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Abstract

The project aims for fast detection and diagnosis of faults occurring in process plants by designing

a low-cost FPGA module for the computation. Fast detection and diagnosis when the process

is still operating in a controllable region helps avoiding the further advancement of the fault and

reduce the productivity loss. Model-based methods are not popular in the domain of process control

as obtaining an accurate model is expensive and requires an expertise. Data-driven methods like

Principal Component Analysis(PCA) is a quite popular diagnostic method for process plants as they

do not require any model. PCA is widely used tool for dimensionality reduction and thus reducing

the computational effort. The trends are captured in prinicpal components as it is dificult to have a

same amount of disturbance as simulated in historical database. The historical database has multiple

instances of various kinds of faults and disturbances along with normal operation. A moving window

approach has been employed to detect similar instances in the historical database based on Standard

PCA similarity factor. The measurements of variables of interest over a certain period of time forms

the snapshot dataset, S. At each instant, a window of same size as that of snapshot dataset is

picked from the historical database forms the historical window, H. The two datasets are then

compared using similarity factors like Standard PCA similarity factor which signifies the angular

difference between the principal components of two datasets. Since many of the operating conditions

are quite similar to each other and significant number of mis-classifications have been observed, a

candidate pool which orders the historical data windows on the values of similarity factor is formed.

Based on the most detected operation among the top-most windows, the operating personnel takes

necessary action. Tennessee Eastman Challenge process has been chosen as an initial case study

for evaluating the performance. The measurements are sampled for every one minute and the fault

having the smallest maximum duration is 8 hours. Hence the snapshot window size, m has been

chosen to be consisting of 500 samples i.e 8.33 hours of most recent data of all the 52 variables.

Ideally, the moving window should replace the oldest sample with a new one. Then it would take

approximately the same number of comparisons as that of size of historical database. The size of the

historical database is 4.32 million measurements(past 8years data) for each of the 52 variables. With

software simulation on Matlab, this takes around 80-100 minutes to sweep through the whole 4.32

million historical database. Since most of the computation is spent in finding principal components

of the two datasets using SVD, a hardware design has to be incorporated to accelerate the pattern

matching approach.

The thesis is organized as follows: Chapter 1 describes the moving window approach, various

similarity factors and metrics used for pattern matching. The previous work proposed by Ashish

Singhal is based on skipping few samples for reducing the computational effort and also employs

windows as large as 5761 which is four days of snapshot. Instead, a new method which skips

the samples when the similarity factor is quite low has been proposed. A simplified form of the

Standard PCA similarity has been proposed without any trade-off in accuracy. Pre-computation

of historical database can also be done as the data is available aprior, but this requires a large

memory requirement as most of the time is spent in read/write operations. The large memory

requirement is due to the fact that every sample will give rise to 52×35 matrix assuming the top-35

PC’s are sufficient enough to capture the variance of the dataset. Chapter 2 describes various popular

algorithms for SVD. Algorithms apart from Jacobi methods like Golub-Kahan, Divide and conquer

SVD algorithms are briefly discussed. While bi-diagonal methods are very accurate they suffer from
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large latency and computationally intensive. On the other hand, Jacobi methods are computationally

inexpensive and parallelizable, thus reducing the latency. We also evaluted the performance of the

proposed hybrid Golub-Kahan Jacobi algorithm to our application. Chapter 3 describes the basic

building block CORDIC which is used for performing rotations required for Jacobi methods or for

n-D householder reflections of Golub-Kahan SVD. CORIDC is widely employed in hardware design

for computing trigonometric, exponential or logarithmic functions as it makes use of simple shift and

add/subtract operations. Two modes of CORDIC namely Rotation mode and Vectoring mode are

discussed which are used in the derivation of Two-sided Jacobi SVD. Chapter 4 describes the Jacobi

methods of SVD which are quite popular in hardware implementation as they are quite amenable

to parallel computation. Two variants of Jacobi methods namely One-sided and Two-sided Jacobi

methods are briefly discussed. Two-sided Jacobi making making use of CORDIC has has been

derived. The systolic array implementation which is quite popular in hardware implementation for

the past three decades has been discussed. Chapter 5 deals with the Hardware implementation of

Pattern matching and reports the literature survey of various architectures developed for computing

SVD. Xilinx ZC7020 has been chosen as target device for FPGA implementation as it is inexpensive

device with many built-in peripherals. The latency reports with both Vivado HLS and Vivado SDSoC

are also reported for the application of interest. Evaluation of other case studies and other data-

driven methods similar to PCA like Correspondence Analysis(CA) and Independent Component

Analysis(ICA), development of efficient hybrid method for computing SVD in hardware and highly

discriminating similarity factor, extending CORDIC to n-dimensions for householder reflections have

been considered for future research.
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Chapter 1

Pattern Matching Approach

1.1 Overview of Fault Diagnosis Methods

Venkatasubramanian in [1] provided a comprehensive review of various methods of Fault diagnosis

methods developed for process industries as shown in fig.1.1. From Table 1.1, it is clear that none

of the fault diagnostic method possesses all the desirable characteristics. In Table 1.1, a X indicates

that the property is satisfied by the method, while a × indicates that the method doesn’t satisfy

the property and a ? indicates that satisfiability of the property is dependent on case study. Model-

based approaches are not quite popular compared to statistical based methods in process industries

because of the following reasons as stated in [2].

• While the theory of linear quantitative model-based approaches has its roots wide-spread, the

design and implementation for nonlinear models is still an open issue.

• Since the models are restricted to linear domain, the advantages of a model-based approach

over a simple statistical approach such as PCA might be minimal. Thus PCA-based approaches

are easier for implementation than Model-based approaches.

• Most of the Model-based approaches are restricted to sensor and actuator failures.

Fault Diagnosis Methods

Process History based

Quantitative

Neural NetworksStatistical

Statistical ClassifiersPCA/PLS

Qualitative

QTAExpert systems

Qualitative Model based

Abstraction hierarchy

FunctionalStructural

Causal models

Qualitative PhysicsFault TreesDigraphs

Quantitative Model based

Parity spaceEKFObservers

Figure 1.1: Fault Diagnosis Methods

Thus data-driven methods like PCA are much simpler in computation as they neither require an

expert to build the models nor specialized tests for constructing models. This work assumes that a

large history of the process variables with corresponding operation label is available for an existing

process plant.

1



Table 1.1: Comparison of various Fault Diagnosis Methods

Observer Digraphs Abstraction Hierarchy Expert Systems QTA PCA Neural Networks
Quick detection and diagnosis X ? ? X X X X
Isolability X × × X X X X
Robustness X X X X X X X
Novelty identifiability ? X X × ? X X
Classification error × × × × × × ×
Adaptability × X X × ? × ×
Explanation facility × X X X X × ×
Modelling requirement ? X X X X X X
Storage and computation X ? ? X X X X
Multiple fault identifiability X X X × × × ×

1.2 Previous work

Ashish singhal et al. proposed a moving window approach for evaluating pattern matching in

Tennessee Eastman process [3]. The measurements of the 52 variables over a period of time forms

the snapshot dataset S. Let m be the number of samples in snapshot dataset. A moving window

which is of same size as that of snapshot dataset is moved through the historical database and the two

datasets are compared making use of similarity factors discussed in section 1.5. Ideally the moving

window should replace the oldest sample with a new sample i.e window movement rate w = 1.

But this increases computational effort and hence window movement rate has been choosen to be

w ' m/10. Although the computational effort has been reduced, but this decreases the accuracy of

the pattern matching approach.

1.3 Pre-processing of dataset

The snapshot dataset, S and the historical data window, H are pre-processed before computing

singular value decomposition to find the Principal Components. The variables are scaled to zero

mean and unit variance since these variables are distributed over a wide range of values.

1.4 Computation of PCA

PCA is widely used as a tool for dimensionality reduction and thus reducing the computational effort.

PCA can be computed in a number of ways using SVD-Singular Value Decomposition, EVD-Eigen

Value Decomposition and ALS-Alternating Least Squares algorithms. A brief overview of matrix

decompositions is given below.

1.4.1 Singular value Decomposition

The Singular Value Decomposition of a matrix A is defined as factorization into a diagonal matrix

of the form as shown in equation 1.1.

A = UΣV H (1.1)

where Σ is m× n diagonal matrix containing singular values arranged in descending order, U is the

left orthogonal matrix of order m×m and having singular vectors corresponding to A.AT and V is

the right orthogonal matrix of order n× n and having singular vectors corresponding to AT .A .

Here V H denotes the Hermitian transpose of the matrix V . If r is the rank of the matrix A and r < n

2



Table 1.2: Computation time for PCA using various algorithms

Algorithm svd(bT .b) svd(b,0) svd(b) pca(b) eigs(bT .b, 52,′ lm′)
Computation time in sec 7.6703×10−4 0.0014 0.0063 0.0034 0.0012

then there will be only r non-zero singular values in diagonal matrix Σ. To improve execution time

and for better storage, the zero singular values in the diagonal matrix Σ along with the unnecessary

columns of U which multiply with these zeros are removed. This form of decomposition is called

Economic SVD which can be found using svd(A, 0) in Matlab.

1.4.2 Eigen Value Decompositon

It is defined for only square matrices unlike SVD. Hence in the context of PCA, the EVD is performed

on covariance/correlation matrix instead on dataset which is rectangular most of the time. The EVD

of square matrix A of order n is defined as shown in equation 1.2.

A = PΛP−1 (1.2)

where P is the eigen vector matrix and Λ is a diagonal matrix containing eigen values of A. It

is obvious that for mean centered data, eigen values(λi) of the covariance matrix of dataset and

singular values(σi) of dataset, b are related as below.

λi = σ2
i /(m− 1) (1.3)

In equation 1.3, m is the number of observations in the dataset b.

The eigen values corresponds to the variance explained by each Principal Component and the

the eigen vector matrix or the right singular vector matrix V has the corresponding PC’s arranged

column wise. Table 1.2 shows the computational time (in seconds) using various approaches. After

obtaining the PC’s of two datasets, only k PC’s which explain 95% variance in both the datasets

S and H are chosen for comparison. Let ks be the number of PC’s required for explaining 95%

variance in snapshot dataset, S and kh be the number of PC’s required for explaining 95% variance

in historical dataset, H. Then k = max(ks, kh). The computation time for PCA reported in Table

1.2 is the average time taken by an approach over 1000 runs.

1.5 Similarity factors

Various similarity factors for the comparison of datasets as reported in [4] are presented here. A

similarity factor should assign high value between same operating condition and should have low

value for discriminating ability between two different operating conditions.

1.5.1 Standard PCA similarity factor

The geometrical interpretation for PCA similarity factor is as given in equation 1.4. It basically

quantifies the angular difference between ith PC of snapshot dataset and jth PC of historical window.

It can also be computed using the reduced sub-spaces of singular vector matrix of snapshot and

3



Table 1.3: Computation time for Standard PCA similarity factor

OpID k
G.I:eq(1.4)

(in sec)
Trace:eq(1.5)

(in sec)
Simplified:eq(1.6)

(in sec)
MAE1 MAE2

1 12 8.3122×10−4 1.4082×10−5 1.8309×10−5 1.2212×10−15 1.4433×10−15

2 23 0.0030 3.7025×10−5 3.2162×10−5 2.3315×10−15 2.1094×10−15

3 32 0.0059 5.5679×10−5 5.0411×10−5 3.7748×10−15 3.8858×10−15

historical window as shown in equation 1.5.

SPCA =
1

k

k∑
i=1

k∑
j=1

cos2θij (1.4)

SPCA =
trace(LTMMTL)

k
(1.5)

where L and M are the reduced sub-space containing first k principal components in snapshot

window and historical window respectively. For reducing the latency in the matrix multiplications,

the formula has been modified as given in equation 1.6. No significant loss of accuracy(differs in 15th

or 16th decimal place) was observed with the given formula when compared with formulas quoted

in equations 1.4 and 1.5.

