
Algorithms for Power Aware Testing of Nanometer

Digital ICs

A THESIS

submitted by

A. SATYA TRINADH

for the award of the degree

of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD

Nov 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Archive of Indian Institute of Technology Hyderabad

https://core.ac.uk/display/159216786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my research advisors Dr. Ch. Sob-

han Babu and Dr. Shiv Govind Singh for their continuous adviceand encouragement

throughout my research.

I would like to thank my doctoral committee members Dr. M.V. Panduranga Rao,

Dr. Naveen Sivadasan and Dr. Asudeb Dutta for providing constructive criticism and

encouragement during my doctoral committee meetings.

My sincere thanks to Prof. V. Kamakoti from IIT Madras for teaching me Digi-

tal Systems Testing, proving access to facilities in Reconfigurable Intelligent Systems

Engineering (RISE) lab and helping me during struggling phase of my research.

I am grateful to Seetal Potluri from RISE Lab, IIT Madras for his care and precious

friendship during my stay at IIT Madras. I am thankful to him for consistently helping

me throughout my research and for the support to make this thesis possible.

I would like to thank my friend Valeti Nageswara Rao who helpedme during my

research work.

I offer my sincere thanks to all my research colleagues at Software Systems Re-

search Lab (SSRL) Lab for all the help and cooperation.

Finally, I take this opportunity to express the profound gratitude from my deep heart

to my beloved parents, brothers, wife and kids for their love, continuous encouragement

and support.

This thesis is heartily dedicated to my parents who took the lead to heaven before

the completion of this work.

i

ABSTRACT

KEYWORDS: Digital system testing, At-speed testing, Capturepower, Test Vec-

tor Ordering, X-filling

At-speed testing of deep-submicron digital very large scale integrated (VLSI) circuits

has become mandatory to catch small delay defects. Now, due to continuous shrinking

of complementary metal oxide semiconductor (CMOS) transistor feature size, power

density grows geometrically with technology scaling. Additionally, power dissipation

inside a digital circuit during the testing phase (for test vectors under all fault mod-

els (Potluri, 2015)) is several times higher than its power dissipation during the normal

functional phase of operation. Due to this, the currents that flow in the power grid dur-

ing the testing phase, are much higher than what the power grid is designed for (the

functional phase of operation). As a result, during at-speed testing, the supply grid

experiences unacceptable supply IR-drop, ultimately leading to delay failures during

at-speed testing. Since these failures are specific to testing and do not occur during

functional phase of operation of the chip, these failures are usually referred to false

failures, and they reduce the yield of the chip, which is undesirable.

In nanometer regime, process parameter variations has become a major problem.

Due to the variation in signalling delays caused by these variations, it is important to

perform at-speed testing even for stuck faults, to reduce the test escapes (McCluskey

and Tseng, 2000; Voriseket al., 2004). In this context, the problem of excessive peak

power dissipation causing false failures, that was addressed previously in the context of

at-speed transition fault testing (Saxenaet al., 2003; Devanathanet al., 2007a,b,c), also

becomes prominent in the context of at-speed testing of stuck faults (Maxwellet al.,

1996; McCluskey and Tseng, 2000; Voriseket al., 2004; Prabhu and Abraham, 2012;

Potluri, 2015; Potluriet al., 2015). It is well known that excessive supply IR-drop dur-

ing at-speed testing can be kept under control by minimizingswitching activity during

testing (Saxenaet al., 2003). There is a rich collection of techniques proposed inthe past

for reduction of peak switching activity during at-speed testing of transition/delay faults

ii

in both combinational and sequential circuits. As far as at-speed testing of stuck faults

are concerned, while there were some techniques proposed inthe past for combina-

tional circuits (Girardet al., 1998; Dabholkaret al., 1998), there are no techniques con-

cerning the same for sequential circuits.This thesis addresses this open problem. We

propose algorithms for minimization of peak switching activity during at-speed testing

of stuck faults in sequential digital circuits under the combinational state preservation

scan (CSP-scan) architecture (Potluri, 2015; Potluriet al., 2015). First, we show that,

under this CSP-scan architecture, when the test set is completely specified, the peak

switching activity during testing can be minimized by solving the Bottleneck Traveling

Salesman Problem (BTSP). This mapping ofpeak test switching activity minimization

problemto BTSPis novel, and proposed for the first time in the literature.

Usually, as circuit size increases, the percentage of don’tcares in the test set in-

creases. As a result, test vector ordering for any arbitraryfilling of don’t care bits

is insufficient for producing effective reduction in switching activity during testing of

large circuits. Since don’t cares dominate the test sets forlarger circuits, don’t care

filling plays a crucial role in reducing switching activity during testing. Taking this

into consideration, we propose an algorithm,XStat, which is capable of performing test

vector ordering while preserving don’t care bits in the testvectors, following which, the

don’t cares are filled in an intelligent fashion for minimizing input switching activity,

which effectively minimizes switching activity inside thecircuit (Girardet al., 1998).

Through empirical validation on benchmark circuits, we show that XStatminimizes

peak switching activity significantly, during testing.

Although XStatis a very powerful heuristic for minimizing peak input-switching-

activity, it will not guarantee optimality. To address thisissue, we propose an algorithm

that usesDynamic Programmingto calculate the lower bound for a given sequence

of test vectors, and subsequently uses agreedy strategyfor filling don’t cares in this

sequence to achieve this lower bound, thereby guaranteeingoptimality. This algorithm,

which we refer to asDP-fill in this thesis, provides theglobally optimalsolution for

minimizing peak input-switching-activity and also is the best known in the literature

for minimizing peak input-switching-activity during testing. The proof of optimality of

DP-fill in minimizing peak input-switching-activity is also provided in this thesis.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT ii

