stream and fed to the chemical reactor unit where 

exothermic and irreversible reactions of the reactants take place. The order of the chemical 

reaction with respect to the concentrations of the reactants is approximately first-order. There 

are also an inert and a by-product making a total of eight components: A, B, C, D, E, F, G, 

and H. Detailed description of the process and chemical kinetics are discussed by Downs and 

Vogel (1993) and  Lyman and Georgakis (1995). The tags description used to produce the TE 

CAD drawing is shown in Table 15. 
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Table 15: Tags list used in the TE CAD schematic and intelligent P&ID       

 Equipment  

Tag Description Remarks 

 CD-01 
 CP-01 
 PM-01 
 PM-02 
 RX-01 
 SP-01 
 SR-01 
 XE-01 
 IM-01 
 

 Condenser 
 Compressor 
 Pump (product) 
 Pump (stripper supply) 
  Reactor 
 Vapour/liquid separator 
 Stripper 
 Stripper recycle 
 Reactor impeller 
 

 

 Control loop  

Tag Description Remarks 

 FC1 
 FC2 
 FC3 
 FC4 
 FC5 
 FC6 
 FC9 
 FC11 
 LC7 
 LC8 
 LC17 
 TC10 
 TC16 
 TC18 
 XC13 
 XC14 
 XC15 
 XC19 
 XC20 
 

 Flow controller (feed D) 
 Flow controller (feed E) 
 Flow controller (feed A ) 
 Flow controller (feed C) 
 Flow controller (compressor by-pass) 
 Flow controller  (purge) 
 Flow controller (steam)] 
 Flow controller (condenser CWR ) 
 Level controller (vapour/liquid separator) 
 Level controller (separator) 
 Level controller (reactor) 
 Temperature controller (reactor CWR) 
 Temperature controller (stripper) 
 Temperature controller (reactor) 
 Composition controller (feed A) 
 Composition controller (feed D ) 
 Composition controller (feed E) 
 Composition controller (purge B) 
 Composition controller (product E) 
 

 Slave controller to  XC14 
 Slave controller to  XC15 
 Slave controller to  XC13 
 Slave controller to  LC17 
 Standalone 
 Slave controller to XC19 
 Slave controller to TC16 
 Standalone 
 Standalone 
 Standalone 
 Master controller  to FC4 
 Slave controller to TC18 
 Master controller to FC9 
 Master controller to TC10 
 Master controller to FC3 
 Master controller to FC1 
 Master controller to FC2 
 Master controller to FC6 
 Master controller to TC16 

 

 Analyser  

Tag Description Remarks 

 XAr 
 XBr 
 XCr 
 XDr 
 XEr 
 XFr 
 XDp 
 XEp 
 XFp 
 XGp 
 XHp 

 Composition of A in feed 
 Composition of B in feed 
 Composition of C in feed 
 Composition of D in feed 
 Composition of E in feed 
 Composition of F in feed 
 Composition of D in product 
 Composition of E in product 
 Composition of F in product 
 Composition of G in product 
 Composition of H in product 
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 XAw 
 XBw 
 XCw 
 XDw 
 XEw 
 XFw 
 XGw 
 XHw 
 

 Composition of A in purge 
 Composition of B in purge 
 Composition of C in purge 
 Composition of D in purge 
 Composition of E in purge 
 Composition of F in purge 
 Composition of G in purge 
 Composition of H in purge 

 Stream  

Tag Description Remarks 
 Stream 1 
 Stream 2 
 Stream 3 
 Stream 4 
 Stream 5 
 Stream 6 
 Stream 7 
 Stream 8 
 Stream 9 
 Stream 10 
 Stream 11 

 

 A feed 
 D feed 
 E feed 
 C feed 
 Stripper overhead 
 Reactor feed 
 Reactor product 
 Recycle 
 Purge 
 Separation liquid 
 Product 

 

 

 

The TE process has been created with intelligent CAD tool (AVEVA P&ID®). Figure 126 

shows the TE schematic without instrumentation (PFD) for clarity. The corresponding 

connectivity matrix, a zoom in list of plant items in the connectivity matrix and reachability 

matrix of the connectivity matrix are shown in  

Figure 127, Figure 128  and Figure 129 respectively.      