S
′

PCA =
1

k

∑
all i,j pairs

(LTM). ∧ 2 (1.6)

where .∧ represents an element-wise power operation and other symbols carry the same meaning as

that of equation 1.5. Table 1.3 shows the computation time of standard PCA using trace, geometrical

and simplified approach using Matlab 2017b. For comparing the performance, the snapshot with

100% fault samples from Instance-2 of testing dataset has been taken from operation ID’s 1,2 and

3 and the total time taken for whole historical run is averaged out to compare per unit window

computation time. The maximum absolute difference between the computed similarity factor from

geometrical interpretation and the other two approaches namely using Trace and simplified formulae

have been reported as MAE1 and MAE2.

1.5.2 Modified PCA similarity factor

The standard PCA similarity factor doesn’t give any weightage to the variance explained by each

principal component and weights all the PC’s equally. A modified PCA similarity factor proposed

by Johannesmeyer can be more effective which weighs each PC by square-root of its eigen value.

The geometrical interpretation for modified PCA similarity factor is as given in equation 1.7.

SλPCA =

k∑
i=1

k∑
j=1

(λSi λ
H
j )cos2θij

k∑
i=1

λSi λ
H
i

(1.7)

SλPCA =
trace(RTTTTR)

k∑
i=1

λliλ
m
i

(1.8)
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where
R = LΛl

T = MΛm
(1.9)

and

Λ =


√
λ1 0 0 0

0
√
λ2 0 0

0 0
. . . 0

0 0 0
√
λk

 (1.10)

1.5.3 Distance similarity factor

Distance similarity factor helps in identifying the datasets that have similar principal components

but the values of the process variables are quite different because of the disturbances of varying

magnitudes or set point changes. Thus the datasets which have same spatial orientation but are

located far apart can be identified using Distance similarity factor. The Mahalonobis distance, φ is

given by,

φ =

√
(x̄H − x̄S)Σ∗−1

S (x̄H − x̄S)
T

(1.11)

where x̄S and x̄H is the mean of the snapshot and historical windows respectively and Σ∗−1
S is the

pseudo-inverse of the covariance matrix ΣS of snapshot dataset. Only k (=max(ks, kh)) singular

values are used while calculating pseudo-inverse. The distance similarity factor is defined as the

probability that center of the historical dataset x̄H is atleast φ distance from the snapshot dataset

S.

Sdist
∆
= 2

1√
2π

∞∫
φ

e−z
2/2dz (1.12)

1.5.4 Dissimilarity factor

Kano et al. proposed a Dissimilarty factor for comparing two datasets. Let H be the historical

moving window dataset and S be the current snapshot dataset. The augmented dataset X is formed

as shown below.

X
∆
=

[
H

S

]
(1.13)

The eigen value decomposition is then performed on the covariance matrix of this augmented dataset,

X. The datasets H and S are then projected on to eigen vector matrix of covariance of X and are

scaled by corresponding eigen values to produce transformed datasets H̃ and S̃. Then the eigen

decomposition of the covariance of transformed datasets is then performed. It has been showed

that the eigen vectors of the transformed datasets are same and the corresponding eigen values are

related as shown below.

λH̃j = 1− λS̃j (1.14)

where λH̃j and λS̃j are the eigen values of the transformed dataset. If the datasets are similar then

their eigen values are close to 0.5 while if they are dissimilar then the smallest and largest eigen

values will be close to 1 and 0 respectively. Finally the dissimilarity factor signifies how the eigen
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values deviate from the central value of 0.5.

D
∆
=

4

n

n∑
j=1

(λH̃j − 0.5)
2

=
4

n

n∑
j=1

(λS̃j − 0.5)
2

(1.15)

where n is the number of variables in each dataset. If two datasets are dissimilar then the dissimilarity

factor, D will be close to 1 while if they are similar then it will be close to 0.

1.6 Metrics for Pattern Matching

Disturbances IDV(3-5) and IDV15 are quite difficult to locate in the historical database as they

show high similarity factors with normal operation and also the misclassification is high among such

disturbances. So to ensure proper detection, a candidate pool has been formed which is rank ordered

based on the values of similarity factor. The windows that differ by m samples are deleted and only

the window with highest similarity factor is retained in candidate pool to avoid repeated counting

of the same instance. The windows collected in the candidate pool are called records.

NP : Size of the candidate pool.

N1: Number of correctly identified records

N2: Number of incorrectly identified records

NDB : Number of historical windows that are actually present in the database similar to snapshot

window

1.6.1 Pool Accuracy

Pool accuracy gives a measure of the perfection of the candidate pool.

p
∆
=
N1

Np
× 100% (1.16)

1.6.2 Pattern Matching Efficiency

Pattern Matching Efficiency η evaluates the effectiveness of a pattern matching methodology in

identifying the similar instances in a historical database.

η
∆
=

N1

NDB
× 100% (1.17)

Since an effective pattern matching approach should possess high values of Pool accuracy p and

pattern matching efficiency η, the mean of the two quantities, ζ is used as a parameter for overall

effectiveness of pattern matching.

ζ =
η + p

2
(1.18)
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1.7 Tennessee Eastman Challenge Process

1.7.1 Introduction

Tennessee Eastman Challenge process is a challenging and popular case study in the domain of

process control developed by Tennessee Eastman company. TE process is considered as a case study

for fault diagnosis because of the following reasons.

• It resembles an actual chemical plant

• It is open loop unstable plant and is highly non-linear process

• The process comprises of large number of variables compared to other case studies like CSTR

and fermentation process

• Highly interacting systems and popular case study

Fig. 1.2 shows the schematic layout of TE process with base control strategy. The plant produces

two products G and H from four reactants namely A,C,D and E. An inert component B, is also

present in the reaction mixture which enters mainly through stream C and in trace amounts from

stream A. Although there are seven operating modes of the plant, only the base operating condition

proposed by Mc Avoy and Ye is only considered. The plant provides a total of 41 measurements and

12 manipulated variables. The 12th manipulated variable which is agitator speed is held constant

and is treated as a free variable. The historical database was generated by simulating the plant for

over a period of 3000 days. This simulation resulted in over 4.32 million measurements for each of

the 52 variables(41 measurements and 11 manipulated variables). The historical database contains a

total of 386 instances of 20 disturbances IDV(1-20) and 80 instances of four setpoint changes SP(1-4)

and normal operation. Table 1.4 shows the description of various operating IDs.

1.8 Proposed Pattern matching approach

Since to avoid computation of principal components by moving at one sample ahead when the sim-

ilarity factor is low, the window movement rate can be accelerated by skipping few data points and

then bring back to normal rate of w = 1 when the similarity factor is above certain threshold(say

0.5). From Table 1.2, it is clear that SVD of covariance matrix of dataset b i.e svd(bT .b) is quite com-

putationally faster compared to other approaches and hence it is chosen for calculation of PCs. From

Table 1.3 it is clear that trace approach outperforms the geometrical interpretation for calculation of

similarity factors. We fix the number of PC’s based on snapshot instead of the kmax = max(ks, kh).

Although other similarity factors like Distance and Dissimilar factor can be much more efficient in

pattern matching but they are computationally more expensive as compared to Standard similarity

factor. No significant improvement in reducing the number of mis-classifications is observed with

modified PCA similarity factor as reported in [3]. Hence Standard similarity factor has been chosen

for initial study. In fig.1.3, we fed 5 operation conditions from Instance-2 of testing dataset with

snapshot as fully fault samples. With change in snapshot, only the time spent in similarity factor

calculation varies because of the change in the number of PC’s required for capturing the 95% in the

snapshot dataset. With a window size of m=500, on an average it takes around 0.8-1 milli-second
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Figure 1.2: Schematic layout of Tennessee Eastman Challenge Process

(for a single window) for the 4-stages namely preprocessing, covariance bT .b product calculation,

svd computation and for calculation of similarity factor. It took not more than 40 minutes to sweep

through the entire training database(21.60lakh) irrespective of the operating condition. From the

fig.1.3 it is clear that the computation of SVD is quite dominant over other stages and hence to

reduce this we go for hardware implementation of SVD. The simulation studies are performed on a

system with 2.8GHz Intel i5 processor, 4GB DDR3 RAM running Matlab 2018a.

1.8.1 Selection of window size

The selected window size, m has to be properly chosen such that it captures the principal components

well so as to give a high value of similarity factor between similar operating conditions. Hence, the

window size has been chosen to be 500 by method of trial and error as it gave a high similarity factor

even between two similar transition operating windows.

1.8.2 Pre-computing of Historical Database

Since the historical database is fixed, the whole computations like pre-processing and SVD remains

the same and only the similarity factor computation has to be done with change in the snapshot.

Hence the principal components of the historical windows required can be pre-computed and stored

instead of storing the raw data. A major disadvantage of pre-computation of whole historic database

is that it restricts the process to be Time-invariant as in real time, there will be drifts in the sensors

due to aging and process dynamics also changes with time. Hence the mean and standard deviation

computation along with the number of principal components chosen have to be updated as a part of

model-maintenance (Adaptive PCA methods) as mentioned in [5]. Another disadvantage with pre-

8



Table 1.4: Operating conditions of TE process with base control strategy

OpID Operating condition Description
N Normal operation No disturbance or setpoint changes
1 IDV(1) Step in A/C feed ration, B composition constant
2 IDV(2) Step in B composition, A/C ratio constant
3 IDV(3) Step in D feed temperature (stream 2)
4 IDV(4) Step in reactor cooling water inlet temperature
5 IDV(5) Step in condenser cooling water inlet temperature
6 IDV(6) A feed loss(step change in stream 1). Switch pressure controller to purge stream

and reduce production rate by 23.8%. Maximum disturbance duration = 72 h
7 IDV(7) C header pressure loss-reduced availability (step change in stream 4)
8 IDV(8) Random variation in A-C feed composition (stream 4)
9 IDV(9) Random variation in D feed temperature (stream 2)
10 IDV(10) Random variation in C feed temperature (stream 4)
11 IDV(11) Random variation in reactor cooling water inlet temperature
12 IDV(12) Random variation in condenser cooling water inlet temperature
13 IDV(13) Slow drift in reaction kinetics. Maximum disturbance duration = 48 h
14 IDV(14) Sticking reactor cooling water valve
15 IDV(15) Sticking condenser cooling water valve
16 IDV(16) Unknown disturbance. Maximum disturbance duration = 48 h
17 IDV(17) Unknown disturbance. Maximum disturbance duration = 48 h
18 IDV(18) Unknown disturbance. Maximum disturbance duration = 12 h
19 IDV(19) Unknown disturbance
20 IDV(20) Unknown disturbance. Maximum disturbance duration = 8 h
21 SP(1) Production rate change (step down 15%)
22 SP(2) Production mix change (50/50 to 40/60)
23 SP(3) Reactor operating pressure change (step down by 60kPa)
24 SP(4) Purge gas: Component B change (step up 2%)

computation of historical database is large memory requirement and frequent flushing and loading of

volatile memory is dominant time consuming task as every 1lakhx52 database gives rise to 52lakhx35

database assuming we store only top-35 principal components.

1.8.3 Clustering

The historical data can be clustered into groups using the metrics like similarity factor as in [6] where

the authors modified k− means clustering algorithm to cluster time series data using Mahalonobis

distance and Standard PCA similarity factors. But since there are significant number of misclas-

sification as seen in results, it leads to poor accuracy of the formed clusters. Although supervised

clustering, where the windows which corresponds to same operation or has identical behavior can

be grouped together but in practice the labeling of data is quite difficult.