LIST OF TABLES vii

LIST OF FIGURES viii

ABBREVIATIONS x

NOTATIONS xi

1 Introduction 1

1.1 Power issues during at-speed testing 1

1.2 Reduction of peak power during testing of combinational circuits . . 3

1.3 Reduction of peak power during testing of sequential circuits 4

2 Background 7

2.1 Related work in low power testing 8

2.2 Motivation for at-speed stuck-at testing 9

2.3 Design for Testability . 10

2.3.1 Enhanced Scan (ES) scheme 11

2.3.2 CSP-scan scheme . 12

3 An Efficient Test Vector Ordering Algorithm for Minimizing Pe ak
Switching Activity 15

3.1 PITMP and BTSP . 15

3.2 Mapping of PITMP vs BTSP . 17

3.2.1 Mapping of PITMP to BTSP 18

3.2.2 Mapping of BTSP to PITMP 18

iv

3.3 Algorithm for BTSP . 19

3.4 Experimental Results . 22

3.4.1 Experimental Setup . 22

3.4.2 Results . 23

3.5 Summary . 33

4 An Efficient X-filling algorithm for Minimizing Peak Switchin g Activity 37

4.1 Peak Input Toggle Minimization Problem (PITMP) 38

4.2 Balanced X-Filling (B-Fill) Algorithm 38

4.2.1 Motivation . 38

4.2.2 Existing X-Filling Techniques 39

4.2.3 Algorithm Details . 40

4.3 Test Cube Ordering Algorithm . 41

4.3.1 The Need for an Efficient Test Cube Order 43

4.3.2 The X-Based Ordering Algorithm 44

4.3.3 Effectiveness ofX-Based Ordering Algorithm. 44

4.4 Integrated Test Vector Ordering and X-filling Algorithm. 47

4.5 Experimental Results . 49

4.5.1 Experimental Setup . 49

4.6 Summary . 51

5 An Optimal X-Filling algorithm for Minimizing Peak Switchi ng Activity 55

5.1 Peak Input Toggle Minimization Problem (PITMP) 55

5.2 Bottleneck Coloring Problem (BCP) 56

5.2.1 Problem Statement . 56

5.2.2 Dynamic Programming Algorithm to compute Lower-Bound 57

5.2.3 Greedy Algorithm forBottleneck Coloring Problem. 57

5.2.4 Proof of correctness . 58

5.3 Optimal X-Filling Algorithm . 59

5.3.1 Motivation . 59

5.3.2 Algorithm Details . 59

5.4 Test Vector Ordering Algorithm 60

v

5.4.1 Motivation . 60

5.4.2 Algorithm Details . 60

5.4.3 Experimental Results . 61

5.5 Bottleneck Minimization Algorithm 61

5.6 Experimental Results . 62

5.6.1 Experimental Setup . 62

5.6.2 Results . 62

5.7 Local Search With Iterative 1-bit Neighbourhood 64

5.8 Summary . 76

6 Conclusions 77

6.1 Test vector ordering for fully specified test sets 77

6.2 Simultaneous test vector ordering and don’t care filling. 78

6.3 An optimal algorithm for peak input switching activity 79

6.4 Future Work . 79

LIST OF TABLES

2.1 ITC’99 Benchmarks (X % : Average % of X-bits in test cubes) . .. 14

3.1 ITC’99 Benchmarks . 28

3.2 Edge cost : Primary input toggles per vector pair 29

3.3 Edge cost : Circuit total toggles per vector pair 30

3.4 Edge cost : Circuit total power (inµW) per vector pair 31

3.5 Impact of test vector ordering for different cost functions considered 32

3.6 Peak power comparisons for different cost functions considered . . 34

3.7 Average power comparisons for different cost functionsconsidered . 35

4.1 ITC’99 benchmarks (X % : Average % of X-bits in test cubes) .. . 37

4.2 Lookup table for X-filling . 40

4.3 Peak input toggles : Tool-Ordering with different X-fillings 49

4.4 Peak input toggles : BTSP-Ordering followed by differentX-fillings 50

4.5 Peak input toggles : X-Base-Ordering with different X-fillings . . . 51

4.6 Peak input toggles : Comparison of XStat-Method over existing meth-
ods . 52

4.7 Peak circuit power : Comparison of XStat-Method over existing meth-
ods . 53

4.8 Computation time in performing test vector ordering 54

5.1 ITC’99 benchmarks (X % : Average % of X-bits in test cubes) .. . 68

5.2 Peak input toggles : Tool-ordering with different X-fillings 69

5.3 Peak input toggles : BTSP-Ordering followed by differentX-fillings 70

5.4 Peak input toggles : X-Base-Ordering with different X-fillings . . . 71

5.5 Peak input toggles : I-Ordering with different X-fillings 72

5.6 Peak input toggles : Comparison of DP-Method over existing methods 73

5.7 Peak circuit power : Comparison of DP-Method over existing methods 74

5.8 Additional savings using local search with 1-bit Neighbourhood . . 75

vii

LIST OF FIGURES

1.1 Static IR-drop profile on a 100x100 power grid 3

2.1 Enhance Scan Flip-Flop proposed in (Dervisoglu and Stong, 1991) . 11

2.2 Combinational State Preservation (CSP) proposed in (Potluri, 2015) 12

2.3 Scan flip-flop that implements the CSP-scan scheme (Potluri, 2015) 13

2.4 Timing diagram for CSP-scan scheme (Potluri, 2015) 14

3.1 An example of edge-weighted undirected complete graph,G 16

3.2 Bottleneck Hamiltonian Cycles (BHCs) inG 17

3.3 Bottleneck Hamiltonian Cycle, Path inG
′

. 18

3.4 BBSS and NN inG
′

. 22

4.1 Motivation for Balanced-X-Filling (B-Fill) 40

4.2 Don’t care distribution in test cubes 44

4.3 Computing X-base metric, X-base(TC1, TC2) = 5 46

4.4 Gap between MAX-X-BASE and MIN-X-BASE for test cube ordering
given by commercial tool . 47

4.5 Gap between MAX-X-BASE and MIN-X-BASE for X-based test cube
ordering . 48

5.1 Motivation for Optimum-X-Filling (O-Fill) 60

5.2 Don’t care-stretch analysis onb19 61

5.3 Bottleneck minimization algorithm iterations 62

5.4 Bottleneck minimization algorithm iterations 63

5.5 Local search technique with 1-bit neighbourhood 65

viii

List of Algorithms

1 NNH Algorithm . 20

2 BBSSP Algorithm . 21

3 BTSP Algorithm . 25

4 Enhanced Lower Bound Algorithm 26

5 BTSPP Algorithm . 27

6 Balanced X-Fill (B-Fill) Algorithm 42

7 X-Based Test Cube Ordering Algorithm 45

8 Bottleneck Minimization Algorithm 48

9 Algorithm for Computing Lower-Bound 57

10 Algorithm for assigning color to intervals 58

11 Optimal X-Filling Algorithm . 66

12 Test Vector Ordering Algorithm . 67

13 Bottleneck Minimization Algorithm 67

ix

ABBREVIATIONS

