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Abstract

Cyber Physical Systems are more vulnerable to attacks than the conventional systems because of

the integrated nature of the cyber as well as physical environment.Replay attacks and False data

injection attacks are in particular harmful because of their deceptive nature to traditional detectors.

A popular traditional detector is Chi Square Detector which detects based on the statistics of devi-

ations of the residual i.e. difference of observed measurement and estimated measurement. Since the

statistics is not changed in the attacks mentioned above, Chi square detector fails to detect these.

However, the Cosine detector proposed by [1] also fails in detecting these attacks in control system

scenario. So in this work, we will show why the cosine detector fails to detect them and design a

method to improve the detection rate of the Cosine Detector.
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Chapter 1

Introduction to False Data

Injection Attacks

Over the past few decades, there has been a increasing concern over the reliability and security

of the cyber physical systems (CPS). This concern can be attributed to the potential of the cyber

physical systems that can change the present energy industry in terms of performance and economy.

The Stuxnet attacks and American blackout have demonstrated the vulnerable nature of the SCADA

systems (a type of CPS) that created a huge impact on economy.The term cyber-physical systems

(CPS) refers to a new generation of systems with integrated computational and physical capabilities

that can interact with humans through many new modalities [2] . These CPS have applications in

the area of military, aerospace, autonomous systems etc. Example CPS’s are the energy systems

such as smart grids and the autonomous process control systems that can communicate.

Since the cyber Physical systems physically interact with the real world, securing them is very

important. Any possible security lapse would incur in significant economic losses and social losses.

The first ever attack identified was the Stuxnet attack on the Iranian Nuclear facilities and has

attracted much attention from the research community.Since the CPS have interconnectivity, the

inherent network can be prone to attacks. The popular attack schemes that leverage this network

to create an attack are the Replay attacks and False Data Injection attacks. In replay attacks, the

attacker replays the past data collected over a period of time to the control center to generate false

control signals and that will consequently compromise the integrity of the system. On the other

hand, False Data injection attacks, generates attack vector that are added to the observation vector.

Despite the addition, these attacks remain hidden to the widely used Chi Square Detector. Since

the Chi Square Detector is statistical based detector, the attacks were not detected [3].

The first paper that addressed the False data injection in the Control system and wireless network

scenario was that of Yilin Mo [4] where he showed deviation in the estimated states of the attacked

system compared to the normal system. The paper by Kwon [5] showed the design of the attack

vectors for attacks on actuator as well as on the sensor. The paper by Miao [6] addressed improving

detection of Chi Square Detector by using the Coding techniques. R.X Niu [7] studied the effect of

Kalman filter performance on the attack. Then papers[8],[9] showed how to move a state of system

to target state without being detected.

In the previous existing works, only one detector is used primarily i.e. Chi Square Detector. But
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there is an increasing demand in research of cheap and reliable detectors that can detect these attacks

that remained hidden to Chi Square. In this regard, the Cosine Similarity Detector was proposed

by [1] for the smart grid communication system and he showed the improvement in detection of

attacks by using the cosine similarity detector over the chi square. A stochastic based detector with

a random threshold was also proposed by [10]. Among the detectors studied to detect the false

data attacks the easier one was the cosine similarity detection technique. In this paper [1], the

author used Kalman filter to predict the observations from the Smart Grid communication systems

and then took cosine similarity between the observed measurement and the predicted measurements

using Kalman Filter. Since Control systems will have Kalman filter in them to estimate the states

of the system, we use cosine similarity detector that can use predicted observations from Kalman

filter and detect the attacks.

The main contribution of this work is to prove that Cosine similarity detector fails to detect

False data injection attacks designed CPS modelled as control system. We then propose a low cost

encoding and decoding scheme to improve the detection rate of both the detectors and give an

algorithm to generate the encoding and decoding matrix. We assume that actuators are secured

and hence the attacker attacks only on the sensor measurements. We also assume that encoding

and decoding matrices are secured and sent by a side channel before encoding and decoding starts.

We give an algorithm to generate random encoding and decoding matrices so that attacker wont be

able to learn the encoding and decoding schemes.

In this work we focus on improving the performance of Cosine similarity by transforming the

observation vector by deterministic and random approaches. The dynamics of the plant is modelled

by a linear time invariant (LTI) system equipped with a Kalman filter and Chi Square detector.

The rest is organised as follows. Chapter 2 decribes the system modelling and gives a clear

explanation of design of False Data injection attacks and chapter 3 have effect of these attacks on

chi square and cosine simialarity detector and in chapter 4 we worked on improving the detection

rate of chi square and cosine similarity detector by proposing a simple cost effective method using

encoding and decoding scheme and last chapter gives numerical example followed by results.
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Chapter 2

System Modelling for FDI Attacks

in Control Systems

In this chapter we model the physical plant as a Linear Control System. We have the plant equipped

with Kalman filter for state estimation , Linear Quadratic Gaussian Controller(LQG) for generation

of next input and a detector to detect the attacks.