 

For the first time, we now have the TE connectivity matrix people have been trying to 

generate in an automated way for many years. This provides a framework for other analysis 

and extension of basic information presented in process P&IDs. 
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Figure 126: Intelligent CAD drawing of the TE process flow diagram  

 
 
 
 

 
 

Figure 127: Connectivity matrix of the TE process flow diagram 
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Figure 128: Zoom in row and column elements of TE connectivity matrix 

       
 
 

 
 

Figure 129: Reachability matrix of the TE process (PFD). Entries marked red indicate 
elements involved in a recycle via process fluid or signal flow while green colour 
signifies reachability from row elements 

 
      

Pipe in-line elements 
such as a pipe tee 
automatically inserted by 
intelligent CAD tool 
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The intelligent drawing forms the basis and starting point for the TE connectivity 

analysis. The ISO15926 compliant XML files exported from such intelligent CADs are 

parsed to extract relevant plant items and to generate the connectivity matrix which can 

be manipulated for plant analysis. For example, the reachability matrix shown in Figure 

129 is produced from the process connectivity matrix and suggests that any disturbance 

emanating from the steam supply to vapour liquid stripper has the potential to affect all 

plant items except the Column plant items that are not covered in green colour i.e.  

streams A, D, E, Condenser CWS, Reactor CWS, and SC-02. 
 
The entries of the connectivity matrix in red colour are the non-zero diagonal elements 

of the reachability matrix. They indicate plant items involved in a recycle network. For 

example, SR-01, SP-01 and CP-01 are part of the process recycle units while PM-01 is 

not associated with the process recycle system.  

 

The illustrated example shows that the reachability matrix of a process plant can be 

utilized to provide a high level insight into the underlying process through its 

connectivity and directionality information. 

 

The next demonstration of the TE analysis considers the process with implemented 

control structure, control loops and instruments. Process schematic with implemented 

control scheme of the TE to be used as the basis for hypothesis testing in this report is 

shown in Figure 130. The control scheme is taken from the work reported by Chiang and 

Braatz (2003).  
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Figure 130: TE process schematic according to Chiang and Braatz (2003) with Lyman and 
Geogakis (1995) plant-wide base control structure 

 
 
An electronic intelligent P&ID drawing of the TE process using the tags listed in Table 15 is 

depicted in Figure 131. The ISO15926 XML compliant of the intelligent P&ID is parsed and 

manipulated by the connectivity tool to generate the connectivity matrix shown in Figure 132. 

 

With the parsing of the TE XML and creation of connectivity matrix, the process connectivity 

tool is ready to carry out automated analysis to test some of the hypothesis proposed in 

Chiang and Braatz (2003) about the feasible propagation paths.  
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Figure 131: Intelligent CAD drawing of TE using AVEVA P&ID® and AutoCAD® 

 

5.7.2 Data – driven Analysis  

 

The multivariable data-driven methods described by Chiang and Braatz (2003) are called 

modified distance and modified causal dependency. They are used for identifying broken sensors and 

broken causal dependencies respectively. The traditional distance utilizes the historical data of 

process sensor measurements to estimate changes in the frequency distribution of process 

while the causal distance is based on the relationship between the frequency distributions of two 

variables. A residual greater than a preset threshold signifies a broken sensor or broken causal 

dependency and thus a fault.  

 

The main contribution of the modified approaches reported by Chiang and Braatz (2003) is 

the use of continuous-time model as opposed to the use of bins to group measurement data 

and define distribution with the attendant loss of resolution depending on the size of the bin.   
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Figure 132: A portion of connectivity matrix of the TE P&ID  

 

5.7.3 Hypothesis Testing using Process Connectivity Analyser 

 

For the testing and evaluation of the methods described in Chiang and Braatz (2003) a subset 

of  process faults listed in Table 16 is considered. The authors examined the process schematic 

and manually constructed the following fault propagation paths originating from FC3: 

 

Propagation from FC3 ultimately to XAw (purge) 

Propagation from FC3 ultimately to CP-01 (compressor) 

Propagation from FC3 ultimately to XAr (feed) 

 

 

Table 16Results from data-driven analysis for fault 6 (A feed loss in stream 1) identified the 

feed valve for reactant A (FC3) as the root-cause for fault 6. Chiang and Braatz (2003) also 

observed that as time progressed, the fault affected other variables downstream.  
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The authors examined the process schematic and manually constructed the following fault 

propagation paths originating from FC3: 

 

 Propagation from FC3 ultimately to XAw (purge) 

 Propagation from FC3 ultimately to CP-01 (compressor) 

 Propagation from FC3 ultimately to XAr (feed) 

 

 

Table 16: TE process faults 

Variable number Process variable Description Type 

IDV(1) 

IDV(2) 

IDV(3) 

IDV(4) 

IDV(5) 

IDV(6) 

IDV(7) 

IDV(8) 

IDV(9) 

IDV(10) 

IDV(11) 

IDV(12) 

IDV(13) 

IDV(14) 

IDV(15) 

IDV(16) 

IDV(17) 

IDV(18) 

IDV(19) 

IDV(20) 

IDV(21) 

A/C feed ration, B composition constant (Stream 4) 

B composition A/C ratio constant (Stream 4) 

D feed temperature (Stream 2) 