IITH Indian Institute of Technology, Hyderabad

VLSI Very Large Scale Integration

DFT Design For Testability

LOC Launch On Capture

LOS Launch On Shift

CSP Combinational State Preservation

ES Enhanced Scan

TVO Test Vector Ordering

ATPG Automatic Test Pattern Generation

PITMP Peak Input Toggle Minimization Problem

BTSP Bottleneck Traveling Salesman Problem

BTSPP Bottleneck Traveling Salesman Path Problem

BHC Bottleneck Hamiltonian Cycle

BBSS Bottleneck Biconnected Spanning Subgraph

NNH Nearest Neighbour Hood

LB Lower Bound

PIT Primary Input Toggles

CTT Circuit Total Toggles

CTP Circuit Total Power

DP Dynamic Programming

SA Simulated Annealing

ITC International Test Conference

PI Primary Input

PPI Pseudo Primary Input

TV Test Vector

TC Test Cube

x

NOTATIONS

C Circuit
X Don’t care
G Graph
V Vertices
E Edges
P Polynomial
NP Non-deterministic Polynomial
µW Micro Watt
% Percentage
O Big-O
Number of
π Order
ǫ Approximation ratio
⌊, ⌋ Floor
⌈, ⌉ Ceil
← Assignment
/∗, ∗/ Comment
∅ Empty set
∞ Infinite
δ Delta
∀ For all
∈ in
∑

sum

xi

CHAPTER 1

Introduction

According to Dennard’s scaling (Dennardet al., 1974), power density should remain

constant, even with increasing device densities. But exponential increase in sub-

threshold leakage with threshold voltage scaling caused leakage power to dominate

total power consumption (Borkar, 1999). Due to this, threshold voltage scaling and

Dennard’s scaling came to an end below 100nm, causing power density to rise expo-

nentially with successive technology generations. Today,aggravated power densities

and hot spots have become one of the most important concerns in the nanoscale cir-

cuit design. Additionally power dissipation for test vectors is several times higher than

that of functional vectors (Gerstendorfer and Wunderlich,1999). Next, we shall see the

issues with these elevated levels of power dissipation during testing.

1.1 Power issues during at-speed testing

The problems concerning test power are two fold. Thefirst problemis one of high

average test power, which increases thermal stress (Huang,2007; Yaoet al., 2011) on

the chip during testing, thereby decreasing its reliability (Saxenaet al., 2001; Girard,

2002). In worst cases, the chip can burn on the tester, thereby leading to destructive

testing.The second problemis that of high peak power during testing. Since power grid

is designed for functional vectors, the excessive power dissipation during test vector

application can cause excessive IR-drop (Wenet al., 2007; Devanathanet al., 2007b),

causing timing failures. Since such elevated power levels are not observed during regu-

lar operation, such timing failures are categorized as false failures. Since these failures

don’t occur during the chip’s normal functional mode of operation, this problem is also

popularly known as theover testingproblem. This kind of over testing can drastically

reduce the fabrication yield, ultimately causing a huge financial loss for the semicon-

ductor manufacturer. Now, at-speed scan based testing is crucial to catch small de-

lay defects that occur during the fabrication of high performance digital chips (Ahmed

et al., 2006a; Yilmaz et al., 2008b,a; Penget al., 2010; Goelet al., 2010; Yilmazet al.,

2010, 2011; Tehranipooret al., 2011; Penget al., 2013; Baoet al., 2013a,b). These

small delay defects can manifest themselves as delay faults, transition faults or stuck-at

faults (Chakraborty and Agrawal, 1995a,b). Since launch to capture clock cycle is very

small during at-speed testing, capture is performed when dynamic IR-drop is very high.

This causes excessive gate delays on the critical path (Saxenaet al., 2003), thus making

the over testing problem even more pronounced during at-speed testing. Hence, peak

power reduction during at-speed testing is an important problem in the broad area of

VLSI testing.

Launch-Off-Capture (LOC), Launch-Off-Shift (LOS) and Enhanced Scan (ES) are

the available design-for-testability (DFT) schemes in theliterature for the purpose of at-

speed testing. Taking physical design overheads and limitations into account, LOC and

LOS are the two prevalently used schemes for this purpose. LOS achieves higher fault

coverage while consuming lesser test time over LOC scheme, but dissipates higher peak

power during the capture phase of the at-speed test (Wuet al., 2011). This excessive

peak power in LOS scheme, leads to highIR-dropon the power grid, more than what

the power grid is designed to handle. This excessiveIR-dropon the power grid, during

capture phase of LOS scheme leads to false delay failures, thereby leading to significant

yield reduction that is unwarranted.

This thesis proposes efficient solutions for minimizing peak switching activity dur-

ing testing, to keepIR-dropunder control during the same. In static mode, theIR-drop

increases as the nodes on the power grid get farther from the supply voltage source as

shown in Figure 1.1. This figure shows the static supply voltage map for a 100x100 grid

with voltage sources at all the nodes on the periphery. The power grid is a rectangular

mesh network with each node in the network having current sink of 1µA, simulated

using SPICE. Although in practice, all the periphery nodes will not have supply voltage

sources, this map is shown to illustrate the idea that the IR-drop increases as the nodes

go farther from the supply pins. As already explained duringat-speed testingIR-drop

is strongly correlated to the toggle rates inside the digital circuit during the testing pro-

cess (Saxenaet al., 2003). We thus focus on minimizing peak switching activityas a

means to keepIR-dropunder control during the testing process.

