
Texturizing PPCG : Supporting Texture Memory in
a Polyhedral Compiler

*Abhishek Patwardhan
Department of Computer Science and Engineering

IIT Hyderabad, India
Email: cs15mtech11015@iith.ac.in

Ramakrishna Upadrasta
Department of Computer Science and Engineering

IIT Hyderabad, India
Email: ramakrishna@iith.ac.in

Abstract—In this paper, we discuss techniques to transform
sequential programs to texture/surface memory optimized CUDA
programs. We achieve this by using PPCG, an automatic paral-
lelizing compiler based on the Polyhedral model. We implemented
a static analysis in PPCG which validates the semantics of the
texturized transformed program. Depending on the results of
the analysis, our algorithm chooses to use texture and/or surface
memory, and alters the Abstract Syntax Tree accordingly. We
also modified the code-generation phase of PPCG to take care
of various subtleties. We evaluated the texturization algorithm
on the PolyBench (4.2.1 beta) benchmark and observed up to
1.6x speedup with a geometric mean of 1.103X. The title and
at many places, the paper uses term Texture memory. But, the
optimizations are for Texture and Surface memory.

I. INTRODUCTION

The advancements made from the traditional processor ar-
chitecture to multi-core, many-core machines after the collapse
of Moores law are greatly improving the execution times
of various applications. Also, special hardware accelerators
like GPUs can be used to speedup computations. Due to
complexities involved in writing correct and efficient parallel
programs on such wide variety of architectures, new compiler
technologies are also being proposed which automatically
parallelize sequential programs provided as an input to them.

Modern GPU architectures have multiple levels of memory
hierarchy. Typically, they also support texture and surface
memory, both of which are optimized for array accesses which
exhibit spatial locality. A spatial locality is a special type of
locality of reference such that, if a program accesses some
memory location, then it is very likely that subsequently
it would access memory locations that are located in the
neighbourhood of the current access location.

With the current widespread use of GPGPU computing,
exploiting the usage of these various varieties of memories
for applications such as Linear Algebra kernels, Jacobi, Heat-
3d equations are also equally important.

Polyhedral model is one of the powerful formalism to repre-
sent, analyze and transform programs so as to run efficiently on
various modern heterogeneous parallel architectures. PPCG[1]
is an open-source automatic parallelizer based on Polyhedral
model which transforms input C programs into equivalent
CUDA-C/OpenCL programs. PPCG not only extracts and
parallelizes the input code but also applies transformations to

represent data efficiently onto GPU global memory, shared
memory, and registers.

In this paper, we discuss techniques used to augment PPCG
which are useful in generating texture memory optimized
CUDA code. Remaining part of this paper is organized as
follows : First, in section FIXME, we introduce polyhedral
model, and then in section FIXME we give brief overview
of PPCG. In section FIXME we discuss various aspects of
texture and surface memory. In section FIXME we discuss
design of texturized PPCG and then in section FIXME we
analyze performance and finally in section FIXME we state
future work and provide our conclusions.

II. POLYHEDRAL MODEL

The Polyhedral model focuses on compute-intensive parts
of a program and hence targets loop nests. Polyhedral model
represents d-deep loop nest appearing in input program as d-
dimensional polyhedron in euclidean space. A valid integer
point inside a polyhedron represents dynamic instance of
loop body. As per model terminology, the compute intensive
parts of a program are called Static-Control Part of program
(SCoP). Static control parts are essentially statically analyz-
able because of involvement of affine-expressions for loop
bounds,conditionals,array accesses. Once SCoPs are extracted
from source program, array data-flow analysis??REF?? is
performed. The Analysis detects two iterations of a loop
(contained inside a SCoP), both of which access the same
array element and at least one iteration writes to that array
element.Once dependences are extracted, program transfor-
mations must respect them so as to preserve semantics. The
scheduler applies various affine transformations onto SCoP
which essentially exposes parallelism and improves data local-
ity. Finally, the transformed SCoPs are fed as input to code-
generator which replaces old SCoPs with transformed SCoPs.
The problem of generating code from Polyhedron wrapped
within a SCoP reduces to generating a loop nest which visits
all valid integer points within it [2].