Reactor cooling water inlet temperature 

Condenser cooling water inlet temperature 

A feed loss (Stream 1) 

C header pressure loss-Reduced availability (Stream 4) 

A, B, C feed composition (Stream 4) 

D feed temperature  (Stream 2) 

C feed temperature (Stream 4) 

Reactor cooling water inlet temperature  

Condenser cooling water inlet temperature 

Reaction kinetics 

Reactor cooling water valve 

Condenser cooling water valve 

Unknown 

Unknown 

Unknown 

Unknown 

Unknown 

The valve for stream 4 was fixed at the steady state 

position 

Step 

Step 

Step 

Step 

Step 

Step 

Step 

Random variation 

Random variation 

Random variation 

Random variation 

Random variation 

Slow drift 

Slow drift 
Sticking 
 
 
 
 
 
 
 
 
Constant position 
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The process connectivity tool would have aided in the Chiang and Braatz (2003)  in their 

analysis and automate testing for feasible fault propagation of the above hypothesis from data-

driven analysis without recourse to the manual path tracing.  

The analysis with Process Connectivity Analyser starts with a summary of tagged items in the TE 

plant as shown in Figure 133. The figure shows parsed tags directly from the electronic XML 

description of the TE plant. 

 

 

Figure 133: Parsed plant items from the TE process 

 
 
In the first instance, the connectivity tool would have helped to identify all the plant 

items/measurement points that would be affected by the suspected data-driven root-cause by 

looking at plant items downstream of FC3 (Section 5.3.1 functionality L of Figure 66 of the 

thesis).  

 

Secondly to confirm the existence of a feasible propagation path between a suspected root-

cause and the final secondary disturbed tag. This is demonstrated in Figure 134, Figure 135, 

Figure 136 and Figure 137. 
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Figure 134: Process Connectivity Analyser confirmation of propagation from FC3 to XA in 
purge due to fault 6  

 

 

 

Figure 135: Confirmation and list of plant items in the forward path of fault propagation to 
XA in feed due to fault 6 (measurement points and control loops) 
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The connectivity tool is also able to include processing units with the measurement points as 

well as the control loops. This capability is lacking in pure data-driven tools as they only 

consider measurement points. However, some faults are actually caused by processing 

equipments and picked up at measurement points, in some cases some distance away from the 

source (e.g. the use of proxy measurement in Thornhill, et al., (2003) ). With pure data-driven 

tools, process control engineers have to resort to electronic or paper print out of process 

schematic to identify the root-cause. Experienced control engineers would make use of their 

mental model of the process. The process connectivity tool eliminates the need for this and 

therefore opens up process fault propagation analysis to a wider range of users. 

 

The remaining analysis of fault 6 in the TE process will incorporate processing equipment 

with measurement points and control loops in listing tags in fault propagation paths. 

 
 

 

Figure 136: Confirmation and list of plant items in the forward path of fault propagation to 
XA in purge due to fault 6  

 
 



207 
 

 

Figure 137: Confirmation and list of plant items in the forward path of fault propagation to 
recycle compressor due to fault 6  

 
 
 

 

Figure 138: Confirmation and list of plant items in the forward path of fault propagation to 
XA in feed due to fault 6  
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5.8 Chapter Summary 

Chapter five has presented an overview and operational procedures of Process Connectivity Tool, 

an output of the PhD work. To demonstrate the effectiveness and versatility of the tool 

developed, an illustrative example, an industrial case study and an academic case study were 

considered. The results obtained suggested that the tool can be used as a standalone for 

process analysis, in` combination with results from data-driven analysis and for hypothesis 

testing of results from data-driven methods. 
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6 Industrial Discussions and Context 

 
This chapter relates industrial contacts made during the course of this work. It discusses the  

contacts made with representatives from commercial software vendors relevant to the project.  

The chapter also focuses on commercial tools (e.g. SmartPlant® from Intergraph® Bentley 

AutoPlant P&ID® from Bentley®, Aveva P&ID® from Aveva®, AutoCAD P&ID® from 

AutoDesk®) suitable for electronic, automated capture of complex chemical and petrochemical 

plants such as a refinery on an industrial scale. Commercial tools used in the process industries 

to generate key performance indicators (KPI), a quantifiable metric indicating how well a plant 

is performing and for diagnosing malfunctions, using process measured data such as 

temperature, pressure, level and so on are also considered.  

 

Consideration of KPIs is important because an improved diagnostic is achieved when KPIs 

from data-driven diagnosis tools are combined with connectivity information contained in 

process plant representation such as in a P&ID and process know-how (Thambirajah, 2008; 

Scherf et al., 2006 and Yim & Ananthakumar, 2005). 