2

0 20 40 60 80 100
0

20

40

60

80

100

Figure 1.1: Static IR-drop profile on a 100x100 power grid

There has been work in the past for minimizing peak switchingactivity during testing of

combinational circuits (Dabholkaret al., 1998; Girardet al., 1998). However, most of

the current high-performance designs are highly pipelinedand hence are inherently se-

quential in nature. These sequential circuits use scan based methodology for the purpose

of testing. Due to the disturbance caused in the combinational logic in the scan-shift

phase, the peak switching activity reduction techniques proposed in the past for com-

binational circuits, are not directly applicable to sequential circuits. However, it should

be noted that under the CSP-scan architecture (Potluri, 2015; Potluriet al., 2015), many

of the algorithms for peak switching activity reduction during testing of combinational

circuits, can be applied in a straight-forward manner to sequential circuits. To moti-

vate, we next discuss the techniques proposed in the past forpeak switching activity

reduction during testing of combinational circuits.

1.2 Reduction of peak power during testing of combi-

national circuits

Power dissipation in digital Complementary Metal Oxide Semiconductor (CMOS) cir-

cuits has two components, namelystatic poweranddynamic power. Among the two,

dynamic power is the major source of power dissipation whilethe circuit is in opera-

tion. Typically, a major portion of a circuit is kept active during testing. This is done to

ensure that the total test time spent in testing a chip is reduced i.e., higher fault sampling

per test vector. Therefore, dynamic power is the major contributor to power dissipation

during testing of a digital chip. The dynamic power dissipation occurs at a node when it

switches from0→ 1 or1→ 0, and is directly proportional to the toggle count inside the

3

combinational circuit. Additionally, since interconnectdimensions does not scale the

same way as transistor dimensions, interconnect contributes majorly to dynamic power

dissipation in today’s nanometer CMOS circuits (Magenet al., 2004; Qiuet al., 2008;

Potluri et al., 2012). The problems with interconnect scaling further aggravate the tim-

ing/power issues during testing, so much, so that there wereeven techniques proposed

on how to perform test vector selection based on interconnect and layout considera-

tions (Yilmazet al., 2008a, 2010). The interconnect scaling asserts itself in another

way, on the supply routing interconnects of the power-grid.The inductive effects on the

power-grid that were negligible in previous technologies begin to manifest and dom-

inate theIR-drop on the power-grid in the sub-100nm technologies (Pant, 2008; Pant

et al., 2010). Thus, the increased levels of dynamic power dissipation inside the circuit,

produces heavy currents to traverse along the power-grid, creating dynamic inductive

drops, which further aggravate thesupply IR-dropduring testing, that was discussed

previously.

In (Girardet al., 1998; Dabholkaret al., 1998; Dabholkar and Chakravarty, 1994;

Kavousianoset al., 2004; Kurianet al., 2009; Kumaret al., 2010), it was shown that

average switching activity during testing of combinational circuits can be reduced by

ordering the test vectors as an instance of the Hamiltonian path problem, which is

NP-hard. However, this mapping is restricted for minimization of average switching

activity, and currently there is no mapping available for minimization of peak switch-

ing activity during testing through test vector ordering. For the first time in literature,

this thesis proposes a theoretical mapping for peak test switching activity minimiza-

tion through test vector ordering. The provided mapping is also extended to sequential

circuits, which is described in detail in the next section.

1.3 Reduction of peak power during testing of sequen-

tial circuits

Today, the scan architecture (Williams and Angell, 1973; Eichelberger, 1974; Eichel-

berger and Williams, 1977) is used as the de-facto standard for testing sequential cir-

cuits. This scheme converts a sequential circuit to a combinational circuit, for the pur-

4

pose of generating test vectors under the single-stuck-fault (SSF) model. As a result,

the rich literature available for test generation (Funatsuet al., 1975; Liawet al., 1980;

Abramovici et al., 1994; Malaiya and Narayanaswamy, 1983; Savir and McAnney,

1988; Schulzet al., 1988; Glover and Mercer, 1988; Reddyet al., 1992; McCluskey

and Tseng, 2000; Linet al., 2001; Liu, 2004; Venkataramanet al., 2004; Ahmedet al.,

2006b; Miyase and Kajihara, 2006; Baoet al., 2013a) and fault simulation (Abramovici

et al., 1983; Waicukauskiet al., 1986; Takahashiet al., 2006; Chakraborty and Agrawal,

1995b; Singhet al., 2006; Bosioet al., 2010) for combinational circuits, can be reused

for sequential circuits. In the deep sub-micron CMOS technologies, at-speed testing

is necessary to detect small delay defects. Enhanced Scan (ES), Launch on Capture

(LOC) and Launch on Shift (LOS) are the currently existing techniques for at-speed

testing (Liu, 2004).

In the presence of path delays that are comparable to the clock interval, delayed

signal transitions or timing hazards influence the detection of defects. Due to the these

variations in signalling delays, it is important to performat-speed testing even for stuck

faults, to reduce the test escapes (McCluskey and Tseng, 2000; Voriseket al., 2004). It

was shown in the past that under the ES architecture, stuck-at vectors can be reused for

testing for transition faults (Liu, 2004), withimprovementin transition fault coverage.

But, the implementation of enhanced scan architecture is costly, due to the requirement

of multiple clocks (Glover and Mercer, 1988; Dervisoglu andStong, 1991), which is

not feasible in today’s designs where routing a single clock, is itself a formidable chal-

lenge. In addition to that, test vector ordering is ineffective for reducing peak test power

in sequential circuits in standard LOS, LOC and enhanced scan architectures (Potluri,

2015). To address this issue, recently, CSP-scan architecture (Potluriet al., 2015) was

proposed, which uses principles of asynchronous circuit design (Sparso and Furber,

2001), to preserve the state of the combinational logic bothduring scan-shift and cap-

ture cycles, thus making test vector ordering effective in reducing peak test power dur-

ing at-speed testing of stuck faults as well as transition faults in sequential circuits. We

assume that this architecture is in place, and propose efficient algorithms for test vector

ordering and don’t care filling. The following are the contributions of this thesis:

1. We show that given a fully specified test set, optimal test vector ordering prob-
lem under the CSP-scan architecture, maps to the Bottleneck Traveling Salesman

5

Problem (BTSP) problem, which is NP-hard. We solve the optimal test vector
ordering problem for all of the ITC circuits by using an efficient BTSP heuristic.
Interestingly, the solution obtained in each of the benchmark circuits is globally
optimal. The mapping, algorithm, experimentation resultsand the verification for
global optimality of the solutions obtained is given in chapter 3.