1.8.4 Overview of Historical Data

There are a total of 55 variables being sampled for every 1minute duration. Variable 1 corresponds

to the time while variables 2-53 are the variables under consideration for pattern matching. Variable

55 corresponds to the operation number being simulated at that point of time. The process data

is highly ill-conditioned. Although the smaller singular values in such a kind of matrices is difficult

to be determined accurately, in our pattern matching approach we deal with only those singular

values which capture 95% of variance of dataset. But the singular values taken under consideration

should be accurately determined for the vectors(PC’s) to be determined accurately because a small

perturbation in the singular values gives larger deviations in the corresponding vectors in case of
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ill-conditioned matrices. Some of the variables remained constant for a period of time (due to

saturation) which makes the standard deviation to become zero, hence those windows are discarded

as it results in a divide by zero during preprocessing step.

Computation time for a whole run of Historical data

1 2 3 4 5

Operation ID of snapshot

0

500

1000

1500

2000

2500

T
im

e 
in

 s
ec

on
ds

Pre-processing

covariance(bTb) product
svd
similarity factor

Figure 1.3: Computation time for various stages of pattern matching algorithm

1.9 Results for pattern matching

1.9.1 Methodology for Pattern Matching

The entire historical database has been divided into two equal halves (each of size 21.6 lakh) as

training and testing datasets. Each operation has been simulated for atleast 8 times in both testing

and training datasets. To evaluate the proposed pattern matching approach, every instance of fault

operation present in testing dataset has been taken as a snapshot data. The pool size has been

taken as 5 and the final decision is made on the most repeated detection out of these top-5 windows.

We made use of Maltab’s mode function for judging the operating condition based on the candidate

pool. An operation which has been detected for more than or equal to 3 times in a candidate pool

of size 5 can be diagnosed accordingly. In case of a candidate pool with top 5 records as N, Fx, Fy,

N, Fz the operation will be still treated as Normal because of its clear dominance over other kinds

of faults x,y and z. Hence the operator can be alerted to re-examine the process for any faults. No

weightage has been given to the records of the candidate pool as the snapshot has transition data

and misclassified windows are present even at top positions. The detected windows are then judged

by the presence of any fault operation samples. It has been observed that with a snapshot window

of only few (10% or 50% )fault samples, the detected windows may be similar to windows with 90%

fault samples or windows with 100% fault samples or even identical to snapshot data (10% fault

samples). Hence a window has been considered correctly classified, if the detected window possess

any amount of same operation faulty samples. Since the work is concerned about Fault detection

and diagnosis, we feed only the windows with 10%, 50 % and 100% fault samples windows from the

testing dataset as snapshot data. A total of 156 windows of size 500 with fully normal operation are

also fed to judge the performance of the proposed method. The detailed report with top-5 records

for each operation from Instances 2-7 can be found in report fdi.pdf.

The overall accuracy of the pattern matching for fault detection and diagnosis with faulty samples

has been 113
144 = 78.47%. Excluding the fault ID’s 3,4,5 and 15 which are difficult to detect as

mentioned in [3], the accuracy has been 107
120 = 89.16%. Table 1.5,1.6 and 1.7 lists the detected

operations for different kinds of faults in three scenarios 10,50 and 100% fault samples respectively.
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Table 1.5: Results for snapshot as 10% fault samples for Instances I2-I7

Op ID I2 I3 I4 I5 I6 I7 Detected
1 1 1 1 1 1 1 6/6
2 2 12 2 25 5 25 2/6
3 3 25 25 25 25 25 1/6
4 25 17 11 14 11 11 0/6
5 25 25 25 3 25 25 0/6
6 6 6 6 6 6 6 6/6
7 7 7 7 7 7 7 6/6
8 1 1 25 1 25 8 1/6
9 25 25 25 4 25 3 0/6
10 25 25 25 25 1 25 0/6
11 14 4 25 25 11 11 2/6
12 25 25 5 12 3 25 1/6
13 25 25 13 2 25 25 1/6
14 25 25 25 14 25 25 1/6
15 25 25 25 25 25 25 0/6
16 25 25 25 25 16 25 1/6
17 3 17 25 17 17 25 3/6
18 25 25 25 3 25 25 0/6
19 25 25 25 25 25 25 0/6
20 25 20 15 9 25 9 1/6
21 7 25 25 25 25 25 0/6
22 22 22 22 22 22 22 6/6
23 23 23 23 12 23 17 4/6
24 24 25 24 24 24 24 5/6
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Table 1.6: Results for snapshot as 50% fault samples for Instances I2-I7

Op ID I2 I3 I4 I5 I6 I7 Detected
1 1 1 1 1 1 1 6/6
2 2 2 2 2 2 2 6/6
3 25 25 25 25 25 25 0/6
4 11 7 4 11 4 11 2/6
5 3 25 25 25 25 25 0/6
6 6 6 6 6 6 6 6/6
7 7 7 7 7 7 7 6/6
8 8 8 8 8 8 8 6/6
9 25 25 25 25 25 25 0/6
10 10 10 10 10 10 10 6/6
11 11 11 11 11 11 11 6/6
12 12 12 12 12 12 12 6/6
13 13 13 13 13 13 13 6/6
14 14 14 14 14 24 3 4/6
15 25 25 25 15 7 25 1/6
16 16 16 16 25 16 16 5/6
17 17 17 17 17 17 17 6/6
18 18 18 18 18 18 18 6/6
19 25 25 25 7 25 25 0/6
20 20 20 20 20 20 20 6/6
21 25 21 21 21 21 21 5/6
22 22 22 22 22 22 22 6/6
23 23 23 23 23 23 23 6/6
24 24 24 24 24 24 24 6/6
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Table 1.7: Results for snapshot as 100% fault samples for Instances I2-I7

Op ID I2 I3 I4 I5 I6 I7 Detected
1 1 1 1 8 1 1 5/6
2 2 2 2 2 2 2 6/6
3 25 25 25 25 25 25 0/6
4 11 7 25 25 25 11 0/6
5 5 5 9 25 25 25 2/6
6 6 6 6 6 6 6 6/6
7 7 7 7 7 7 7 6/6
8 8 8 8 8 8 8 6/6
9 25 25 25 25 25 24 0/6
10 10 10 10 10 10 10 6/6
11 11 11 11 11 11 11 6/6
12 12 12 12 12 12 12 6/6
13 13 13 13 13 13 13 6/6
14 14 14 14 14 14 14 6/6
15 25 25 25 25 7 25 0/6
16 16 16 16 16 16 16 6/6
17 17 17 17 17 17 17 6/6
18 18 18 18 18 18 18 6/6
19 24 1 25 7 25 25 0/6
20 20 20 20 20 20 20 6/6
21 7 7 21 21 7 7 2/6
22 22 22 22 22 22 22 6/6
23 23 23 23 23 23 23 6/6
24 24 2 24 24 25 25 3/6
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Table 1.8: Overall results of fault diagnosis and detection

Op ID I2 I3 I4 I5 I6 I7 10% 50% 100%
1 10,50,100 10,50,100 10,50,100 10,50 10,50,100 10,50,100 6 6 5
2 10,50,100 50,100 10,50,100 50,100 50,100 50,100 2 6 6
3 10 1 0 0
4 50 50 0 2 0
5 100 100 0 0 2
6 10,50,100 10,50,100 10,50,100 10,50,100 10,50,100 10,50,100 6 6 6
7 10,50,100 10,50,100 10,50,100 10,50,100 10,50,100 10,50,100 6 6 6
8 50,100 50,100 50,100 50,100 50,100 10,50,100 1 6 6
9 0 0 0
10 50,100 50,100 50,100 50,100 50,100 50,100 0 6 6
11 50,100 50,100 50,100 50,100 10,50,100 10,50,100 2 6 6
12 50,100 50,100 50,100 10,50,100 50,100 50,100 1 6 6
13 50,100 50,100 10,50,100 50,100 50,100 50,100 1 6 6
14 50,100 50,100 50,100 10,50,100 100 100 1 4 6
15 50 0 1 0
16 50,100 50,100 50,100 100 10,50,100 50,100 1 5 6
17 50,100 10,50,100 50,100 10,50,100 10,50,100 50,100 3 6 6
18 50,100 50,100 50,100 50,100 50,100 50,100 0 6 6
19 0 0 0
20 50,100 10,50,100 50,100 50,100 50,100 50,100 1 6 6
21 50 50,100 50,100 50 50 0 5 0
22 10,50,100 10,50,100 10,50,100 10,50,100 10,50,100 10,50,100 6 6 6
23 10,50,100 10,50,100 10,50,100 50,100 10,50,100 50,100 4 6 6
24 10,50,100 50 10,50,100 10,50,100 10,50 10,50 5 6 3
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Table 1.9: Misclassifications with snapshot as Normal data

Misclassified as 1 3 4 7 15 24
No. of misclassification

(window number)
3

(22,126,147)
6

(38,60,77,81,105,138)
3

(20,53,82)
1

(139)
3

(9,48,95)
3

(45,148,154)

Table 1.8 lists the overall results of the proposed fault detection and diagnosis approach. Each cell is

populated with number 10 and/or 50 and/or 100 to signify that it has been properly classified with

a snapshot of 10% , 50% and 100% fault samples in each of the 6 instances I2-I7. An empty cell

signifies that it has not been detected in any of the 10% , 50% and 100% fault samples snapshot. We

relax the condition for fault detection and diagnosis, that a fault has to be correctly classified atleast

once in any of the 10% , 50% and 100% fault samples scenarios. Because a fault once detected in

10% fault samples simulation will no longer propagate to give rise to a situation of 50% or 100%

fault sample scenarios assuming the detection and diagnosis is very much faster than the process

to reach those scenarios. Table 1.9 reports the mis-classifications reported with snapshot as fully

normal samples.

Apart from the most difficult fault ID’s (3,4,5 & 15) reported in [3], faults 9 and 19 are also

difficult to detect with a window size of 500. No improvement has been seen in reducing the

misclassifications in Op ID’s 9 and 19 even with windows as large as 2000. The two operations

showed high value of similarity with normal operation. Op ID 20, the fault with smallest maximum

duration of 8 hours has been correctly classified in 50% and 100 % fault snapshots in all the instances

and hence there has been no issues with the proposed method of not able to detect a fault before

maximum duration leading to catastrophic damages. Op ID’s 1,6,7 and 22 are well classified even

with 10% fault samples in snapshot windows. Similarly the fault ID’s 2,8,10-13,17,18,20-24 are well

classified by the time fault has been simulated for 4 hours(50% of snapshot) while Fault ID 16 has

been well classified in the snapshot with fully faulty samples. The accuracy for the proposed fault

detection and diagnosis with snapshot data as a window with fully normal operation samples has been

found to be 137
156 = 87.82%. Excluding the operation ID’s 3,4,5 and 15 in the misclassifications, the

accuracy is around 149
156 = 95.512% for normal operation windows. 8 out of 24 operating conditions

have similarity factor of less than 0.5 for most(> 80%) of the time and hence in those cases the

window movement rate can be made to accelerate by skipping 40-50 windows until the similarity

factor reaches the threshold of 0.5. Longer jumps in the window are very dangerous as it has been

examined that the closely matching windows are having a higher similarity factor of around 0.9 for

only 50 samples.
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Chapter 2

Algorithms for SVD

2.1 Introduction

Since we require SVD for computing Principal Components of the datasets as mentioned in the

previous chapter, various algorithms for SVD are briefly discussed here. The most popular SVD

algorithm for hardware implementations i.e Jacobi method is discussed separately in Chapter 4.

2.1.1 Properties of SVD

• The singular values of a symmetric matrix are the absolute values of the eigen values. Further

the right and left orthogonal matrices are just transpose of each other.

• Singular values are always non-negative.

• SVD is unaltered by shuffling of rows.

• Scaling the input matrix by a factor of k, will also scale the singular values by the same factor

k without any change in the singular vectors.

