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Abstract 

 

 

Although there are several mathematical models present for baculovirus infection, the specific 

functions for insect cell growth and cell death during infection processes remain unknown. 

Specifically, it is challenging to identify the most suitable model from a large set of plausible 

models and estimate the kinetic parameters to account for the day to day variability present in the 

infection experiments.  In this context, identification of an unstructured model that can predict the 

day to day variability in cell growth and cell viability can be useful in determining the optimal 

operating conditions in fermenters at industrial scale. The major objectives of the present work 

were to develop a model screening framework that can be used to select the best model and identify 

the growth and death mechanisms during viral infection through non-linear programming. We then 

constructed a series of plausible models based on system of ordinary differential equations and 

performed the model selection using experimental data obtained from shaker flasks. The proposed 

scheme was tested for selecting the model for uninfected cell growth profiles. The objective 

function used was the root mean square error between the predicted values and experimental data 

points obtained from triplicate dataset. The computational scheme was validated using two types 

of virus, the WT AcMNPV and stabilized AcMNPV. Additionally, we propose a numerical 

scheme to simulate the cell growth and cell viability during viral passaging.  The kinetic parameters 

were estimated in case of growth of uninfected cells, cells infected with WT virus as well as 

stabilized AcMNPV. The result shows that Monods equation fits the best for insect cell growth 

without infection and infection with WT AcMNPV. Whereas, the Contois model fits the best for 

the stabilized virus. The simulated results also indicate that the day to day variability in cell growth 

and cell viability profile can be explained through the variation in the specific growth rate and the 

death rate. The estimated kinetic parameters indicate that the growth and death parameters undergo 

specific modifications during the passaging of viruses associated to infection process. 

Additionally, we propose an integrated model for the infection process that simulates the DNA 

replication, mRNA and protein expression as well as polyhedra production.  Specifically, we 

present the comparison between the unstructured model and the structured integrated model with 

respect to accuracy and computation time. Current study provides a predictive framework that has 

a potential application for large scale production of baculovirus. 
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Chapter 1 

 

1.1 Introduction 

Baculoviruses are known to infect the invertebrates and studied widely as biopesticides in crop 

fields. Baculoviruses contain circular double-stranded genome ranging from 80 to 180 kbp [1]. 

Economical large-scale production of baculovirus has the significant impact in its industrial 

applications such as the production of vaccines biopesticides and recombinant proteins1 [2]. 

Mathematical models are useful in quantification of growth and product formation kinetics. Such 

robust models also find applications in design, optimization, and scale-up of bioreactors. 

Development of such predictive model has potential applications in industries for the optimal 

production of baculovirus in fermenters. Specifically, the requirement of large experimental time 

and expensive resources such as media, sterilization and cell maintenance schedules further 

motivates the construction of unstructured models which can be simulated in no time [3].  

The existing models available for insect cell growth and baculovirus infection shows the prediction 

profiles for cell growth but simulation results were not validated with adequate experimental data. 

The absence of detailed experimental data and lack of mechanistic information on baculovirus 

infection process makes it challenging to identify simple unstructured model capable of 

simultaneous emulation of insect cell growth, cell death, budded virus and polyhedral formation. 

In this study, we investigated the cell growth pattern, and cell death pattern using light microscopy. 

Moreover, we also investigate the formation of polyhedra with passaging of viruses in insect cells 

through the polyhedra counting using light microscopy. Further, we constructed a model 

containing substrate consumption, oxygen consumption and carbon-di-oxide formation and 

percentage of viable cells with different carbon sources for uninfected cell growth as well as 

infected cell growth. We then focused on unstructured modeling and parameter estimation for cell 

growth without viral infection and with the viral infection.  

We developed a novel computational strategy to select the optimal model from a series of 

mathematical constructs. Parameter estimation was performed using fmincon which is a function 

included in MATLAB's optimization toolbox that seeks the minimizer of a scalar function having 
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multiple variables, within a region specified by linear constraints and bounds. The final model was 

validated with a triplicate experimental dataset and was further used to investigate the specific 

differences between the growths of infected cells as passaging of viruses was performed. A 

comprehensive comparison between several existing growth models was performed to choose the 

best growth model for cell growth.  

The details of failure to match the experimental and simulated data and the corresponding physical 

reasons are also included. The novelty of the work lies in the combination of the experimental and 

computational study of baculovirus production in insect cells to identify the best-unstructured 

model for insect cell growth [3]. Specifically, this work is the first attempt to construct a model 

for simulation of virus passaging based on experimental data obtained from infection in suspension 

cell culture in shaker flasks. 

 

1.2 Existing Challenges 

Identification of a general mathematical structure and estimation of corresponding kinetic 

parameters can be used to predict the growth and death profile as infection experiments are costly 

and time-consuming. Hence the specific challenges in analysis of baculovirus infection processes 

can be described as follows: (1) identification of general mathematical model based on system of 

nonlinear ODEs that will match with experiments performed in different days (complex growth 

and death pattern were observed for some of the experiments) (2) identification of the difference 

between wild-type virus and genetically modified virus (3)estimation of kinetic parameters that 

can be used for experiments performed in different days.  

For biological models, the estimation of kinetic parameters can often be formulated as an 

optimization problem. Generally, the objective function is the difference between simulated 

models using kinetic parameters and the respective experimental measurements. The optimization 

methods will then try to find the output of the mathematical model formed using kinetic parameters 

which closely fits the experimental measurements. 

The objective of the current thesis is to construct a mathematical model to simulate the cell growth 

pattern, substrate consumption, oxygen consumption, carbon dioxide production and percentage 
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of viable cells for growth of insect cells in shaker flasks. Similarly, we provide a model consisting 

of a system of ordinary differential equations for the growth of insect cells after baculovirus 

infection. Additionally, we have constructed a numerical scheme to simulate the cell density and 

viable cells after passaging of viruses in shaker flasks.  Experimental data obtained from the shaker 

flask experiments were used to estimate the kinetic parameter for the case of infected and 

uninfected cell growth. The proposed strategy can be used to construct model, select model and 

estimate kinetic parameter for various viral infections. 
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Chapter 2 

Literature Review 

Mathematical modelling can be used to understand a large numbers of interacting components 

involved in complex processes associated with biological systems. In this study, experimental data 

was used to investigate the cell growth pattern, substrate consumption, oxygen consumption and 

percentage viability for uninfected and infected insect cell growth.  The main objective was to 

identify the unstructured model and corresponding kinetic parameters for cell growth with and 

without viral infection. Here we developed a novel computational strategy to select the optimal 

model from a series of several combinatorial mathematical constructs. Parameter estimation was 

performed using fmincon function in MATLAB optimization toolbox which seeks the minimizer 

of a scalar function of multiple variables, within a region specified by linear constraints and 

bounds. The final model was validated with a triplicate experimental dataset and was further used 

to investigate the specific differences between the growth and death of infected cells with 

passaging of viruses in shaker flasks. A comprehensive comparison between several existing 

growth models were performed to choose the best model for insect cell growth. The details of 

failure to match certain data points and corresponding physical reasons are also included. The 

novelty of the work lies in combination of experimental and computational study of baculovirus 

production and identification of best unstructured model from various growth models. 
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2.1 Mathematical models for baculovirus infection process 

2.1.1 Modeling rotavirus-like particles production in a baculovirus expression vector system 

(BEVs): Infection    kinetics, baculovirus DNA replication, mRNA synthesis and protein 

production 

 

Rotavirus-like particles (Rota VLPs) are excellent vaccine candidates against rotavirus infection, 

since they are non-infectious, highly immunogenic, amenable to large-scale production and safer 

to produce than those based on attenuated viruses. One of the work on mathematical modeling for 

the production of rotavirus like particles in BEVs focuses on analysis of the major events taking 

place inside Sf-9 cells infected by recombinant baculovirus. The timeframe for vDNA, mRNA and 

VP synthesis was found to be reduced through increasing multiplicity of infection (MOI) due to 

the metabolic burden effect. The model exhibits acceptable prediction power of the dynamics of 

intracellular vDNA replication, mRNA synthesis and viral proteins production for the three 

proteins involved [4]. 

The depletion of extracellular virus due to binding to cell surface is 

𝑑𝑉𝑗

𝑑𝑡
=  −𝑘𝑎(𝑁𝑖 + 𝑁𝑢) ∗ 𝑉𝑗   

The attachment rate is defined as 

𝑘𝑎 = 𝑘𝑓(𝛼𝑅) 

Where  , 𝑉𝑗 = concentration of extracellular Virus 

              𝑘𝑎 = is attachment rate 

       𝑁𝑖&𝑁𝑢 = are concentration of infected and uninfected cell respectively 

                𝛼 = no. of attachment protein per virus 

               R = no. of surface receptors 

 

The rate of change of infected cell 

𝑑𝑁𝑖

𝑑𝑡
= 𝑘𝑎𝑁𝑢𝑉𝑡 (

1

𝑀𝑂𝐼
) − 𝑘𝑑𝑁𝑖 

The cell death rate 𝑘𝑑 has two terms 

𝑖𝑓 𝑡 < 𝛿𝐷     𝑘𝑑 = 𝑘𝑑1
                       𝑖𝑓(𝐷𝑁𝐴𝑡) ≤ 10    𝑘𝑑2

= 𝑘∗ 

[1] 

[2] 

[3] 
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𝑖𝑓 𝑡 ≥ 𝛿𝐷     𝑘𝑑 = 𝑘𝑑1
+ 𝑘𝑑2

            𝑖𝑓(𝐷𝑁𝐴𝑡) > 10    𝑘𝑑2
= 𝑘∗log (𝐷𝑁𝐴𝑡) 

Where,    𝑘𝑑1
  = intrinsic cell death rate = 0.008 hr-1 

                𝑘𝑑2
  = cell death rate due to infection 

                𝛿𝐷 = time instant when the cell death increases 

                𝑉𝑡= total extracelluler virus concentration  

                 k* = increase in cell death rate 

 

 Also, the healthy cell population is given by, 

𝑑𝑁𝑢

𝑑𝑡
= −𝑘𝑎𝑁𝑢𝑉𝑡 (

1

𝑀𝑂𝐼
) − 𝑘𝑑1

𝑁𝑢 

 

 And the vDNA replication was given by the following equation, 

 

𝑑𝐷𝑁𝐴𝑗
𝑛𝑢𝑐

𝑑𝑡
=  𝜂𝑡𝑟𝑎𝑓𝑘𝑎𝑉𝑗(𝑡 − 𝜏𝑡𝑟𝑎𝑓) (1 +

𝑁𝑢

𝑁𝑖
)

+ 𝑘𝑅𝐷𝑁𝐴𝐷𝑁𝐴𝑗
𝑛𝑢𝑐𝑓𝐷𝑁𝐴,𝑟𝑒𝑝(𝑡, 𝛿𝐷𝑁𝐴,𝑙𝑜𝑤, 𝛿𝐷𝑁𝐴,ℎ𝑖𝑔ℎ) 

 

𝑓𝐷𝑁𝐴,𝑟𝑒𝑝(𝑡, 𝛿𝐷𝑁𝐴,𝑙𝑜𝑤 , 𝛿𝐷𝑁𝐴,ℎ𝑖𝑔ℎ) = 

 

𝑖𝑓(𝑡 < 𝛿𝐷𝑁𝐴𝑚𝑖𝑛
)                                         𝑓𝐷𝑁𝐴 = 0 

 

 𝑖𝑓(𝛿𝐷𝑁𝐴𝑚𝑖𝑛
< 𝑡 < 𝛿𝐷𝑁𝐴𝑚𝑎𝑥

)                  𝑓𝐷𝑁𝐴 = 1 −
𝑡−𝛿𝐷𝑁𝐴𝑚𝑖𝑛

𝛿𝐷𝑁𝐴𝑚𝑎𝑥−𝛿𝐷𝑁𝐴𝑚𝑖𝑛

 

 

𝑖𝑓(𝛿𝐷𝑁𝐴𝑚𝑎𝑥
< 𝑡)                                         𝑓𝐷𝑁𝐴 = 0 

 

 

Total number of vDNA & mRNA copies inside the cell was given by the following equation,  

𝑑𝐷𝑁𝐴𝑗
𝑇

𝑑𝑡
=  𝜂𝑡𝑟𝑎𝑓𝑘𝑎𝑉𝑗 (1 +

𝑁𝑢

𝑁𝑖
) + 𝑘𝑅𝐷𝑁𝐴𝐷𝑁𝐴𝑗

𝑛𝑢𝑐𝑓𝐷𝑁𝐴,𝑟𝑒𝑝(𝑡, 𝛿𝐷𝑁𝐴,𝑙𝑜𝑤 , 𝛿𝐷𝑁𝐴,ℎ𝑖𝑔ℎ) 

𝐷𝑁𝐴𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐷𝑁𝐴𝑗
𝑇 

𝑑𝑅𝑁𝐴𝑗

𝑑𝑡
=  𝑘𝑆𝑅𝑁𝐴𝐷𝑁𝐴𝑗

𝑛𝑢𝑐𝑓𝑉𝑃(𝑡, 𝛿𝑉𝑃,𝑙𝑜𝑤, 𝛿𝑉𝑃,ℎ𝑖𝑔ℎ) − 𝑘𝐷𝑅𝑁𝐴,𝑗𝑅𝑁𝐴𝑗 

 

[4] 

[5] 

[6] 

 

[7] 
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The rate of change of VP was as follows 

𝑑𝑉𝑃𝑗

𝑑𝑡
= 𝑘𝑉𝑃,𝑗 (

𝑅𝑁𝐴𝑗

𝑅𝑁𝐴𝑗 + 𝐾𝑅𝑁𝐴
) 𝑓𝑉𝑃(𝑡, 𝛿𝑉𝑃,𝑙𝑜𝑤, 𝛿𝑉𝑃,ℎ𝑖𝑔ℎ)𝑁𝑖 

 

The intracellular protein content was given by,  

𝑑𝑉𝑃𝑗
𝑖𝑛𝑡

𝑑𝑡
= 𝑘𝑉𝑃,𝑗 (

𝑅𝑁𝐴𝑗

𝑅𝑁𝐴𝑗 + 𝐾𝑅𝑁𝐴
) 𝑓𝑉𝑃(𝑡, 𝛿𝑉𝑃,𝑙𝑜𝑤, 𝛿𝑉𝑃,ℎ𝑖𝑔ℎ) 

 

𝑖𝑓(𝑡 < 𝛿𝑉𝑝,𝑙𝑜𝑤)                                         𝑓𝑉𝑃 = 0 

 𝑖𝑓(𝛿𝑉𝑃,𝑙𝑜𝑤 < 𝑡 < 𝛿𝑉𝑃,ℎ𝑖𝑔ℎ)                  𝑓𝑉𝑃 = 1 −
𝑡−𝛿𝑉𝑝,𝑙𝑜𝑤

𝛿𝑉𝑃,ℎ𝑖𝑔ℎ−𝛿𝑉𝑝,𝑙𝑜𝑤
 

𝑖𝑓(𝛿𝑉𝑃,ℎ𝑖𝑔ℎ < 𝑡)                                       𝑓𝑉𝑃 = 0 

 

Where,  𝑘𝑉𝑃,𝑗 = maximum VPj synthesis rate  

            𝐾𝑅𝑁𝐴 = half-saturation constant for intracellular mRNA. 