2. The test sets are dominated by don’t care bits for large circuits, making don’t
care filling very important for minimizing test power. This increases the hard-
ness of the peak power minimization engine. Keeping this in mind, we propose
an efficient heuristic (XStat) for test vector ordering and don’t care filling in an
integrated fashion, that produces solutions which reduce test power significantly,
while taking very little time in arriving at the solutions. The details of the pro-
posed heuristic and experimentation results are explainedin chapter 4.

3. While XStat is an efficient heuristic for reducing input switching activity,
thereby reducing circuit switching activity, it does not guarantee optimality. To
address this issue, we show that given a test vector order, don’t cares can be filled
in an optimal way usingdynamic programmingso as to minimize input switching
activity. The details of this algorithm, its proof of optimality and its improve-
ments overXStat are explained in detail in chapter 5.

Under CSP-scan architecture, it is sufficient to validate theproposed algorithms for

stuck fault vectors as the transition fault vectors as well as delay fault vectors can be

derived from the stuck fault vectors using the technique proposed in (Liu, 2004). Thus,

the algorithms proposed in this thesis are generic, in the sense that they are applicable

to at-speed testing of faults under all of the aforementioned fault models. The rest of

the thesis is organized into 5 chapters. The next chapter gives a background of the

low power testing research area and the different techniques proposed in the past to

address the low power testing problem. This chapter explains the techniques proposed

in the past, at different levels of the VLSI flow, and sets the stage for explaining our

contributions. Chapters 3, 4 and 5 explain our contributions. Chapter 6 concludes this

thesis.

6

CHAPTER 2

Background

With technology scaling, the process complexity has increased exponentially. This huge

increase in the process complexity, also led to a proportionate increase in manufactur-

ing defect rates. Additionally, the thrust for high-speed devices has made designers

focus on high-speed designs. In these high speed designs, the number of gates between

two pipelines stages has reduced drastically. As a result, these defects often manifest

themselves as small delay defects (Ahmedet al., 2006b; Yilmaz et al., 2008b,a; Goel

et al., 2010; Yilmazet al., 2010, 2011; Baoet al., 2013b) in these high-speed designs.

In the presence of path delays that are comparable to the clock interval, delayed sig-

nal transitions or timing hazards influence the detection ofdefects. Due to the these

variations in signalling delays, it is important to performat-speed testing even for stuck

faults, to reduce the test escapes (McCluskey and Tseng, 2000; Vorisek et al., 2004).

However, with increase in test speed, peak power dissipation during at-speed stuck-at

testing also increases proportionately. This thesis addresses this problem of peak power

minimization during at-speed stuck-at testing.

This chapter is divided into three sections, and this sets the background necessary

to understand the proposed algorithms for low power at-speed stuck-at testing. The first

section explains the related work in the broad area of low power testing. The second

section motivates why at-speed stuck-at testing is important, with an example. The third

section explains the design-for-testability (DFT) architecture, in the presence of which,

the proposed algorithms are effective in reducing the peak power dissipation during at-

speed stuck-at testing. Next, we begin with the first sectionon prior work related to low

power testing.

2.1 Related work in low power testing

There have been several techniques proposed in the past for minimizing peak test power.

These techniques can be broadly categorized into circuit level (Gerstendorfer and Wun-

derlich, 1999; Parimi and Sun, 2004; Bhuniaet al., 2005a; Devanathanet al., 2007c),

gate level (Girardet al., 1999; Leeet al., 2000; Almukhaizim and Sinanoglu, 2008; Lin

and Rajski, 2008) and system level (Girardet al., 1998; Dabholkaret al., 1998; Sankar-

alingamet al., 2000; Sankaralingam and Touba, 2002; Devanathanet al., 2007b; Yao

et al., 2011) techniques.

Circuit level techniques include supply gating (Bhuniaet al., 2005a), scan flip-flop

redesign (Gerstendorfer and Wunderlich, 1999; Parimi and Sun, 2004; Xu and Singh,

2007; Ganesan and Khatri, 2008; Mishraet al., 2010), supply voltage scaling (De-

vanathanet al., 2007c) and circuit partitioning (Girardet al., 1999; Almukhaizim and

Sinanoglu, 2008). Gate level techniques include clock gating (Leeet al., 2000), scan

cell output gating (Lin and Rajski, 2008), and low power scan chain synthesis (Lee

et al., 2000; Bonhommeet al., 2002; Bhattacharya, 2003; Bonhommeet al., 2004).

System level techniques include low power test vector generation (Devanathanet al.,

2007b), test compaction (Sankaralingamet al., 2000; Sankaralingam and Touba, 2002),

power aware test scheduling (Yaoet al., 2011), test vector ordering (Girardet al., 1998;

Dabholkaret al., 1998) and X-filling (Devanathanet al., 2007b).

Among these various possibilities, one should choose such atest strategy that mini-

mizes peak power dissipation during testing and at the same time introduces very min-

imal area, timing and power overheads on the design in its normal functional mode

of operation. Thus, system level techniques are most attractive as such techniques do

not modify the design at all. This thesis focuses on such system level techniques for

minimizing the peak power during at-speed testing of sequential circuits. Low power

test vector generation is attractive as it reduces test power without modifying the design.