 

 

6.1 Result Formats from Data-Driven Tools for use with 

Connectivity Tool 

 

Many signal processing and analysis tools are available in the market to extract useful 

information from enormous quantities of measurement data generated on a regular basis from 

process plants. One example of a commercial tool is the PlantTriage® from ExperTune®, and 

those listed in Table 17. Most of these tools acquire real time data from plant’s DCS to 

continuously monitor the state of the plant. Several key performance assessments, discussed in 

Section 6.1.1, are calculated for each control loop and used to monitor several controller 

properties. Each assessment is calculated at some specified periods and plant operator can 

select which performance metrics are to be used to create the loop health assessment which 

gives an indication of the overall health of the control loop and ultimately health of the plant.  



210 
 

 

Process control engineers diagnose malfunctions by examining and comparing the chosen key 

performance indices (KPIs) with the best achievable standard already in place and request 

corrective action on the loops with a poor performance. 

 

However, any conclusion reached from data-driven analysis has to be viewed against the 

process topology to ensure that the results from data analysis make sense. The procedures for 

reaching conclusion when  KPIs generated by signal processing tools are tested against 

process topology is automated in this thesis by utilizing process connectivity and directionality  

information derived from process schematics such as a P&ID. 

 

6.1.1 Key Performance Indicators (KPIs) 

 

This section discusses the relevance of KPIs, in an industrial setting to the thesis. It also 

provides a list of major commercial vendors of data-driven software tools for generating KPIs 

for monitoring and diagnostic purposes. 

 

A wide range of numerical performance indicators values such as control variable average 

error, oscillation index, set-point crossing, valve movement and  valve stiction  are used in the 

process industries such as refineries to measure individual control loop performance and 

overall performance of the plant when compared to the ideal or best performance possible. 

The comparison ensures delivery of the control and monitoring strategic objectives such as 

reduction in product variability and plant-wide oscillation (Harris, et al., 1999; Horch and 

Isaksson, 1999; Jelali, 2006; Thornhill, et al., 1998). 

 

Most commercial data-driven tools such as PlantTriage® from ExperTune® for generating 

KPIs connect to plant’s distributed control system (DCS) to acquire and process real time data 

to generate KPIs for checking performance levels. Major commercial vendors listed in Table 

17 take process measurements, usually in real time, to generate important key performance 

indices/indicators such as average absolute error (AAE), Harris index, output standard 

deviation (OSD), oscillation index, variance, process lag, process gain, set point crossings, 

variability, and valve stiction which are used by control engineers to diagnose anomalies and 

optimize plant performance.  
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In this thesis, the approach is to combine some of the KPIs with process connectivity 

information and utilize process know-how to draw conclusion about the root-cause of a plant-

wide disturbance.    
 

Table 17: Commercial software tools for measured signal processing and analysis. 

Software Vendor 

PlantTriage® ExperTune® 

Loop Performance Manager® ABB® 

LoopScout® Honeywell® 

Control Performance Monitor® Matrikon® (owned by Honeywell® ) 

Loop Analysis® (formerly Control Wizard®) PAS® 

PID Watch® Aspentech® 

PDA® ABB® 

Performance Watch® Invensys® 

Control Monitior® Control Arts® 

PCT Loop Optimizer® ProControl Technology® 

PROBEwatch® 

INTUNE+  

Control Loop Performance 

Plant ESP 

DeltaV Insight 

rCAAM (RoviSys Control  

Assessment and Monitoring) 

ISC® 

ControlSoft 

Capstone Technology 

Control Station 

Emerson 

RoviSys 

 

 

 

6.1.2 Section Summary 

 

The section described leading commercial software packages available for data analysis.  

PDA tool from ABB has been chosen for data-driven root-cause analysis in this thesis because 

Imperial College has a licence in place. However, the connectivity tool can also be combined 

with other commercial data-driven analysis tool to provide insight into the mechanisms of 

disturbance propagation and to make sense of the results from pure data analysis.  
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6.2 Meetings with Representatives from Software Companies 

 

Meetings were arranged and held with representatives from commercial software tools, 

notably some of those listed in Table 17 to discuss what capabilities their software can offer.  

Most discussions were held during a software evaluation and selection period. Specifically, 

meetings were held with representatives from Intergraph, Hazid® Technologies Limited and 

Aveva. Hazid® Technologies Limited has some experience in using some of the tools that are 

of interest to the research. The meetings yielded positive contributions to the project and are 

well documented. In some cases, emails were exchanged for the purpose of sharing ideas, 

knowledge and experience. 

 

The author also liaised with engineers at AVEVA having chosen the company’s software 

(AVEVA P&ID) for the project with the collaboration leading to identification and fixing of 

bugs in the export of ISO15926 compliant XML. For example, some drawing items were not 

included in the XML export which was reported back to AVEVA representative with a view 

to fix the bug.  