𝑘𝑉𝑃 =  𝑘𝑉𝑃,𝑗
∗                                 𝐷𝑁𝐴𝑡𝑜𝑡𝑎𝑙 ≤ 10   

𝑘𝑉𝑃 = 𝑘𝑉𝑃,𝑗
∗ log(𝐷𝑁𝐴𝑡𝑜𝑡𝑎𝑙)     𝐷𝑁𝐴𝑡𝑜𝑡𝑎𝑙 > 10 

Time instant relation with intracellular copies of DNA 

𝛿𝑉𝑃,ℎ𝑖𝑔ℎ =  𝛿𝐷𝑁𝐴,ℎ𝑖𝑔ℎ = 𝛿𝐷 =  𝛿∗     𝑖𝑓 𝐷𝑁𝐴𝑡𝑜𝑡𝑎𝑙 ≤ 10 

𝛿𝑉𝑃,ℎ𝑖𝑔ℎ =  𝛿𝐷𝑁𝐴,ℎ𝑖𝑔ℎ = 𝛿𝐷 =  𝛿∗     𝑖𝑓 𝐷𝑁𝐴𝑡𝑜𝑡𝑎𝑙 > 10 

 

2.1.2 A Mathematical Model of the Trafficking of Acid-Dependent Enveloped Viruses: 

Application to the Binding, Uptake, and Nuclear Accumulation of Baculovirus 

 

Since a quantitative understanding of virus trafficking would be useful in treating viral-mediated 

diseases, developing protocols for viral gene therapy, designing infection regimens for viral 

expression systems, and optimizing vaccine and recombinant protein production, there has been 

attempts to construct models for virus internalization. Here we discuss a classical model for the 

attachment, internalization, endosomal fusion, lysosomal routing, and nuclear accumulation of 

baculovirus in SF21 insect cells. The model accounts for multivalent bond formation of the virus 

with cell surface receptors. The model mimics accurately the experimental trafficking dynamics 

[8] 

[9] 
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of the virus at both low and high virion to cell ratios, and estimates a receptor number of 11,000 

per cell [5]. The equations and the variables can be defined as follows: 

 

𝑑𝑉𝑒𝑥

𝑑𝑡
=  −(𝛼𝑘𝑓𝐶)𝑉𝑒𝑥𝑅𝑠𝑓 + 𝑘𝑟𝑉1 

 

𝑑𝑉𝑖𝑛𝑡

𝑑𝑡
= 𝑘𝑒𝑣𝑉𝑠 

𝑑𝑉𝑠

𝑑𝑡
= (𝛼𝑘𝑓𝐶)𝑉𝑒𝑥𝑅𝑠𝑓 − 𝑘𝑟𝑉1 − 𝑘𝑒𝑣 ∗ 𝑉𝑠 

Where, 𝑉𝑒𝑥 = No. of Extracellular Virus per cell,  a   = No. of attachment possible 

             𝑘𝑓 = 3D forward rate constant, C = Celluler Constant, 𝑅𝑠𝑓= No. of free Receptors 

            𝑘𝑟 = 3D dissociation rate constant,  𝑉1 = No. of Viruses per cell, 𝑉𝑠= Total cell 

surface virus 

            𝑉𝑖𝑛𝑡 = No. of internalized Virus, 𝑘𝑒𝑣 = Endocytosis rate constant.  

Multivalent bond formation was modeled as follows, 

𝑑𝑉1

𝑑𝑡
=  (𝛼𝑘𝑓𝐶)𝑉𝑒𝑥𝑅𝑠𝑓 − 𝑘𝑟𝑉1 − (𝑗 − 1)𝑘𝑥𝑉1𝑅𝑠𝑓 + 2𝑘−𝑥𝑉2 − 𝑘𝑒𝑣 ∗ 𝑉𝑠 

𝑑𝑉𝑖

𝑑𝑡
= (𝑗 − 𝑖 + 1)𝑘𝑥𝑉−1𝑅𝑠𝑓 − (𝑗 − 1)𝑘𝑥𝑉𝑖𝑅𝑠𝑓 − 𝑖𝑘−𝑥𝑉𝑖 + (𝑖 + 1)𝑘−𝑥𝑉𝑖+1 − 𝑘𝑒𝑣 ∗ 𝑉𝑖 

𝑑𝑉𝑗

𝑑𝑡
= 𝑘𝑥𝑉𝑗−1𝑅𝑠𝑓 − 𝑗𝑘−𝑥𝑉𝑗 − 𝑘𝑒𝑣 ∗ 𝑉𝑗 

Where, 𝑉𝑖= Number of Viruses with i bound receptors per virus 

             j = the maximum no of receptors found 

            𝑘𝑥 = 2D forward rate constant 

            𝑘−𝑥 = 2D reverse rate constant 

 

Endosomal diffusion and transport to nucleus was described as follows,  

𝑑𝑉𝑒𝑛𝑑𝑜𝑠𝑜𝑚𝑒

𝑑𝑡
= 𝑘𝑒𝑣𝑉𝑠 − 𝑘𝑓𝑢𝑠 ∗ 𝑉𝑒𝑛𝑑𝑜𝑠𝑜𝑚𝑒 − 𝑘𝑡𝑟𝑎𝑛𝑠,𝑣 ∗ 𝑉𝑒𝑛𝑑𝑜𝑠𝑜𝑚𝑒 

The rate equation for the release of virus into cytosol and accumulation in Nucleus were given as  

[1] 

[2] 

[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 
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𝑑𝑉𝑐𝑦𝑡𝑜𝑠𝑜𝑙

𝑑𝑡
= 𝑘𝑓𝑢𝑠 ∗ 𝑉𝑒𝑛𝑑𝑜𝑠𝑜𝑚𝑒 − 𝑘𝑛𝑉𝑐𝑦𝑡𝑜𝑠𝑜𝑙 

𝑑𝑉𝑛𝑢𝑐𝑙𝑒𝑢𝑠

𝑑𝑡
= 𝑘𝑛𝑉𝑐𝑦𝑡𝑜𝑠𝑜𝑙 

The balance of Intracellular Free Receptors  

𝑑𝑅𝑖𝑓

𝑑𝑡
= 𝑘𝑒𝑟𝑅𝑠𝑓 − 𝑘𝑟𝑒𝑐𝑅𝑖𝑓 − 𝑘𝑡𝑟𝑎𝑛,𝑟𝑅𝑖𝑓 

The number of free surface receptors are 

𝑑𝑅𝑠𝑓

𝑠𝑡
= −(𝛼𝑘𝑓𝐶)𝑉𝑒𝑥𝑅𝑠𝑓 + 𝑘𝑟𝑉1 − 𝑘𝑥𝑅𝑠𝑓 ∑(𝑗 − 1)𝑉𝑖 + 𝑘−𝑥 ∑ 𝑖𝑉𝑖

𝑗

𝑖=2

− 𝑘𝑒𝑟𝑅𝑠𝑓

𝑗 

𝑖=1

+ 𝑘𝑟𝑒𝑐𝑅𝑖𝑓

+ 𝑘𝑠𝑅𝑠𝑜 

 

Where,              𝑘𝑒𝑟 = rate constant for endocytosis 

                                      𝑘𝑡𝑟𝑎𝑛,𝑟, 𝑘𝑟𝑒𝑐= transport and recycle rate constant 

                                      𝑅𝑠𝑜 = initial no. of free receptors 

                                      𝑅𝑖𝑓 = no. of free recptors 

                                      𝑅𝑠𝑓 = No. of Bound receptors 

 

2.1.3 Cycles, chaos, and evolution in virus cultures: A model of defective interfering 

particles 

 

Defective interfering particles (DIP) are spontaneous deletion mutants of viruses that replicate at 

the expense of the parent virus. DIPs have complex effects on the growth of viruses in-vitro, 

including the establishment of persistent infection, cyclical variation in virus titer, eradication of 

replicating virus, and rapid evolution of the virus.  The mathematical model based on experimental 

observations can be used to explain the major effects of DIP on the population dynamics of virus 

growth [6].  

The number of uninfected cells were expressed as follows, 

𝑑(𝐶𝑈)

𝑑𝑡
= µ2 ∗ 𝐶𝑈 − 𝑎 ∗ 𝐶𝑈 ∗ (𝑉𝑆 + 𝑉𝐷) 

Number of uninfected cell infected by DIPs virus: 

[10] 

[11] 

[1] 

[2] 
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𝑑(𝐶𝐷)

𝑑𝑡
= µ2 ∗ 𝐶𝐷 + 𝑎 ∗ 𝐶𝑈 ∗ 𝑉𝐷 − 𝑎 ∗ 𝑉𝑆 ∗ 𝐶𝐷 

Equation for formation of cell infected by standard virus: 

𝑑(𝐶𝑆1)

𝑑𝑡
=  𝑎 ∗ 𝑉𝑆 ∗ 𝐶𝑈 −

𝐶𝑆1

𝜏
− 𝑝1 ∗ 𝐶𝑆1 – 𝑎 ∗ 𝐶𝑆 ∗ 𝑉𝐷 ∗ 𝑧1 

 

𝑑(𝐶𝑆𝑖)

𝑑𝑡
=

𝐶𝑆𝑖−1 − 𝐶𝑆𝑖

𝜏
− 𝐶𝑆𝑖 ∗ 𝑝𝑖 − 𝑎 ∗ 𝐶𝑆𝑖 ∗ 𝑉𝐷 ∗ 𝑧𝑖 

 

𝑑(𝐶𝑆𝑛)

𝑑𝑡
=

𝐶𝑆(𝑛−1)

𝜏
− 𝐶𝑆𝑛 ∗ 𝑝𝑛 − 𝑎 ∗ 𝐶𝑆𝑛 ∗ 𝑉𝐷 ∗ 𝑧𝑛 

Similarly, the equations for formation of cell infected by both standard and DIPs virus, 

𝑑(𝐶𝐵1)

𝑑𝑡
= 𝑎 ∗ 𝑉𝐷 ∗ Ʃ𝐶𝑆𝑖 + 𝑎 ∗ 𝐶𝐷 ∗ 𝑉𝑆 −

𝐶𝐵1

𝜏
 − 𝐶𝐵1 ∗ 𝑝1 

 

𝑑(𝐶𝐵𝑖)

𝑑𝑡
=   

  (𝐶𝐵(𝑖−1) − 𝐶𝐵𝑖)

𝜏
− 𝐶𝐵𝑖 ∗ 𝑝𝑖 

 
𝑑(𝐶𝐵𝑖)

𝑑𝑡
=   

  𝐶𝐵(𝑛−1)

𝜏
− 𝐶𝐵𝑛 ∗ 𝑝𝑛 

The virus dynamics was expressed as follows,  

𝑑(𝑉𝑆)

𝑑𝑡
= 𝑏 ∗ Ʃ𝐶𝑆𝑖 ∗ 𝑝𝑖 − 𝑎 ∗ 𝑉𝑆 ∗ (𝑠𝑢𝑚(𝐶𝑆) + 𝑠𝑢𝑚(𝐶𝐵) + 𝐶𝐷 + 𝐶𝑈) 

And the dynamics of DIPS were expressed as,  

𝑑(𝑉𝐷)

𝑑𝑡
= 𝑏 ∗ Ʃ𝐶𝐵𝑖 ∗ 𝑝𝑖 − 𝑎 ∗ 𝑉𝐷 ∗ (𝑠𝑢𝑚(𝐶𝑆) + 𝑠𝑢𝑚(𝐶𝐵) + 𝐶𝐷 + 𝐶𝑈) 

 

The above models are efficient in explaining the mechanism of virus internalization, DNA replication, 

mRNA expression as well as standard virus formation and DIPs formation.  However, there is no simple 

unstructured model present to explain the cell growth, cell death dynamics. Moreover, there is no model 

for predicting the cell growth, cell death and polyhedral production for passaging of viruses for suspension 

1 < 𝑖 < 𝑛 

1 < 𝑖 < 𝑛 

[12] 

[3] 

[4] 

[5] 

[6] 

[7] 

[10] 

[11] 
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cell culture.  Hence we propose a model building scheme and parameter estimation that can be used for 

shaker flask experiments or fermenter operation. 

 

 

 

2.2 Optimization method: non-linear constrained optimization 

     min F(X)  subject to:  𝐴 ∗ 𝑋 ≤ 𝐵, 𝐴𝑒𝑞 ∗ 𝑋 = 𝐵𝑒𝑞   (linear constraints) 

                                         𝐶(𝑋) ≤ 0 , 𝐶𝑒𝑞(𝑋) = 0        (nonlinear constraints) 

                                         𝐿𝐵 ≤ 𝑋 ≤ 𝑈𝐵                         (bounds) 

fmincon function in MATLAB implements four different algorithms: interior point, SQP, active 

set, and trust region reflective. Interior point method the default algorithm to solve the optimization 

problem. 

Syntax of fmincon in MATLAB 

                                                                                             defines a set of lower and upper bounds 

on the design variables, X, so that a solution is found in the range LB <= x <= UB. The function 

NONLCON accepts X and returns the vectors C and Ceq, representing the nonlinear inequalities 

and equalities respectively. fmincon minimizes FUN such that C(X) <= 0 and Ceq(X) = 0. 

Where, 𝑥0 in the initial guess provided for solving the problem. 

Example of solving nonlinear constrained optimization  

The objective function need to be minimizaed such that they should satisfy the equality and 

inequality condition. Now, converting nonlinear Constrained optimization problem to standard 

form, 

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓(𝑥)                                                                     𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓(𝑥)     

              s. t.     𝑔(𝑥) ≥ 𝑏                                                          s. t.       𝑔(𝑥) − 𝑏 − 𝑠 = 0 

                         ℎ(𝑥) =  0                                                                                    ℎ(𝑥) =  0 

𝐶(𝑥) = 0 

𝑥 = 𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓(𝑥), 𝑥0, 𝐴, 𝐵, 𝐴𝑒𝑞 , 𝐵𝑒𝑞 , 𝐿𝐵, 𝑈𝐵, 𝑛𝑜𝑛𝑙𝑐𝑜𝑛) 
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                                                                                                                             𝑠 = 0 

                                                                                                                            𝑥 = 0   

Converting this standard form into Barrier function 

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓(𝑥)                                                                     𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓(𝑥) −  µ ∑ ln (𝑥𝑖)
𝑛
𝑖=1     

              s. t.    𝐶(𝑥) = 0                                                                        s. t.       𝐶(𝑥) = 0 

                         𝑥 ≥ 0       

 

Karush-Kuhn-Tucker (KKT) conditions for Barrier problem 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒       𝑓(𝑥) −  µ ∑ ln (𝑥𝑖)
𝑛
𝑖=1                                                           

          s. t.       𝐶(𝑥) = 0                                                                  s. t.       𝐶(𝑥) = 0 

Define 𝑧𝑖 = 𝜇/𝑥𝑖 and solving the modified versions of KKT conditions 

 

 

                       𝐶(𝑥) = 0 

 

            Where, 𝑒 is column matrix of ones 

Next, finding the  KKT solutions using Newton-Raphson Method 

 

𝛻𝑓(𝑥) + 𝛻𝑐(𝑥)λ  -   𝜇 ∑
1

𝑥𝑖
= 0

𝑛

𝑖=1

 

𝛻𝑓(𝑥) + 𝛻𝑐(𝑥)λ  - z = 0 

𝑋𝑍𝑒 −  µ𝑒 = 0 

 

𝛻𝑓(𝑥) + 𝛻𝑐(𝑥)λ  - z = 0 

𝑋𝑍𝑒 −  µ𝑒 = 0 
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𝐶(𝑥) = 0                                                 [

𝑊𝑘 𝛻𝑐(𝑥𝑘) −𝐼

𝛻𝑐(𝑥𝑘)𝑇 0 0
𝑍𝑘 0 𝑋𝑘

] (

𝑑𝑘
𝑥

𝑑𝑘
𝜆

𝑑𝑘
𝑧

) =

                                                    − (

𝛻𝑓(𝑥𝑘) + 𝛻𝑐(𝑥𝑘)λ𝑘  - 𝑧𝑘

𝐶(𝑥𝑘)
 𝑋𝑘𝑍𝑘𝑒 − 𝜇𝑗𝑒

) 

𝑊𝑘 = 𝛻𝑥𝑥
2 𝐿(𝑥𝑘, λ𝑘, 𝑧𝑘) =  𝛻𝑥𝑥

2 (𝑓(𝑥𝑘) + 𝑐(𝑥𝑘)𝑇λ𝑘  - 𝑧𝑘 

𝑧𝑘 = [
𝑧1 0 0
0 ⋱ 0
0 0 𝑧𝑛

]          𝑥𝑘 = [
𝑥1 0 0
0 ⋱ 0
0 0 𝑥𝑛

] 

Rearranging into symmetric linear system, 

 

[
𝑊𝑘 + Ʃ𝑘 𝛻𝑐(𝑥𝑘)

𝛻𝑐(𝑥𝑘)𝑇 0
] (

𝑑𝑘
𝑥

𝑑𝑘
𝜆) =  − (

𝛻𝑓(𝑥𝑘) + 𝛻𝑐(𝑥𝑘)λ𝑘

𝐶(𝑥𝑘)
)                     Ʃ𝑘 = 𝑋𝑘

−1𝑍𝑘   

Solving for 𝑑𝑘
𝑧 after the linear solution to 𝑑𝑘

𝑥 and 𝑑𝑘
𝜆 with explicit solution 

 

𝑑𝑘
𝑧 =  𝜇𝑘𝑋𝑘

−1𝑒 − 𝑧𝑘 − Ʃ𝑘𝑑𝑘
𝑥  

Step Size(α) 

Two objective in evaluating progress 

i. Minimize objective 

ii. Minimize constraint violations 

Two popular approaches 

i. Decrease the merit function 𝑚𝑒𝑟𝑖𝑡 = 𝑓(𝑥) +  𝜈Ʃ|𝑐(𝑥)| 

ii. Filter methods 

Cut back size until improvement 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘
𝑥 