2.1 Physical Plant Modelling

We assume that the physical plant follow the Linear Time invariant system dynamics that can be

described with the following state space model.

xk+1 = Axk +Buk + wk (2.1)

where xk ∈ Rn denotes the vector of state variables at time k, uk ∈ Rp denotes the control input

at time k, wk denotes the process noise and xo denotes the inital state and wk, xo are independent

Gaussian Random variables and xo ∼ N (0,Σ) and wk ∼ N (0, Q)

2.2 Kalman Filter

Since we have modelled our physical plant as state space system we have a wireless sensor network

to monitor the plant and the outputs of the wireless sensor network is given by

yk = Cxk + vk (2.2)

where yk ∈ Rm denotes the measurements from the sensors and vk denotes the measurement noise

with vk ∼ N (0, R). These readings are received by the centralised controller through the sensor

network. Also note that vk is independent of xo and wk.

Now once these measurements are recieved the Kalman filter tries to estimate the states of the

system from the received observations yk.

The equations are given by
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Initialization

x̂0|−1 = 0, P0|−1 = Σ (2.3)

Predict

x̂k+1|k = Ax̂k +Buk (2.4)

Pk+1|k = APkA
T +Q (2.5)

Update

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1 (2.6)

x̂k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) (2.7)

Pk = Pk|k−1 −KkCPk|k−1 (2.8)

where x̂0|−1 denotes the state initialisation, P0|−1 denotes the error covariance initialisation,

x̂k+1|k denotes the predicted state estimate, Pk+1|k denotes the predicated error covariance estimate,

x̂k denotes the updated state estimate ,Pk denotes the updates error covariance.

Even though Kalman gain varies with time initially it then converges to a constant value when

(A,B) are controllable and (A,C) are observable. We assume that kalman filter has reached steady

state so that Kk becomes constant.

Kk = Pk|k−1C
T (CPk|k−1C

T +R)−1 (2.9)

and k →∞ so that

Kk = K

and the state estimate update equation of the Kalman filter are given by

x̂k+1 = Ax̂k +Buk +K(yk − Cx̂k+1|k) (2.10)

now define the residue of the measurement to be zk+1

zk+1 = yk+1 − Cx̂k+1|k (2.11)

So the above state estimate equation can be written as

x̂k+1 = Ax̂k +Buk +Kzk (2.12)

Now define the estimation error to be

ek+1 = xk+1 − x̂k+1

= Axk +Buk + wk −Ax̂k −Buk −Kzk+1

= Axk −Ax̂k + wk −K(CAxk + CBuk + Cwk + vk − CAx̂k − CBuk)

= (A−KCA)ek + (I −KC)wk −Kvk

(2.13)
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now using the equation (2.1) and (2.10) we can manipulate ek+1 to be

ek+1 = (A−KCA)ek + (I −KC)wk −Kvk (2.14)

2.3 LQG Controller

An LQG controller is used to generate the control inputs to stabilize the system. It minimizes the

following objective function

J = lim
T→∞

min
u0u1u2..uT−1

E [
1

T

k=T−1∑
k=0

(xTkWxk + uTk Uuk)] (2.15)

where E denotes the expectation operator and W,U are positive semi definite matrices.We knew

that the optimal controller of the above minimization problem takes the following form

uk = −(BTSB + U)−1BTSAx̂k (2.16)

where uk is the optimal control input and S satisfies the following Ricatti equation

S = ATSA+W −ATSB(BTSB + U)−1BTSA (2.17)

if we define L = −(BTSB + U)−1BTSA then we will have uk = Lx̂k.

2.4 Attack Detector

A χ2 is often employed to detect the failures in the control systems. It computes the following

quantity

gk =

T −1∑
i=0

zTk P−1zk (2.18)

where P denotes the covariance matrix of the residue zk. gk is χ2 distributed with mT degrees of

freedom and T denotes the window of the detector. The detection is done by comparing gk with

some threshold. In certain, the detector triggers an alarm when

gk > threshold (2.19)

The Chi square detector is statistical based detector so when the system under attack have same

statistical properties as healthy system i.e. system without having attack then the detector wont be

able to detect the attacks.

2.5 False Data Injection Attacks

In this section we will consider the system under the attack. The plant can be modelled as

x′k+1 = Ax′k +Bu′k + wk (2.20)
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The measurement vector can be given by

y′ak = y′k + ak = Cx′k + vk + ak (2.21)

where ′ denotes the attacked system and ak denotes the attack vector added to the measurement at

time instant k. The system block diagram can be given by Fig 2.1 Since we have defined the model

Figure 2.1: System Block Diagram

of the system under attack, we will see basic principles of generation of attack vector. Now let x̂′k
be the estimated state of the compromised system i.e. system under attack. Now let the residual of

the compromised system would be given as similar to the (2.11)

z′k = y′ak − C[Ax̂′k +Bu′k] (2.22)

Now define the various error quantites between the normal system and system under attack

ek = xk − x̂k (2.23)

e′k = x′k − x̂′k (2.24)

∆ek = e′k − ek (2.25)

∆zk = z′k − zk (2.26)

where ∆ek denotes the difference between the state estimation error of the compromised and the

normal system and ∆zk denotes the residual difference between the compromised and the healthy

system. Now the dynamics of the above difference vectors is given by

ek+1 = xk+1 − x̂k+1

= Axk +Buk − [x̂k+1|k +Kzk+1]