III. PPCG

PPCG detects SCoPs from input C programs by using
Polyhedral Extraction Tool (PET) [3]. First, PET internally
invokes Clang (Open source C frontend) in order to parse input
program. PET represents SCoPs in the form of tree referenced

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/159216855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

hereafter as PET-tree. PPCG performs dependence analysis by
using Integer Set Library[4] (ISL) which is the library to rep-
resent and manipulate polyhedral integer sets. A dependence
analysis implemented in ISL is a classic Feautriers[5] depen-
dence analysis. PPCG implements program transformations
by performing equivalent affine transformations over poly-
hedral integer sets. The scheduling/transformation algorithm
implemented inside ISL is the PLuTo[6] algorithm. The vital
transformation applied are loop-tiling and loop-permutation
both of which help in exposing parallelism and improving
data locality. In addition, PPCG applies transformations so
as to exploit usage of shared memory, array privatization
whenever possible. The transformed polyhedral set is then
fed to ISL-code-gen module which generates AST with which
CUDA/OpenCL kernel code gets generated. Host-code gener-
ator handles data-transfer to/from CPU to GPU, launching of
kernel, array allocation/deallocation on global memory.

IV. TEXTURE AND SURFACE MEMORY

On GPU architectures, Texture and Surface memories are
nothing but special type of caches with a sophisticated hard-
wired address translation mechanism. The central idea behind
texture/surface memory is that instead of flattening 2-D or 3-
D arrays to have linear access mechanisms, the linearization
is done in a way that preserves the original neighborhood of
array elements as it would be in 2-D or 3-D space. Doing so
enables to cache spatial neighbor elements when a particular
array element is accessed.

A. Interpolation mechanism

A natural way to preserve neighborhood of array elements
after mapping to linear memory is by approximating space
with space-filling curve. Especially Z-curve is widely used
for approximation. The specialty of Z-curves lies inside its
simplicity of interpolation (which is required in address trans-
lation). The interpolation for Z-curve involves application
of boolean and shift operations, which can be effectively
implemented as a circuit to make it faster.

B. Factors contributing to performance improvement

The two factors contributing to performance improvement
by using textures are mentioned below :

• Texture cache is designed in such a way spatial neighbors
are located close in linear memory.

• Texture caches are separate from on-chip caches,thereby
effectively reducing global memory traffic.

C. Read-Write coherency

An array cannot be written to once it is stored in texture
memory. So a major precondition to store an array inside a
texture is that it must be read-only. This precondition is too
restrictive. However,still there is a work-around for this as
mentioned below:

• Create a global memory copy of writable array stored in
texture.

• All kernel reads for that array must be from texture.

• All writes to that array must be performed to its global
memory copy.

Now this allows a kernel to write to textures safely but with
one subtle condition. An updated value must not be read by
any of the thread inside kernel.The reason behind is that the
updated copy of an array is residing onto global memory and
array is read through texture cache. Therefore, it might lead to
inconsistent results. This is termed as Read-Write coherency.

D. copy avoidance through cudasurfaces

Beyond R-W coherency, above strategy has another draw-
back. Consider a scenario, where array is stored in texture
memory and kernel may write to it. So a copy must be created
on to global memory which corresponds to updated array. Now
assume subsequently a new kernel is required to be launched
and it needs to read those updated values through texture.
Hence, it is required to copy updated array residing into the
global memory back to the one stored on texture memory. In
worst case, kernel may just update a single array entry but still
it is necessary to copy entire array due to lack of programming
APIs available in CUDA for accessing cuda-array. It turned
out that this in itself was a major performance bottleneck.
So NVIDIA GPU architectures with Compute capability >
2.0 supports writing to textures through cudasurfaces. But it
should be noted that, Read write coherency is applicable to
CUDA-surfaces.

V. TEXTURIZING PPCG

In this section, we discuss implementation aspects of gen-
erating texturized CUDA code through PPCG. As a part of
design, we exposed following options so as to have flexibility
and backward compatibility.

• Texture Pragma: Annotation for candidate arrays to con-
sider to store into texture/surfaces.