2.2 Golub-Kahan-Reinsch SVD:

The algorithm is a two step process which first bi-diagonalizes the given matrix using orthogonal

transformations like Givens rotations or Householder reflections. Then the bidiagonal matrix is fur-

ther diagonalized using Givens rotations. Two variants of Golub-Kahan algorithm are here described

as Algorithm 1a and 1b respectively.

2.2.1 Algorithm 1a

For a matrix A with m rows and n columns, this algorithm essentially involves two steps.

For m ≥ n:

• Step-1: Reduce the given matrix A into bi-diagonal form using orthogonal transformations like

Householder reflections.

• Step-2: Diagonalize the matrix obtained from Step-1 using Givens rotations.
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For m < n:

• Let A1 = AT , Hence A1 is transformed to a thin matrix and proceed as for m ≥ n.

• Take the transpose of the obtained decomposition of matrix A1 which equals the decomposition

for A.

The matlab code for computing svd using algorithm 1a can be found in svd 2a.m .

2.2.2 Householder Reflections

Householder reflections are orthogonal transformations and hence they preserve the norm of the

vector. The method of forming householder matrices has been taken from [7].

w = 1√
2r(r+|xk|)



0
...

0

xk + sr

xk+1

...

xn


, s =

{
xk

|xk| if xk 6= 0

1 otherwise
(2.1)

r =

√
|xk|2 + |xk+1|2 + · · ·+ |xn|2 and H = I − 2wwT (2.2)

Geometrical Interpretation: The concept of reflection is governed by 3 equations:

The reflection plane is determined by a vector w of unit length.

‖w‖ = 1 (2.3)

Reflection preserves the norm of the vector.

‖x‖ = ‖Hx‖ (2.4)

The difference between the vector x and its reflection x′ is a scalar multiple of vector w.

x− x′ = fw (2.5)

Consider a vector x =

[
4

3

]
, we form a vector w =

[
0.9487

0.3162

]
of unit length as described in

equation 2.1. The plane used for reflection H is formed orthogonal to the vector w as shown in

fig.2.1. The plane H reflects the vector x on negative x-axis. If vector w′ is chosen in such a way

that it is perpendicular to computed w from equation 2.1, then there exists an another plane H ′

which reflects the vector x on positive x-axis as shown in fig.2.2.

For Golub-Kahan SVD, we pre-multiply a householder matrix with matrix A such that it preserves
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(a) 2D view (b) 3D view

Figure 2.1: Geometrical Interpretation of Householder reflection: H

(a) 2D view (b) 3D view

Figure 2.2: Geometrical Interpretation of Householder reflection: H ′

only k components in kth column. Similarly, for each row we form a householder matrix which is

used to post-multiply with A such that it retains only k + 1 components in kth row.

Consider the following matrix A=


6 1 2

5 −3 9

1 4 5

−2 5 0


The householder matrix to nullify all the elements of column 1 is formed as shown below.

x =


6

5

1

−2

 , r =

√
62 + 52 + 12 + (−2)

2
= 8.1240, w = 1√

229.4868


6 + (1× 8.124)

5

1

−2

 =


0.9323

0.3301

0.0660

−0.1320


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H = I − (2wwT ) =


−0.7385 −0.6155 −0.1231 0.2462

−0.6155 0.7821 −0.0436 0.0872

−0.1231 −0.0436 0.9913 0.0174

0.2462 0.0872 0.0174 0.9651


Pre-multiplying H with A results in a matrix A1 given by

A1 = H ×A =


−8.1240 1.8464 −7.6317

0.0000 −2.7004 5.5903

0.0000 4.0599 4.3181

−0.0000 4.8802 1.3681


Next we form householder matrix H1 which when post-multiplied with A1, annihilates all the ele-

ments next to the super-diagonal entry in the first row.

A2 = A1 ×H1 =


−8.1240 −7.8518 −0.0000

0.0000 6.0686 −1.3101

0.0000 3.2423 4.9615

−0.0000 0.1781 5.0640


This process when repeated for all columns gives a bi-diagonal matrix B which is utilized in Step-2.

The final bi-diagonal matrix B for the example considered is given by

B =


−8.1240 −7.8518 0.0000

−0.0000 −6.8827 1.3131

0.0000 −0.0000 7.0889

0.0000 −0.0000 0.0000


2.2.3 Givens Rotations

Let a and b be the x and y components of the given vector. The convention followed in forming the

rotation matrices is as shown below.

For Row vector: [
a b

] [ c s

−s c

]
=
[
r 0

]
where r =

√
a2 + b2

c← a/r

s← −b/r

For column vector: [
c −s
s c

][
a

b

]
=

[
r

0

]
where r =

√
a2 + b2

c← a/r

s← −b/r

The Rotation matrix R(i, j, θ) is constructed in such a way that it acts only on ith and jth rows or

columns of matrix A and the remaining elements are left unaltered. A typical rotation matrix to
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act on i,j columns of A is as shown below.

i ↓ j ↓

R(i, j, θ) =



1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1



Geometrical Interpretation: Consider a vector a =

 1

2

1

 as shown in fig.2.3a. The rotation

matrix R is found to be R =

 0.4472 0.8944 0

−0.8944 0.4472 0

0 0 1

 which annihilates the y-component and maps

an equivalent vector on xz plane as shown in fig.2.3b. A rotation is equivalent to two reflections.

(a) Original vector (b) After rotation

Figure 2.3: Geometrical Interpretation of Givens rotations

Consider the bi-diagonal matrix B obtained above after Step-1.

B =


−8.1240 −7.8518 0.0000

−0.0000 −6.8827 1.3131

0.0000 −0.0000 7.0889

0.0000 −0.0000 0.0000


We form a rotation matrix R1 that acts on row-1 and annihilates the first element of the superdiag-

onal.

R1 =

 −0.7190 0.6950 0

−0.6950 −0.7950 0

0 0 1


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Post-multiplying with rotation matrix R1 results in matrix B1,

B1 = B ×R1 =


11.2983 0 0.0000

4.7832 4.9490 1.3131

−0.0000 0.0000 7.0889

−0.0000 0.0000 0.0000


Since this lead to generation of a new non-zero element in column-1, we generate a rotation matrix

R2 that acts on column-1.

R2 =


0.9209 0.3899 0 0

−0.3899 0.9209 0 0

0 0 1 0

0 0 0 1


Pre-multiplying R2 with B2,

B2 = R2 ×B1 =


12.2691 1.9294 0.5119

0 4.5574 1.2092

−0.0000 0.0000 7.0889

−0.0000 0.0000 −0.0000


Even though, this leads to new non-zero element at position (1,3), we proceed to apply rotation

matrix R3 on second row of B2 which takes care of it.

R3 =

 1.0000 0 0

0 0.9666 −0.2565

0 0.2565 0.9666


Post-multiplying with rotation matrix R3 results in matrix B3

B3 = B2 ×R3 =


12.2691 1.9962 0.0000

0 4.7151 −0.0000

−0.0000 1.8180 6.8518

−0.0000 0.0000 0.0000


The above process is repeated until all the entries on the super-diagonal are annihilated. The number

of non-zero elements in super-diagonal elements tends to decrease as the iterations progresses. The

indices of first and last non-zero element in super-diagonal are updated after every iteration to avoid

applying Givens rotation to the elements which are already zero. A reduction in number of Givens

rotation with index upgradation can be seen in Table 2.1. The computation of c and s required for

forming rotation matrix can be found using givens.m . One more efficient way of diagonalization

is through Fast Givens rotation which reduces the number of multiplications by half and eliminates

the use of square root has been proposed in [8].
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Table 2.1: Comparison of Givens rotations with and without Index upgradation

Order
Without Index Upgradation With Index Upgradation

No. of Givens
rotations

Overall
Computation

time(s)

No. of Givens
rotations

Overall
Computation

time(s)
10 2034 0.154 1226 0.102
100 36828 7.042 36052 7.115

2.2.4 Algorithm 1b

An improvement over Golub-Kahan Algorithm is Lawson-Hanson-Chan algorithm which computes

QR decomposition of matrix A before Bi-diagonalization. The Bi-diagonalization will be applied to

the upper triangular matrix R which helps in reduction of number of householder reflections needed

as we apply them only to rows. This method proved to be efficient for m > 5
3n. An outline of

algorithm 1b is presented below.

• Step-1: Perform QR decomposition of matrix A

A = QR (2.6)

• Step-2: Reduce upper triangular matrix R into Bi-diagonal form using orthogonal transforma-

tions

R = PBQT (2.7)

• Step-3: Reduce the Bi-diagonal matrix B obtained in Step-2 to diagonal form using Givens

rotations

Matlab code for SVD using algorithm 1b can be found in alg 2b.m

2.2.5 Algorithms for QR decomposition

QR Decomposition of a matrix is decomposition of a matrix into product of an orthogonal matrix

Q and an upper triangular matrix R.

A = QR

Two methods for QR decomposition namely Gram-Schmidt algorithm and using Householder reflec-

tions are discussed below.

Gram-Schmidt Algorithm

Consider the columns in the matrix A as
[
a1 | a2| · · · an

]
Then

u1 = a1, e1 =
u1

‖u1‖

u2 = a2 − (a2 · e1)e1, e2 =
u2

‖u2‖

uk+1 = ak+1 − (ak+1 · e1) e1 − ....− (ak+1 · ek) ek, ek+1 =
uk+1

‖uk+1‖

(2.8)
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where (ak+1 ·ek) represent dot product between the vectors ak+1 and ek ; ‖uk‖ represents Eucledian

norm of vector uk. In case if ‖uk‖ is zero (happens if entire kth column in matrix A is zero vector),

then ek is set to zero. Therefore matrix A can be written as

A =
[

a1 | a2 | · · · | an

]
=

[
e1 | e2 | · · · | en

]

a1 · e1 a2 · e1 · · · an · e1

0 a2 · e2 · · · an · e2

...
...

. . .
...

0 0 · · · an · en


Consider the following matrix,

A =

 3 7

2 0

1 5


Applying Gram-Schmidt process,

u1 =

 3

2

1

 , e1 = 1√
14

 3

2

1

 =

 0.8018

0.5345

0.2673


u2 =

 7

0

5

− (6.9491)

 0.8018

0.5345

0.2673

 =

 1.4282

−3.7143

3.1425

 , e2 =

 0.2817

−0.7325

0.6197


Therefore, the matrix Q and R are given by

Q =

 0.8018 0.2817

0.5345 −0.7325

0.2673 0.6198

 R =

 3.7417 6.9488

0 5.0709

0 0


The matlab code for finding QR decomposition using Gram-Schmidt process can be found in gs qr.m

Using Householder reflections

Householder reflectors are successively applied on each column in such a way that it retains only k

elements in kth column. This method computes full QR factorization. A Matlab code for finding

QR decomposition using Householder reflections can be found in qr hh.m

Consider the following matrix

A =

 3 7

2 0

1 5


Applying Householder reflections to find QR decompositon resulted in

Q =

 −0.8018 0.2817 −0.5270

−0.5345 −0.7325 0.4216

−0.2673 0.6198 0.7379

 R =

 −3.7417 −6.9488

−0.0000 5.0709

0.0000 0.0000


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Observe that using householder method we obtain matrix Q with order mxm.

2.2.6 Bi-diagonalization of Triangular matrix

Using Householder reflectors

The triangular matrix R obtained in QR decomposition is bi-diagonalized by applying a series of

householder reflectors on each row in such a way that it retains only kth and k + 1th elements in

kth row. Hence after applying reflections to n−2 rows we will be landing with a bi-diagonal matrix.

The matlab code for bi-diagonalization of a triangular matrix can be found in bidig trng.m

2.2.7 Diagonalization of Bi-diagonal matrix

The bi-diagonal matrix B obtained in Step-2 of Algorithm 1b is diagonalized using Givens rotation

as discussed in Algorithm 1a.