= Axk +Buk − [Ax̂k +Buk +Kzk+1]

= Aek −Kzk+1

(2.27)

Thus the recursive equation of the difference of the states in case of unattacked system is given by

ek+1 = Aek +Kzk+1 (2.28)
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Now for the system under attacked case the dynamics is given by

e′k+1 = x′k+1 − x̂′k+1

= Ax′k +Bu′k − [Ax̂′k +Bu′k +Kz′k+1]

= Ae′k −Kz′k+1

(2.29)

Thus the recursive equation of the difference of the states in case of unattacked system is given by

e′k+1 = Ae′k −Kz′k+1 (2.30)

Now the difference of equation (2.35) and (2.31) gives (2.25)

∆ek+1 = e′k+1 − ek+1

= A∆ek −K∆zk+1

(2.31)

So the difference of error in the actual and estimates system in attacked and normal system follow

the recursive equation given by

∆ek+1 = A∆ek −K∆zk+1 (2.32)

So from the above equation (2.38) in order to understand it we have to see the dynamics of ∆zk+1.

∆zk+1 = z′k+1 − zk+1

= (y′ak+1 − yk+1) + C(x̂k+1|k − x̂′k+1|k)

= ak+1 − CA(x̂′k − x̂k) + CA(x′k − xk)

= CA(e′k − ek) + ak+1

= CA∆ek + ak+1

(2.33)

Thus the dynamics of the residual of the unattacked and the attacked system is given by

∆zk+1 = CA∆ek + ak+1 (2.34)

Lemma1:For a successful false data injection attack, the difference between the residuals of the

difference of the normal and the attacked should tend to zero

lim
k→∞

∆zk+1 → 0

Proof : Since the detector used is chi square detector in order to detect the attack, by definition of

chi square detection,

gk+1 =

T −1∑
i=0

zTk+1P−1zk+1 (2.35)

and the above gk+1 when greater than a certain threshold detects the attack so when ∆zk+1 is

essentially small i.e. nearly zero then attack wont be detected and that results in a successful false

data injection attack. This completes the proof

Since we noticed that ∆zk+1 → 0 the possible design of the attack vector is given by ak+1 =

−CA∆ek + ε where ε ≤M. So the attacker design the attack vector in this method for a successful
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false data injection attack.

Now coming back to the equation (2.38) and substituting equation (2.44) in (2.38) we will get

∆ek+1 = A∆ek −K(CA∆ek + ak+1)

= (A−KCA)∆ek −Kak+1

(2.36)

Now the dynamics of the error differences in states is given by

∆ek+1 = (A−KCA)∆ek −Kak+1 (2.37)

Since we saw that the error dynamics is given by above equation (2.48) the attacker with the

knowledge of the all system matrices tries to compute ∆ek and sends as attack vector at each instant.

Now we set conditions on the nature of matrix A in order to drive ∆ek to ∞. By substituting the

value of ak+1 in equation (2.48) we get

∆ek+1 = (A−KCA)∆ek −K(−CAek + ε)

= A∆ek + ε
(2.38)

So by observing the equation (2.50), in order to drive ∆ek to infinity,matrix A should have atleast

one unstable eigen value and error goes in the direction of the eigen vector of that unstable eigen

value.

2.5.1 Contruction of Attack Vector

Since from the previous section we know that the attack vector is of form

ak+1 = −CA∆ek (2.39)

and also we have the difference of the dynamics of the state error equation

∆ek+1 = (A−KCA)∆ek −Kak+1 (2.40)

if we expand the above error dynamics equation with the attack vector we will notice that the attack

vector takes the form

ak+p = −CAp∆ek (2.41)

where p denotes any time instant from k. Now if A has full rank and A is of order n then by Caley

hamilton theorem

An = −cn−1An−1 + .....+ c1A+ (−1)ndet(A)In (2.42)

By comparing the above equation to controllability grammian, we can compute ak. If v is the

unstable eigen vector of A and it should be reachable state of the equation(2.52). Thus if rank of A

is n then we can find first n attack vectors by

ak=1,2...n = C−1v (2.43)
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where C denotes the controllability grammian.

C =
[
K (A−KCA)K (A−KCA)2K . . . (A−KCA)n−1A

]
where n denotes the order of matrix A. Thus we are essentially finding the inputs for the above

system that make the error dynamics go to v i.e.unstable vector in n steps. Now for k > n the

attack vector is given by using the Caley Hamilton theorem.

ak+n = cnan + cn−1an−1 + .....+ c1a1 + co

Thus the attack vector for the next time step beyond n is linear combination of the n attack vectors

generated using equation (2.55).

Inorder to simplify the generation process, since we have generated the attack inputs so as to drive

the ∆ek to v in n steps, let the state of ∆ek+n at time instant k + n be v. Now we can see that

ak+n+1 = −CA∆ek+n

= −CAv

= −Cλv

(2.44)

where λ denotes the unstable eigen value of A and v denotes the unstable eigen vector of A.