However, due to the hard nature of the test generation and test set compaction problems,

adding further constraints would increase the effort of theautomatic test vector gener-

ation (ATPG) engine, thereby increasing the design cycle ofthe product. As this is not

attractive, we focus on system level techniques that reducetest power significantly, with

8

little increase in design time. In particular we focus on Test cube ordering and don’t

care filling. For combinational circuits, capture power is dependent on application of

a pair of test vectors- the previous test vector followed by the current test vector. In

(Girardet al., 1998) it was shown how test vector ordering for average capture power

minimization problem maps to the well known Least Cost Hamiltonian Path Problem

which is NP-Hard. In the same paper, a 2-approximation algorithm for TSP was used to

achieve reasonably good solutions. In this thesis for both combinational and sequential

circuits, it was shown how test vector ordering for peak capture power minimization

maps to Bottleneck Hamiltonian Path Problem, which is also NP-Hard. Further details

of our contributions will be explained in furture chapters of this thesis.

2.2 Motivation for at-speed stuck-at testing

The real defect is a short or an open between two nodes inside agate. However, a

defect can manifest itself as a stuck-at 0 or stuck-at 1 at theoutput of a gate. Apart

from a defect manifesting itself as stuck-at 0 or stuck-at 1 at the output of a gate, it

also changes the delay of the gate. Sometimes, a defect changes the truth table of

a gate, which may not be exactly stuck-at 0 or stuck-at 1 behavior. However, they

will be usually be caught by the stuck-at tests (McCluskey andTseng, 2000). In fact,

it was shown practically using manufacturing data, that at-speed stuck-at testing can

greatly reduce the test escapes (McCluskey and Tseng, 2000; Voriseket al., 2004).This

motivates the need for at-speed application of stuck-at tests, to reduce the number of test

escapes.. This is especially true in today’s chips which are fabricated in deep-submicron

technologies, that contain many small delay defects (Ahmedet al., 2006b; Yilmaz et al.,

2008b,a; Goelet al., 2010; Yilmazet al., 2010, 2011; Baoet al., 2013b). Now, during

at-speed stuck-at testing, if peak power is high, then voltage drops on the power grid

is also high, thereby causing excessive delays on gates, leading to the following two

scenarios:

1. good chip: the response maybe delayed, and since we are capturing at-speed,
we observe faulty response, and discard the chip, although it works well in the
functional mode of operation (when the excessive delay on gates won’t occur); or

9

2. defective chip: the effect of stuck fault maybe masked by an excessive delay of a
gate caused by high peak power, which is another type of test escape (Chakraborty
and Agrawal, 1995a,b). This fault can be caught using slow-speed stuck-at test-
ing. However, this additional phase of slow-speed stuck-attesting, as the name in-
dicates, is slow, and hence adds significantly to the test time in modern system-on-
chips (SoCs), which are very complex. Now, if we reduce the peak power during
the at-speed stuck-at testing, such delay effects on stuck-at testing (Chakraborty
and Agrawal, 1995a,b) can be avoided, thereby reducing the test escapes during
at-speed stuck-at testing, and hence an additional phase ofslow-speed stuck-at
testing can be avoided.

Thus, the advantages of minimizing peak power dissipation during at-speed testing

are two-fold:

1. we can avoid a good chip being categorized as defective, which is the problem of
false negatives, that impacts the yield of a product and a loss to the manufacturer;
and more importantly

2. we can avoid a defective chip being categorized as good, which is the problem of
false positives, that impacts the trust of the customers on the manufacturer, which
leads to customer/business loss to manufacturer, finally ending in a financial loss
to the manufacturer.

This motivates the need to minimize peak power dissipation during at-speed stuck-

at testing. Having motivated this, next we shall see the design for testability techniques

existing in the literature, for at-speed testing and the appropriate technique amongst

them for the problem under consideration.

2.3 Design for Testability

We focus on ordering the test vectors and selectively fillingthe don’t care (X) bits

in the test cubes to minimize peak test power, under the CSP-scan scheme. Before

understanding the CSP-scan scheme, it will be useful to understand enhanced scan,

the physical design and other limitations posed by this scheme and how the CSP-scan

addresses these challenges, yet preserves the properties of enhanced scan. So, next we

shall briefly discuss about enhanced scan.

10

D

DS

CLK

SI

SI_CLK

SO_CLK

ML

Q

SO

MASTER
LATCH

SLAVE
LATCH

SCAN OUT

LATCH

D = Data Input

CLK = System Clock

Q = System Output

SI = Scan-In Input

SO = Scan-Out Output

SI_CLK = Scan-In Clock

SO_CLK = Scan-Out Clock

DS = Double Strobe Enable Input

ML = Master Load Enable Signal

Figure 2.1: Enhance Scan Flip-Flop proposed in (Dervisogluand Stong, 1991)

2.3.1 Enhanced Scan (ES) scheme

Originally, enhanced scan architecture was proposed in (Dervisoglu and Stong, 1991)

for arbitrary two-vector application for at-speed testingof sequential circuits. The

circuit schematic of this enhanced scan flip-flop is shown in Figure 2.1. From this

schematic, it is clear that to implement this scheme, multiple other clocks (SI_CLK,

SO_CLK) are required apart from the system clock (CLK). In today’s highly com-

plex chips, routing a single clock itself poses several key challenges like clock-skew,

common-path pessimism removal etc. Keeping this in mind, itis beyond question to

accept such an implementation, which needs system level routing of more than one

clock signal.

Several new implementations of enhanced scan scheme were proposed re-

cently (Dattaet al., 2004; Bhuniaet al., 2005b), to avoid the multiple-clock routing

problem and minimize the physical design overhead. However, all of these techniques

are meant for arbitrary two-vector application, in which (1) At first, the first vector

is scanned in, (2) following which, the first vector is launched into the combinational

logic; (3) then, second vector is scanned in, (4) following which, the second vector is

launched into the combinational logic; and finally (5) the response is captured.

11

C1 C2

SI

SO

T1

T2
T3

200 400

1000

e1,2

e2,3

e3, 1

R1 R2 R3

Figure 2.2: Combinational State Preservation (CSP) proposedin (Potluri, 2015)

Hence, it should be clear that the ES scheme is not suitable for test vector ordering,

where, after launching each test vector into the combinational logic, the response is also

captured. The response thereby captured also disturbs the state of the combinational

logic. Thus, the ES scheme preserves the state of combinational logic only during scan-

shift and is unable to preserve the state of the combinational logic during the capture

cycle. Recently, to address this issue, the combinational state preservation (CSP) scan

scheme is proposed, that preserves the state of combinational logic during both scan-

shift and capture cycles. The next section explains the CSP-scan scheme in detail.