 

6.3 Industrial Placements at Sponsor’s Sites 

 

This section discusses some of the experiences and lessons learnt while on industrial 

placements at the research sponsor’s sites. There were effectively two work experiences during 

the course of the research work.  

 

The first placement was based at a technology support centre where processes on sites are 

monitored remotely via web-based data-driven monitoring tools. The monitoring tools use 

process measurement data for analysis. Key performance indicators (KPIs) are generated 

based on the measurement analysis. The KPI is a matrix that gives an indication of the state of 

the process health and help process control engineers to identify poorly performing loops.  

 

In reaching conclusions before major maintenance efforts are initiated, control engineers 

typically reconcile results from data-driven tools with the mental physical topology of the 

plant under consideration and in some cases using the actual process schematic laid out. This 

is the crux of this thesis-research into innovative ways to capture process connectivity and 
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directionality information from readily available sources to enhance and provide insight into 

pure data-driven analysis. The placement predominantly involved preliminary studies on the 

techniques in place for identifying root-causes with a view to investigate how the analysis 

might be combine with the proposed connectivity tool to be developed in the research.  

 

The second placement consisted of onsite and remote monitoring operations. Real process 

plant was analysed and drawn with intelligent CAD tool to generate ISO15926 compliant 

XML as well process connectivity matrix from the connectivity analyser tool developed. Based 

on the discussions held with onsite process control engineers, the following practical 

considerations came to the fore: 

 

 Disturbance propagation is not always one way, even when this is not indicated on the 

process P&ID 

 Multiple root-causes may be accounted for 

 Disturbances other than oscillations do affect process plant performance 

 High frequency disturbances may not be detected from practical data capturing 

sampling rate and storage perspective 

 Some process lines on the P&ID may not be in use. It will be useful to indicate this in 

an automated way with a software tool. 

 

The bottom line of the observations above is that not everything needed for effective and 

complete process analysis is captured by the process P&ID. However, the advantage of using 

process P&IDs stem from the fact that they are readily available in industries at no extra cost 

and efforts, just like historical data are readily available for signal analysis. 

 

The remarks also show that there is huge potential for future research opportunities as the 

process P&IDs can be augmented either at the drafting stage or after XML export.   
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6.4 Chapter Summary 

 

This chapter has presented a summary of contacts made with commercial software vendors 

and project sponsor during the course of the research. The chapter reinforces the multi 

disciplinary nature of the thesis and the approach adopted in the collaborative efforts to 

ensure a successful and timely completion of the research.  
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7 Summary and Opportunities for Future 

Work 

 
 
This chapter details the summary of work reported in this thesis and possible future research 

opportunities with suggested strategy for implementation. The summary section reviews 

important activities reported in the thesis that resulted in the accomplishment of the thesis 

aims and objectives. The other section of this chapter proffers suggestions on future work 

with respect to further research opportunities and improvement to existing implemented 

methodologies.  

 

7.1 Summary 

 

The report has described the activities and approaches taken to accomplish research aims and 

objectives set out in the thesis. This section considers each key task from the various chapters 

discussed in the thesis. It started with discussions on the background and emphasizes the 

motivation for carrying out the project. The section closes with major conclusions from the 

thesis. 

 

7.1.1 Aims and Objectives of the Thesis 

 

Key objective of process control strategy is to divert process variability away from key process 

variables to places that can accommodate the variability. Modern process plants such as 

refineries implement advanced process control systems, reduced inventory, heat integration, 

recycle streams , and back-up and recovery system in other to meet business objectives 

resulting in highly coupled plant with strong process dynamic interaction. The resulting 

complex plant complicates root-cause diagnosis of disturbances because a local process upset 

propagates to units downstream creating secondary plant-wide effects. 
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The motivation for the work reported in this thesis is given in Thornhill et al., (2003). The 

paper described a data-driven root-cause analysis that found a sticking valve in a chemical 

plant. It concluded that an engineer needs to combine knowledge from the process schematic 

with the results from data-driven analysis in order to complete the analysis.  

 

The aim of the research therefore is to conduct research into and establish new ways to 

capture and manipulate information from process schematic in order to give an automated 

means of diagnosing plant-wide performance problems. The project utilized electronic 

representation of process schematic using XML to automatically generate process connectivity 

matrix. The practical outcome will be improved disturbance diagnostics using process data, 

information from a process schematic and process understanding (know-how). 

 

The project concerns automated capture of connectivity information in large plants such as 

refineries, the linkage of this connectivity information with the results from data-driven cause-

and-effect analysis of the process measurements, and incorporation of process know-how to 

draw conclusions about the causes of disturbances. Connectivity information means a specification 

of the items in the plant and the connections between them in a form that can be manipulated 

algorithmically using a computer program. An example of process know-how is the existence 

and mechanism of the destabilizing effect that heat integration can have on a process. 