• -no-surface memory flag: In case if target GPU have
compute capability < 2

Our implementation performs analysis to check for Read-
Write coherency. Based on analysis, a decision algorithm
chooses to store array into texture or surface memory. The
Code-generator takes care of transforming kernel AST such
that appropriate texture/surface APIs for CUDA are invoked.
We discuss each of these phases in the subsequent subsection.

A. Static analysis

In order to preserve semantics of original program, it is
necessary not to store arrays into texture/surface memory for
whom updated values are likely to be read again within same
kernel. Since, GPU programs are Single Instructions Multiple
Data (SIMD), it suffices to ensure that array is not accessed in
write followed by Read(W-R) order.So analysis looks for all
array access inside a kernel by traversing tree and if it finds W-
R order for some array, then analysis invalidates that array. We
do static analysis separately for each kernel.The texture cache
gets refreshed each time when new kernel is launched, thereby
values updated by previous kernel would be read consistently
in next kernel launch and hence can be read safely.

Nonestart Read

Write

LRead

Invalid

W

!L&R

L&R

L&R

!L&R

W

R

W

W&L

R&LW&!L

R&!L

R,W

W:Write access
R:Read access
L:Access inside loop/s

Fig. 1. Automata showing transitions of new state

A subtle point while traversing tree is that children of a node
must be processed in right to left order. The reason in doing
so ensures processing of rvalue nodes first and then lvalue in
assignment statement.

Another small caveat in static analysis is that if a loop
contains Read followed by Write (R-W) order for some array,
then it is likely to cause R-W coherency. Because of implicit
back-edge for a loop, (R-W) order can effectively result in :
R-W-R-W-R-W,.... Hence, it is needed to identify R-W order
when access is surrounded within a loop nest.

A pseudo-code which performs static analysis is given in
Algorithm 1. And corresponding automata which decides how
new state gets computed within Algorithm 1 is shown in figure
??FIXME??.

Algorithm 1 Static analysis
Require: PET tree T , Candidate arrays C

1: for each Kernel K ∈ T . kernels do
2: ∀ array A ∈ C state(A,K) ← None
3: for each Array access a ∈ K do
4: if array name(a) /∈ C continue end if
5: old state ← state(array name(a),K)
6: new state ← get new state(old state, a.is write,

a.is inside loop)
7: state(array name(a),K) ← new state
8: end for
9: end for

B. Decision for using texture or surfaces

For all arrays within each SCoP, a single decision is made
about storing them in texture/surface.In this way, texture setup
time is avoided during two successive kernel launch belonging
to the same SCoP.

Out of all candidate arrays, those end-up being in invalid
state arent considered further. If array is not Read-Only within
a SCoP then we prefer to store it in surface memory. However,

if –no-surface-memory flag is set then we store array into
texture, and perform writes onto copy which is residing on
global memory.In some cases, PPCG automatically does array
linearization so as to achieve coalesced access within a warp.
In such cases, we prefer to use linear texture memory over
cudaarray bound texture. The decision algorithm is provided
in Algorithm 2.

Algorithm 2 Decide texture or surface
Require: List of candidate arrays : C
Require: Compute capability < 2 : ccpFlag

1: for each Candidate array A ∈ C do
2: ∃ kernel k (state(k,A)=invalid)?mark(A,noTex,noSurf)
3: (A.is linearized) ? mark(A,Tex,noSurf)
4: (A.is Read only) ? mark(A,Tex,noSurf)
5: (ccpFlag) ? mark(A,Tex,noSurf) : mark(A,NoTex,Surf)
6: end for

C. Code generation

A code-generation phase consists of augmenting PPCG
CUDA code-generator so as to take care of following :

• Setup texture,surface references. (Host code-generator)
• Access device arrays through texture/surface references.

(kernel code-generator)

1) Host code generation: Host code generation is relatively
easy. For each array, based on decision taken by Algorithm 2,
we generate a code which

• Declares a texture/surface reference.
• Declares a channel format.
• Declares and allocates cudaArray/Linear texture.
• Copies array from CPU memory to cudaArray.
• Binds cudaArray to texture/surface reference.
• Copies array back from surface memory to CPU memory

after all kernels within a SCoP are called.
• Unbinds texture references.