𝜆𝑘+1 = 𝜆𝑘 + 𝛼𝑘𝑑𝑘
𝜆 

𝑧𝑘+1 = 𝑧𝑘 +  𝛼𝑘𝑑𝑘
𝑧 

Convergence criteria 
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Convergence when KKT conditions are satisfied with a tolerance, (Tolerance for 

constraints violations maybe more restrictive 

𝑚𝑎𝑥|𝛻𝑓(𝑥) + 𝛻𝑐(𝑥)λ  - z| ≤  𝜖𝑡𝑜𝑙 

                               𝑚𝑎𝑥|𝑐(𝑥)| ≤ 𝜖𝑡𝑜𝑙 

                    𝑚𝑎𝑥|𝑋𝑍𝑒 −  µ𝑒| ≤  𝜖𝑡𝑜𝑙 

 

 

Interior point method Overview 

                                                           𝑥0 = 𝑓𝑒𝑎𝑠𝑖𝑙𝑏𝑙𝑒            𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝜆 

                                                   𝑧0 =  
µ

𝑥0
             [

𝐼 𝛻𝑐(𝑥0)

𝛻𝑐(𝑥0)𝑇 0
] (

𝑊
λ0

) =

                                                                                           − [
𝛻𝑓(𝑥0) − 𝑧𝑙,0 − 𝑧𝑢,0

0
] 

 

                                                              

 

 

 𝐸(𝑥, 𝜆, 𝑧) ≤ 𝜖𝑡𝑜𝑙 

 

                                           [
𝑊𝑘 + Ʃ𝑘 𝛻𝑐(𝑥𝑘)

𝛻𝑐(𝑥𝑘)𝑇 0
] (

𝑑𝑘
𝑥

𝑑𝑘
𝜆) =  − (

𝛻𝑓(𝑥𝑘) + 𝛻𝑐(𝑥𝑘)λ𝑘

𝐶(𝑥𝑘)
)        

                                             𝑑𝑘
𝑧 =  𝜇𝑘𝑋𝑘

−1𝑒 − 𝑧𝑘 − Ʃ𝑘𝑑𝑘
𝑥  

                                                   Ʃ𝑘 =  𝑋𝑘
−1𝑍𝑘   

 

                                                                       

                                                 

𝑥𝑘+1 = 𝑥𝑘 +  𝛼𝑘𝑑𝑘
𝑥 

𝜆𝑘+1 = 𝜆𝑘 +  𝛼𝑘𝑑𝑘
𝜆 

                                                                       𝑧𝑘+1 = 𝑧𝑘 +  𝛼𝑘𝑑𝑘
𝑧 

Initialize 𝑥0, λ0, 𝑧0 

Check for 
convergence  

Compute the search direction 
with 

the linearized barrier problem 

Backtracking line search 

No 

Yes 
Optimal Solution 
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Chapter 3 

 

Modeling of baculovirus infection process 

 

3.1 Introduction  

 

Construction of unstructured model consists of major two steps of building a model database and 

testing the models with multiple experimental dataset. For selection of best model, we estimated 

the parameters that can accurately describe the experimental dataset minimization of the error 

value. The error function was defined as the sum of the square of the differences between the 

model predictions and experimental data. Parameter estimation is critical because the infection 

process is highly non-linear and stochastic.  

Experimental set up: Insect cells (Sf-9 cells) were grown for two cases, where one contains cells 

without any viral infection and the other one containing cells with AcMNPV and Ac-FPm are of 

two types. A recombinant baculovirus denoted Ac-FPm was constructed to remove the 13 TTAA 

transposon target sites in the AcMNPV fp25k gene such that the amino acid sequence of the FP25K 

protein remained unchanged.   AcMNPV (wild type) and Ac-FPm (Stabilized type). In case 1, cells 

will grow with substrate and oxygen Figure 3.1 but in case of case 2 with viral infection, cells will 

grow along with baculovirus formation Figure 3.2. Additionally, the passaging experiments were 

performed in shaker flasks as mentioned in Figure 3.3. The infection process mechanism is 

explained with detail in Figure 3.4 Thus, in case 1, the model variables are: cell mass, substrate, 

oxygen and carbon di-oxide while in case2, the model variables are: cell mass, virus concentration, 

oxygen, carbon di-oxide and baculovirus as product 

Determine α by decrease in merit  

function or with filter Methods 
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3.2 Unstructured model: Model selection strategy 

 

The model for the infection process was constructed using a set of coupled ordinary differential 

equations initial value problems (ODE-IVPs) with various kinetic parameters such as cell growth, 

substrate consumption, cell death, oxygen consumption rate and carbon-di-oxide formation. 

Various kinetic parameters include cell growth rate, maintenance coefficient, product degradation 

rate and other kinetic parameters. The measurable states were cell mass concentration, cell viability 

and baculovirus concentration. Since large number of mechanisms can be constructed using the 

combinations of various cell growth, death, baculovirus formation and degradation models, we 

explored a set of total 24 mechanisms. Here we provide a comprehensive comparison of various 

models for the cell growth. The simulation of the temporal profiles for cell, substrate and product 

in case of all models were performed by solving ODE-IVPs by the fourth-order Runge-Kutta 

method. The initial value problems (ODE-IVPs) was formulated using various kinetic parameters 

comprising of mainly rate constants describing the constants such as specific growth rate, substrate 

consumption rate, death rate of cells, oxygen consumption rate, carbon-di-oxide formation rate, 

maintenance coefficient, product degradation rate. 

We have assumed that growth of uninfected cell is depending on oxygen, substrate and carbon 

dioxide but infected cell growth does not depend on these variables and we are also assuming first 

order death rate for certain period of time and then it is depending on number of virus in the cell. 

also, in case of infected cell growth, we were having triplicates of data and for every experimental 

set we were having different initial conditions which were following different growth patterns. So, 

we have changed growth and death rate for each sets of data and we are calculating RMSE from 

all three sets of data. The initial condition for uninfected cell model is shown in Table 3.1 and in 

case of infection in Table 3.2 and Table 3.3 for wild type virus and stabilized virus respectively. 
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Based on the model comparison study, we proposed the specific mechanism that fits the 

experimental data with least root mean square error value (RMSE). The following subsection 

describes the method for parameter estimation used in details.  

 

 

3.2.1 Model formulation for cell growth and cell viability 

 

A computational strategy has been implemented to compare among various unstructured models 

and identify the model that fits best the experimental data. The selected models corresponding to 

the cell growth without viral infection and with viral infection are presented below. The cell growth 

was modeled as the term ([𝐶𝑒𝑙𝑙 𝑚𝑎𝑠𝑠]), where 𝜇 is the specific growth rate given by equation 1 

for both with and without viral infection. The details of the various models for cell growth are 

presented in term T11 in Table 3.4. 

The detailed model formulation and the explanation of various terms are given below. 

 
µ = µ𝑚𝑎𝑥 ∗ (

𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒

𝐾𝑠 + 𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒
) [1] 

 

µ2 = µ ∗ (
𝑂𝑥𝑦𝑔𝑒𝑛

𝑂𝑥𝑦𝑔𝑒𝑛 + 𝐾𝑜2

) ∗ (
𝐾

exp (
carbon dioxide

KCO2

) + 1
) [2] 

𝑑(𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙)

𝑑𝑡
= µ2 ∗ 𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 − 𝑎 ∗ 𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 ∗ 𝑉𝑖𝑟𝑢𝑠 

−𝑘𝑑1
∗ 𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 

[3] 

𝑑(𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙)

𝑑𝑡
= 𝑎 ∗ 𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 ∗ 𝑉𝑖𝑟𝑢𝑠 − 𝑘𝑑 ∗ 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 [4] 

𝑑(𝑂𝑥𝑦𝑔𝑒𝑛)

𝑑𝑡
= 𝑘𝑙𝑎 ∗ (𝑂2

∗ − 𝑂𝑥𝑦𝑔𝑒𝑛)

−
𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 + 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙

𝑌𝑜
 

[5] 
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 𝑑(𝐶𝑎𝑟𝑏𝑜𝑛 𝑑𝑖 − 𝑜𝑥𝑖𝑑𝑒)

𝑑𝑡
=

𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 + 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙

𝑌𝑐
 [6] 

 𝑑(𝐷𝑒𝑎𝑑 𝑐𝑒𝑙𝑙)

𝑑𝑡
= 𝑘𝑑1

∗ 𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 + 𝑘𝑑 ∗ 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 [7] 

 𝑑(𝑉𝑖𝑟𝑢𝑠)

𝑑𝑡
= 𝑏 ∗ 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 − 𝑎 ∗ 𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 ∗ 𝑉𝑖𝑟𝑢𝑠 [8] 

 𝑑(𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)

𝑑𝑡
= −µ ∗ (

𝑈𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙 + 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙

𝑌𝑠
) [9] 

Equation 1 describes the dependence of specific growth rate on substrate [7] whereas equation 2 

describes the dependence of specific growth rate on oxygen and carbon di-oxide [9]. Equation 3 

describes dynamics of uninfected cell mass concentration. In this equation, the first term represents 

the growth of uninfected cell mass, second term represents the infection rate and third term 

represents death of the uninfected cells. Equation 4 describes the dynamics of infected cell mass 

concentration [5]. In this equation first term represents growth of the infected cell from infection 

and second term represents death of the infected cell [8] [10]. Equation 5 and 6 describes the 

dynamics of oxygen and carbon di-oxide concentration [10]. Equation 7 describes the dynamics 

of dead cell concentration whereas equation 8 describes the rate of change of virus concentration 

[6]. Equation 9 describes the rate of substrate depletion. First term in the equation is the amount 

of substrate [7]. 

 

𝑑[𝑢𝑛𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙]

𝑑𝑡
= 𝑇21 + 𝑇22 + 𝑇23 

 

𝑑(𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑐𝑒𝑙𝑙)

𝑑𝑡
= 𝑇31 + 𝑇32 

 

𝑑(𝑜𝑥𝑦𝑔𝑒𝑛)

𝑑𝑡
= 𝑇41 − 𝑇42 

 

𝑑(𝑐𝑎𝑟𝑏𝑜𝑛 𝑑𝑖𝑜𝑥𝑖𝑑𝑒)

𝑑𝑡
= 𝑇51 
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𝑑(𝑑𝑒𝑎𝑑 𝑐𝑒𝑙𝑙𝑠)

𝑑𝑡
= 𝑘𝑑(𝑇61 + 𝑇62) 

 

𝑑(𝑣𝑖𝑟𝑢𝑠)

𝑑𝑡
= 𝑇71 − 𝑇72 

 

𝑑(𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)

𝑑𝑡
= 𝑇81 

 

However, for constructing a model for uninfected cell, we followed the similar procedure but 

without the variables such as infected cell and virus concentration. For example, term 𝑇22 and 𝑇42   

were considered as zero as no infection takes place in case of un-infected cell growth.  

 

3.3 Parameter Estimation  

 

A non-linear programming (NLP) problem was formulated with an error function as the objective 

function. The error function is described in equation 10. The rate constants were set as the decision 

variables whose upper bounds and lower bounds were determined carefully by performing 

sensitivity analysis with respect to each parameter in the model. Sensitivity analysis was carried 

out by perturbing one parameter at a time till the limit within which the model converged, while 

other parameters were fixed at some base values. This ensured the convergence of ODE- IVP 

model for the candidates of parameters generated by the optimizer. The NLP formulation is given 

below. 

                                                               

                                                                          Minimize Error 

Such that,                                        

                                                            0 ≤ 𝐾𝑝 ≤ 𝐾𝑝
𝑈𝐿 ∀ 𝑝 = 1 𝑡𝑜 𝑁 

where, 

 

        𝐸𝑟𝑟𝑜𝑟 =  ∑ ∑ √
1

𝑁𝑖
 (∑(𝑦𝑖

𝑗
− 𝑦̂𝑖

𝑗
)

2

𝑁𝑗

𝑖

)

2

𝑗=1

   

3

𝑘=1

 [10] 
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𝑦̂𝑖
𝑗

= 𝑓(𝐾𝑝, 𝑦0
𝑗
)  Where, 𝑓 is the proposed ODE ‒ IVP model and 𝑦0

𝑗
 is initial conditions 

𝑦𝑖
𝑗
 is the 𝑖𝑡ℎ experimental value (concentration) of  𝑗𝑡ℎ component.  

𝑦̂𝑖
𝑗
 is the 𝑖𝑡ℎ  simulated value (concentration) of 𝑗𝑡ℎ  component.  

∀ 𝑖 = 1 𝑡𝑜 𝑁𝑗    

𝑁𝑗    is number of experimental observations 

∀ 𝑗 = 1 𝑡𝑜 2  | 1: Cell Density, 2: Cell viability 

𝑁 is number of parameters in the proposed model. 

∀ 𝑘 = 1 𝑡𝑜 3 is for three data set 

Fmincon is an optimization technique which implements interior point method to find the local 

optima.  However, one of the disadvantage of using this optimizer is to reach the local minima 

rather than global minimum. The flowchart for the model selection and parameter estimation 

algorithm is depicted in figure. Here, we started with 𝑖 = 1 where 𝑖 corresponds to 𝑖𝑡ℎ  model to be 

formulated from the possible model structures. The objective function was calculated through the 

computation of root mean square values obtained from the triplicate dataset.  The day to day 

variability in experiments were attributed to the variation in cell growth rate and death rate constant 

across infection experiments performed on different days. 

  

3.4 Multiple model formation 

In order to justify the efficiency of the proposed model and corresponding mechanisms, we 

compared them with other models that are potential to qualify as possible unstructured models. 

The other models are also capable of emulating the trend in cell growth dynamics. The general 

model structure for the two cases are as shown below. 

𝜇2 =  𝜇𝑚𝑎𝑥(𝑇11)(𝑇12)(𝑇13) 

We selected twelve cell growth models by varying the specific growth rate using different models 

as shown in table 3.4.  

 

3.5 Sensitivity analysis 

 

Sensitivity analysis is an important tool that is used to identify the parameters that affect the 

response variable. This technique is useful for finding out the parameter range in which the 

parameter estimation is to be conducted. From this analysis, we obtained the desired parameter 
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range for choosing the initial guess values. We performed the sensitivity analysis with +100% 

change in each of the parameter and observed the effect on two variables, cell density and 

percentage of viable cells.   

 

 

3.6 Analysis of the proposed models and comparison with other possible mechanisms 

 

A structure representing series of prominent models considered are presented for un-infected and 

infected cells in figures respectively. Table 3.5 shows comparison between simulated values for 

various growth models. The results clearly show that Monod model is best compared to other 

models for un-infected cell growth. The value of objective function RMSE is 22700 which is less 

than other possible models. Table 3.7 shows the comparison between simulated values for various 

growth models for infection with wild type virus and stabilized virus. Monod model is best 

compared to other models in the case of wild type virus infection and contois model is best 

compared to other models in case of stabilized virus infection. This was evident through the lowest 

value of the objective function obtained for this case when compared to the other models RMSE 

of 33400 for wild type and 43400 for stabilized type viral infection. Out of the multiple models we 

have sorted the RMSE and provided the least RMSEs of 9 models for un-infected cell and 9 models 

for infected cell. Of all the models considered, the best model is chosen based on the least value 

of RMSE and presented in Tables. 

 

3.7 Results 

In order to identify the most sensitive parameters and their ranges to be used, first we performed 

the sensitivity analysis. Figure 3.5 shows the 3-D representation of the parametric sensitivity 

analysis for the proposed model. Where X axis is the kinetic parameters, Y axis is model variables 

and Z axis is the percentage variation of the response variables. The result shows that the cell 

density is sensitive to specific growth rate, saturation constant (CO2), and cell viability is sensitive 

to specific growth rate, infection rate constant and virus production rate. 

 

3.8.1 Multiple model formulation for uninfected and infected cells 



29 
 

In order to identify the best growth model for uninfected insect cell growth, we constructed 

multiple models and estimated kinetic parameters for all of them. For all the models present in 

Table 3.4, we estimated parameters using NLP formulation according to the workflow shown in 

Figure 3.6. The comparison of simulated results and experimental data for uninfected cells are 

presented in Figure 3.7. The final results for the best model for growth of uninfected cells are 

shown in Figure 3.8. The RMSE corresponding to each of the models tested are presented in Table 

3.5 and estimated parameter values are listed in Table 3.6 for uninfected cell.  