2.3 Multiple Relatively Robust Representation (MRRR) al-

gorithm

This algorithm requires a tri-diagonal/bi-diagonal form and is computationally efficient if only a sub-

set(k < n) of singular values is required. Given a Tri-diagonal/ bi-diagonal matrix, the algorithm

computes singular values and singular values in O(kn) time.

2.4 Divide and conquer algorithm

Given a bi-diagonal matrix T , the divide and conquer algorithm [9] recursively divides into two

parts until it is sufficiently small that can be solved easily by other algorithms like Golub-Kahan

SVD. Significant saving in flops is observed when eigen vectors are also computed. QR algorithm

takes approx. 9m3 flops whereas divide and conquer algorithm requires only 4m3 flops in total. The

divide and conquer algorithm developed by Ming Gu in [10] has been presented here.

Example: Let the given dense matrix be A of dimension m × n which is further reduced to bi-

diagonal(lower bi-diagonal variant shown below, although same can be extended to upper diagonal

form which differs in partitioning the matrix with some scalar terms along row).

A =



30 39 48 1 19

38 47 7 9 27

46 6 8 17 35

5 14 16 25 36

13 15 24 33 44

21 23 32 41 3

22 31 40 49 11



24



Converting into bi-diagonal form using methods like Householder reflectors as described in Algorithm

5.2.1.

B =



−72.02 0 0 0 0 0

117.94 −93.45 0 0 0 0

0 −33.90 38.96 0 0 0

0 0 9.56 −32.54 0 0

0 0 0 25.77 39.51 0

0 0 0 0 16.4 0.85

0 0 0 0 0 −26.53


Let us assume that any dense matrix of dimension m× n be reduced to lower bi-diagonal matrix of

size (n + 1) × n. Then the obtained lower bi-diagonal matrix is partitioned into two sub matrices

B1 and B2 of dimensions k × (k − 1) and (n− k + 1)× (n− k) respectively. Generally k is chosen

as bn2 c.

B =

[
B1 αkek 0

0 βke1 B2

]
Hence for the example, the value of k is 3 and matrix B is partitioned into B1 and B2 as shown

below.

B1 =

 −72.02 0

117.94 −93.45

0 −33.90

 B2 =


−32.54 0 0

25.77 39.51 0

0 16.4 0.85

0 0 −26.53


Then the SVD of these sub-matrices B1 and B2 are computed using standard algorithms or these

may be further recursively sub-divided until they are computationally less intensive compared to

initial dimension.

Let the SVD of the sub-matrix Bi be given as,

Bi =
[
Qi qi

] [ Di

0

]
WT
i

where (Qi qi) and Wi are left and right orthogonal matrix respectively and Di is the diagonal matrix

containing singular values. The left orthogonal matrix U1 is blocked into Q1 and q1 as shown below.

Similarly the left orthogonal matrix U2 is blocked into Q2 and q2.

Q1 =

 −0.37 −0.79

0.92 −0.25

0.12 −0.56

 , q1 =

 −0.49

−0.30

0.82



Q2 =


−0.42 0.84 0.15

0.88 0.30 0.06

0.23 0.41 0.04

0 0.17 −0.99

 , q2 =


0.29

0.37

−0.88

0.03


Let lT1 and λ1 be the last row and last component in Q1 and q1. Similarly let f t2 and ϕ2 be the first
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row and first component in Q2 and q2 respectively. Hence the matrix B can be rewritten as follows.

B =


(Q1 q1)

(
D1

0

)
WT

1 αkek 0

0 βke1 (Q2 q2)

(
D2

0

)
WT

2



=

[
Q1 q1 0 0

0 0 Q2 q2

]
D1W

T
1 αkQ

T
1 ek 0

0 αkq
T
1 ek 0

0 βkQ
T
2 e1 D2W

T
2

0 βkq
T
2 e1 0



=

[
q1 Q1 0 0

0 0 Q2 q2

]
αkλ1 0 0

αkl1 D1 0

βkf2 0 D2

βkϕ2 0 0


 0 W1 0

1 0 0

0 0 W2


T

We apply Givens rotation to annihilate the term βkϕ2. Define the parameters required for Givens

rotation as,

r0 =

√
(αkλ1)

2
+ (βkϕ2)

2
, c0 =

αkλ1

r0
, s0 =

βkϕ2

r0

For the example the values of r0, c0 and s0 are found to be 32.0977, 0.9963 and 0.0865 respectively.

Pre-multiplying matrix B with the rotation matrix,

B =

[
c0q1 Q1 0 −s0q1

s0q2 0 Q2 c0q2

]
r0 0 0

αkl1 D1 0

βkf2 0 D2

0 0 0


 0 W1 0

1 0 0

0 0 W2


T

The non-zero block in the middle matrix be named M , which will be used for finding the singular

values.

M =

 r0 0 0

αkl1 D1 0

βkf2 0 D2


The matrix M has been found to be as given below.

M =



32.10 0 0 0 0 0

4.50 162.59 0 0 0 0

−21.80 0 50.44 0 0 0

−4.05 0 0 52.88 0 0

8.07 0 0 0 27.54 0

1.45 0 0 0 0 26.51


This matrix B possess a special structure which has non-zero entries only along the diagonal and in

26



the first column.

M =


z1

z2 d2

...
. . .

zn dn


Let d be a vector with diagonal entries of matrix M with d1 set to zero. Similarly let z be the vector

containing the first column entries of matrix M . The singular values ωi of matrix M satisfy the

interlacing property and secular equation given below.

0 = d1 < ω1 < d2 < . . . < dn < ωn

f(ω) = 1 +

n∑
k=1

z2
k

d2
k − ω2

= 0 (2.9)

The roots are generally found using Newton Raphson method which takes O(m) operations for each

roots and hence O(m2) time complexity for a m×m matrix. The singular vectors are given by,

ui =
(

z1
d21−ω2

i
, . . . , zn

d2n−ω2
i

)T/√
n∑
k=1

z2k
(d2k−ω

2
i )2

vi =
(
−1, d2z2

d22−ω2
i
, . . . , dnzn

d2n−ω2
i

)T/√
1 +

n∑
k=2

(dkzk)2

(d2k−ω
2
i )2

We found a method of solving the roots of the secular equation by nature-inspired methods like

firefly algorithm as described in [11], but since these meta-heuristic methods are time-consuming,

they have been left out as they may not be apt for our time-constrained problem.

2.5 Bi-section and Inverse iteration

Bi-section method: Bi-section method makes use of binary search for finding the roots of the char-

acteristic polynomial of the given matrix.

Inverse Iteration: Given an estimate of eigen value µ (obtained from bi-section method), inverse

iteration finds the corresponding eigen vector. The algoirthm starts with an initial guess b0 and

updates the eigen vector using the recurrence relation in equation 2.10.

bk+1 =
(A− µI)

−1
bk

Ck
(2.10)

where Ck =
∥∥∥(A− µI)

−1
bk

∥∥∥.

2.6 Hybrid methods for SVD

2.6.1 Introduction

In this section, we propose a hybrid algorithm which makes use of Householder bi-diagonalization

followed by the two sided Jacobi algorithm. The accuracy of the singular values are defined by a
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metric, percentage of relative accuracy which is defined below whereas the accuracy of the singular

vector is determined by the accuracy of the similarity factor.

% rel. error =
σi − σ̂i
σi

× 100 (2.11)

Throughout this section we make use of the historical dataset with snapshot windows (100% fault

samples) from fault operations 1,2 and 3. We plot the difference between the computed similarity

factor from various hybrid algorithms and the similarity factor obtained from using Maltab svd

command as they differ mostly after 2 or 3 decimal places.

2.6.2 Householder Bi-diagonalization followed by Jacobi

The initial covariance (dense) matrix is first reduced to bidiagonal form using householder reflections.

Then the obtained bidiagonal matrix is further reduced to diagonal matrix using Jacobi rotations.

One advantage of Jacobi method is faster annihilation of off-diagonal elements. The bi-diagonal

form is no longer preserved with application of Jacobi rotations after one sweep as every non-zero

upper diagonal element will make the entire 2x2 block as dense matrix. N-D CORDIC can be used

in place of 2-D CORDIC for reducing latency in forming the householder reflections with a space-

time trade-off. J.M. Delosme et al. in [12], [13] gave a direction for multi-dimensional CORDIC

algorithms and in particular 4-D CORDIC. We make use of the householder reflections described in

section 2.2.1 for bi-diagonalization instead of CORDIC based methods.

2.6.3 QR decomposition followed by Jacobi

Since we are not preserving the bi-diagonal structure in the above Householder method, we also look

at QR decomposition followed by Jacobi method as it is less computationally intensive compared

to Householder reflection. We make use of the householder reflections described in section 2.2.1 to

upper triangularize the matrix and then diagonalize this matrix using Jacobi rotations.

2.7 Selection of an SVD algorithm for Pattern matching

Fig.2.4 and fig.2.5 shows the error in the computed similarity factor with snapshot as IDV1 and

IDV3 respectively. It can be seen that even 7 sweeps of Jacobi performed well in IDV1 as the

number of PC’s required for capturing 95% variance is just 12 whereas the number of PC’s required

for IDV3 are as high as 32. Simple Jacobi algorithm is only able to accurately determine the well

conditioned singular values and vectors while Householder followed by 6 sweeps of Jacobi performed

much better than the remaining algorithms. Since it is difficult to visualize the % relative error of

top 32 singular values using various algorithms of different windows, we plot the worst(maximum)

absolute % rel. error of each singular value recorded among all the windows in the training dataset

as shown in fig. 2.6. A worst absolute % relative error helps in generalizing the error in a particular

singular value i.e suppose using the 6 sweeps of Jacobi, the worst %rel. error of 32nd singular value

has been found to be 35% which means that 32nd singular value from all the windows will have error

of no more than 35%. Only top 32 singular values are considered here as it has been found that

the number of PC’s required for 95% variance will not exceed 32 in the entire 4.32 million historical
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Figure 2.4: Comparison of various algorithms with snapshot as IDV1

database with a window size of 500.

The bi-diagonal methods of SVD are very accurate but suffer from large latency because of large

dense matrix multiplications. Even the Matlab implementation of SVD is known to make use of di-

vide and conquer Bi-diagonal SVD. For a general m×n matrix, it requires 2n matrix multiplications

just for computing singular values alone. A set of n matrix multiplications for pre-multiplications

each matrix of size m × m and another set of n multiplications each of size n × n. If this bi-

diagonalization has been marked for Hardware implementation, this demands a huge number of

DSP48E multiplier blocks instead a n-D CORDIC based Bi-diagonalization has to be done to limit

the number of multipliers by trading off a little accuracy. From inspection of the similarity fac-

tors computed through Matlab, it has been observed that an accuracy of upto 3 decimal places is

necessary for better pattern matching to keep the mis-classifications under control. This problem

can also be avoided by proposing a new similarity factor which shows better diversity among all

the operating conditions, in such a case the accuracy of similarity factor can be slightly traded-off.

Householder followed by 6 sweeps of Jacobi gave a better accuracy of upto 4 decimal places and

hence the algorithm can be chosen when we require such close precision and accuracy i.e when the

similarity factor reaches a threshold of above 0.7-0.8. In remaining cases where the similarity factor

is below the threshold, the Jacobi algorithm can be chosen as base algorithm.
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Figure 2.5: Comparison of various algorithms with snapshot as IDV3

Figure 2.6: Worst absolute % rel. error of top 32 singular values
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Chapter 3

CORDIC

3.1 Introduction

CORDIC(acronym for Co-Ordinate Rotational Digital Computer) is widely used for computing

trigonometric functions, exponential and logarithmic functions and square root operations. As it

makes use of simple shift and add/subtract operations, making the design simpler, reliable and faster

without the need of multipliers and look-up table to compute trigonometric functions. It was first

developed by Jack E. Volder in 1959 and thereafter many architectures have been proposed for high

performance and low cost design which are briefly described in [14].