In addition to that, in case if –no-surface-memory flag is
provided then after end of kernel launch statement, it is needed
to copy updated array values from global memory copy to the
cudaarray bound to texture reference. This ensures subsequent
kernels read correct values.We generate such copy statements
only for the arrays that are likely to be modified by a kernel.
This information is already encoded within a data structure
which stores static analysis result.

2) Kernel code generation: For kernel code generation AST
representing kernel code is traversed and altered based on
whether array is in texture or surface and current access is
read or write.

If array is residing in texture, then all read accesses for
array are replaced with cuda texture read function call. If
array is decided to be stored on surface memory then surface
Read/Write operation is performed through temporary variable
so as to adhere to syntax. An algorithm transforming kernel
AST is shown in Algorithm ??FIXME??

Algorithm 3 Transform AST representing kernel code
Require: Set of kernel AST’s S

1: for each Kernel tree T ∈ S do
2: for each array access A ∈ T do
3: if array(A).in texture then
4: if A.isRead then
5: transform to texture read call(A)
6: else
7: Do Nothing.
8: end if
9: else if array(A).in surface then

10: if A.isRead then
11: tempVar = new temp()
12: gen stmt(tempVar=gen surface read(A.indices))
13: transform access to scalar read(A,tempVar)
14: else
15: tempVar = new temp()
16: gen stmt(tempVar= get Rvalue(A))
17: generate surface write(tempVar,A.indices)
18: end if
19: end if
20: end for
21: end for

VI. PERFORMANCE EVALUATION

We evaluated texturized version of PPCG onto PolyBench
beta 4.1 which is widely used benchmark in Polyhedral
community. For experimentation purpose, we disabled usage
of shared memory, array privatization and array linearization.

We performed all experiments onto machine with following
specification ???FIXME??

We inspected PolyBench kernels for two metrics: correct-
ness and execution time. We evaluated correctness by running
each benchmark with small enough data set size and com-
paring array dumps of texturized version with non-texturized
version. For all benchmarks, we found that semantics are
preserved, thanks to static analysis.

For recording execution times, all benchmarks were set to
their default data set size. Our experimental procedure for
determining execution time of each program is given below:

• Run each benchmark five times. Record execution time.
• Eliminate two extremal execution times and verify that

deviation for remaining is less than 5%.If not repeat
experiment.

• Repeat above steps thrice.
• Take median of these three values.
As a baseline to compare execution times, we recorded

execution time of CUDA codes generated by PPCG which
doesn’t use texture and surface memory.

The graphs comparing execution time for texturized version
versus non-texturized version is shown in Figure 2. The
corresponding speedup plot is shown in Figure 3

For few benchmarks, we observed that execution times
were numerically too small. So it was very likely, that

ge
m

m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ge
m

ve
r

ge
su

m
m

v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

du
rb

in

gr
am

−
sc

h.

tr
is

ol
v

de
ric

hi
e

fd
td

−
2d

he
at

−
3d

ja
co

bi
−

1d

ja
co

bi
−

2d

E
xe

cu
tio

n
tim

e

0

2

4

6

8

10
PPCG
Texturized PPCG

Fig. 2. Program execution time

speedup obtained by using texture/surface memory would get
compensated because of extra overhead involved in texture
binding/unbinding.Hence, we followed above mentioned ex-
perimental procedure and recorded execution times for com-
putation section of code. We discovered that it was worth
doing this exercise, as 4 benchmarks were falling into this
category. The speedup obtained by CUDA kernels is illustrated
graphically in Figure 4.

ge
m

m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ge
m

ve
r

ge
su

m
m

v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

du
rb

in

gr
am

−
sc

h.

tr
is

ol
v

de
ric

hi
e

fd
td

−
2d

he
at

−
3d

ja
co

bi
−

1d

ja
co

bi
−

2d

S
pe

ed
up

0.0

0.5

1.0

1.5

2.0

0.99 1.01 1.01 1.012 0.99

1.12

1.02

0.97 0.99

1.09 1.1
1.14

0.99

0.77
0.8

0.9

1.01
0.97

1.6

0.96

0.7

Fig. 3. Speedup

Out of 28 programs, 7 programs were rejected after static
analysis and were not texturized. Out of remaining 21 pro-
grams, 10 programs showed direct improvement in their exe-
cution time. In all 14 programs showed improvement in their
kernel execution time. Average speedup observed was 1.114.