Similarly, in case of infected cell growth we formulated multiple models followed by parameter 

estimation for each of the model. We have considered the model having lowest RMSE as the best 

model for cell growth. In order to account for the day to day variability in growth profile and viable 

cell density profile, we assumed different death rate and specific growth rate. Table 3.4 shows the 

different growth models considered for growth of infected cells. The specific cell growth was 

assumed as a function of substrate, carbon dioxide and oxygen concentration. The comparison 

between simulated results and experimental data on cell density of WT AcMNPV are shown in 

Figure 3.9. Similarly, the comparison of simulated results and experimental data for cell viability 

of WT AcMNPV is shown in Figure 3.10.  The results show the comparison between various 

plausible models and Monod’s model is identified as the best fit having lowest RMSE. Figure 3.11 

and Figure 3.12 shows the similar comparison between simulated results and experimental data 

for cell density and cell viability for the stabilized AcMNPV. In contrast to the WT AcMNPV, the 

model comparison results show that Contois model is the best fit to capture the growth of cells 

infected by stabilized virus. 

Table 3.7 shows the comparison of RMSEs corresponding to each of the model after estimating 

the parameters for wild type and stabilized virus. The comparison between the experiment and 

simulation for the best model for WT and stabilized are shown in Figure 3.13 and Figure 3.14. 

Table 3.8 shows the comparison of estimated kinetic parameters for the best model having lowest 

RMSE for WT and stabilized virus. The result indicates that the specific growth rate and death rate 

may vary with experiments performed on different days with some deviations (Table 3.8).  

Also, the result shows that the parameters corresponding to the growth kinetics and death kinetics 

are different in case of cell growth with viral infection and growth without viral infection (Table 
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3.6 and Table 3.8). Similarly, the results presented in Table 8 depicts that there is a difference 

between the kinetic parameters estimated for the case of WT and stabilized virus. 

Figure 3.15 and Figure 3.16 shows the comparison between the experimental and simulated results 

for the cell viability and cell density (at 48 hr pi) after passaging for wild type virus and and 

stabilized virus respectively. In this case we have used the best model chosen from the previous 

analysis. The results show that a variation in specific growth rate at each passage may account for 

the variation in cell density and cell viability (Table 3.9).   
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d) c) 

e) f) 

b) 
a) 

Figure 3.7 Comparison of experimental and simulated data for cell density and cell viability of 

uninfected cell growth experiment by various growth kinetic models a) Aiba model b) Andrews 

model c) Contois model d) Haldane model e) Monod model and f) Tessier model 
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Figure 3.7 Comparison of experimental and Simulated data for cell density and cell viability of 

uninfected cell growth experiment by various growth kinetic models a) Aiba model b) Andrews 

model c) Contois model d) Haldane model e) Monod model and f) Tessier model 

 

 

 

 

 

 

 

 

a) b) 

Figure 3.8 Simulated and experimental results for the proposed model for uninfected cell 

growth experiment a) Uninfected cell density (number of cells/ milliliter) vs. time and b) 

percentage of viable cell vs. time  
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Figure 3.9 Comparison of experimental data and simulated results for cell density (number of 

cells/ milliliter) of infected cells for Wild type virus (AcMNPV) by various kinetic models: a) 

Aiba model b) Andrews model c) Contois model d) Haldane model e) Monod model f) Tessier 

Model 

 

b) a) 

c) d) 

e) f) 

Best model 
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 Figure 3.10 Comparison of experimental data and simulated results for cell viability of infected 

cells for Wild type virus (AcMNPV) by various kinetic models: a) Aiba model b) Andrews 

model c) Contois model d) Haldane model e) Monod model f) Tessier Model 

 

 

b) a) 

c) d) 

e) f) 

Best model 
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b) a) 

c) d) 

e) f) 

Figure 3.11 Comparison of experimental data and simulated results for cell density (number of 

cells/ milliliter) of infected cells for stabilized virus (Ac-FPm) by various kinetic models: a) Aiba 

model b) Andrews model c) Contois model d) Haldane model e) Monod model f) Tessier Model 

 

 

Best model 
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Figure 3.12 Comparison of experimental data and simulated results for the cell viability of infected 

cells for stabilized virus (Ac-FPm), a) Aiba model b) Andrews model c) Contois model d) Haldane 

model e) Monod model f) Tessier Model. 

 

b) 
a) 

c) 

d) 

e) f) 

c) 

Best model 

f) e) 
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Figure 3.14 Simulated and experimental results for the proposed model for infected cell growth 

experiment for stabilized virus a) infected cell density (number of cells/ milliliter) with time and b) 

percentage of viable cell with respect to time  

 

a) b) 

a) b) 

Figure 3.13 Simulated and experimental results for the proposed model for infected cell growth 

experiment for WT virus a) infected cell density (number of cells/ milliliter) with time and b) 

percentage of viable cell with respect to time  
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a) b) 

Figure 3.15 Comparison of Simulated and experimental data for wild type viral infection at 

different passage number for one set of data a) Cell density (number of cells/ milliliter) with 

respect to passage b) percentage of viable cells with respect to passage 

 

 

Figure 3.16 Comparison of Simulated and experimental data for stabilized viral infection at different passage for 

one set of data a) Cell density (number of cells/ milliliter) with respect to passage b) percentage of viable cells 

with respect to passage 

 

 

Passage number Passage number 

a) b) 

Passage number Passage number 
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Variable  Uninfected 

cell 

Substrate Oxygen Carbon 

dioxide 

Dead 

cell 

Initial 

Condition 

570000 1000 1000 0 0 

Variable (in 

case of wild 

type virus)  

Uninfected 

cell 

Substrate Oxygen Carbon 

dioxide 

Dead 

cell 

Virus Infected 

cell 

Initial 

Condition 

(data 1) 

460000 1000 1000 0 0 5150 0 

Initial 

Condition 

(data 1) 

590000 1000 1000 0 0 5150 0 

Initial 

Condition(data 

1) 

650000 1000 1000 0 0 5150 0 

Variable (in 

case of 

stabilized 

virus)  

Uninfected 

cell 

Substrate Oxygen Carbon 

dioxide 

Dead 

cell 

Virus Infected 

cell 

Initial 

Condition 

(data 1) 

370000 1000 1000 0 0 5150 0 

Initial 

Condition 

(data 1) 

450000 1000 1000 0 0 5150 0 

Initial 

Condition(data 

1) 

640000 1000 1000 0 0 5150 0 

Table 3.1 Initial Conditions: uninfected cell 

Table 3.2 Initial Conditions: infected cell, wild type virus 

Table 3.3 Initial Conditions: infected cell, Stabilized virus 
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Model 

No 

Growth 

kinetic Model  

T11 T12 T13 

1 Aiba 𝑆

𝑆 + 𝐾𝑠
∗ exp (−

𝑆

𝐾𝑠𝑖
) 

𝑂2

𝑂2 + 𝐾𝑂2

 
(

𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

2 Andrews 
1/ (1 +

𝐾𝑠

𝑠
) (1 +

𝑆

𝐾𝑠𝑖
) 

𝑂2

𝑂2 + 𝐾𝑂2

 
(

𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

3 Contois 𝑆

𝐾𝑠 ∗ 𝐶𝑈 + 𝑆
 

𝑂2

𝑂2 + 𝐾𝑂2

 
(

𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

4 Haldane 𝑆

𝐾𝑠 + 𝑆 +
𝑆2

𝐾𝑠𝑖

 
𝑂2

𝑂2 + 𝐾𝑂2

 
(

𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

5 Monod 𝑆

𝐾𝑠 + 𝑆
 

𝑂2

𝑂2 + 𝐾𝑂2

 
(

𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

6 Tessier 
1 −  exp (−

𝑆

𝐾𝑠𝑖
) 

𝑂2

𝑂2 + 𝐾𝑂2

 
(

𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

7  𝑆

𝐾𝑠 + 𝑆
 

0 0 

8  𝑆

𝐾𝑠 + 𝑆
 

𝑂2

𝑂2 + 𝐾𝑂2

 
0 

9  𝑆

𝐾𝑠 + 𝑆
 

0 

(
𝐾

exp (
carbon dioxide

Kco2
) + 1

) 

 

 

Table 3.4 List of growth models for growth of infected and uninfected cells 
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Model name 

& number 

RMSE 

 

1. Aiba 192000 

2. Andrews 67400 

3. Contois 47400 

4. Haldane 32100 

5. Monod 22700 

6. Tessier 218000 

7 3230000 

8 327000 

9 6790000 

Parameters 

and their 

units 

Parameter name value 

 

𝜇(ℎ𝑜𝑢𝑟−1)  Specific growth rate  0.227 

𝑘𝑑1
(ℎ𝑜𝑢𝑟−1)  Intrinsic death rate constant 0.055 

𝑘𝑑2
(ℎ𝑜𝑢𝑟−1) Death rate constant 0.082 

𝑌𝑠(𝑔/𝑔) Yield of cell/ substrate 4 ∗ 106 

𝐾𝑜2
(𝑔𝐿−1) Half-Velocity constant 128.37 

𝑌𝑐(𝑔/𝑔) Yield of cell/ carbon dioxide 10 𝑋 106 

𝐾𝑐𝑜2
(𝑔𝐿−1) Half-Velocity constant 324.42 

𝐾𝑠(𝑔𝐿−1) Half-Velocity constant 0.0115 

𝐾(𝑔𝐿−1) Equilibrium constant 0.925 

𝑌𝑜(𝑔/𝑔) Yield of cell/ oxygen 10 𝑋 107 

Model no RMSE (wild type 

virus) 

RMSE(stabilized virus) 

1. Aiba 43400 156000 

2. Andrews 69500 78500 

3. Contois 99900 43400 

4. Haldane 52400 60900 

5. Monod 33400 59900 

6. Tessier 46300 243000 

 71600 81400 

 214000 387000 

 241000 401000 

Table 3.6 Estimated parameter for the 

proposed model: uninfected cell growth 

Table 3.7 RMSE for different models used 

to identify the best model for infected cell 

growth 

Table 3.5 RMSE for different models 

used to identify the best model for 

uninfected cell  
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Parameters and 

their units 

Values 

(wild 

virus) 

Exp 1 

Values 

(wild 

virus) 

Exp 2 

Values 

(wild 

virus) 

Exp 3 

Mean and 

standard 

deviation 

Values 

(stabilized 

virus)  

Exp1 

Values 

(stabilized 

 virus) 

Exp2 

Values 

(stabilized  

virus) 

Exp 3 

Mean 

and 

standard 

deviation 

𝜇𝑚𝑎𝑥(ℎ𝑜𝑢𝑟−1) 0.0064  0.0099 0.0099 0.0087 

±0.00196 

0.005 0.0069 0.0069 0.006 

±0.001 

𝑘𝑑1
(ℎ𝑜𝑢𝑟−1) 1 0.095 0.01 0.368 

±0.548 

0.00514 0.005 0.00596 0.0054 

±0.005 

𝑘∗(ℎ𝑜𝑢𝑟−1) 0.1991 0.1991 0.1991  0.1565 0.1565  0.1565  

𝑌𝑠(𝑔/𝑔) 10 𝑋 105 10𝑋105 10 𝑋 105  10 𝑋 105 10 𝑋 105 10 𝑋 105  

𝑌𝑜2
(𝑔/𝑔) 10 𝑋 107 10𝑋107 10 𝑋 107  10 𝑋 107 10 𝑋 107 10 𝑋 107  

𝐾𝑜2
(𝑔𝐿−1) 69.35 69.35 69.35  86.20 86.20 86.20  

𝑌𝑐𝑜2
(𝑔/𝑔) 4 𝑋 108 4 𝑋 108 4 𝑋 108  4 𝑋 108 4 𝑋 108 4 𝑋 108  

𝑘𝑙𝑎(𝑔𝐿−1) 0.112 0.112 0.112  0.134 0.134 0.134  

𝑂∗(𝑔𝐿−1) 21.33 21.33 21.33  7.13 7.13 7.13  

𝐾𝑠(𝑔𝐿−1) 79.31 79.31 79.31  1.42 1.42 1.42  

𝐾(𝑔𝐿−1) 9.05 9.05 9.05  19.73 19.73 19.73  

𝐾𝑐𝑜2
(𝑔𝐿−1) 1999.73 1999.73 1999.73  2116.91 2116.91 2116.91  

𝑎(𝑔𝐿−1) 1 𝑋 10−7 1 𝑋 10−7 1 𝑋 10−7  9.8 𝑋 10−7 9.8 𝑋 10−7 9.8 𝑋 10−7  

𝑏(𝑔𝐿−1) 0.165 0.165 0.165  0.002 0.002 0.002  

Parameter 

(Wild type 

virus) 

Passage1 Passage 5 Passage 15 Passage 27 Mean ± standard 

deviation 

𝜇𝑚𝑎𝑥(ℎ𝑜𝑢𝑟−1) 0.007 0.00773 0.00941 0.01195 0.0011 ±0.0022 

Parameter 

(stabilized 

virus) 

Passage1 Passage 5 Passage 15 Passage 27 Mean ± standard 

deviation 

𝜇𝑚𝑎𝑥(ℎ𝑜𝑢𝑟−1) 0.005 0.00562 0.00762 0.00943 0.0069±0.002 

Table 3.8 Estimated parameter for the proposed model: infected cell growth 

Table 3.9 Comparison of parameters for various passages in WT and Stabilized virus  



43 
 

Chapter 4 

Integrated model for baculovirus infection 

 

4.1 Detailed modeling of the baculovirus infection process 

The major objective of this chapter is to formulate a detailed model that integrates the dynamics 

of infected cell, uninfected cell, standard virus, defective interfering particles (DIPs) along with 

the DNA, RNA, protein expression and polyhedral production. In contrast to the unstructured 

model present in Chapter 3, here we present a structured model that includes the kinetics of DNA, 

RNA, proteins and DIPs formation. Specifically, the model variables are cell mass, oxygen, carbon 

di-oxide, DNA, RNA, proteins and baculovirus along with DIPs as product. 

4.2 Basic assumptions on the infection process 

The basic assumptions underlying the double stranded DNA virus are as follows, (1) the budded 

virus is internalized in the cells and it releases its viral gene (DNA) into that cell, (2) the viral DNA 

is transported from the cytosol to the surface of the nucleus known as trafficking, (3) the viral 

DNA is replicated and their copies are formed by using host machinery, (4) RNA is formed  to 

produce DNA, (5) Early, late and very late proteins, FP25K, GP64 are expressed by RNAs, (6) 

Nucleocapsids are formed followed by ODV formation from neucleocapsids, (7) Polyhedrin 

proteins are transferred to the nucleus by FP25K protein resulting in the formation of Nuclear 

polyhedrosis virus (NPV), (8) The cells are then exploded and the viruses the virus comes out of 

the cell (9) Budded viruses are budded along wth the surface protein GP64, and (10) Occluded 

virused are formed through envelopment in ODVs and embedded in polyhedra. Figure 4.1 shows 

schematic of viral internalization, DNA replication, protein synthesis and virus step by step. 

4.3 Model formulation 

Dynamics of various components of the whole infection process shown above were represented 

by a set of coupled ordinary differential equations initial value problems (ODE-IVPs) with various 

kinetic parameters such as specific growth rate, death rate oxygen consumption rate, carbon-di-

oxide formation rate, maintenance coefficient, product degradation rate, rate of DNA replication, 

rate of RNA formation, rate of protein formation etc. The simulation of the temporal profiles for 
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the model variables were performed by solving ODE-IVPs by the fourth-order Runge-Kutta 

method.  

 

4.4 Parameter Estimation 

 

Extreme nonlinear dynamics of the model (ODE- IVPs) generally lead to difficulty in estimation 

of the rate constants present in the proposed models. A non-linear programming (NLP) problem 

was formulated with an error function as the objective function. The rate constants were set as the 

decision variables whose upper bounds and lower bounds were determined carefully by 

performing sensitivity analysis with respect to each parameter in the model. Sensitivity analysis 

was carried out by perturbing one parameter at a time till the limit within which the model 

converged, while other parameters were fixed at some base values. This ensured the convergence 

of ODE- IVP model for the candidates of parameters generated by the optimizer. The NLP 

formulation is given below. 

                                                                

                                                                          Minimize Error 

such that,                                        

                                                            0 ≤ 𝐾𝑝 ≤ 𝐾𝑝
𝑈𝐿 ∀ 𝑝 = 1 𝑡𝑜 𝑁 

                                             

Where the error function is described in equation. 

        𝐸𝑟𝑟𝑜𝑟 =   ∑ ∑ √
1

𝑁𝑖
 (∑(𝑦𝑖

𝑗
− 𝑦̂𝑖

𝑗
)

2

𝑁𝑗

𝑖

)

2

𝑗=1

   

3

𝑘=1

 

𝑦̂𝑖
𝑗

= 𝑓(𝐾𝑝, 𝑦0
𝑗
)  Where, 𝑓 is the proposed ODE ‒ IVP model and 𝑦0

𝑗
 is initial conditions 

𝑦𝑖
𝑗
 is the 𝑖𝑡ℎ experimental value (concentration) of  𝑗𝑡ℎ component.  