 

Automated tools for tracking down the root-cause of plant-wide disturbances are essential in 

modern complex, interrelated and highly coupled process plants  because a plant running 

smoothly with little or no disturbance makes the most profit. Large scale industrial 

requirements for plant-wide approach to process analysis, control, diagnosis and optimization 

have been identified. These requirements include: 

 

 Facility-wide benchmarking and standardization of control systems; 

 Characterization of performance faults; 

 Detection of the presence of one or more periodic oscillations; 

 Detection of non-periodic disturbances and plant upsets; 

 Determination of the locations of the various oscillations/disturbances in the plant 

and their most likely root-causes; 

 Incorporation of process knowledge such as the role of each controller; 

 Automated model-free causal analysis to find the most likely root-causes. 
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The objectives set out at the beginning of the thesis have been met. A software tool that 

demonstrates large scale electronic capture of process connectivity and directionality 

information in an automated manner has been designed and developed during the course of 

the PhD work. The software tool developed was used to combine connectivity information 

with signal analysis and process know-how to test and draw a conclusion about hypotheses 

from process signal analysis. Other uses such as finding the location and nature of a plant item 

on the process P&ID, checking for full connectivity at the drawing stage and export of full 

process connectivity matrix to Excel application have also been demonstrated.  

 

A review of prior work led to appreciation of the various approaches taken by several 

researchers to address the requirements listed above and to put the PhD work in context.  

 

The following conference and journal papers have been produced from the research work: 

 

 Di Geronimo Gil, G.J., Alabi, D.B., Iyun, O.E. and Thornhill, N.F., 2011, Merging 

process models and plant topology, Advanced Control of Industrial Processes (ADCONIP 

2011), Hangzhou, China, May 23-26 2011. 

 A journal paper on the Tennessee Eastman (in progress). 

 

This is in addition to technical reports, several presentation slides and monthly meetings 

minutes delivered to the project sponsor during the course of the research work.  

 

7.1.2 Process Representation 

 

The project utilized electronic representation of a process schematic using ISO15926 

compliant XML. XML is a platform and vendor independent approach to data storage and 

transmission which is fast becoming the de facto standard in the information technology 

industry (Girardot and Sundaresan, 2011).  

 

Signed digraphs and multi flow modelling (MFM) are competing technologies to the use of 

XML. XML was chosen as the technology of choice in this project for process schematic data 

encoding standard because of its flexibility and acceptability within the leading commercial 

CAD tool vendors. For example AVEVA has incorporated XMpLant translation engine from 

Noumenon Consulting for ISO15926 implementation from proprietary data formats in its 
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intelligent CAD tool called AVEVA P&ID. This meets some of the project requirements for 

automated conversion and legacy drawing issues of process schematics to electronic format 

such as XML and also in dealing with legacy drawings. 

 

Process schematics with additional information behind the graphic display such as been 

utilized in this work to export XML description of process topology are said to be intelligent 

otherwise they are referred to as dumb. Intelligent P&IDs used throughout this thesis were 

created with AVEVA P&ID software tool running on AutoCAD tool. The procedures for 

transforming a process schematic such as a process flow diagram to electronic XML 

representation and connectivity matrix is summarized and depicted graphically in Figure 139. 

XML description of the process topology and results from data-driven analysis are fed into the 

Process Connectivity Analyser tool. 

 

Due to the flexibility and ease with which XML files are created, rules otherwise known as 

schemas are enforced for valid XML files. Prominent schemas for XML structure for process 

plant schematics are: 

 

 CAEX based on IEC/PAS 62424, and 

 XMpLant based on ISO15926 

 

The two standards for XML encoding were discussed in the thesis. The fact that ISO15926 

has been widely adopted and implemented by leading CAD vendors as part of the project 

requirements was chosen. 

 

 

XML Parsing and Representing Connectivity 

 

The ISO15926 compliant XML of process schematic is read and parsed by parsing algorithm 

of the connectivity tool using XElement class of Microsoft .NET Language Integrated Query 

to XML (XLINQ) namespace for reading and manipulation of in memory XML tree data 

structure to generate process connectivity matrix. The connectivity matrices indicate how 

plant items are connected to one another. The connectivity matrix generator component of 

the connectivity tool creates process schematic connectivity matrix with an option to export 

the connectivity matrix to Excel application. 
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 Figure 139: Inputs to Process Connectivity Analyser and schematic representation of 
processes involved in transforming process schematic to intelligent P&ID, electronic XML 
description and connectivity matrix 

 
 
 
Integration of Process Connectivity Information with Results from Data-Driven Analysis and Process Know-

how 

 

Process Connectivity Analyser, the final integrated tool, combines process topology representation 

as connectivity matrix with results from the cause-and-effect data-driven analysis with process 

understanding.  The tool provides a means for manipulation of data, process connectivity 

information and engineering know-how. Process connectivity information is the form of an 

XML description of a process flow sheet prepared in an industry standard format. Data is the 

measurements from the process. Engineering information was made generic and can be 

customized to meet specific business need such as in the form of rules. 