Thus for any time greater than n, the attack vector will have the form

ak+n+p = −CA∆ek+n+p−1

= −CAp∆ek+n
= −CApv

= −Cλpv

(2.45)

Now using the above definition of attack vector for any time greater than k+n we will see the design

of attack vector for any time greater than k + n instant

ak+n+1 − ak+1 = −CA[∆ek+n −∆ek]

= −CA[v − 0] = −Cλv
(2.46)

The above is from assumption that ∆ek = 0 initially and we have driven to v from origin. So by

manipulating above equation (2.62) we get,

ak+n+1 = −Cλv + ak+1 (2.47)

Similarly by above principles,

ak+n+2 − ak+2 = −CA[∆ek+n+1 −∆ek+1

= −CA.A[∆ek+n −∆ek] = −CA2[v]
(2.48)
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Thus the resultant attack vector becomes

ak+n+2 = −CA2v + ak+2 (2.49)

Now generalising the above expression and n denotes the order of matrix A then

ak+n+i = −Cλiv + ak+i (2.50)

and if we make k = 0 we get

an+i = −Cλiv + ai (2.51)

where i=0,1,2...n-1.So by the above equation we will generate the attack vector for any time greater

than n. Summarising the construction of attack vectors, the algorithm for generation of attack

vectors is given by

Algorithm 1 Construction of Attack Vector Algorithm

Inputs: A, B, C, K, v-unstable eigen vector,n-order of matrix A, k-number of time steps

Outputs: Attack Vectors a0, a1, a2........ak

PROCEDURE

1. Construct Controllability Matrix

C =
[
K (A−KCA)K (A−KCA)2K . . . (A−KCA)n−1K

]
2. Get Attack vector a0, a1....an−1

ā = C−1v

where ā denotes the attack vector

3. For any time step k ≥ n, generate by

ak = −Cλkv + ak−n

In this way we can generate all the attack vectors for any number of time instants.

So here we conclude on the generation of the attack vectors for the false data injection attacks

that can bypass the traditional chi square detector.

2.6 Cosine Similarity Detector

Cosine similarity detector is popular method of measurement of correlation between two vectors. It

calculates the cosine of the angle between the two vectors. If A,B are two vectors then the cosine

of the angle is given by

cos(θ) =
Ā.B̄

||A||.||B||
. (2.52)

The cosine similarity detector is normally used in text recognition and in machine learning and in

the field of false data injection attacks, it was first used by [8]. In his work , the cosine similarity

was calculated in the measurement vector at time instant yk+1 and with the estimated measurement
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Cx̂k+1|k.. It is defined as

Sim =
yk+1.Cx̂k+1|k

||yk+1||.||Cx̂k+1|k||
(2.53)

If there are no attacks, then the Kalman filter estimates perfectly so that the similarity becomes 1

and hence no attack. We can define attack detector (AD) using cosine similarity detector as

AD = 1− Sim

The attack and no attack condition are given by AD = 1 and 0 respectively.

2.7 False Data Injection Attacks on Actuators

In the previous section, we considered False data injection attacks on the sensor measurements. A

question might come regarding the nature of the FDI on the actuator. So in this section we analyse

the FDI attack on the actutator and draw some conclusions on it. The system model in which the

attacker is doing attacks on the actuator is given by

xk+1 = Axk +Buk +Bak + wk

yk = Cxk + vk
(2.54)

where ak denotes the attack vector that is injected into the actuator and remaining follows similar

to the system described in the previous sections. Now lets us assume that the attacker has access to

all the actuators so ak is scaled by B matrix. We have a Kalman filter setup to estimate the states

of the system and a Chi Square detector to detect the attacks. Now the residual is given by

zk+1 = yk+1 − Cx̂k+1|k

= Cxk+1 + vk − C ‘̂xk+1|k

= CAxk + CBuk + CBak + Cwk + vk − CAx̂k − CBuk
= CAek + Cwk + vk + CBak

(2.55)

so from the above equation the dynamics of the residue is given by

zk+1 = CAek + Cwk + vk + CBak (2.56)

The error in the estimation of the states is given by

ek+1 = xk+1 − x̂k+1

= Axk +Buk +Bak −Ax̂k −Buk −K(CAxk + CBuk + CBak − CAx̂k − CBuk)

= (A−KCA)ek + (B −KCB)ak

(2.57)

Thus the error dynamics in this case is given by

ek+1 = (A−KCA)ek + (B −KCB)ak (2.58)
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Now in order for a successful false data injection attack the necessary conditions are given by

lim
k→∞

||zk+1|| ≤ M∞

lim
k→∞

||ek+1|| → ∞
(2.59)

which means that the error states of the system should be bounded while maintaining residual

bounded. This makes a successful attack. So (2.58) can be rewritten as

ek+1 = Aek +Bak −Kzk+1 (2.60)

we have neglected noise in above equation. Multiplying the above equation by C we get,

Cek+1 = zk+1 −KCzk+1 (2.61)

Since the pair (A,C) is observable, the quantity that takes the state estimation error to infinity is

zk+1 i.e. residual . So it is not possible to induce infinite estimation error by keeping the residue to

be bounded. Thus we can induce a finite estimation error by doing attack on the actuators.