𝑦̂𝑖
𝑗
 is the 𝑖𝑡ℎ  simulated value (concentration) of 𝑗𝑡ℎ  component.  

∀ 𝑖 = 1 𝑡𝑜 𝑁𝑗    

𝑁𝑗    is number of experimental observations 

∀ 𝑗 = 1 𝑡𝑜 2  | 1: Cell Density, 2: Cell viability 
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𝑁 is number of parameters in the proposed model. 

∀ 𝑘 = 1 𝑡𝑜 3 is for three data set 

 

 

4.4.1 Integrated model: description of the variables 

 

The model has nine essentials components of the system, (1) the host cells (2) the standard (wild-

type) virion, and (3) the defective interfering particles (DIPs), (4) oxygen (5) carbon di-oxide (6) 

substrate (7) DNAs (8) mRNA and (9) dead cells. The number of free DIP and standard virus 

particles were denoted as VD and VS respectively. The number of uninfected cell, concentration 

of oxygen, carbon dioxide and substrate was denoted by CU, 𝑂2, 𝐶𝑂2 and 𝑆 respectively. The 

initial state was specified by initial values of CU, VD, VS, 𝑂2, 𝐶𝑂2, and 𝑆 which is given in Table 

4.1 for wild type viral infection and in Table 4.2 for stabilized viral infection. 

The basic underlying assumptions are as follows, (1) infection of the cell occurs through random 

contact between virus particles and cells, (b) a is constant defined as the infection rate per cell-

virion pair (3) CD cell is formed by infection of CU cell with DIPs virus, (4) CS cell is formed by 

infection of CU cell with standard (wild-type) virus (5) CB cells are formed by infection of DIP 

virus with CS cell or infection of standard virus with CD cell or co-infection of both the virus with 

uninfected cell, (5) cell growth is dependent on substrate, oxygen and carbon-di oxide 

concentrations, (6) CS cell will burst out at the end of the virus generation time, where the virus 

generation time is not fixed but we are assuming it is distributed around an appropriate mean 

generation time, (7) production of CB cells form CS cell occurs when CS cell is co-infected with 

DIP. But, this conversion of a CS cell to a CB cell occurs if the CS cell is co-infected with a DIP 

before a cutoff time because after that cutoff time, the CS cell will go through bursting which 

results in releasing of standard virus. Conversion from CD cell to CB cell occurs when CD is gets 

confected cell standard virus. The CB cell also bursts after virus generation time which results in 

production of DIPs and standard virus. 

 

4.4.2 Model equations 

µ = µ𝑚𝑎𝑥 ∗ (
𝑆

𝐾𝑠 + 𝑆
) 
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µ2 = µ ∗ (
𝑂2

𝑂2  + 𝐾𝑜2

) ∗ (
𝐾

CO2 + KCO2

) 

𝑑(𝐶𝑈)

𝑑𝑡
= µ2 ∗ 𝐶𝑈 − 𝑎 ∗ 𝐶𝑈 ∗ (𝑉𝑆 + 𝑉𝐷) − 𝑘𝑑1

∗ 𝐶𝑈 

𝑑(𝐶𝐷)

𝑑𝑡
= µ2 ∗ 𝐶𝐷 + 𝑎 ∗ 𝐶𝑈 ∗ 𝑉𝐷 − 𝑎 ∗ 𝑉𝑆 ∗ 𝐶𝐷 − 𝑘𝐷 ∗ 𝐶𝐷 

 

In equation 3, the first term on the right hand side of the equation represents cell growth, the second 

term represents loss of the cell through infection and the third term represents death of the cell. In 

equation 4, the first term represents cell growth, the second term represents gain through infection 

and, the third term represents cell loss due to coinfection and the last term represents the death of 

the cell. 

The age of the cells is defined for the CS and CB cells and for this the number of subclasses of CS 

and CB were defined where 𝜏 is a constant representing the duration of a subclass. The maximum 

time that can elapse before a CS and CB cells releases the virus was set to be T. The  number of 

subclasses CS and CB cells was divided as 𝑛 =
𝑇

𝜏
 .Where, 𝐶𝑆𝑖 and 𝐶𝐵𝑖 denote the 𝑖𝑡ℎsubclass. The 

equations were written as 

 

𝑑(𝐶𝑆1)

𝑑𝑡
=  𝑎 ∗ 𝑉𝑆 ∗ 𝐶𝑈 + 𝑘𝑡𝑟𝑎𝑛𝑠 ∗ 𝑝𝑜𝑙𝑦 −

𝐶𝑆1

𝜏
− 𝑝1 ∗ 𝐶𝑆1   

– 𝑎 ∗ 𝐶𝑆 ∗ 𝑉𝐷 ∗ 𝑧1 − 𝑘𝐷 ∗ 𝐶𝑆1 

 

𝑑(𝐶𝑆𝑖)

𝑑𝑡
=

𝐶𝑆𝑖−1 − 𝐶𝑆𝑖

𝜏
+ 𝑘𝑡𝑟𝑎𝑛𝑠 ∗ 𝑝𝑜𝑙𝑦 − 𝐶𝑆𝑖 ∗ 𝑝𝑖 − 𝑎 ∗ 𝐶𝑆𝑖 ∗ 𝑉𝐷 ∗ 𝑧𝑖 − 𝑘𝐷 ∗ 𝐶𝑆𝑖 

 

 

𝑑(𝐶𝑆𝑛)

𝑑𝑡
=

𝐶𝑆(𝑛−1)

𝜏
+ 𝑘𝑡𝑟𝑎𝑛𝑠 ∗ 𝑝𝑜𝑙𝑦 − 𝐶𝑆𝑛 ∗ 𝑝𝑛 − 𝑎 ∗ 𝐶𝑆𝑛 ∗ 𝑉𝐷 ∗ 𝑧𝑛 − 𝑘𝐷 ∗ 𝐶𝑆𝑛 

 

The first term in equation 5 represents the growth of the cell, the second term represents the gain 

of cells through infection, the third term is production of CS cells based on polyhedrin protein,  the 

fourth term is the rate of transfer of cells from 𝐶𝑆1 to 𝐶𝑆2 through aging, the fifth term represents 

1 < 𝑖 < 𝑛 

[5] 

[7] 

[6] 
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the rate of loss of cell undergoing virus release,  and the last term is the rate of cell apoptosis. The 

variable 𝑝𝑖 (𝑖 = 1,2. . . , 𝑛) is basically the death rates of cells in the 𝑖𝑡ℎ subclass undergoing virus 

release. The quantities 𝑧𝑖 indicates the possibility of coinfection with DIP. We assume that the 

conversion is possible (𝑧𝑖 = 1) before a certain time 𝑖 = 𝑖∗. Until this time standard virus 

generation takes place after which conversion is impossible (𝑧𝑖 = 0) . The equation for CB cells 

are almost similar to those for the CS cells except the fact that the production of CB cells is possible 

in two ways. One way is to infect CD cells by standard virus and the other way is to infect CS cells 

by DIPs. These equations are:  

  
𝑑(𝐶𝐵1)

𝑑𝑡
= 𝑎 ∗ 𝑉𝐷 ∗ Ʃ𝐶𝑆𝑖 ∗ 𝑧𝑗 + 𝑎 ∗ 𝐶𝐷 ∗ 𝑉𝑆 + 𝑘𝑡𝑟𝑎𝑛𝑠 ∗ 𝑝𝑜𝑙𝑦 −

𝐶𝐵1

𝜏
 − 𝐶𝐵1 ∗ 𝑝1

− 𝑘𝐷 ∗ 𝐶𝐵1 

 

𝑑(𝐶𝐵𝑖)

𝑑𝑡
=   𝑘𝑡𝑟𝑎𝑛𝑠 ∗ 𝑝𝑜𝑙𝑦 +

  (𝐶𝐵(𝑖−1) − 𝐶𝐵𝑖)

𝜏
− 𝐶𝐵𝑖 ∗ 𝑝𝑖 − 𝑘𝐷 ∗ 𝐶𝐵𝑖 

 

𝑑(𝐶𝐵𝑖)

𝑑𝑡
=   𝑘𝑡𝑟𝑎𝑛𝑠 ∗ 𝑝𝑜𝑙𝑦 +

  𝐶𝐵(𝑛−1)

𝜏
− 𝐶𝐵𝑛 ∗ 𝑝𝑛 − 𝑘𝐷 ∗ 𝐶𝐵𝑛 

 

Where, Ʃ𝐶𝑆𝑖 is the summation of all the subclasses of CS cell. Now, the rate of formation of DIPs 

and standard virus were obtained by summing the rates of virus release from the subclasses of CS 

and CB and subtracting the rates of virus loss through the infection process. 

 

𝑑(𝑉𝑆)

𝑑𝑡
= 𝑏 ∗ Ʃ𝐶𝑆𝑖 ∗ 𝑝𝑖 ∗ 𝑔𝑝64 − 𝑎 ∗ 𝑉𝑆 ∗ (𝑠𝑢𝑚(𝐶𝑆) + 𝑠𝑢𝑚(𝐶𝐵) + 𝐶𝐷 + 𝐶𝑈)  

 

𝑑(𝑉𝐷)

𝑑𝑡
= 𝑏 ∗ Ʃ𝐶𝐵𝑖 ∗ 𝑝𝑖 ∗ 𝑔𝑝64 − 𝑎 ∗ 𝑉𝐷 ∗ (𝑠𝑢𝑚(𝐶𝑆) + 𝑠𝑢𝑚(𝐶𝐵) + 𝐶𝐷 + 𝐶𝑈) 

 

Generally, the production of DNA takes place from standard virus in between a specific time 

period (𝑓𝐷𝑁𝐴). We assumed that DNA production does not take place before and after that time 

interval. 

1 < 𝑖 < 𝑛 

[8] 

[10] 

[9] 

[12] 

[11] 
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𝑑(𝐷𝑁𝐴)

𝑑𝑡
= 𝑘𝐷𝑁𝐴 ∗ 𝑓𝐷𝑁𝐴 ∗ 𝑉𝑆 + 𝑓𝐷𝑁𝐴 ∗ 𝑘𝑟𝑒𝑝 ∗ 𝐷𝑁𝐴 −  𝑘𝐷 ∗ 𝐷𝑁𝐴 

 

 

 

 

 

 

 

The first term in equation 13 represents the DNA production from standard viruses, the second 

term represents the replication of DNA, and the last term represents the degradation of DNA. 

Production of mRNA was modeled as follows (equation 14, 15 and 16), where RNA are of three 

types: (1) early RNA (2) late RNA and (3) very late RNA. As the production of early RNA starts 

before DNA replication, the production early RNA is mainly dependent on viruses. In contrast, 

the late and very late RNA is mainly dependent on amount of DNA present in the nucleus. The 

time varying functions are included to take care of the RNA production during specific phases. 

 

𝑑(𝑅𝑁𝐴𝑒𝑎𝑟𝑙𝑦)

𝑑𝑡
= 𝑓𝐸𝑎𝑟𝑙𝑦 ∗ 𝑘𝑅𝑁𝐴 ∗ 𝑉𝑆 − 𝑘2 ∗ 𝑅𝑁𝐴𝑒𝑎𝑟𝑙𝑦 

 

 

𝑑(𝑅𝑁𝐴𝑙𝑎𝑡𝑒)

𝑑𝑡
= 𝑓𝑙𝑎𝑡𝑒 ∗ 𝑘𝑅𝑁𝐴 ∗ 𝐷𝑁𝐴 − 𝑘2 ∗ 𝑅𝑁𝐴𝑙𝑎𝑡𝑒 

 

𝑑(𝑅𝑁𝐴𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒)

𝑑𝑡
= 𝑓𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒 ∗ 𝑘𝑅𝑁𝐴 ∗ 𝐷𝑁𝐴 − 𝑘2 ∗ 𝑅𝑁𝐴𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒 

 

[13] 

𝑖𝑓(𝑡 < 𝛿𝐷𝑁𝐴𝑚𝑖𝑛
)                                        𝑓𝐷𝑁𝐴 = 0 

                                         𝑖𝑓(𝛿𝐷𝑁𝐴𝑚𝑖𝑛
< 𝑡 < 𝛿𝐷𝑁𝐴𝑚𝑎𝑥

)                   𝑓𝐷𝑁𝐴 = 1 −
𝑡 − 𝛿𝐷𝑁𝐴𝑚𝑖𝑛

𝛿𝐷𝑁𝐴𝑚𝑎𝑥
− 𝛿𝐷𝑁𝐴𝑚𝑖𝑛

 

𝑖𝑓(𝛿𝐷𝑁𝐴𝑚𝑎𝑥
< 𝑡)                                         𝑓𝐷𝑁𝐴 = 0 

[14] 

[16] 

[15] 
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                                         𝑖𝑓(𝑡 < 𝛿𝑅𝑁𝐴𝑒𝑚𝑖𝑛
)                                       𝑓𝑒𝑎𝑟𝑙𝑦 = 0 

                         𝑖𝑓(𝛿𝑅𝑁𝐴𝑒𝑚𝑖𝑛
< 𝑡 < 𝛿𝑅𝑁𝐴𝑒𝑚𝑎𝑥

)                 𝑓𝑒𝑎𝑟𝑙𝑦 = 1 −
𝑡   −𝛿𝑅𝑁𝐴𝑒𝑚𝑖𝑛

𝛿𝑅𝑁𝐴𝑒𝑚𝑎𝑥 −𝛿𝑅𝑁𝐴𝑒𝑚𝑖𝑛

    

                                𝑖𝑓(𝛿𝑅𝑁𝐴𝑒𝑚𝑎𝑥
< 𝑡)                                        𝑓𝑒𝑎𝑟𝑙𝑦 = 0 

 

 

 

 

 

 

                                         𝑖𝑓(𝑡 < 𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑖𝑛
)                                      𝑓𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒 = 0 

                             𝑖𝑓(𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑖𝑛
< 𝑡 < 𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑎𝑥

)               𝑓𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒 = 1 −
𝑡−𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑖𝑛

𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑎𝑥 −𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑖𝑛

 

                                         𝑖𝑓(𝛿𝑅𝑁𝐴𝑣𝑙𝑚𝑎𝑥
< 𝑡)                                      𝑓𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒 = 0  

 

In equation 14, the first term represents the production of RNA early amount, and the second term 

represents the degradation of RNAs. Similarly, we formulated the equations for the production of 

late and very late RNA (equation 15 and 16).  

 

𝑑(𝑓𝑝25𝑘)

𝑑𝑡
= 𝑘𝑝𝑒 ∗ (

𝑅𝑁𝐴

𝑅𝑁𝐴 + 𝐾𝑅𝑁𝐴
) ∗ 𝑓𝑙𝑎𝑡𝑒 ∗ 𝑠𝑢𝑚(𝐶𝐵 + 𝐶𝐷 + 𝐶𝑆) − 𝑘2 ∗ 𝑓𝑝25𝑘 

 

 

𝑑(𝑔𝑝64)

𝑑𝑡
= 𝑘𝑝𝑒 ∗ (

𝑅𝑁𝐴

𝑅𝑁𝐴 + 𝐾𝑅𝑁𝐴
) ∗ 𝑓𝑒𝑎𝑟𝑙𝑦 ∗ 𝑠𝑢𝑚(𝐶𝐵 + 𝐶𝐷 + 𝐶𝑆) ∗ (

1

𝑓𝑝25𝑘 + 𝑘𝑓𝑝
)   

−𝑘2 ∗ 𝑔𝑝64 

 

                              𝑖𝑓(𝑡 < 𝛿𝑅𝑁𝐴𝑙𝑚𝑖𝑛
)                                            𝑓𝑙𝑎𝑡𝑒 = 0 

                          𝑖𝑓(𝛿𝑅𝑁𝐴𝑙𝑚𝑖𝑛
< 𝑡 < 𝛿𝑅𝑁𝐴𝑙𝑚𝑎𝑥

)                      𝑓𝑙𝑎𝑡𝑒 = 1 - 
𝑡−𝛿𝑅𝑁𝐴𝑙𝑚𝑖𝑛

𝛿𝑅𝑁𝐴𝑙𝑚𝑎𝑥
−𝛿𝑅𝑁𝐴𝑙𝑚𝑖𝑛

 

                          𝑖𝑓(15 < 𝛿𝑅𝑁𝐴𝑙𝑚𝑎𝑥
)                                         𝑓𝑙𝑎𝑡𝑒 = 0  

 

[17] 

[18] 

[19] 



50 
 

𝑑(𝑃𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑖𝑛)

𝑑𝑡

= 𝑘𝑝𝑒 ∗ (
𝑅𝑁𝐴

𝑅𝑁𝐴 + 𝐾𝑅𝑁𝐴
) ∗ 𝑓𝑣𝑒𝑟𝑦𝑙𝑎𝑡𝑒 ∗ 𝑠𝑢𝑚(𝐶𝐵 + 𝐶𝐷 + 𝐶𝑆) ∗ (

𝑓𝑝25𝑘

𝑓𝑝25𝑘 + 𝑘𝑂𝐷𝑉
)   

 − 𝑘2 ∗ 𝑝𝑜𝑙𝑦ℎ𝑒𝑑𝑟𝑖𝑛 

 

In equation 17, the first term represents the production of GP64 protein amount, and the second 

term represents the degradation of the protein. Similarly, we formulated the equations for late and 

very late proteins FP25K and polyhedrin (equation 18 and 19). In these case, it is assumed that 

amount of GP64 protein in inversely proportional to FP25k protein and amount of polyhedrin is 

directly proportional to FP25k protein. 