3.2 Modes of CORDIC

We restrict the discussion to circular co-ordinate system, although there are other co-ordinates

in which CORDIC operates like linear and hyperbolic. CORDIC operates in two modes namely

Rotation mode and Vectoring mode as shown in fig 3.1.

Vectoring Rotation

yiθ xi

xf yfθ r

ba

Figure 3.1: Modes of CORDIC

Table 3.1: Microrotations

i 0 1 2 3 4 5 6 7 8 9
θ 45◦ 26.565◦ 14.036◦ 7.125◦ 3.356◦ 1.789◦ 0.895◦ 0.448◦ 0.224◦ 0.112◦
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3.2.1 Rotation mode

Rotation mode basically rotates the initial vector (x0, y0) by a given angle θ and computes the final

vector (xf , yf ). The basic rotation matrix for clockwise sense is as shown below.(
xf

yf

)
=

(
cos θ sin θ

− sin θ cos θ

)(
x0

y0

)
(3.1)

For anti-clockwise rotation, the rotation matrix can be obtained by replacing θ with −θ, which just

transposes the rotation matrix obtained for clock-wise sense as shown below.(
xf

yf

)
=

(
cos θ − sin θ

sin θ cos θ

)(
x0

y0

)
(3.2)

The rotation matrix can be decomposed to simple shift and add/subtract operations as shown below.

Let Rθi be the rotation matrix at ith iteration,

Rθi =

(
cos θi − sin θi

sin θi cos θi

)

Rθi = cos θi

(
1 − tan θi

tan θi 1

)
The tan θi present in the above equation can be replaced with known micro-rotations with θi =

arctan 1
2i as listed in Table 3.1.

Rθi = cos θi

(
1 − 1

2i

1
2i 1

)
Making use of trigonometric relationship between cosine and tangent,

cos θ =
1√

1 + tan2θ

Rθi =
1√

1 + (2−i)
2

(
1 − 1

2i

1
2i 1

)
(3.3)

The terms 1
2i can be easily implemented in hardware as it corresponds to Shift-right operation(�).

The scaling factor in equation 3.3 need not be computed at each iteration as the product finally

converges to 0.6037 after a finite number of iterations and hence a final scaling can be done at the

end.
∞∏
i=0

1√
1 + (2−i)

2
' 0.6037 (3.4)

Using equations 3.1 and 3.3 rotation outputs for clockwise rotation can be expressed at ith instant

are given by (
xi+1

yi+1

)
=

(
xi + (yi � i)

−(xi � i) + yi

)
(3.5)
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Table 3.2: Quadrant detector

Quadrant MSB(x ) MSB(y) quad
1st 0 0 00
2nd 1 0 10
3rd 1 1 11
4th 0 1 01

Table 3.3: Transforming inputs

Quadrant quad x0 y0

1st 00 xi yi
2nd 10 −xi −yi
3rd 11 −xi −yi
4th 01 xi yi

Similarly for anti-clockwise rotation,(
xi+1

yi+1

)
=

(
xi − (yi � i)

(xi � i) + yi

)
(3.6)

Consider the following example. Let the vector (1,2) be rotated by an angle of 65.43◦.

• Iteration-1: i = 0⇒ input angle is positive hence 45◦ clockwise. From equation 3.5, (1,2) after

45◦ CW rotation gives (3,1).

Is 45◦ > 65.43◦ ? No =⇒ next rotation clockwise.

• Iteration-2: i = 1 ⇒ 26.565◦ clockwise. From equation 3.5, (3,1) after 26.565◦ CW rotation

gives (3.5,-0.5).

Is 45◦ + 26.565◦ = 71.565◦ > 65.43◦ ? Yes =⇒ next rotation anticlockwise.

• Iteration-3: i = 2 ⇒ 14.036◦ anticlockwise. From equation 3.6, (3.5,-0.5) after 14.036◦ ACW

rotation gives (3.625,0.375).

Is 45◦+26.565◦-14.036◦ = 57.529◦ > 65.43◦ ? No =⇒ next rotation clockwise.

After 11 pseudo-rotations and scaling the output vector we obtain (2.234,-0.075).

To overcome the problem of limited converge of ±90◦ in CORDIC, an initial 90◦ rotation will be

performed, thus achieving a ±180◦ range.

3.2.2 Vectoring mode

Given a two-dimensional vector, the vectoring mode computes the angle made by the vector with

respect to positive x-axis and magnitude of the vector. Thus equivalent to a cartesian to polar con-

version. A quadrant detector based on the sign of x and y input gets the information of the quadrant

of the vector. The input vector if lying in 2nd or 3rd maps to 4th or 1st quadrant respectively. After

mapping the vector to 1st or 4th quadrant, the vector is rotated until the y-component is zero. If

the y co-ordinate is positive, a clockwise rotation is performed else an anticlockwise rotation is per-

formed. Then a final correction is made to the computed angle based on the quadrant information.

Consider the following example. Let Xi=(-3,4) be the input to the CORDIC vectoring module.
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From quadrant detector shown in Table 3.2, the quadrant information will be stored precisely in a

two-bit register quad which is used to transform the input vector. Since quad = 10 for the given

vector, the transformed vector is Xt=(3,-4) using Table 3.3.

• Iteration-1(i=0): Since sign(y0) is negative, an anti-clockwise rotation of 45◦ is made. X0=

(3,-4) rotated by 45◦ ACW ≡ (x0 − [y0 � 0], [x0 � 0] + y0) (Using equation 3.6)=(7,-1)

θ0 = −45◦.

• Iteration-2(i=1): Since sign(y1) is negative, an anti-clockwise rotation of 26.565◦ is made.

X1=(7,-1) rotated by 26.565◦ ACW ≡ (x1 − [y1 � 1], [x1 � 1] + y1) (Using equation

3.6)=(7.5,2.5) θ1 = θ0 − 26.565◦ = −71.565◦.

• Iteration-3(i=2): Since sign(y2) is positive, a clockwise rotation of 14.036◦ is made. X2=(7.5,2.5)

rotated by 14.036◦ ACW ≡ (x2 +[y2 � 2],−[x2 � 2]+y2) (Using equation 3.5)=(8.125,0.625)

θ2 = θ1 + 14.036◦ = −57.529◦.

After a series of 11 such rotations i.e when i=10, the final vector X10 is given by (8.2338,0.0016)

and θ10=-53.1413◦. Scaling the final vector X10 with a factor 0.6037 as given in equation 3.4, we

obtain Xf=(5.0002,0.0009) and since the angle obtained is for the transformed vector Xt the actual

angle is computes as θf=180◦ + θ10=126.858◦. The pseudo-rotations made are as shown in fig 3.2.

-4 -2 0 2 4 6 8 10 12 14

-4

-2

0

2

4

6

Figure 3.2: Illustration of pseudo-rotations

3.3 Pipelined CORDIC

In many applications (applies to SVD problem), the angle input for rotation module is obtained

from a vectoring module. Since in vectoring mode, the required sequences of micro rotations are

already computed, the same information is simultaneously passed to Rotation module. This helps

in a saving of clock cycles. Thus the final vector after rotation will be obtained by a delay of just

one clock cycle in rotation mode compared to it’s counterpart vectoring mode.
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Chapter 4

Jacobi Methods of SVD

4.1 Introduction

Jacobi methods are quite popular in hardware implementation of SVD because the computation can

be grouped in parallel. Various kinds of systolic array implementations based on Jacobi methods

are reported in literature for hardware acceleration of SVD. Based on the number of angles required

for annihilating the off-diagonal elements, Jacobi methods are broadly classified as One-sided and

Two-sided Jacobi methods.

4.2 Classical Jacobi Algorithm

Given a symmetric matrix A ∈ IRn×n, Jacobi method chooses an off-diagonal(p 6= q) index pair (p, q)

and performs the rotation that diagonalizes the 2× 2 subproblem. The matrix A is overwritten at

each step A← JT (p, q, θ)AJ(p, q, θ). Only the rows p, q and columns p, q are affected during rotation.

The classical jacobi algorithm chooses an index pair (p, q) such that a2
pq is maximum of all other

pairs. Let N = n(n−1)
2 . A sequence of N jacobi rotations is called sweep. The algorithm is quite

slow as it takes O(n2) operations to find the optimal (p, q). Other implementations like parallel

ordering and row ordering schedule the sequence of sub-problems to be solved in advance instead of

searching for optimal index (p, q).

4.3 Two-sided Jacobi Method

For Two-sided Jacobi method, the matrix must be square. For rectangular matrices,

• zeros are padded to make it a square matrix.

• QR decomposition can be performed to make it square but the overall assembling to final svd

is quite difficult.

• Householder reflections which bidiagonalize the matrix can also be employed to solve rectangu-

lar svd problems, but generation of householder matrices is difficult and bi-diagonal structure

is not exploited with regular systolic array.
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Consider a non-symmetric matrix A as shown below.

A =

[
w x

y z

]

The jacobi rotations when applied on both sides diagonalizes the matrix A as shown below.[
cos θ1 sin θ1

− sin θ1 cos θ1

]T [
w x

y z

][
cos θ2 sin θ2

− sin θ2 cos θ2

]
=

[
d1 0

0 d2

]
(4.1)

Solving for off-diagonal elements and equating to zero,

w. sin θ1 cos θ2 + y. cos θ1 cos θ2 − x. sin θ1 sin θ2 + z. cos θ1 sin θ2 = 0 (4.2)

w. cos θ1 sin θ2 − y. sin θ1 sin θ2 + x. cos θ1 cos θ2 − z. sin θ1 cos θ2 = 0 (4.3)

Adding and subtracting equations 4.2 and 4.3, gives the required jacobi rotation angles.

tan(θ1 + θ2) =
x+ y

z − w
; tan(θ1 − θ2) =

x− y
z + w

(4.4)

Let θ12 = θ1 +θ2 and θ21 = θ1−θ2. The angles θ12 and θ21 can be obtained from CORDIC vectoring

mode which has been discussed in section 2.2.2 by feeding y input as (x+ y) or (x− y) and x input

as (z − w) or (z + w) respectively. The matrix A can be diagonalized in terms of θ12 and θ21 as

shown below. Equation 4.1 can be re-written as follows.[
d1 0

0 d2

]
=

[
cos θ1 − sin θ1

sin θ1 cos θ1

][
w. cos θ2 − x. sin θ2 w. sin θ2 + x cos θ2

y cos θ2 − z. sin θ2 y. sin θ2 + z. cos θ2

]

=

[
cos θ1 − sin θ1

sin θ1 cos θ1

]{[
w. cos θ2 x cos θ2

y cos θ2 z. cos θ2

]
+

[
−x. sin θ2 w. sin θ2

−z. sin θ2 y. sin θ2

]} (4.5)

R.H.S of equation 4.5 can be further re-arranged as,

=

[
cos θ1 − sin θ1

sin θ1 cos θ1

][
w. cos θ2 x. cos θ2

y. cos θ2 z. cos θ2

]
+

[
cos θ1 − sin θ1

sin θ1 cos θ1

][
−x. sin θ2 w. sin θ2

−z. sin θ2 y. sin θ2

]

=

[
cos θ1 cos θ2 − sin θ1 cos θ2

sin θ1 cos θ2 cos θ1 cos θ2

][
w x

y z

]
+

[
cos θ1 sin θ2 − sin θ1 sin θ2

sin θ1 sin θ2 cos θ1 sin θ2

][
−x w

−z y

]
(4.6)