 

The software implementation is in Microsoft .NET platform and allows users to upload 

process XML description and results from data-driven analysis from a storage device and the 

user can perform analysis. Process know how is in built and used in displaying final results for 

analysis. 
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Requirements definition for the software were iterative throughout the project as they were 

regularly updated based on outcomes of regular meetings over the phone and in person 

throughout the duration of the project. A familiar navigational window-based graphical user 

interface was designed and implemented to enhance the tool’s usability and minimize learning 

curve by the users. 

 

7.2 Illustrative Example and Case Studies 

 

The illustrative example of the crude heating unit was included to demonstrate the capability 

of the software tool in a simple and easy to understand manner. The purpose of the industrial 

case study discussed was to validate research findings by testing research methodology on real 

life process plants available at the sponsor’s site with some modification to the naming 

conventions to protect confidential information and trade secrets. Nevertheless, the 

complexity of the case study is exactly as that of the real life plant. The case study 

demonstrated that connectivity tool is capable of identifying spurious results from pure data-

driven root-cause analysis and perform other tasks in an automated and systematic way. The 

academic case study presented the analysis of a process schematic that is well known and 

researched in the academic community. This will enable readers to appreciate the capabilities 

of the connectivity tool since most would have come across the process under consideration 

and thus have a mental model or some expectations from the tool’s output. 

  

7.3 Alternative Uses 

 

This section discusses other uses to which the software tool developed in this work can be put 

to. This is in addition to the use in root-cause diagnosis of plant-wide disturbance. 

 

 Model Development in Multivariable Analysis: The tool developed in this work can be used 

to check models in advanced process control and multivariable analysis. An example is 

model development for model in Model Predictive Control (MPC) when dynamic 

models are to identified from plant test data. The model builder would like to check 

for unobservable and weakly observable response form a perturbed variable called the 

handle. By using the connectivity tool to find all plant items physically connected to the 
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handle, the model builder is able to separate spurious response and carry out further 

examination on variable that are physically connected to the handle but not observable 

from the perturbation test. 

 Alarm Management: Process Connectivity Analyser can be used to minimize alarm 

overload  and/or eliminate false alarms so that process operator can respond to and 

deal with real alarm by finding physical connections among alarms and isolating  

extraneous alarm. 

 Hazard and Operability Analysis:  The connectivity tool can be used to study hazard and 

operability analysis of process plant by performing cause-and-effect analysis and path 

tracing of process fluid and signal flow around the plant. If an area within the plant 

needs to be shot down and isolated for health and safety reasons, the connectivity tool 

can be used to identify which part of the production plant will be affected. 

 Sensor Location: The connectivity tool can be used to identify spots within the plant 

where sensor(s) should be installed relative to a measurement point. This will eliminate 

the use of proxy measurement (Thornhill, et al., 2003) which will require knowledge of 

the process plant and more efforts to locate. 

 

7.4 Future Research Ideas and Discussion 

 

This section discusses avenues for improving the methods described in this thesis and future 

research opportunities. The objective is to make recommendations for continued research on 

enhancing electronic capture and use of process connectivity information for better insight 

into plant-wide performance issues.  

 

7.4.1 Implementation Alternatives 

 

This section enumerates alternative approaches for implementing some components of the 

connectivity tool. This will take the software tool beyond academic prototype and full 

commercial potential can be unleashed. 
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Expert System Shell for Knowledge Representation and Reasoning  

 

The use of commercial expert system shell such as G2® from Gensym Corporation for 

reasoning, encoding, and storage of process know-how and laws of science (physical, chemical 

etc) to generate logical conclusion when combined with the process connectivity matrix will 

be a preferred approach to hard-coding knowledge representation. This will enable the 

knowledge base to be updated from time to time as deemed necessary. 

 

Database Implementation 

 

A relational database developed using database management system such as MS Access® or 

Oracle® to serve as repository for data generated from plant connectivity information and 

results from data-driven analysis will be viable alternative to in-memory storage and 

processing plant elements. This will improve systems response time and data throughput. One 

way of implementing this approach is shown Figure 140. 

 

 

Figure 140: An alternative data-based implementation of Process Connectivity Analyser tool 
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7.4.2 Scale Up and Commercialization 

 

Process Connectivity Analyser is designed and implemented with the possibility of integration 

into an existing commercial data-driven software tools in mind. The graphical user interface 

was developed using the windows presentation foundation (WPF) technology that easily 

integrates with other Windows based applications and highly modular such that the 

implementation code called the engine can be easily separated from the user interface elements. 