 

        
𝑑(𝑂2)

𝑑𝑡
= 𝑘𝑙𝑎 ∗ (𝑂2

∗ − 𝑂2) −
(𝐶𝑈 + Ʃ𝐶𝑆𝑖 + Ʃ𝐶𝐵𝑖 + 𝐶𝐷)

𝑌𝑜
 

 

       
𝑑(𝐶𝑎𝑟𝑏𝑜𝑛 𝑑𝑖 − 𝑜𝑥𝑖𝑑𝑒)

𝑑𝑡
=

(𝐶𝑈 + Ʃ𝐶𝑆𝑖 + Ʃ𝐶𝐵𝑖 + 𝐶𝐷)

𝑌𝑐
 

                                                   

    
𝑑(𝐷𝑒𝑎𝑑 𝑐𝑒𝑙𝑙)

𝑑𝑡
= 𝑘𝑑1

∗ 𝐶𝑈 + 𝑘𝑑 ∗ (Ʃ𝐶𝑆𝑖 + Ʃ𝐶𝐵𝑖 + 𝐶𝐷) 

 

     
𝑑(𝑆𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)

𝑑𝑡
= −µ ∗ (

𝐶𝑈+Ʃ𝐶𝑆𝑖+Ʃ𝐶𝐵𝑖+𝐶𝐷

𝑌𝑠
) 

 

In equation 20, the first term represents mass transfer rate of oxygen into insect cell and the second 

term represents the oxygen consumption rate. In equation 22, the first term represents the death of 

uninfected cell and the second term represents the death of infected cells.  

 

[22] 

[23] 

[20] 

[21] 
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4.4.3 Virus release times  

The distribution of virus release time for the CS and CB cells is governed by the variable 𝑝. We 

assumed that the 𝑝 value will be zero before 18 h p.i as no virus release takes place before this 

time, and after this time, the virus release will follow an exponential function. 

 

 

 

 

Where, 𝑖′ is the minimum number of subclasses through which a CS or CB cell must pass before 

it first exposed to the risk of cell lysis. Rate of release of virus are controlled by the values of 

𝛼, 𝛽 and 𝑖′. Also, we are assuming that co-infection does not take place before a certain time. 

 

 

 

 

4.5 Sensitivity analysis 

Sensitivity analysis is an important tool that is used to identify the parameters that affect the 

response variable. This technique is useful for finding out the parameter range in which the 

parameter estimation is to be conducted. From this analysis, we obtained the desired parameter 

range for choosing the initial guess values. We performed the sensitivity analysis with ± 100% 

change in each of the parameter and observed the effect on two variables, cell density and 

percentage of viable cells.   

 

 

 

 

 

𝑝  = 0                                       𝑖𝑓(𝑡 < 18) 
 

𝑝 = 𝛼. 𝑒𝛽(𝑖−𝑖′)                        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑧𝑖  = 1                                       𝑖𝑓(𝑡 < 10) 
 
𝑧𝑖  = 0                                     𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
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4.5 Results 

First we performed the parametric sensitivity analysis for the complex model and identified the 

parameter range to be used for matching the simulated results and experimental data.  Figure 4.2 

shows the 3-D representation of the parametric sensitivity analysis for the proposed integrated 

model. Where X axis shows all the parameters, Y axis shows all the model variables and Z axis 

shows the change in model variables with respect to parameters. The result shows that the cell 

density is sensitive to specific growth rate, transport of protein rate constant and rate of protein 

synthesis. On the other hand, the percent of polyhedra per cell is sensitive to specific growth rate, 

α, β. Also, cell viability is sensitive to specific growth rate and DNA transcription rate. 

 

Figure 4.3 and Figure 4.4 shows the comparison of simulated results obtained from the integrated 

model and experimental data. The result shows that the complex model is able to predict the trends 

for experiment 2 and 3 better than the trend presents in experiment 1. Table 4.3 show the 

parameters estimated for the complex model for WT and stabilized AcMNPV using NLP.  In 

contrast, the simple model gives a better result as the case of very low growth rate and high death 

rate present in experiment 1 is not captured by the complex model.  Since the RMSE for the 

complex model is lower than the simple model (Table 4.5), it can be concluded that the detailed 

model with a higher number of parameter can capture the non-linearity better than the simple 

model.  Another specific advantage of the complex model is that the model is able to predict the 

percentage of polyhedra along with the cell density and cell viability. Table 4.3 shows that many 

of the parameters show significant changes for the genetically modified stabilized virus, whereas 

some of the parameters remain similar for the two viruses. Table 4.4 shows the comparison of 

average specific growth rate and death rate for the cells. Additionally, we present a detailed 

comparison of simple model and complex model with respect to computation time, RMSE and 

number of parameters and variables. 

 

 

 

 

 



53 
 

 

 

 

 

 

 



54 
 

Figure 4.1: Schematic of viral internalization, DNA replication, protein synthesis and virus 

packaging (budded virus, occlusion derived virus and polyhedra) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Sensitivity analysis of complex model. X axis shows all the parameters in the model 

and Y axis shows the variables and Z axis shows the percentage variation of the variables with 

parameters 
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a) 

b) 

c) 

Figure 4.3 Simulated and experimental results for the proposed model for infected cell growth 

experiment for wild type virus and triplicate data set a) infected cell density with time and b) 

percentage of polyhedra per cell with respect to time and c) percentage of viable cells with time 
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a) 

b) 

c) 

Figure 4.4 Simulated and experimental results for the proposed model for complex infected cell 

growth for stabilized virus and triplicate data set a) cell density with time and b) percentage of 

polyhedra/cell with respect to time and c) % of viable cells with time 
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Variable (in 

case of wild 

type virus) 

Uninfected 

cell 

Substrate Oxygen Carbon 

dioxide 

Dead 

cell 

Virus Infected 

cell 

DNA RNA proteins 

Initial 

Condition 

(data 1) 

460000 1000 1000 0 0 5150 0 0 0 0 

Initial 

Condition 

(data 1) 

590000 1000 1000 0 0 5150 0 0 0 0 

Initial 

Condition(data 

1) 

650000 1000 1000 0 0 5150 0 0 0 0 

Variable (in 

case of 

stabilized 

virus) 

Uninfected 

cell 

Substrate Oxygen Carbon 

dioxide 

Dead 

cell 

Virus Infected 

cell 

DNA RNA proteins 

Initial 

Condition 

(data 1) 

370000 1000 1000 0 0 5150 0 0 0 0 

Initial 

Condition 

(data 1) 

450000 1000 1000 0 0 5150 0 0 0 0 

Initial 

Condition(data 

1) 

640000 1000 1000 0 0 5150 0 0 0 0 

Table 4.1 Initial Conditions for infected cell for wild type viral infection for complex model 

Table 4.2 Initial Conditions for infected cell for stabilized viral infection for complex model 
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Table 4.3 Estimated parameters for complex infection model 

Parameters Parameter name  Wild type 

Virus 

Exp1 

Wild type 

Virus  

Exp 2 

Wild type 

Virus  

Exp 3 

Stabilize

d virus 

Exp 1 

Stabilize

d virus  

Exp 2 

Stabilize

d virus 

Exp 3 

𝑎(𝑔𝐿−1) Infection rate constant 1.94

 𝑋 10−5 

1.94

 𝑋 10−5 

1.94

 𝑋 10−5 

1.82 

 𝑋 10−5 

1.82 

 𝑋 10−5 

1.82 

 𝑋 10−5 

𝑏(𝑔𝐿−1) Virus production rate 21.57 21.57 21.57 23.14 23.14 23.14 

𝐾𝑠(𝑔𝐿−1) Half-Velocity constant 50.00 50.00 50.00 106.42 106.42 106.42 

𝐾(𝑔𝐿−1) Saturation constant 0.628 0.628 0.628 0.971 0.971 0.971 

𝐾𝑜2
(𝑔𝐿−1) Half-Velocity constant 430.379 430.379 430.379 493.601 493.601 493.601 

𝐾𝑐𝑜2
(𝑔𝐿−1) Half-Velocity constant 14.913 14.913 14.913 14.702 14.702 14.702 

𝑌𝑠(g/g) Yield of cell / substrate 1.20

 𝑋 105 

1.20

 𝑋 105 

1.20

 𝑋 105 

1.12

 𝑋 105 

1.12

 𝑋 105 

1.12

 𝑋 105 

𝑌𝑜2
(g/g) Yield of cell / oxygen 8 𝑋 105 8 𝑋 105 8 𝑋 105 8 𝑋 105 8 𝑋 105 8 𝑋 105 

𝑘𝑙𝑎(𝑔𝐿−1) Mass transfer rate 

constant 

1 𝑋 10−5 1 𝑋 10−5 1 𝑋 10−5 5.94

 𝑋 10−5 

5.94

 𝑋 10−5 

5.94

 𝑋 10−5 

𝑘𝐷𝑁𝐴(𝑔𝐿−1) DNA replication constant 1.95 1.95 1.95 3.80 3.80 3.80 

𝑘𝑑𝑒𝑔(𝑔𝐿−1) Degradation rate constant 0.00728 0.00728 0.00728 0.0132 0.0132 0.0132 

𝑂∗(𝑔𝐿−1) Equilibrium oxygen 

concentration 

2.699 2.699 2.699 1.073 1.073 1.073 

𝑘𝑅𝑁𝐴(𝑔𝐿−1) Transcription rate constant 5.766 5.766 5.766 3.505 3.505 3.505 

𝐾𝑝𝑜𝑙𝑦(𝑔𝐿−1) Equilibrium constant for 

fp25k 

0.500 0.500 0.500 1.179 1.179 1.179 

𝐾𝑓𝑝(𝑔𝐿−1) Equilibrium constant for 

polyhedrin 

0.008 0.008 0.008 0.008 0.008 0.008 

𝑘𝑝𝑒(𝑔𝐿−1) Protein synthesis rate 

constant 

0.088 0.088 0.088 0.0768 0.0768 0.0768 

𝐾𝑅𝑁𝐴(𝑔𝐿−1) half-saturation constant 

for protein 

16.05 16.05 16.05 27.37 27.37 27.37 

𝑘𝑡𝑟𝑎𝑛𝑠(𝑔𝐿−1) DNA transfer constant 0.00898 0.00898 0.00898 0.0006 0.0006 0.0006 
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Table 4.4 parameter values for three different simulations with mean and standard deviation. 

 

Parameter (Wild 

type virus) 

Exp 1 Exp 2 Exp 3 Mean and standard 

deviation 

𝜇𝑚𝑎𝑥(ℎ𝑜𝑢𝑟−1) 0.87 1.084 1.088 1.014 ±0.124 

𝑘𝑑1
(ℎ𝑜𝑢𝑟−1) 0.15 0.001 0.0014 0.0508±0.049 

Parameter 

(stabilized virus) 

Exp 1 Exp 2 Exp 3 Mean and standard 

deviation 

𝜇𝑚𝑎𝑥(ℎ𝑜𝑢𝑟−1) 0.93 1.09 1.013 1.011±0.0462 

𝑘𝑑1
(ℎ𝑜𝑢𝑟−1) 0.03 0.0072 0.13 0.0557±0.03777 

 

Table 4.5 Difference between simple model and complex model 

 

 

 

 

 

 

 

 

 

 

 

 

𝛼(----) Virus release rate constant 0.001 0.001 0.001 0.001 0.001 0.001 

𝛽(ℎ𝑜𝑢𝑟−1) Bursting rate constant  0.501 0.501 0.501 0.307 0.307 0.307 

𝜇𝑚𝑎𝑥(ℎ𝑜𝑢𝑟−1) Maximum specific growth 

rate 

0.87 1.084 1.088 0.93 1.09 1.013 

𝑘𝑑1
(ℎ𝑜𝑢𝑟−1) Intrinsic death rate 0.15 0.001 0.0014 0.03 0.0072 0.13 

𝑘∗(ℎ𝑜𝑢𝑟−1) Death rate due to infection 0.0049 0.0049 0.0049 0.001 0.001 0.001 

 
RMSE Number of 

parameters 
Number 

of 

variables 

Computational 

time(seconds) 

Simple 

model 

33400 14 7 146 

Complex 

model 

12700 23 75 1567 
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Chapter 5 

Conclusions and future work  

The present work provides a framework for finding the most suitable model corresponding to wild type 

stabilized baculovirus from a list of models.  Moreover, it gives a framework for selecting the growth model 

for uninfected cells as well as infected cells. Also, we conclude that model having Monod growth model 

can capture the growth of uninfected cell better compared to other growth models. The results show that 

while the infected cell growth follows Monod’s equation in case of wild type virus whereas that for the 

stabilized virus follows Contois equation.  Also, we conclude that the growth rate constant and death rate 

constant may change from experiment to experiment. Specifically, it is challenging to model the death 

dynamics since the mechanism for apoptosis after viral infection is less investigated. We propose a future 

project focusing on modeling the cell death kinetics where time varying features of cell viability can be 

captured. Specifically, dependency of death rate constant on virus present and carbon di oxide concentration 

may be included to improve on the match between experiment and simulations. The parameter estimation 

result shows that the infection process is statistical and the death rate and growth rate may follow a 

distribution during an infection process.  Also, death rate constant can be dependent on the number of viral 

DNA present in the nucleus of the cell.  Apart from the infection, we also show a proof of concept for 

setting up a simulation platform for passaging of viruses in shaker flasks. The result shows that that a change 

cell growth and cell death rate in each passage is able to capture the trends during passaging. Additionally, 

the analysis on complex model shows that the DNA profile and other mechanisms can capture the cell 

density profile better than the simple model. But it still remains challenging to obtain a good fit for three 

datasets and the cell viability.  One of the reason behind this could be the incomplete model for cell death 

mechanisms based on apoptotic genes. In order to obtain the global optimum, we can use genetic algorithm. 

However, the current optimization technique can be used for getting the convergence in shorter duration.  