Thus we conclude that infinie estimation error by keeping the residual bounded is not possible

in FDI attacks on the actuator. So we limit ourselves to doing attacks on the sensor measurements.
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Chapter 3

Effect of False Data Injection

attacks on Chi Square and Cosine

Detector

Since the basic principle involved in the generation of the attack vector makes the False data injection

attacks remaining stealthy to the Chi square detector, our simulations showed that even cosine

similarity detector failed in detecting the false data injection attacks. So we will see how each

detector behaves when the attacks are done.

3.1 Chi Square Detector

Let the system is given by

xk+1 = Axk +Buk + wk

ȳk = Cxk + vk + ak
(3.1)

where ȳk denotes the measurement in the presence of noise, wk denotes process noise and vk denotes

measurement noise and ak denotes the attack vector. Now the estimation of Kalman filter is given

by

x̂k+1 = Ax̂k +Buk +K(ŷk+1 − CAx̂k − CBuk)

= Ax̂k +Buk +K(ȳk+1 − Cx̂k|k−1)
(3.2)

now define

ek+1 = xk+1 − x̂k+1

.
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The residual of the measurement is given by

zk+1 = yk+1 − Cx̂k+1|k

= Cxk+1 + vk+1 + ak+1 − C(Ax̂k +Buk)

= CAek + vk+1 + ak+1

(3.3)

Now we look at the evolution of state estimation error

ek+1 = xk+1 − x̂k+1

= (A−KCA)ek + (I −KC)wk −Kvk −Kak
(3.4)

3.1.1 No Attack Case

Now under no attack ak+1 = 0 so

E [z]k+1 = CAE [ek] + E [vk+1] = 0 (3.5)

where E denotes the Expectation operator. In the Chi square detection , the detector is given by

gk =

T −1∑
i=0

zTk P−1zk (3.6)

where P denotes the covariance matrix of the residue zk. gk is χ2 distributed with m degrees of

freedom and T denotes the window of the detector. The detection is done by comparing gk with

some threshold. If there is no attack then

gk =

T −1∑
i=0

(yk + ak − Cx̂k|k−1)TP−1(yk + ak − Cx̂k|k−1) (3.7)

the above equation with ak = 0 becomes

gk =

T −1∑
i=0

(yk − Cx̂k|k−1)TP−1(yk − Cx̂k|k−1) (3.8)

if kalman filter estimates perfectly, then y−Cx̂k|k−1 = vk i.e just gaussian noise. So the gk becomes

sum of squared of gaussian random variables which is chi square and hence it will be less than

threshold so giving no attack output.

3.1.2 Attack Case

Under the attack case , the ak+1 = −CAek from the previous chapter. So by substituting this value

in equation (3.12) gives

gk+1 =

T −1∑
i=0

(yk+1 + ak+1 − Cx̂k+1|k)TP−1(yk+1 + ak+1 − Cx̂k+1|k)

=

T −1∑
i=0

(CAek + vk+1 + ak+1)TP−1(CAek + vk+1 + ak+1)

(3.9)
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by writing ak+1 = −CAek we get

gk+1 =

T −1∑
i=0

(vk+1)TP−1(vk+1) (3.10)

Thus the above quantity is again Gaussian hence the false data injection attacks are not detected by

the chi square detector. Now by similar principles we will verify the performance of Cosine detector

in detecting false data injection attacks.

3.2 Cosine Similarity Detector

We will verify the performance of the cosine similarity detector in normal case and attack case.

3.2.1 No Attack

In the cosine similarity detector, we define a new quantity attack detector given by

AD = 1−
yk+1.Cx̂k+1|k

||yk+1||.||Cx̂k+1|k||
(3.11)

where AD = 1 under attack and 0 under no attack. Now if the Kalman filter estimates correctly

then Cxk+1 = Cxk+1|k so that the above AD = 1− 1 = 0 hence no attack will be detected.

3.2.2 Under Attack

The cosine detector is given by

AD = 1−
ȳk+1.Cx̂k+1|k

||ȳk+1||.||Cx̂k+1|k||
(3.12)

and we know that

ȳk+1 = Cxk+1 + ak+1 + vk+1 (3.13)

ak+1 = −CAek (3.14)

AD = 1−
[ [CAxk + CBuk + vk+1 − CA(xk − x̂k)]T [CAx̂k + CBuk]

||CAxk + CBuk + vk+1 − CAxk + CAx̂k||||CAx̂k + CBuk||
]

= 1−
[ [CBuk + vk+1 + CAx̂k]T [CAx̂k + CBuk]

||CAxk + CBuk + vk+1||||CAx̂k + CBuk||
] (3.15)

Adding Noise term to attack vector we can make vk+1 → 0.

Thus

AD = 1− (CAx̂k + CBuk)T (CAx̂k + CBuk)

||CAx̂k + CBuk||||CAx̂k + CBuk||
= 1− 1 = 0 (3.16)

Thus,we have seen that the Cosine Similarity detector gives a zero indicating no attack in case of

actually an attack. So Cosine similarity detector also fails in detecting the False data injection

attacks.
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Chapter 4

Improving the Detection of Cosine

Detector

In the previous chapter, we have seen that the Cosine similarity detector wont be able to detect

the False data injection so here we look into the way to improve the detection rate and formulate a

simple method to enhance the detection rate.