Using trigonometric identities,

= 1
2

[
cos(θ1 + θ2) + cos(θ1 − θ2) −{sin(θ1 + θ2) + sin(θ1 − θ2)}
sin(θ1 + θ2) + sin(θ1 − θ2) cos(θ1 + θ2) + cos(θ1 − θ2)

][
w x

y z

]

+ 1
2

[
sin(θ1 + θ2)− sin(θ1 − θ2) cos(θ1 + θ2)− cos(θ1 − θ2)

−{cos(θ1 + θ2)− cos(θ1 − θ2)} sin(θ1 + θ2)− sin(θ1 − θ2)

][
−x w

−z y

] (4.7)

Let rotl1y (a, b, θ1) represents rotating a vector (a, b) by an angle θ1 and taking the y-component of

resultant vector as output. Here l1 represents a label which groups all the rotation modules with
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same angle input. Equation 4.7 can be finally expressed in terms of CORDIC rotation discussed in

section 2.2.1 as follows,

= 1
2

[
rotl1y (y, w, θ12) + rotl2y (y, w, θ21) rotl1y (z, x, θ12) + rotl2y (z, x, θ21)

rotl1x (y, w, θ12) + rotl2x (y, w, θ21) rotl1x (z, x, θ12) + rotl2x (z, x, θ21)

]

+ 1
2

[
−rotl1x (z, x, θ12) + rotl2x (z, x, θ21) rotl1x (y, w, θ12)− rotl2x (y, w, θ21)

rotl1y (z, x, θ12)− rotl2y (z, x, θ21) −rotl1y (y, w, θ12) + rotl2y (y, w, θ21)

] (4.8)

Here only a 2×2 sub-matrix is diagonalized but in general the input matrix of any order is subdi-

vided into 2×2 matrices as required for systolic array implementation and then the sub-matrices

along the diagonal are diagonalized and then transmitting these rotations along the corresponding

row and column.

With two-sided jacobi method we obtain a un-normalized SVD i.e the singular values are not ar-

ranged in descending order. So the singular values have to be sorted and the corresponding columns

in singular vectors also need to be arranged accordingly.

4.3.1 Shuffling rotations

In the previous section, the elements of input matrix are shuffled according to the ordering (row/parallel)

scheme in each iteration of a sweep. Also, the pivots of the rotation matrix are always on the succes-

sive pairs. Instead the rotation matrix can be pivoted according to the ordering scheme by keeping

the input matrix unaltered.
c1 −s1 0 0

s1 c1 0 0

0 0 c3 −s3

0 0 s3 c3



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44




c2 s2 0 0

−s2 c2 0 0

0 0 c4 s4

0 0 −s4 c4

 =


a

′

11 a
′

12 a
′

13 a
′

14

a
′

21 a
′

22 a
′

23 a
′

24

a
′

31 a
′

32 a
′

33 a
′

34

a
′

41 a
′

42 a
′

43 a
′

44


With pivoting the elements of rotation matrix,

c1 0 0 −s1

0 c2 −s2 0

0 s2 c2 0

s1 0 0 c1



a

′

11 a
′

12 a
′

13 a
′

14

a
′

21 a
′

22 a
′

23 a
′

24

a
′

31 a
′

32 a
′

33 a
′

34

a
′

41 a
′

42 a
′

43 a
′

44




c4 0 0 s4

0 c3 s3 0

0 −s3 c3 0

−s4 0 0 c4


With input matrix elements being shuffled,

c1 −s1 0 0

s1 c1 0 0

0 0 c2 −s2

0 0 s2 c2



a

′

11 a
′

14 a
′

12 a
′

13

a
′

41 a
′

44 a
′

42 a
′

43

a
′

21 a
′

24 a
′

22 a
′

23

a
′

31 a
′

34 a
′

32 a
′

33




c4 s4 0 0

−s4 c4 0 0

0 0 c3 s3

0 0 −s3 c3


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4.4 One-sided Jacobi Method

Apart from its counterpart Two-sided Jacobi method, the One-sided Jacobi method neither requires

the matrix to be square nor require special matrix properties such as symmetry. Brent and Luk

developed a linear systolic array in [15] that computes in O(mn) time with O(n) processors and in

O(mn log n) time with O(mn) processors.

Hestenes Jacobi or One-sided Jacobi method finds a matrix V such that the matrix product A.V

has orthogonal columns. Hestenes made use of plane-rotations to generate matrix V . Let A =

[a
(k)
1 , ..., a

(k)
n ] and Qk = [q

(k)
cs ]. The matrix A is updated at every iteration using the following

relation.

Ak+1 = Ak.Qk (4.9)

where Qk represents a rotation in (i, j) plane with i < j i.e

q
(k)
ii = cos θ q

(k)
ij = sin θ

q
(k)
ji = − sin θ q

(k)
jj = cos θ

(4.10)

We know that post-multiplication with Qk will affect only i and j columns.

[a
(k+1)
i , a

(k+1)
j ] = [a

(k)
i , a

(k)
j ]

(
cos θ sin θ

− sin θ cos θ

)

The rotation angle θ is chosen such that the new columns are orthogonal.

Using the formulas of Rutishauser, we define the parameters:

α ≡
∥∥∥a(k)

i

∥∥∥2

2
β ≡

∥∥∥a(k)
j

∥∥∥2

2
γ ≡ a(k)T

i a
(k)
j

If γ=0, we set θ to zero otherwise we compute,

ξ =
β − α

2γ
, t =

sign(ξ)

|ξ|+
√

1 + ξ2

The rotation parameters are then computed as follows:

cos θ =
1√

1 + t2
, sin θ = t. cos θ

The rotation angle always satisfies the condition stated below.

|θ| ≤ π

4
(4.11)

The cyclic-by-row ordering is chosen which processes all (i, j) pairs at least once in every sweep.

Forsythe and Henrici in [16] proved that convergence is guaranteed if condition stated in equation

4.11 holds with cyclic-by-row ordering.
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4.5 Systolic array implementation

Given a A ∈ IRn×n matrix, the BLV array uses n/2 by n/2 processing elements. Fig. 4.1 shows a

typical BLV array for matrix of dimension n=8. Each processors holds a 2×2 sub-matrix of A with

initial elements as follows. [
a2i−1,2j−1 a2i−1,2j

a2i,2j−1 a2i,2j

]
(4.12)

The diagonal PE’s compute the rotation parameters required for annihilating the off-diagonal el-

ements while the off-diagonal PE’s perform the transformations to complete the rotation. After

the diagonal processor finishes the computation of rotation parameters, they are transmitted to the

processing elements present in the row and column. The off-diagonal processing elements perform

the rotations on the sub-matrices which they hold and after the rotations are made, the matrix

elements are interchanged as per parallel ordering.

For computing singular vectors, each PE is equipped with four more memory cells and the

changes being made on any sub-matrix are simultaneously made on these memory cells. When the

off-diagonal elements being processed by a diagonal processor are quite small, the diagonal PE can

avoid computing the rotation parameters(cos, sin) as it generates (1,0) and transmitting the same

along the PE column and row. But this requires an additional logic which checks the magnitude of

off-diagonal elements at the time of computation of rotation parameters.

P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P34

P43

P33

P44P42P41

Figure 4.1: BLV array for n=8

4.6 Row ordering

Let (p, q) be an order pair which signifies the off-diagonal elements (pq, qp) being processed.

The annihilation sequence for n = 6 is as shown below.
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(p, q) =(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6).

There are N(= n(n−1)
2 ) (p, q) pairs which satisfy the condition p < q. From the above sequence it

can be understood that the all the (p, q) which satisfy the condition p < q are chosen row-wise and

hence the name Row-ordering. Similarly there is an another variant of sequencing the (p, q) pairs in

column wise. The annihilation process in one sweep for n=4 with row ordering is shown below.
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

→

a

′

11 0 a
′

13 a
′

14

0 a
′

22 a
′

23 a
′

24

a
′

31
a

′

31 a33 a34

a
′

41
a

′

42 a43 a44

→

a

′′

11 ε 0 a
′′

14

ε a
′

22 a
′′

23 a
′

24

0 a
′

31 a
′

33
a

′

34

a
′′

41
a

′

42 a
′

43
a44

→

a

′′′

11 ε ε 0

ε a
′

22 a
′′

23 a
′′

24

ε a
′

31 a
′

33
a

′′

34

0 a
′′

42 a
′′

43
a

′

44


↓

aiv11 ε ε ε

ε a
′′′

22 ε ε

ε ε a
′′′

33
0

ε ε 0 a
′′′

44

←

aiv11 ε ε ε

ε a
′′′

22 ε 0

ε ε a
′′

33
aiv

34

ε 0 aiv
43

a
′′

44

←

aiv11 ε ε 0

ε a
′′

22 0 a
′′′

24

ε 0 a
′′

33
a

′′′

34

0 a
′′′

42 a
′′′

43
a

′

44


After 5-7 sweeps, the off-diagonal elements shown with ε become sufficiently small and the matrix

looks diagonal.

4.7 Parallel ordering

For n = 8, the parallel ordering scheme for a single sweep is as shown below.

(p, q) =(1,2),(3,4),(5,6),(7,8)

(1,4),(2,6),(3,8),(5,7)

(1,6),(4,8),(2,7),(3,5)

(1,8),(6,7),(4,5),(2,3)

(1,7),(8,5),(6,3),(4,2)

(1,5),(7,3),(8,2),(6,4)

(1,3),(5,2),(7,4),(8,6)

Let ord be an array of index pairs at previous iteration of a sweep. Initially the ord array is initialized

with numbers 1 to n. Then the ordering scheme for current iteration can be generated using the

following flow chart shown in 4.2. The rotation parameters for index pairs present in each row can

be calculated concurrently. The annihilation process in one iteration for n=4 with parallel ordering
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i<=n
No   ord[i]%2==0         

& ord[i]!=n
Yes  ord[i]%2==1         

& ord[i]!=3
No

ord[i]=ord[i]-2ord[i]=ord[i]+2

Yes

No

i++

i=2;

ord[i]=ord[i]-1

Yes

Stop

Start

Figure 4.2: Flow chart for Parallel ordering

is shown below.
a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

→

a

′

11 0 a
′

13 a
′

14

0 a
′

22 a
′

23 a
′

24

a
′

31 a
′

32 a
′

33 0

a
′

41 a
′

42 0 a
′

44

→

a

′′

11 ε 0 a
′′

14

ε a
′′

22 a
′′

23 0

0 a
′′

32 a
′′

33 ε

a
′′

41 0 ε a
′′

44


↓

a
′′′

11 ε ε 0

ε a
′′′

22 0 ε

ε 0 a
′′′

33 ε

0 ε ε a
′′′

44


After a series of such sweeps(generally 5-7), the off-diagonal elements shown with ε become suffi-

ciently small making the matrix diagonal.
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Chapter 5

Hardware implementation of

Pattern Matching

5.1 Introduction

In this chapter the hardware implementation of pattern matching for fault diagnosis is discussed.

Utmost care has to be taken while designing the basic building blocks(functions) as every clock

cycle saved will result in large saving of clock cycles as the same block is instantiated all the time

for millions of time but with different inputs.

5.2 Previous work in Hardware implementations of SVD

S. Majumder provided a comprehensive review of various hardware implementations for SVD in

[17] which has been presented here. Initially Linear systolic arrays were employed with a time

complexity of O(mn) with O(n) processors. Brent and Luk proposed a quadratic systolic array that

computes SVD of a n×n matrix in O(n log n) with O(n2) processors. The hardware complexity was

further reduced to O(n2/2) processors by Ahmedsaid and Bouridane [18]. For rectangular matrices

they initially performed a QR decomposition which requires O(m) computations thus a total of

O(m+ n log n) time for final SVD. Lahabar et al. proposed a GPU based SVD computation using

CUDA programming model. They employed Golub-Reinsch algorithm and achieved a considerable

speed-up of up to 60 for matrices with large dimensions. The proposed method has been proven to be

efficient and faster only for matrices with leading dimension 8k or above. Luis M. Ledesma-Carrillo

et al. proposed a reconfigurable FPGA based design which employed Hestenes Jacobi method.