 

 The navigation-based graphical user interface presents a familiar Windows browser interface 

and can be easily adapted to a browser interface using XAML browser application (XBAP). 

XAML stands for extensible application mark-up language. Conversion of WPF to XBAP is 

straightforward requiring minimal developmental effort and allows the connectivity 

application to be accessed remotely from client software application such as Microsoft 

Internet Explorer or Firefox.  

 

7.4.3 Augmented Intelligent P&IDs 

 

Exports from process P&IDs as used in this project are static boolean representations that 

gives a yes or no (one or zero) answer to the existence or otherwise of connection between 

two pieces of plant items. This can be modified to incorporate other information for an 

improved functionality. This information could be numerical values derived from process 

measurements statistics such that the connectivity matrix entries are indicative of the 

information being conveyed as opposed to only boolean zeros and ones. For example, 

estimates of time delay from two instrument readings, if exists, can be used to estimate relative 

physical distance/separation between the measurement points.  

 

Collaboration between intelligent CAD tool vendors and the academic could produce 

information rich P&IDs which can be used for enhanced process analysis. Findings from 

academic research could be fed to CAD vendors to incorporate addition information about 

plant entities and directional connections among plant items. 

 

The discrete nature of the interconnections among plant entities represented by binary zeros 

and ones in the connectivity matrix entries can benefit from mixed integer non-linear 

optimization techniques (Kocis and Grossmann, 1989; Reyes-Labarta, et al., 2011; Turkay and 
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Grossmann, 1996; Viswanathan and Grossmann, 1990) when combined with continuous 

process variables.  

 

Similarly, the information content of the connectivity matrix can be augmented if its elements 

are generated according to a certain rule such as addition of weight (Vianna and McGreavy, 

1995) or dimension of connection to a node. The addition of extra information to the arcs will 

find application in future research work, for example by using the importance of the 

equipment or components attached to an arc to give a weight to such arc.  

 

Another useful implementation will be the ability to manipulate XML description of process 

schematics algorithmically and export the manipulated XML file back into CAD tool to 

display process schematic graphically using the manipulated XML to reflect the changes in the 

XML. This can be used, for instance, for colour coding of various disturbance propagation 

paths and will require backward compatibility from intelligent CAD tools.  

 

7.4.4 Sparse Matrix and Matrix Transforms 

 

A vast number of entries in connectivity matrices generated from process schematics are 

zeros. These connectivity matrices can therefore benefit from sparse matrix algorithms that 

substantially reduce the storage requirements and search speed. A sparse matrix is populated 

mainly with zeros, the property that is utilized by a number of special techniques which stores 

and operate on non-zero entries (Mah, 1983). The basic idea is to devise an algorithm which 

minimizes the matrix fillings (Mah, 1974; Mah, 1983). The work reported by Jiang et al.,(2009) 

for example, might find application but developments might be needed to deal with scalability 

issues. For instance, in reachability matrix analysis, an N by N matrix will have to be raised to 

the power N, so there will be research issues related to calculation and compression methods 

for sparse matrices to make the graph theory approach feasible for practical large-scale 

applications.  
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7.5 Conclusions 

 

This thesis has presented innovative and new ways to capture and manipulate information 

from large scale process schematic such as a refinery in order to give an automated means of 

diagnosing plant-wide performance problems and perform other process analysis.  

 

The scale of the industrial case study described in Section 5.5.4 with part of its connectivity 

matrix shown in Figure 115 coupled with P&IDs merging capability proved the scalability and 

large-scale industrial relevance of the research concepts.  

 

The practical outcome of the PhD work is an improved plant-wide disturbance diagnostics 

using process data, information from process intelligent P&ID and process understanding. 

 

The procedures and technology for representing process plant electronically for the purpose 

extracting plant items and connectivity information in an industrial setting and scale have been 

demonstrated. A survey of commercial tools for automated electronic capture of process 

P&IDs and export, and tools for data-driven analysis was presented.  

 

The work reported in this thesis has been engineered into a software tool that can innovatively 

access process intelligent P&ID in XML format, merge multiple P&IDs if required, and 

extract and combine engineering data with traditional process measurements and process 

understanding for resolving operational issues. 

 

The industrial requirements for a large scale integrated plant-wide approach to process 

diagnostics utilizing all available information sources: measurement data, process topology 

information and process understanding have been addressed in this thesis. 

 

Due to the confidentiality nature of the research, the technical reports generated from this 

research have not been made available in the public domain. In addition to technical reports 

produced, meetings were held with the sponsor’s representatives on a regular monthly basis 

via teleconference and presentation on work done given quarterly.  
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