4.1 Frame Work

From chapter 2, we seen that the error dynamics in the case of the attack is given by

ek+1 = Aek −Kzk (4.1)

= (A−KCA)ek −Kak+1 + ε (4.2)

where ε denotes some bounded term.

zk+1 = CAek + vk+1 + ak+1 (4.3)

and by substituting ak+1 = −CAek in the above error dynamics and residual equation we get

ek+m = Amek + ε2 (4.4)

where ε2 denotes some bounded term. Thus at any time k the error term can be decomposed as

ek = ckv + ε3 (4.5)

where ck denotes coefficient and v denotes the unstable eigen vector of matrix A and ε3 is some

bounded term.Since we know the difference of the residual of the normal and attacked system is

given by

∆zk+1 = CA∆ek + ak+1 (4.6)
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So if we make this difference of residue grow larger then we can detect the attack vector. In the

attacked case the attack vector would be ak+1 = −CA∆ek, So substituting that

∆zk+1 = CA∆ek(I − I) (4.7)

in the above equation if we have attack vector such that (I − I) 6= 0. The easiest way to detect is

to multiply attack vector with a matrix instead of I. This will make detector to detect the attack.

∆zk+1 = CA∆ek(I −D) (4.8)

where D denotes some matrix multiplying the attack vector so that the residual is non zero. So

by this method we will make the residual to be non zero so that the detector detects the attack.

In previous case, D = I so residual was not getting detected and if D 6= I then we can detect the

attack.

4.2 Inability of WaterMarking in case of FDI attacks

Replay attacks [11] are also kind of false data injection attacks where the attacker replays the

past data collected over a period of time. In this context, we can add a watermarking term to

our measurement inorder to detect the attacks. But this comes at expense of loss of optimality.

As in absence of attacks, mere adding of watermarking term makes the estimation inoptimal. So

dewatermarking procedure needs to be followed. Under no attack,

ywatermarked = y + α

ydewatermarked = ywatermarked − α
(4.9)

Under attack

ywatermarked = yk + α+ ak

ydewatermarked = ywatermarked − α+ ak

= yk + ak

(4.10)

still attack vector is present in measurement. and α is any watermarking term and if measurement

is not dewatermarked then, it will have effect on state estimation performance. Rather than losing

performance of estimator by watermarking we use encoding and decoding method that will detect

the attacks without losing any performance. So the easiest way to counter FDI attacks is to encode

and decode the measurements

4.3 Encoding and Decoding Method

Here we will use popular encoding and decoding method to make the detector detect the attacks.

Instead of transmitting measurement directly we will encode the measurement by a matrix and again
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at the receiver so that the attack vector will be scaled by a matrix not I.

yk = Cxk + vk

yenck = Myk

yattack = ȳ = yenck + ak

ydecodek = M−1ȳ

ydecodek = yk +M−1ak

(4.11)

This decoded term would be used in the Kalman filter estimation so that the difference of the residue

would become not equal to zero i.e.

∆zk+1 = CA∆ek(I −M−1) (4.12)

If we denote M−1 = D then for D 6= I we can detect the residue.

So we choose a encoding matrix M and a decoding matrix M−1 in order to detect the attack. The

block diagram for this can be represented as Fig 4.1. So the block diagram is same with encoding

Figure 4.1: Modified System Block Diagram

and decoding components added and it requires minimal effort to place these components in the

transmitter stage and the reception stage.

4.4 Choice of Encoding and Decoder Matrix

In the previous sections, we have seen that any matrix D that is non identity matrix will make the

residue to be non zero and hence the detection can be improved. So we need to select a appropriate

matrix to do encoding and decoding part. There are innumerable choices for these matrices. So we

set some conditions in order to choose a appropriate matrix. We will first try to find the decoder

matrix and then use its inverse to find the encoder matrix.

• Matrix inverse should exist. This is because if the inverse dont exist then we cant find a
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appropriate encoder matrix. This condition gives the easiest choice for selecting D would be

a diagnol matrix. However, zeroes are not permitted in the diagnol.

• The matrix should be random in nature. If we use deterministic matrices then the attacker

can learn about the matrix and then he can also send encoded attack.

Keeping the above two conditions in mind, we proceed to design the decoder matrix. The analysis

of the cosine detector in the presence of encoding and decoding helps us to understand the problem

better. The cosine similarity detector in the presence of encoding and decoding is given by

AD = 1−
(yk +Dak)T (C ˆxk|k−1)

||(yk +Dak)||.||(C ˆxk|k−1))||
(4.13)

where D denotes the decoder matrix i.e. M−1. In the above equation if the DaK dominates then

we can detect the attacks. From the previous sections, we know that the error dynamics in the

estimation of states can be given as

ek+1 = (A−KCA)ek −Kak+1

= ckv + ε1k+1

(4.14)

where the second equation in the above is obtained by substituting attack vector ak+1 = −CAek and

ck denotes coefficient of the error dynamics and v denotes the unstable eigen vector and ||ε1|| <M
i.e. some bounded term. and the residue dynamics is given by

zk+1 = CAek + ak+1 (4.15)

The above equation is with out encoding and decoding and since we are having attack vector mul-

tiplied with decoder matrix D the above equation becomes

zk+1 = CAek +Dak+1 (4.16)

and if we substitute (4.18) in above equation we get

zk+1 = CAckv + ε2k+1 +Dak+1 (4.17)

where ε2 ≤ M2 i.e. some bounded term. Since the attacker injects the false data injection attacks

in the direction of unstable eigen vector of matrix A the above equation can be written as

zk+1 = ckλ[Cv −DCv] + ε3k (4.18)

where ε3 denotes another bounded term. This equation is very important equation as it gives the

information how the residue can be made to grow by using appropriate D matrix.