2.3.2 CSP-scan scheme

The CSP-scan architecture is proposed in (Potluri, 2015) forthe purpose of preserving

combinational logic states during scan-shift as well as capture phases of LOS based at-

speed scan testing. Figure 2.2 shows how the combinational logic states are so preserved

that the sequential circuit can practically be treated as combinational circuit, and we can

perform test vector ordering for minimizing peak switchingactivity.

The scan flip-flop that implements the CSP-scan scheme is shownin Figure 2.3. The

timing diagram corresponding to the CSP-scan scheme is shownin Figure 2.4. It can

be seen that theSElatch is low only during launch, and is high both during scan-shift

and capture cycles, thus ensuring combinational state preservation between successive

test vectors. It should be noted that, satisfaction of CSP makes test vector ordering

effective in reducing peak power during LOS based at-speed testing of sequential cir-

cuits (Potluri, 2015).

12

CK1

CK CK CK1

SQ
QB

CK1 & MSE0

1

SE

CK

CK

CK1 & MSE
QB

CK

Current SFF

Master Latch Slave Latch

Scan Latch

D

SD

Next SFF

Q

Combinational
 Logic

SE

CK

MSESE
Extra
Logic

Figure 2.3: Scan flip-flop that implements the CSP-scan scheme(Potluri, 2015)

In this thesis, we focus on peak switching activity minimization during at-speed

stuck-at testing. We assume that CSP-scan architecture is already in place and pro-

pose algorithms for the same. Additionally, the ATPG tool will give us the option to

identify the don’t care bits that can be replaced with 0 or 1, without loss in fault cov-

erage (Miyase and Kajihara, 2006). Interestingly, the percentage of don’t care bits is

67.8% on an average in the ITC circuits shown in Table 2.1. Since the majority of the

bits in these sequential circuits are don’t cares, don’t care filling plays a major role in

minimizing peak power during at-speed testing of sequential circuits. This thesis ad-

dresses the test vector ordering problem, the simultaneousvector ordering and don’t

care filling heuristic, and an optimal algorithm for don’t care filling for a given test vec-

tor ordering. Chapters 3, 4 and 5 discuss these contributionsin elaborate detail. The

next chapter describes our first contribution.

13

CK

SElatch

Launch Capture

At-Speed

SE

Scan Shift Scan Shift

SEmux

g

b

c

d

f

a h j

e

i

Figure 2.4: Timing diagram for CSP-scan scheme (Potluri, 2015)

Table 2.1: ITC’99 Benchmarks (X % : Average % of X-bits in test cubes)

Benchmark # PIs # Gates # Test Cubes X %
b04 77 615 67 64.4
b05 35 608 69 36.8
b06 5 60 16 12.5
b07 50 431 46 58.6
b08 30 196 38 60.4
b10 28 217 43 58.7
b11 38 574 83 64.1
b12 126 1.6K 100 76.9
b13 53 596 36 65.4
b14 275 5.4K 511 77.9
b15 485 8.7K 405 87.8
b17 1452 27.99K 618 89.9
b18 3357 75.8K 666 86.9
b19 6666 146.5K 953 89.8
b20 522 9.4K 476 75.3
b21 522 9.4K 479 73.2
b22 767 13.4K 435 74.1

14

CHAPTER 3

An Efficient Test Vector Ordering Algorithm for

Minimizing Peak Switching Activity

As already explained in the previous chapter, under the CSP-scan architecture, the state

of the combinational logic is preserved between application of successive test vectors.

As a result, test vector ordering influences the peak switching activity during testing.

In this chapter, we show that given a fully specified test set,the problem of optimal

test vector ordering under the CSP-scan architecture (Potluri et al., 2015), maps to the

Bottleneck Traveling Salesman Problem (BTSP), which is NP-hard. We solve the test

vector ordering problem by using an efficient BTSP heuristic (Larusic et al., 2012).

Interestingly, the solution obtained for all the benchmarkcircuits, is globally optimal.

Next, we define the Peak Input Toggle Minimization Problem (PITMP) and Bottle-

neck Traveling Salesman Problem (BTSP) respectively, and how one maps to the other.

Section 3.3 explains the BTSP heuristic and section 3.4 provides the results obtained by

implementing the proposed heuristic and experimenting it on benchmark circuits.

3.1 PITMP and BTSP

In this section, we shall see the definitions of the Peak InputToggle Minimization Prob-

lem (PITMP) and Bottleneck Traveling Salesman Problem (BTSP)respectively, and

how both of them map to each other.

PITMP Definition: Given a combinational circuitC, and a set of test vectors

T = {T1 . . . Tk}, the problem is to find an orderingπ of these test vectors such that

the max{Hd (Tπ1
, Tπ2

), Hd (Tπ2
, Tπ3

), ...Hd (Tπk−1
, Tπk

)} is minimized, where

Hd (Tπi
, Tπi+1

) is theHamming distancebetween test vectorsTπi
andTπi+1

.

BTSP Definition: Given an edge-weighted undirected complete graphG, the prob-

lem is to find anHamiltonian cyclein G, such that thelargest edge cost in this cy-

0

1 3

2

4

6

4

8

5

5

3

4

4

67

Figure 3.1: An example of edge-weighted undirected complete graph,G

cle is minimized(Garey and Johnson, 1990) (which is the Bottleneck Hamiltonian cy-

cle). Figure 3.1 shows an example edge-weighted undirectedcomplete graphG. Fig-

ures 3.2(a) and 3.2(b) show the Bottleneck Hamiltonian cycles (BHCs) in the complete

graph (G) shown in Figure 3.1. In this specific example, there are two BHCs insideG.