Some observations from the evaluations are summarized
below :

ge
m

m

2m
m

3m
m

at
ax

bi
cg

do
itg

en m
vt

ge
m

ve
r

ge
su

m
m

v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

du
rb

in

gr
am

−
sc

h.

tr
is

ol
v

de
ric

hi
e

fd
td

−
2d

he
at

−
3d

ja
co

bi
−

1d

ja
co

bi
−

2d

S
pe

ed
up

 (
C

U
D

A
 k

er
ne

l)

0.0

0.5

1.0

1.5

2.0

1.15

1.01 1.01

1.06
1.1

1.13

1.05
1.11

1.37

1.1 1.1
1.15

0.99

0.63

0.79

0.69

1.2

0.98

1.81

0.79

0.69

Fig. 4. Speedup for kernels

• Many of linear algebra kernels showed speedup in tex-
turized version.

• 3-D arrays are best candidates to store into texture and
surface memory provided access pattern suites.

• Even though jacobi-2d kernel exhibit spatial locality, but
only a single array element is reused by two neighboring
thread and hence performance was not improved. Similar
is the case for jacobi-1d kernel.

• Surface memory must be used sparingly.

VII. CONCLUSION

We proposed a method to support texture memory and
surface memory in the polyhedral compiler PPCG. To the
best of our knowledge, this is the first attempt to automatically
generate texturized CUDA code, beginning from a C program.

We mainly addressed the problem of generating texturized
CUDA code which ensures preservation of the semantics of
the input program by performing static analysis. We evaluated
the generated code against the non-texturized CUDA code
for various applications and have shown small, but significant
speedup for programs belonging to domains other than image
processing. Thus, we believe, that our contribution is towards
increasing the scope of texture and surface memories and to
the bigger goal of effective GPGPU computing.

VIII. FUTURE WORK

We believe that much of potential of texture and surface
memories is yet to be explored. In future we would like to
come up with a cost model which guides usage of the texture
and surface memories based on the dependence analysis in-
formation provided by polyhedral compilers like PPCG. Also,
our current work focuses on CUDA code generation, but, we
would like to exploit architectures of other GPU vendors like
AMD, and support them through OpenCL. We also believe that
more sophisticated static analyses could be performed which
exposes cases where R-W coherency does not hold. We believe

that the basic infrastructure that we have developed provides
an ideal platform for exploring these important aspects.

ACKNOWLEDGMENT

The authors would like to thank Dr. Sven Verdoolaege, Dr.
Michael Kruse, Prof (Dr). Albert Cohen for their motivation,
feedback, and guidance.

REFERENCES

[1] S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gómez,
C. Tenllado, and F. Catthoor, “Polyhedral parallel code
generation for cuda,” ACM Trans. Archit. Code Optim.,
vol. 9, no. 4, pp. 54:1–54:23, Jan. 2013.

[2] C. Bastoul, “Code generation in the polyhedral model
is easier than you think,” in Proceedings of the 13th
International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 7–16. [Online].
Available: http://dx.doi.org/10.1109/PACT.2004.11

[3] S. Verdoolaege and T. Grosser, “Polyhedral extraction
tool,” in Second Int. Workshop on Polyhedral Compilation
Techniques (IMPACT’12), Paris, France, Jan. 2012.

[4] S. Verdoolaege, “isl: An integer set library for the poly-
hedral model,” in Mathematical Software - ICMS 2010,
ser. Lecture Notes in Computer Science, K. Fukuda,
J. Hoeven, M. Joswig, and N. Takayama, Eds. Springer,
2010, vol. 6327, pp. 299–302.

[5] P. Feautrier, “Dataflow analysis of array and
scalar references,” International Journal of Parallel
Programming, vol. 20, no. 1, pp. 23–53, 1991. [Online].
Available: http://dx.doi.org/10.1007/BF01407931

[6] U. Bondhugula, A. Hartono, J. Ramanujam, and
P. Sadayappan, “A practical automatic polyhedral
parallelizer and locality optimizer,” in Proceedings
of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’08.
New York, NY, USA: ACM, 2008, pp. 101–113. [Online].
Available: http://doi.acm.org/10.1145/1375581.1375595