The residue will increase in the direction of the ustable eigen vector v and since λ ≥ 1 for that eigen

vector v, the elements of D should be in such a way that their magnitude is greater than 1 di > 1

along the standard basis of the spanned space of measurement matrix along unstable eigen vectors
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of A. Now construct a matrix X with columns as given by

X = span(
[
Cv1 Cv2 . . . Cvn

]
)

where v1, v2, v3....vn denote the unstable eigen vectors of matrix A. The order of the matrix X would

be mxn and rank(X) ≤ n. Now we will consider two cases depending on rank

4.4.1 rank = n and m=n

When the rank of the matrix X is n , then A have all eigen values greater than 1 in that case the

residue grows in the direction of all the eigen vectors.

zk+1 =

i=m∑
i=0

ckiλi[Cvi − diCvi] + εi (4.19)

where cki denotes the coefficient of the error dynamics , di denotes the elements of the diagnol

matrix, εi is bounded term , vi denotes the unstable eigen vectors of matrix A. From the above

expression we can see that if the term λidi is maximised then the residue grows and then we can

detect the attacks.

4.4.2 rank < n

In this case A will have unstable eigen values less than n so even if the residue grows in direction of

other stable eigen values, λki term goes to zero when λi < 1. So only effect will be because of unstable

eigen values. By formulating residue dynamics like equation (4.23) we can see that maximising λidi

in the direction of unstable eigen vectors will lead to good detection.So the resulting conditions for

the design of the D matrix can be summarized by

• D matrix is a diagnol matrix with no zeros in diagnol entries.

• D matrix should be random in nature

• The decoder matrix designed should maximise λidi

From these conditions we move to the next step where we use popular water filling method to design

the D matrix.

4.5 Design of Decoder matrix

In this section , we will show how the decoder matrix D will be designed. Since the unstable eigen

values in the matrix will not be same we will keep elements di in proportion to the λi. Here we make

use of the random property of the decoder matrix by keeping a constraint on trace of D matrix.
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The problem now can be defined by water filling problem as

maximize
di

log(1 + λidi)

subject to di ≥ 0 i = 1, . . . ,m.

i=m∑
i=1

di = QQ

where QQ denotes the trace constraint imposed on matrix D to have random nature and QQ will be

random quantity and should be choosen to have QQ > 0 to make residue grow to infitnity. However

,QQ shouldnt be choosen too much high and too much low. A value of QQ between 5-30 will work

effectively. The solutin of the above problem is given by

di = (µi −
1

λi
)+

i=m∑
i=1

di = QQ

µ ≥ 0

(4.20)

where (x)+ = max(x, ε) here we take ε to avoid non existence of inverse and µ is obtained by using

the (4.24) and substituting in equation (4.25) with out taking ()+.

The algorithm can be summarised as

Algorithm 2 Construction of Attack Vector Algorithm

Inputs: [v1, v2, v3...vn],[λ1, λ2...λn],C,ε1,QQ

Outputs: DD matrix

PROCEDURE

1. Construct X matrix.

X =
[
Cv1 Cv2 ... Cvn

]
2. Reduce X into standard basis form

V =
[
e1 e2 e3 ... en

]
where ei ∈ Rn, ei = 1 for ith position and zero else where.

3. for i in 1 to n

if ei ∈ V
λi unchanged

else

λi = ε1

end

4. Get µ using equation (33)

5. Get di using di = (µ− 1
λi

)+

The numerical example along with the results is explained in the next chapter.
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Chapter 5

Numerical Example and

Simulation Results

In this we will show with a numerical example in the improvement of the performance of both the

cosine and chi square detector. We use the same example of [3] and do the attack on the position

sensor γ = diag(0, 1) Consider a vehicle moving along the x- axis. The state space gives the position

x and velocity ẋ of the vehicle. A control input will be sent to the actuator to control the speed of

the vehicle. So the resultant state space equation is given by

ẋk+1 = ẋk + uk + wk,1 (5.1)

xk+1 = xk + (ẋk+1 + (ẋk)/2 + wk,2 (5.2)

yk = Xk + vk (5.3)

For the above system the set of matrices are given by

A =

[
1 0

1 1

]
, B =

[
1

0.5

]

C = I2, D = 0 (5.4)

We further impose following parameters on the system

Q = R = W = I2 (5.5)

The steady state Kalman gain and LQG control gain are obtained by

K =

[
0.5939 0.0793

0.0793 0.6944

]
, L =

[
−1.0285 −0.4345

]
Using the same principles as described in the [8] we will first generate the attack vectors and cross

check with the [8] for state deviation. Using the algorithm explained in the chapter 2 we will generate

attack vectors and the attack vectors are validated by the following result. Hence with the above

graph, we can say that the attack vector that we have generated increases the states of the position
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Figure 5.1: False Data injection attack vector generation

and no change in velocity and also the residue is bounded so that the detector wont detect an attack.