Based on the current computational framework, further projects can be formulated as follows: (1) 

identification of the specific mechanism causing nonlinear viability profile and testing the time varying 

models for cell death (2) Study of  death rate constant as a function of oxygen, substrate, carbon dioxide 

and viral DNA concentration to obtain a better match between simulation and experiment (3) 

Implementation of the complex model features to capture the cell death (4) Setting up a simulation platform 

for predicting the cell growth and cell death profile for passaging of viruses in shaker flask and estimation 

of parameters based on an objective function considering triplicate dataset. In order to improve on 

parameter estimation, genetic algorithm or other nature inspired optimization methods can be used.  
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Nomenclature 

WT                                       Wild type 

AcMNPV                             Autographa californica nuclear polyhedrosis virus 

ODE                                      Ordinary differential equation 

DIP                                        Defective interfering particles 

SQP                                       Sequential quadratic programming 

IVP                                         Initial value problem 

RMSE                                     Root mean square error 

NLP                                        Non-linear programming 

Sf                                            Spodoptera frugiperda 

 

 

 

 

 

 

 

 

 

Passage number Passage number 
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Appendix 

Experimental data 

 

 

 

 

 

Figure  S1. Infected cell with passage in case of stabilized viral infection for four different 

experiment a) Cell density with respect to passage b) percentage of viable cells with respect to 

passage 

 

 

Figure  S2. Infected cell with passage for in case of wild type viral infection four different 

experiment a) Cell density with respect to passage b) percentage of viable cells with respect to 

passage 
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Figure S3. Infected cell experimental results for three sets of data 

 

 

Figure S4. Uninfected cell experimental results for three sets of data 
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Uninfected cell growth Main file 

clc; 
close all; 
clear all; 
global t 
param0 = [0.26 0.107 400000 100 0.0001 10000000 10.27 200 50 1.1 0.09 

10000000 1000 1000]; 
lb=zeros(1,10); 
tspan = [0 120]; 
p = fmincon(@obj_fn_uninfected,param0,[],[],[],[],[0.001 0.0001 1000 0.01 

0.000001 1000 0.01 0.01 0.01 0.1 0.001 100000 10 10],[10 10 100000000 1000000 

10 5000000000 2000 1000000 500000 2000 10 1000000000 10000 10000]); 

  
y0(1) = 570000; 
y0(2) = 1000; 
y0(3) = 1000; 
y0(4) = 0; 
y0(5) = 0.0455*y0(1); 
[t,y] = ode45(@(t,y)ODEset_Uninfected(t,y,p),tspan,y0); 
vd(:,1) = 95.45 - (y(:,5)/sum(y(:,1)))*100 ; 
figure(1) 
uc = [570000 1370000 3550000 8140000 9580000 10300000]; 
ti = [0 24 48 72 96 120]; 
figure(1) 
plot(t,y(:,1)) 
hold on; 
plot(ti,uc,'d','Markersize',10,'MarkerFaceColor','g') 
axis([0,120,0,12300000]) 
title('Uninfected Cell Density') 
ylabel('Cell Density') 
xlabel('Time in hour') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 

  
figure(2) 
plot(t,y(:,2),t,y(:,3),t,y(:,4)) 
legend('Substrate','O2','CO2') 
% axis([0,120,0,1200]) 
% yyaxis right 
figure(3) 
vde = [95.55 94.6 94.35 92.06 87.02 77.3]; 
plot(ti,vde,'^','Markersize',10,'MarkerFaceColor','g') 
axis([0,120,60,100]) 
hold on;plot(t,vd(:,1)) 
title('Uninfected Cell Viability') 
ylabel('% of viable cells') 
xlabel('Time in hour') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
% figure(3) 
% plot(ti,y(:,2),ti,y(:,3),ti,y(:,4)); 
% legend('Substrate','Oxygen','Carbon di-oxide') 
% set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
% ylabel('Concentration') 
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% xlabel('Time in hour') 

 

Uninfected cell growth objective function 

function [rmse] = obj_fn_uninfected(param) 
tspan = [0 24 48 72 96 120]; 
y0(1) = 570000; 
y0(2) = 1000; 
y0(3) = 1000; 
y0(4) = 0; 
y0(5) = 0.0455*y0(1); 
[t,y] = ode45(@(t,y)ODEset_Uninfected(t,y,param),tspan,y0); 
vd(:,1) = 95.45 - (y(:,5)/sum(y(:,1)))*100 ; 
% figure(1) 
uc = [570000 1370000 3550000 8140000 9580000 10300000]; 
% ti = [0 24 48 72 96 120]; 
% plot(t,y(:,1)) 
% hold on; 
% plot(ti,uc,'d','Markersize',10,'MarkerFaceColor','g') 
% axis([0,120,0,12300000]) 
% % figure(2) 
% % plot(t,y(:,2),t,y(:,3),t,y(:,4)) 
% % legend('Substrate','O2','CO2') 
% % axis([0,120,0,1200]) 
% % figure(3) 
vde = [95.55 94.6 94.35 92.06 87.02 77.3]; 
% % plot(ti,vde,'^','Markersize',10,'MarkerFaceColor','g') 
% % axis([0,120,0,120]) 
% % hold on; 
% % plot(t,vd(:,1)) 
% error = 0; 
sum1 = 0; 
sum2 = 0; 
for i=1:6 
    sum1= (sum1 + (uc(i)-y(i,1))^2); 
    Rsq1 = 1 - sum((uc(i)-y(i,1)).^2)/sum((uc(i)-mean(uc)).^2); 
end 
for i=1:6 
    sum2= (sum2 + (vde(i)-vd(i,1))^2); 
end 
% [(uc' - y(:,1)); (vde' - vd)] 
[rmse] = sqrt((sum1+sum2)/6) 
% tot_err = rmse/(10000000)*100; 
% error = [error tot_err]; 
disp(Rsq1); 
% figure(2) 
% bar(error); 
% ylim([0 ,100]); 
% ylabel('% RMSE') 
% xlabel('Interations') 
% set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
end 

1) Uninfected cell growth ODE set 
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function dmdt = ODEset_Uninfected(t,y,param) 
mumax = param(1);%0.155; 
kd1 = param(11); 
kd2 = param(2);%0.022; 
% kd1 = 0.6; 
Ys = param(3);%400000; 
Ko2 = param(4);%100; 
kla = param(5);%0.008; 
Yc = param(6);%5000000; 
Ostar = param(7);%10.27; 
Kco2 = param(8);%200; 
Ks = param(9);%50; 
frac = param(10);%0.6; 
Yo = param(12); 
mu1 = mumax*(y(2)/(y(2) + Ks)); 
O2 = (y(3)/(y(3) + Ko2)); 
CO2 = (frac/(exp(y(4)/Kco2)+ 1)); 
mu = mu1*O2*CO2 ; 
% q_d = kd2*y(1)/log(y(2)); 
if t<73 
    kd = kd1; 
else 
    kd = kd2; 
end 
dydt(1) =  mu*y(1) - kd*y(1); 
dydt(2) = -mu1*(y(1)/Ys);   
dydt(3) =  - y(1)/Yo  ;                         
dydt(4) = y(1)/Yc ; 
dydt(5) = kd*y(1); 
dmdt = dydt'; 

  
end 
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Infected cell growth Main file 

 
% function Infection_paper_model() 
clc; 
close all; 
clear all; 
global t 
p0=[5150 1000 1000 1000000 1000000000 10 400000000 0.144 11 12 11 2000 

0.000001 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.002 0.002 0.002 50]; 
% p0 = [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

0.01]; 
% p0 = [0.1099 0.000000058286 0.0568 1.3535 0.1413 0.8474 0.0548 1.0902 

0.00000003054 0.2222 0.00026388 0.000054323 0.000000003054 0.4734]; 
lb=[515 10 10 100000 100000000 1 40000000 0.0144 1 1 1 200 0.0000001 0.002 

0.0002 0.0002 0.0002 0.001 0.001 0.05 0.000266 0.000266 0.000266 10]; 
ub = [515000 10000 10000 10000000 1000000000 100 4000000000 0.544 110 120 110 

20000 0.00001 0.2 0.2 0.2 0.2 0.1 0.1 1 0.2 0.2 0.2 100]; 
p = fmincon(@my_obj_infected,p0,[],[],[],[],lb,ub); 
tspan = [0 96]; 
UC = [460000 590000 650000]; 
y0(2) = p(1); 
y0(3) = p(2);    
y0(4) = 0; 
y0(5) = 0; 
y0(6) = p(3); 
y0(7) = 0; 
% Ys = p(4);%1000000; 
% Yo2 = p(5);%1000000000; 
% Ko2 = p(6);%10; 
% Yco2 = p(7);%400000000; 
% kla = p(8);%0.144; 
% Ostar = p(9);%11; 
% Ks = p(10);%12; 
% K = p(11);%11; 
% Kco2 = p(12);%2000;% frac = 0.3; 
% a1 = p(13);%0.000001; 
% ka = p(14);%0.02; 
%  
% mumax = p(15:17); 
% kd1 = p(18:20); 
% kstar = p(21:23); 

  
cell_den = zeros(4,5); 
cell_via = []; 

  
for j=1:3 
    y0(1) = UC(j); 
[t,y] = ode45(@(t,y)ODEset_infected(t,y,[p(1,1:14) p(15+(j-1)) 

p(15+size(4,1)+(j-1)) p(15+2*size(4,1)+(j-1))]),tspan,y0); 
ti = [0 24 48 72 96]; 
% uc1 =  [460000 650000 940000 950000 970000]; 
% uc2 =  [590000 1210000 1510000 1470000 1370000]; 
% uc3 =  [440000 1040000 1030000 1070000 1270000]; 
% uc4 =  [650000 1010000 1220000 1390000 1290000]; 
% cell_den(:,j) = (y(:,1)+y(:,7)); 
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uc =  [460000 750000 940000 950000 930000; 
        590000 1210000 1470000 1510000 1370000; 
        650000 1010000 1220000 1390000 1290000]; 

  
vde = [100 79.55 48.9 17.71 7.03; 
        90.8 85.6 81.3 77.7 59; 
        92.5 78.8 71 68.9 48.9]; 
VCI = [100 90.8 92.5];   
dead = (y(:,5)./(y(:,1)+y(:,7)))*100 ; 
vd = VCI(j) - dead; 
% cell_via(:,j) = vd(:,1); 

  
%stabalizes virus 
% uc5 = [515000 1165000 1305000 1315000 1242500];  
% uc1 = [370000 830000 1040000 1040000 1030000]; 
% uc2 = [450000 1280000 1430000 1370000 1390000]; 
% uc3 = [640000 1240000 1300000 1260000 1250000]; 
% uc4 = [600000 1310000 1450000 1590000 1300000]; 
% % yyaxis left 
% error_1 = [uc1(1) uc2(1) uc3(1) uc4(1)]; 
% error_2 = [uc1(2) uc2(2) uc3(2) uc4(2)]; 
% error_3 = [uc1(3) uc2(3) uc3(3) uc4(3)]; 
% error_4 = [uc1(4) uc2(4) uc3(4) uc4(4)]; 
% error_5 = [uc1(5) uc2(5) uc3(5) uc4(5)]; 
%  
% sdd = [std(error_1) std(error_2) std(error_3) std(error_4) std(error_5)]; 
figure(j) 
plot(t,(y(:,1)+y(:,7))) 
hold on; 
plot(ti,uc(j,:),'o') 
% hold on; 
% plot(ti,uc2,'d','Markersize',10,'MarkerFaceColor','r') 
% hold on; 
% plot(ti,uc3,'d','Markersize',10,'MarkerFaceColor','y') 
% hold on; 
% plot(ti,uc4,'d','Markersize',10,'MarkerFaceColor','g') 
% axis([0,100,400000,1430000]) 
ylabel('Cell Density') 
xlabel('Time(h)') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
title('Infected cell vs time') 

  
% figure(9) 
% plot(t,y(:,2),t,y(:,3),t,y(:,4)) 
% axis([0,120,0,1200]) 
% legend('Substrate','Oxygen','Carbon di-oxide') 
% % yyaxis right 
% figure(2) 
% vde1 = [100 79.55 48.9 17.71 7.03]; 
% vde2 = [90.8 85.6 81.3 77.7 59]; 
% vde3 = [91.5 69 67.4 60.5 50.2]; 
% vde4 = [92.5 78.8 71 68.9 48.9]; 
% %stabalized virus 
% vde5 = [94.15 79.1 76.4 69.175 55.05]; 
% vde1 = [97.2 53.03 46.01 25 5.04]; 
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% vde2 = [94 79.8 78.7 67.2 52]; 
% vde3 = [94.9 83 76.3 74.4 58.5]; 
% vde4 = [90.5 74.5 73.9 68.3 54.7]; 
% err_1 = [vde1(1) vde2(1) vde3(1) vde4(1)]; 
% err_2 = [vde1(2) vde2(2) vde3(2) vde4(2)]; 
% err_3 = [vde1(3) vde2(3) vde3(3) vde4(3)]; 
% err_4 = [vde1(4) vde2(4) vde3(4) vde4(4)]; 
% err_5 = [vde1(5) vde2(5) vde3(5) vde4(5)]; 
%  
% sde = [std(err_1) std(err_2) std(err_3) std(err_4) std(err_5)]; 
figure(j+4) 
plot(ti,vde(j,:),'o') 
% hold on; 
% plot(ti,vde2,'^','Markersize',10,'MarkerFaceColor','b') 
% hold on; 
% plot(ti,vde3,'^','Markersize',10,'MarkerFaceColor','g') 
% hold on; 
% plot(ti,vde4,'^','Markersize',10,'MarkerFaceColor','y') 
hold on; 
plot(t,vd) 
ylabel('% of viable cells') 
xlabel('Time(h)') 
title('Infected cell vs time') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
% axis([0,100,20,100]) 
% legend('Exp1','Exp2','Exp3','Exp4','Simulated') 
% disp(p) 
% figure(3) 
% plot(ti,y(:,2),ti,y(:,3),ti,y(:,4)); 
% legend('Substrate','Oxygen','Carbon di-oxide') 
% set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
% ylabel('Concentration') 
% xlabel('Time(h)'); 
% figure(4) 
% plot(ti,y(:,6),ti,y(:,7)) 
% legend('Virus Conc','Infected CD') 
% set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
% ylabel('Concentration') 
% xlabel('Time(h)'); 
end 
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Infected cell Objective function 

function [rmse] = my_obj_infected(param) 
tspan = [0 24 48 72 96]; 
UC = [460000 590000 650000]; 
y0(2) = param(1); 
y0(3) = param(2); 
y0(4) = 0; 
y0(5) = 0; 
y0(6) = param(3); 
y0(7) = 0; 
Error = 0; 

  
for j=1:3 
    y0(1) = UC(j); 
[t,y] = ode15s(@(t,y)ODEset_infected(t,y,[param(1,1:14) param(15+(j-1)) 

param(15+size(4,1)+(j-1)) param(15+2*size(4,1)+(j-1))]),tspan,y0); 
VCI = [100 90.8 92.5];   
dead = (y(:,5)./(y(:,1)+y(:,7)))*100 ; 
vd = VCI(j) - dead; 
uc =  [460000 750000 940000 970000 950000; 
        590000 1210000 1510000 1470000 1370000; 
        650000 1010000 1220000 1390000 1290000]; 

  
vde = [100 79.55 48.9 17.71 7.03; 
        90.8 85.6 81.3 77.7 59; 
        92.5 78.8 71 68.9 48.9]; 
inf(:,1) = y(:,1) + y(:,7); 

  
sum1=0; 
sum2=0; 
% error = 0; 
for i=1:5 
    sum1= (sum1 +(uc(j,i)-inf(i,1)).^2); 
%     Rsq1 = 1 - sum((uc(j,i)-inf(i,1)).^2)/sum((uc(j,i)-mean(uc)).^2); 
end 
for i=1:5 
    sum2= (sum2 +(vde(j,i)-vd(i,1)).^2)*param(24); 
end 
Error = Error + sum1 + sum2; 
end 
[rmse] = sqrt(Error/15) 
% set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
end 
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Infected cell ODE set 

function dmdt = ODEset_infected(t,y,param) 
Ys = param(4);%1000000; 
Yo2 = param(5);%1000000000; 
Ko2 = param(6);%10; 
Yco2 = param(7);%400000000; 
kla = param(8);%0.144; 
Ostar = param(9);%11; 
Ks = param(10);%12; 
K = param(11);%11; 
Kco2 = param(12);%2000;% frac = 0.3; 
a1 = param(13);%0.000001; 
ka = param(14);%0.02; 

  
mumax = param(15);%0.01; 
kd1 = param(16);%0.0266; 
kstar =  param(17);%0.0002; 

  
mu = mumax*(y(2)/(y(2)+Ks))*(y(3)/(y(3) + Ko2))*(K/(exp(y(4)/Kco2)+1)); 
mu1 = mumax*(y(2)/(y(2) + Ks)); 
kd3 = kstar*log(y(6)); 
if t< 48  
    kd = kd1; 
else 
    kd = kd1+kd3; 
end 

  
dydt(1) =  mu*y(1) - a1*y(6)*y(1) - kd1*y(1); 
dydt(2) = -(mu1)*((y(1)+y(7))/Ys) ;   
dydt(3) = kla*(Ostar - y(3)) - (y(1)+y(7))/Yo2;                         
dydt(4) = (y(1)+y(7))/Yco2 ; 
dydt(5) = kd1*y(1) + kd*y(7); 
dydt(6) = ka*y(7) - a1*y(1)*y(6); 
dydt(7) = a1*(y(1)*y(6)) - kd*y(7); 
dmdt = dydt'; 
end 
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Infection growth with passage 

function Infected_passage 
close all; 
clear all; 
clc; 
y0(1) = 535000;%--cell  
y0(2) = 1000;%---substrate 
y0(3) = 1000;%---oxygen 
y0(4) = 0;%---co2 
y0(5) = 0.063*y0(1);%---dead cells 
y0(6) = 53500;%----virus 
y0(7) = 0;%----inf cells 
xfE = [];  xfB = []; 
passages = 27; time = 0; t0 = 0; tf = 48; 
param(1) = 0.007; 
param(2) = 0.0034; 
param(3) = 0.2; 
for i = 1:passages 
[~,y] = ode45(@(t,y)ODEset_infected(t,y,param),[t0 tf],y0); 
% % y(end,:) 
param(1) = 1.02*param(1); 
% param(2) = 1.02*param(2); 
% param(3) = 1.01*param(3); 
if i<5 
    y0(1) = 535000; 
    y0(5) = 0.066*y0(1); 
elseif i>= 5 && i<15 
    y0(1) = 523330; 
    y0(5) = 0.096*y0(1); 
else 
    y0(1) = 430000; 
    y0(5) = 0.07*y0(1); 
end 
y0 = [y0(1) 1000 1000 0 y0(5) y0(1)/10 0] + 0.1*y(end,:) ; 
% y0 = [(535000+0.1*y(end,:)) 1000, 1000, 0 (0.1*y(end,5)) (0.1*y(end,6)) 