The design suffers from very high latency O(min(m,n)5) and also the matrix dimension has been

restricted to 32x127 because of the available memory in the employed FPGA devices.

5.3 Reading of historical window

We make use of the property of SVD mentioned in section 2.1.1 i.e. SVD is unaltered by shuffling

rows. This gives us an advantage of overwriting the oldest sample with a new sample instead of
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deleting the oldest sample and then appending the new sample at the end or reading the whole

dataset again and again for each window.

5.4 Pre-processing

5.4.1 Recursive Mean and Standard deviation computation

Since we employ a moving-window approach, at each instant only the oldest sample gets replaced

with the a new one. Hence, we can make use of previous computations like mean and standard

deviation to update them when a sample member is replaced. Let v be the vector of dimension m

with mean and standard deviation µ and σ′ respectively. If the first(oldest) member of this vector

v1 is replaced with a new member vm+1, then the updated mean µ′ and standard deviation σ′ are

given by the following equations.

µ′ = µ+
vm+1 − v1

m
(5.1)

σ′ =

√
σ2 +

v2
m+1 − v2

1 +m(µ2 − µ′2)

m− 1
(5.2)

Care must be taken while using Recursive methods as any inaccuracies (rounding due to limited

precision) present in these computations, will keep propagating to next computations leading to

poor accuracy of the whole system.

The covariance matrix (i.e product bT b) is symmetric with diagonal entries as m−1 value and hence

significant number of flops are saved by computing the (i, j) pairs which satisfy the condition i < j

in covariance matrix product. The diagonal entries are assigned a value equal to m − 1 while the

remaining (i, j) pairs satisfying the condition i > j are copied from the corresponding (j, i) pair.

Hence the computational effort in forming the covariance matrix is only n2−n
2 dot products of two

m-dimensional vectors excluding the assignment operations.

5.5 Two-sided Jacobi algorithm

The rotation matrices are very sparse(96.15% for 52x52 matrix), hence only the rotation parameters

are only stored instead of storing them as a rotation matrices. A 16-stage CORDIC implementation

of Two-sided Jacobi suffered from poor accuracy because of the inaccuracies in CORDIC combined

with parallel annihilation in Jacobi method, hence the rotation parameters are computed from

software math.h library. Other methods like angle recording and higher radix CORDIC have to be

carefully examined for improving the accuracy and latency. The rotations are then performed by

retrieving these parameters and multiplying them with corresponding pivots obtained from sequence

generator. The sequence generator is implemented using the flow chart shown in fig. 4.2. This helps

in significant saving in resources and computation time due to avoiding unnecessary multiplications

with zeros. Compared to naive implementation (3 nested for-loops), we employed a two-nested

for-loops. The second matrix in the matrix multiplication when transposed helps in reduced cache

misses because the two dimension matrices are also arranged in row ordering fashion in memory.
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5.6 Sorting

We require a sorting algorithm,

• To sort the singular values in descending order in Jacobi SVD

• To sort the array of similarity factors

We employed Bubble sort and Merge sort techniques as they are quite popular sorting algorithms.

Bubble sort doesn’t use a recursion and hence can be synthesized even on hardware but has worst,

best and average time as O(n) where as the Merge sort employs a recursion and has the worst, best

and the average sorting time complexity as O(log n).

5.7 Calculation of similarity factors

For comparing two datasets, various similarity factors have been discussed in section 1.5. The

geometrical interpretation of standard PCA similarity factor basically quantifies the angle between

principal components of two datasets. The cosine of the angle between two principal components

can be calculated as the dot product of the two vectors. Matrix multiplication has been significantly

faster in Matlab because of the optimized BLAS / LAPACK routines compared to user defined

nested loops. Equation 1.5 follows a matrix chain optimization but only the diagonal elements are

made use in the final product. Hence this redundancy has been eliminated in the proposed simplified

Similarity factor given in equation 1.6.

5.8 Working with Vivado HLS

Vivado High Level Synthesis(HLS) from Xilinx offers a great flexibility for specifying the design

in high-level programming languages like C, C++ and System C compared to the conventional

workflow with synthesis done from VHDL/Verilog programming. The tool provides the detailed

analysis on timing like latency, resource utilization for each function, flexibility to export RTL in

various formats. All the C-language codes are synthesized using Vivado HLS 2018.1. The tool

optimally allocates the resources on its own for better performance and can be used when the whole

logic has to be designed using only on hardware(PL:Programmable Logic).

We made use of Zedboard (ZC7020 Rev D) board as a platform for FPGA implementation as it

is low-cost with built-in peripherals like USB OTG, Ethernet, VGA and SD card support. The

final ASIC (Application Specific Integrated Chip) implementation can be further optimized in cost

by selecting only the necessary peripherals. Table 5.1 summarizes the latency report with two

different clock periods namely 5ns and 10ns. The detailed utilization and timing report can be

found in HLS report folder. It has been found that the target device is too small for the design

to be implemented as many multiplications are involved in various functions like computation of

trigonometric terms, performing scaling with standard deviation and matrix multiplications even

after config bind command to minimize the multiplication operations.
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Table 5.1: Latency report from Vivado HLS

Clock period
Latency

min max
5 ns 37755687 72602195
10 ns 24254095 44164527

5.8.1 HLS with precomputed dataset

With pre-computation, the design has fit nicely into the target with utilization of DSP’s, BRAM’s,

FF’s and LUT’s well under the limit so that atleast 4-5 such modules can be implemented in parallel.

Since the target device has only a DDR3 RAM capacity upto 1GB which is very small when compared

to our historical precomputed training dataset of size 32GB, we need special DMA transfers and

memory interfacing with hard disk for scheduling the read and write operations. The latency of a

single precomputed window with snapshot as IDV1 is listed with different clock cycles in Table 5.2.

The latency will largely depend upon the number of PC’s required for capturing the variance in the

snapshot dataset.

Table 5.2: Latency report from HLS with pre-computation

Clk period
Latency

(min /max)
5 ns 4589
10 ns 4181

5.9 Working with SDSoC

Compared to Vivado HLS which is used for designing only PL, SDSoC provides better flexibility in

designing a system which makes efficient use of PL and PS(Programmable System) by exploiting

their advantages. The functions which are time-consuming and can be easily parallelizable can be

made to run on PL by marking them for hardware whereas the functions which consumes bulk of

resources or cannot be parallelizable can be run on PS. The design flow with SDSoC is as shown in the

fig.5.1. It can be observed from the flowchart that the design process is cyclic until it meets the user

specifications. The ARM Cortex A9 CPU can be run at maximum frequency of 666.67MHz while the

PL can be made to run in any of the four available asynchronous clock frequencies namely 100MHz,

142.86MHz, 166.67MHz and 200MHz. There was large latency in preprocess and in covariance matrix

formation as they deal with matrices of dimension m × n(i.e 500x52). No significant improvement

has been observed with the available resources by unrolling and pipelining the loops in preprocess

function.

Some of the challenges in Hardware software Co-design are listed below.

• The tool has a block RAM support of up to 16K which is small as we require 26K block

RAM for our matrix dimension of 500x52. We need special interfaces like AXIMM ports for

communication between hardware and software and sometimes most of the clock cycles are

spent in this, thus affecting the overall design and poor performance (speed-up) even with

Co-design.
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Figure 5.1: Design flow with SDSoC

• Recursive functions other than Tail recursion are not supported for hardware implementation.

• We made use of pragma directive ”data zero copy” for providing support for IN/OUT arrays

and this also requires an AXIMM interface.

• Dynamic memory allocation functions like malloc, calloc and free are also prohibited in HLS.

The SDSoC provides Debug and Release configurations in addition to the customized user config-

uration for performance analysis. The tool also capture the baseline performance when the whole

logic is made to implement only on PS(Processor System). The zynq board is provided with two

serial ports and it is connected to our PC to display the output in real time as seen in the Teraterm

window (COM5) in fig 5.2 and 5.3. With entire application made to run on a processor, it took

on an average of 0.067 sec for processing a single window which is a promising result with a pro-

cessor running at 666.67 MHz and comparable to Matlab’s computation time of 1ms on a 2.8 GHz

processor. The snapshot has been chosen from IDV1 for testing purpose and the similarity factors

agreed to three decimal places. The performance results shown in fig.5.2 and fig.5.3 are obtained

from Release mode of SDSoC 2018.1

Software only performance: Total time taken = Measuredcycles
Clkfrequency = 13482013984

666.67×106 =20.2229sec

Per unit window computation time = 20.2229
300 =0.067 sec.

Further careful designing and partitioning of hardware and software has to be made for achieving

better speedup as it can be seen that the speed-up increased with increasing number of windows

and with a large number(lakhs) of runs, it is expected to give satisfactory performance compared to

Matlab’s implementation.
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Figure 5.2: Software only performance for 300 windows

Figure 5.3: Software only performance for 400 windows
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Chapter 6

Future work and Conclusion

6.1 Conclusion

The key research outcomes of this work are listed below.

• We proposed a pattern matching approach inspired from Ashish singhal et al in [3] with a

smaller window size of 500 compared to the window size of 5761 as mentioned in their work. A

large window size of 5761 (4days data) along with skipping of 500 windows all the time poses

large difficulty in fault detection and pattern matching.

• We also imparted an accelerated pattern matching approach in case the similarity factor is

less than a threshold of 0.5 and derived a simplified version of Standard similarity factor for

reducing the latency.

• We proposed a hybrid Householder based Jacobi method which has better latency and accuracy

compared to the existing Jacobi based methods which suffers from accuracy and Householder

methods which suffers from large latency.

• A hardware implementation of the proposed pattern matching has been done which provides

the flexibility to parallel processing of historical data and thereby reducing the fault detection

time compared to the Software(Matlab) implementation.

6.2 Future work

• A large scope for further optimization in hardware implementation especially with SDSoC can

be done by implementing the application project in Linux OS or with standalone OS with FAT

file systems for reading historical data in an organized fashion.

• Optimal selection of window size and other parameters that can be manually chosen can be

rounded off to the nearest powers of 2 as multiplication and division by these parameters can

be done with simple shift operators instead of a complex DSP48E multiplier blocks. Loop

optimization techniques like loop unrolling, pipelining, fusion and other techniques have to be

manually done instead of tool for better allocation of resources.
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• A new hybrid method of finding SVD for bi-diagonal or tri-diagonal matrices exploiting its

sparsity has to be developed since dense matrices can be reduced to bi-diagonal or tri-diagonal

form with householder reflections using simple shift operations. Since bi-diagonal methods of

SVD are more accurate compared to Jacobi methods, the implementation of the former has

to be explored using n-D CORDIC modules to reduce the latency in the bi-diagonalization.

• Case studies like CSTR and Fermentation process need to be reviewed and evaluated. Other

data-driven methods namely Correspondence Analysis and Independent Component Analysis

(ICA) all of which makes use of SVD can be applied to evaluate the performance.

• A computationally inexpensive and discriminating similarity factor which clearly distinguishes

an operation from one another has to be developed.

• If the data has been labelled properly, a kind of supervised clustering can be done i.e the

samples belonging to same operation can be grouped into a cluster. Since the normal operation

prevails for most of the time and fault detection is more critical task than fault diagnosis, we

can make use of faster detection methods like T 2 or Q− statistic tests or Machine learning

techniques for detection and the moving window method may also be made to go through the

cluster of normal windows. Once a fault detection has been identified with these statistical

tests, the confirmation and diagnosis of the same can be obtained using the proposed moving

window approach which now runs through the original unclustered historical database.
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