5.1 Design of Decoder Matrix

With the method explained in the previous chapter, we find that the unstable eigen value of matrix

A is 1 and the unstable eigen vector is [01]′. Now the X matrix is given by

X =

[
0

1

]

Since the X matrix is in standard basis form no need to reduce it to basis form and we can see that

residue grows along direction of basis of X i.e.
[
0 1

]T
.Intuitionally we should have a large value

in D matrix along this eigen vector direction and less values in other directions.

Let us choose QQ = 10 and apply the Algorithm 2. We get λ1 = ε1 = 0.1 say and λ2 = 1 unchanged

as e2 ∈ X. Now calculating µ by using condition 4.18 we get µ = 10.5. So the resultant di are

obtained from (4.18). The solution given by water filling problem by the above values is

D =

[
0.5 0

0 9.5

]
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From above , we can see that D matrix have its element in unstable eigen vector direction so when

this multiplied with unstable eigen value , they grow the residue and hence the detector would be

able to detect the attack.

Since we have diagnol matrix , the encoder matrix M will be inverse of the decoder matrix D

obtained above.

M = D−1

So in this way we design the encoder and decoder matrix.

5.2 Results

5.2.1 Performance of Chi Square and Cosine detector without Encoding

and Decoding

In this section we see the simulation results of the chi square and cosine detector without encoding

and decoding.We have conducted the simulation on Matlab R2017b and by changing the variance

of the measurement noise. We will investigate the ROC curves. We can see from the Figure 5.2,
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Figure 5.2: Chi Square Detector w/o Encoding and Decoding

the ROC curves are nearly along y = x that shows the inability of the Chi Square detector. In the

Figure 5.3 , the ROC points lie on the extreme diagnol regions because the Cosine detector is a

”Always No Attack” detector in case of False Data Injection attacks.
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Figure 5.3: Cosine Detector w/o Encoding and Decoding

5.2.2 Explanation of ROC Curves

Chi Square Detector

In the case of Chi Square Detector, under attack scenario the equations of the dynamics of the state

estimation error and residue are given by

ek+1 = (A−KCA)ek −Kak+1

zk+1 = CAek + ak+1

(5.6)

Since we use Chi Square detector, the mean of the residual is given by

E(zk+1) = CAE(ek) + (−CAE(ek)) = 0 (5.7)

where E denotes the Expectation operator and we have substituted the attack design condition in

place of ak+1.

From chapter 2 we have seen that under no attack, the mean is zero and under attack the mean

of the residual is still zero. So, the conditional probability density functions under attack and under

without attack, overlap on each other so just by varying threshold we will have ROC curves along

the y = x line which means probability of detection equal to probability of false alarm Pf = PD.
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Cosine Similarity Detector

Now coming to the Cosine similarity detector by similar analysis as in the above section, the mean

of the cosine similarity measure is given by

E(AD) = E(1−
(yk+1 + ak+1)′(Cx̂k+1|k)

||(yk+1 + ak+1)||.||(Cx̂k+1|k||
)

= 1− E(
(yk+1 + ak+1)′(Cx̂k+1|k)

||(yk+1 + ak+1)||.||(Cx̂k+1|k||
)

= 1− (≈ 1)

≈ 0

(5.8)

where E denotes the expectation operator and we get expectation of similarity nearly equal to zero

by substituting ak+1 = −CAek.

5.2.3 Performance of Chi Square and Cosine Detector with Encoding and

Decoding

The ROC curves shown in the previous subsection implied that the Chi square and Cosine detectors

were not able to recognise the attacks because of the nature in which the false data injection attacks

are designed.

Here we will show the results of both the detectors in the presence of encoding and decoding.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Probability of False Alarm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
il
it
y
 o

f 
D

e
te

c
ti
o
n

Chi Square Detector Performance for Noise with Window

0.5

1

2

Figure 5.4: Chi Square Detector with Encoding and Decoding

The legend of these curves indicates the measurement noise variance. As the measurement noise
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Figure 5.5: Cosine Detector with Encoding and Decoding

increases, the received observation becomes more noisy and hence detector performance decreases.

So we have improved the performance capability of the Chi square and cosine similarity detector

using the encoding and decoding methods.
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Chapter 6

Conclusion

The work shown in the previous chapters clearly explains the design of false data injection attack

vectors and gives detailed explanation of behaviour of chi square and cosine similarity detector in

the presence of the attacks. Then we have shown the proof why the cosine similarity detector fails

to detect the false data injection attacks.We analysed the behaviour of detectors using ROC curves.

Then we have shown a simple encoding and decoding method to improve the performance of both

the detectors. This method is cost effective and does not require any complex calculations so it can

be implementable in networks to detect the false data injection attacks.
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