0.1*y(end,7)]; 
t0 = tf; tf = tf + 48; 
time = time + 48; 
% xcumE = [xcumE [x(1:end,1)]']; 
% xcumB = [xcumB [x(1:end,2)]']; 
vd = 100 - (y(end,5)./(y(end,1)+y(end,7)))*100 ; 
xfE = [xfE (y(end,1)+y(end,7))]; 
xfB = [xfB vd]; 
% sz = size(xfE); 
% disp(sz); 
end 
% inf_pass = [1213330 1750000 1670000 1510000]; 
% via_pass = [56 66.2 66 57]; 
pass = [1 5 15 27]; 
Bar_y = [940000 1510000 1030000 1220000 
         1510000 1350000 1240000 1250000 
         1030000 1240000 1680000 1100000 
         1220000 1250000 1630000 1430000]; 
Bar_y = [xfE(1,1) 1030000 
         xfE(1,5) 1240000 
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         xfE(1,15) 1680000 
         xfE(1,27) 1630000 ]; 
% Bar_y = [xfE(1,1) 1040000 1430000 1300000 1450000 
%          xfE(1,5) 1010000 1350000 1240000 1250000 
%          xfE(1,15) 1080000 1750000 1780000 1700000 
%          xfE(1,27) 1160000 1330000 1420000 1540000]; 

           
bAr_y = [48.9 58.87 62.12 68.29 
         81.3 82.3 81.5 86.5 
         67.4 74.5 80.4 75.5 
         71 75.2 79.2 80.6]; 
bAr_y = [xfB(1,1) 62.12 
         xfB(1,5) 81.5 
         xfB(1,15) 80.4 
         xfB(1,27) 79.2]; 
% bAr_y = [xfB(1,1) 46.01 78.7 76.3 73.9 
%          xfB(1,5) 76.15 81.7 79.1 81 
%          xfB(1,15) 70.02 82.9 81.6 78.4 
%          xfB(1,27) 60.78 71.9 79.3 65.6]; 

  

            
figure(1) 
bb = bar(pass,Bar_y,'g'); 
bb(1).FaceColor = 'k'; 
hold on; 
% plot(pass,inf_pass); 
legend('Simulated','Exp3','Exp2','Exp3','Exp4','location','south') 
xlabel('passage');title('Infected Cell with passage') 
ylabel('Cell Density') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 

  
% hold on; 
% axis([0,28,0,2000000]) 

  
figure(2) 
bb2 = bar(pass,bAr_y,'g'); 
bb2(1).FaceColor = 'k'; 
hold on; 
% bar(pass,via_pass); 
xlabel('passage');title('Infected Cell with passage') 
ylabel('Percentage of Viable cells') 
legend('Simulated','Exp3','Exp2','Exp3','Exp4','location','south') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 

  
% hold on; 
% axis([0,28,0,100]) 
end 

  

  
function dmdt = ODEset_infected(t,y,param) 
Ys = 1000000; 
Yo2 = 1000000000; 
Ko2 = 69.36; 
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Yco2 = 400000000; 
kla = 0.1129; 
Ostar = 21.3356; 
Ks = 79.31; 
K = 9; 
Kco2 = 1999.9; 
a1 = 0.0000001; 
ka = 0.1659; 

  
mumax = param(1); 
kd1 = param(2);%0.0266; 
kstar =  param(3);%0.0002; 

  
mu = mumax*(y(2)/(y(2)+Ks))*(y(3)/(y(3) + Ko2))*(K/(exp(y(4)/Kco2)+1)); 
mu1 = mumax*(y(2)/(y(2) + Ks)); 
kd3 = kstar*log(y(6)); 
if t< 48  
    kd = kd1; 
else 
    kd = kd1+kd3; 
end 

  
dydt(1) =  mu*y(1) - a1*y(6)*y(1) - kd1*y(1); 
dydt(2) = -(mu1)*((y(1)+y(7))/Ys) ;   
dydt(3) = kla*(Ostar - y(3)) - (y(1)+y(7))/Yo2;                         
dydt(4) = (y(1)+y(7))/Yco2 ; 
dydt(5) = kd1*y(1) + kd*y(7); 
dydt(6) = ka*y(7) - a1*y(1)*y(6); 
dydt(7) = mu*y(7) + a1*(y(1)*y(6)) - kd*y(7); 
dmdt = dydt'; 
end 
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Complex model: main file 

clc; 
close all; 
clear all; 
global t 
% lb=zeros(1,14); 
p0 = [5350 535 1000 1200 0.00002 30 100 0.912 500 15 120000 800000 0.00004 

2.5 0.009263 4.3 1 0.01 0.076 15 0.01 1.27 0.001 0.5 10 18 1.09 0.002 0.001]; 
lb = [1000 100 500 600 0.00001 20 50 0.5 200 10 100000 500000 0.00001 1.5 

0.005263 1.43 0.5 0.008 0.03 5 0.0006 0.5 0.0008 0.3 8 15 1 0.001 0.0008]; 
ub = [53500 5350 5000 2000 0.00005 100 300 1.5 1000 30 400000 1000000 0.00008 

5 0.02 10 2 0.05 0.1 40 0.05 2.7 0.002 1 12 20 1.11 0.005 0.005]; 
p = fmincon(@Obj_Complex,p0,[],[],[],[],lb,ub); 
tspan = [0 96]; 
UC = [460000 590000 650000]; 
y0(2:62) = 0; 
y0(63) = p(1); 
y0(64) = p(2); 
y0(65) = 0; 
y0(66) = p(3); 
y0(67) = p(4); 
y0(68:75) = 0; 
VCI = [100 90.8 92.5];  
for j=1:3 
    y0(1) = UC(j); 
[t,y] = ode23(@(t,y)ODEset_complex(t,y,p),tspan,y0); 
% vd(:,1) = 100 - (y(:,65)./(y(:,1)+y(:,2)+f+g))*100 ; 
ti = [0 24 48 72 96]; 
f = 0; 
g = 0; 
 for i = 1:30 
 d = y(:,i+2); 
 f = f + d; 
 e = y(:,i+32); 
 g = g + e; 
 end 
poly = ((f + g)./(f+g+y(:,1)+y(:,2)))*100; 
figure(j) 
plot(t,(y(:,1)+y(:,2)+f+g));%,t,y(:,1),t,y(:,2),t,f,t,g); 
% legend('Cell D','CU','CD','CS','CB') 
% legends_a{j} = char(['ws=',num2str(ws)]); %,' max: ',num2str(Max_c)]); 
% legend(char(legends_a),'location','best') 
% hold on; 
% disp(j); 
% end 
hold on; 
uc =  [460000 750000 940000 950000 930000; 
        590000 1210000 1470000 1510000 1370000; 
        650000 1010000 1220000 1390000 1290000]; 

  
vde = [100 79.55 48.9 17.71 7.03; 
        90.8 85.6 81.3 77.7 59; 
        92.5 78.8 71 68.9 48.9];  
dead = (y(:,5)./(y(:,1)+y(:,7)))*100 ; 
vd = VCI(j) - dead; 
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% cell =  [535000 970000 1175000 1220000 1225000]; 
% uc1 =  [535000 970000 1175000 1240000 1225000]; 
% uc2 =  [523330 1190000 1280000 1270000 1410000]; 
% uc3 =  [560000 1086670 1253330 1310000 1310000]; 
% uc4 =  [630000 1000000 1430000 1340000 1510000]; 
% plot(ti, cell,'O'); 
plot(ti,uc(j,:),'o') 
ylabel('Cell Density') 
xlabel('Time(h)') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
title('Infected cell vs time') 
% hold on; 
% plot(ti,uc2,'d','Markersize',10,'MarkerFaceColor','r') 
% hold on; 
% plot(ti,uc3,'d','Markersize',10,'MarkerFaceColor','y') 
% hold on; 
% plot(ti,uc4,'d','Markersize',10,'MarkerFaceColor','g') 
figure(j+5) 
c_poly_E1 =[92.95 92.66 91.48]; 
ti2 =  [72 96 120]; 
plot(ti2,c_poly_E1,'d'); 
hold on; 
plot(t,poly); 
hold on; 
ylabel('% of polyhedra/cell') 
xlabel('Time(h)') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
title('Infected cell vs time') 

  
figure(j+10) 
plot(t,vd); 
hold on; 
plot(ti,vde(j,:),'o') 
ylabel('Cell Viabaility') 
xlabel('Time(h)') 
set(gca,'FontName','Times New 

Roman','Fontsize',12,'FontWeight','bold','linewidth',3) 
title('Infected cell vs time') 
end 
% figure(4) 
% plot(t,y(:,66),t,y(:,67),t,y(:,68)) 
% legend('Substrate','O2','CO2') 
% axis([0,120,0,1200]) 
%  
% figure(5) 
% plot(t,y(:,69),t,y(:,70),t,y(:,71),t,y(:,72)) 
% legend('DNA','RNAe','RNAl','RNAvl') 
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Infected cell Objective function 

 

function  [rmse] = Obj_Complex(param)     
tspan = [0 24 48 72 96]; 
UC = [460000 590000 650000]; 
y0(2:62) = 0; 
y0(63) = param(1); 
y0(64) = param(2); 
y0(65) = 0; 
y0(66) = param(3); 
y0(67) = param(4); 
y0(68:75) = 0; 
VCI = [100 90.8 92.5];  
Error = 0; 
for j=1:3 
    y0(1) = UC(j); 
[t,y] = ode23(@(t,y)ODEset_complex(t,y,param), tspan, y0); 
f = 0; 
g = 0; 
 for i = 1:30 
 d = y(:,i+2); 
 f = f + d; 
 e = y(:,i+32); 
 g = g + e; 
 end  
poly(:,1) = ((f + g)./(f+g+y(:,1)+y(:,2)))*100;  
dead = (y(:,5)./(y(:,1)+y(:,7)))*100 ; 
vd = VCI(j) - dead; 
uc =  [460000 750000 940000 970000 950000; 
        590000 1210000 1510000 1470000 1370000; 
        650000 1010000 1220000 1390000 1290000]; 

  
vde = [100 79.55 48.9 17.71 7.03; 
        90.8 85.6 81.3 77.7 59; 
        92.5 78.8 71 68.9 48.9]; 
% c_poly_E1 =[73.64 76.53 69.10]; 
% c_poly_E1 = [92.95 92.66 91.48]; 
inf(:,1) = y(:,1) + y(:,2) + f + g; 
sum1=0; 
sum2=0; 
% error = 0; 
for i=1:5 
    sum1= sum1 + (uc(j,i)-inf(i,1))^2; 
end 
for i=1:5 
    sum2= (sum2 + (vde(j,i)-vd(i,1))^2); 
end 
Error = sum1+sum2; 
end 
[rmse] = sqrt((Error)/15) 

  
End 
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Complex model ODE set 

 

function dmdt = ODEset_complex(t,y,param) 
a= param(5);%0.00002; 
b= param(6);%30; 
Ks = param(7);%100; 
K = param(8);%0.912; 
Ko2 = param(9);%500; 
Kco2 = param(10);%15; 
Ys = param(11);%120000; 
Yo2 = param(12);%800000; 
kla = param(13);%0.00004; 
kdna = param(14);%2.5; 
kdeg = param(15);%0.009263; 
krna = param(16);%4.3; 
Kpoly = param(17);%1; 
Kfp = param(18);%0.01; 
kpe = param(19);%0.076; 
Krna = param(20);%15; 
ktrans = param(21);%0.01; 
Ostar = param(22);%1.27; 
alpha = param(23);%0.0001; 
beta = param(24);%0.5; 

  
mumax = param(27);%1.1; 
kd1 = param(28);%0.002; 
kstar = param(29);%0.001; 

  
mu1 = mumax*(y(66)/(y(66) + Ks)); 
O2 = (y(67)/(y(67) + Ko2)); 
CO2 = (K/(y(68)+ Kco2)); 
mu = mu1*O2*CO2; 
for i = 1:30 
    if i <=param(25) 
        z(i) = 1; 
    else  
        z(i) = 0; 
    end 
end 
for i = 1:30 
    if i <=param(26) 
        p(i) = 0; 
    else  
        p(i) = alpha*exp(beta*(i-param(26))); 
    end 
end 
kd3 = kstar*log(y(69)); 
if t< 24  
    kd = kd1; 
else 
    kd = kd1+kd3; 
end 
dydt(1) = mu*y(1) - a*(y(63)+y(64))*y(1) - kd1*y(1); 
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dydt(2) = mu*y(2) + a*y(64)*y(1) -a*y(63)*y(2) - kd*y(2); 
dydt(3) = a*y(63)*y(1) + ktrans*y(75) - y(3) - y(3)*p(1) -a*y(3)*y(64)*z(1)- 

kd*y(3); 
for i = 4:31 
    dydt(i) = y(i-1) + ktrans*y(75) - y(i) -y(i)*p(i-2) - a*y(i)*y(64)*z(i-2) 

- kd*y(i); 
end 
dydt(32) = y(31)+ ktrans*y(75) - y(32)*p(30) - a*y(32)*y(64)*z(30) - 

kd*y(32); 
sumes = 0; 
for i = 1:30 
v = y(i+2)*z(i); 
sumes = sumes + v; 
end 
dydt(33) = ktrans*y(75)+ a*y(64)*sumes +a*y(63)*y(2)- y(33) - y(33)*p(1) - 

kd*y(33); 
for i = 34:61 
    dydt(i) =  ktrans*y(75)+ (y(i-1) - y(i)) - y(i)*p(i-32) - kd*y(i); 
end 
dydt(62) = ktrans*y(75) + y(61) - y(62)*p(30)- kd*y(62); 
r =0; 
s= 0; 
for i = 1:30 
    v = y(i+2)*p(i); 
    r = r + v; 
    x = y(i+32)*p(i); 
    s = s + x; 
end 

  
dydt(63) = b*r*y(73) - a*y(63)*sum(y(1:62)); 
dydt(64) = b*s*y(73) - a*y(64)*sum(y(1:62)); 
dydt(65) = kd1*y(1) + kd*sum(y(2:62)); 
dydt(66) = -mu1*((sum(y(1:62))/Ys));   
dydt(67) = kla*(Ostar - y(67)) - ((sum(y(1:62))/Yo2)) ;                         
dydt(68) = ((sum(y(1:62))/Yo2)); 
     if  6< t && t <= 20 
         f1 = 1 - ((t-6)/14); 
     else 
         f1 = 0; 
     end 
     if 1<t && t <= 6 
         f2 = 1 -((t-1)/5); 
     else  
         f2 = 0; 
     end 
     if 6<t && t <= 15 
         f3 = 1 -((t-6)/9); 
     else  
         f3 = 0; 
     end 
     if 15<t && t <= 48 
         f4 = 1 -((t-15)/33); 
     else  
         f4 = 0; 
     end 
dydt(69) = f1*a*y(63) + kdna*y(69)*f1 - kdeg*y(69); 
dydt(70) = f2*krna*y(63) - kdeg*y(70);                           %RNA early 
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dydt(71) = f3*krna*y(69) - kdeg*y(71);                           %RNA late 
dydt(72) = f4*krna*y(69) - kdeg*y(72); 
dydt(73) = f2*kpe*(y(70)/(y(70) + Krna))*sum(y(2:62)) - kdeg*y(73);              

%gp64 protein 
dydt(74) = f3*kpe*(y(71)/(y(71) + Krna))*(1/(Kfp + y(74)))*sum(y(2:62)) - 

kdeg*y(74);     %fp25k protein       
dydt(75) = f4*kpe*(y(72)/(y(72) + Krna))*(y(74)/(y(74)+Kpoly))*sum(y(2:62))- 

kdeg*y(75); %ODE protein 
dmdt = dydt'; 
end 

 

 

 

 

 

 

 

 

 