Thus, this example illustrates that the complete graphG, in general, can contain one or

more BHCs. It depends on the distribution of weights on the edges ofG. Now, we are

interested in the peak switching activity, which is the largest edge-weight in the BHC

(which will be explained later in the next section). Keepingin this mind, and the fact

that the largest edge-weight in all the BHCs are equal, it is straightforward to see that

all of the BHCs are equivalent, for the problem under consideration. This will become

clearer as we go to the next section. Next, to take the discussion further, we will discuss

thebottleneck traveling salesman path problem.

The BTSP is NP-Hard (Garey and Johnson, 1990). Next, we shall define theBottle-

neck Traveling Salesman Path Problemand prove that it is equivalent to BTSP.

Bottleneck Traveling Salesman Path Problem (BTSPP):

Given an edge-weighted undirected complete graphG, theBottleneck Traveling Sales-

man Path Problem (BTSPP)is to find anHamiltonian pathin G, such that thelargest

edge cost in this path is minimized. The BTSPP can be reduced to the BTSP, by adding

a vertex toG, and connecting the same to all other vertices ofG through edges with

weightzero. Note that, after solving the BTSP on the modified graph, and removing the

newly added vertex from the cycle thus computed, gives a bottleneck traveling salesman

path inG.

16

0

1 3

2

4

6

4

5

3

4

(a) BHC-1

0

1 3

2

4

6

4

5

3

6

(b) BHC-2

Figure 3.2: Bottleneck Hamiltonian Cycles (BHCs) inG

It is interesting to note that, unlessP = NP , there does not exist a polynomial timeǫ-

approximation algorithm for BTSP for anyǫ > 0 (Doroshko and Sarvanov, 1981; Parker

and Rardin, 1984; Sarvanov, 1995). Several heuristics were reported in the literature

for the BTSP problem, for example (Ramakrishnanet al., 2009; Manku, 1996; Larusic

et al., 2012).

Next, we proceed towards showing that the PITMP can be reduced to BTSP. In this

context, we define theHamming distance(Hd) between test vectorsTi, Tj is defined

as the number of positions in which (Ti=0 andTj=1) or (Ti=1 andTj=0). We denote

this byHd(Ti, Tj). The proof of reduction is shown in the next section.

3.2 Mapping of PITMP vs BTSP

In this section we show that PITMP is NP-Hard. We do this by twoway reduction

between these two problems. Since BTSP is known to be NP-hard due to reduction

PITMP is also NP-hard. Next we see the first reduction.

17

0

1 3

2

4

6

4

8

5

5

3

4

4

67

5

00

0

0

0

(a) Complete Graph (G′)

0

1 3

2

4

5

3

4

5
0 0

4
(b) Bottleneck Hamiltonian
Cycle inG

′

0

1 3

2

4

5

3

4

5

4

(c) Bottleneck Hamiltonian
Path inG′

Figure 3.3: Bottleneck Hamiltonian Cycle, Path inG
′

3.2.1 Mapping of PITMP to BTSP

In this section, we prove that the PITMP can be reduced to BTSP.To begin with, we

construct a graphTV G = (V,E) as follows:

• Let V = {v1 . . . vk} be a set of vertices such that vertexvi corresponds to test
vectorTi, for 1 ≤ i ≤ k.

• Place an edge(vi, vj) between verticesvi, vj with cost ci,j, where cij =
Hd (Ti, Tj), ∀i, j, 1 ≤ i < j ≤ k.

• Add a new vertexvk+1 to G and place edge betweenvk+1 andvi, ∀1 ≤ i ≤ k,
with a costck+1,i = 0, ∀1 ≤ i ≤ k.

In the graph so constructed, letC be an optimal BTSP solution. LetP be a path

obtained by removing vertexvk+1 fromC. Now, the ordering of vertices inP , gives the

optimal ordering of the test vectors such that the maximum Hamming distance between

any two consecutive test vectors is minimized. Next we see the second reduction.

3.2.2 Mapping of BTSP to PITMP

In this section, we prove that the BTSP can be reduced to PITMP.

Input : An edge-weighted undirected graphG = (V,E)

18

Output : A Hamiltonian path inG, such that the Bottleneck edge-weight is

minimized.

• The Construction Step :
1. LetT = t1, t2, t3, ...tn be a set of test vectors, whereti corresponds tovi ǫ

V and|V | = n.

2. LetPIT (ti, tj) = eij whereeij = w(Vi, Vj)ǫE.

• The Solution Step :

The above construction creates an instance of PITMP. Solve this instance and
output ordering of test vectors(t

′

1, t
′

2, t
′

3, ...t
′

n)

• The Reporting Step :

Output the order of vertices inV , corresponding to the test vector sequence
(t

′

1, t
′

2, t
′

3, ...t
′

n) .

The Solution step shows that the BTSP is solved as an instance of PITMP. The Construc-

tion and Reporting steps takesO(n2) time. Hence, the BTSP ispolynomially reduced

to an instance of PITMP. Given that the BTSP problem is NP-hard, it is easy to see that

PITMP problem is also NP-hard.

Since BTSP is NP-hard, it is important to suggest good heuristics to solve the prob-

lem at hand, so that we arrive at fast solutions with reasonable savings in peak input

switching activity during testing. The next section explains the BTSP heuristic that we

use, to minimize peak input switching activity during testing.

3.3 Algorithm for BTSP

We have used the heuristic proposed by (Larusicet al., 2012) for solv-

ing BTSP. This algorithm uses theNearest Neighbour Heuristic(NNH)

proposed in (Lawler, 1985), for computing upper-bound and

Bottleneck Biconnected Spanning Subgraph(BBSS) algorithm proposed in (Pun-

nen and Nair, 1994) for computing lower-bound. These algorithms are explained in

Algorithm 1 and Algorithm 2 respectively. Algorithm 1 finds aHamiltonian Cycle in

a complete graphG and returns max cost edge in this cycle. This is an upper-bound

for BTSP solution. Algorithm 2 finds an biconnected spanning subgraph of G by

19

ordering the edges in non decreasing order of edge weights, and does a binary search to

find the set of edges in the required biconnected subgraph. Tomotivate, the bottleneck

biconnected spanning subgraph and the nearest neighbourhood of the complete graph

in Figure 3.1, are shown in Figures 3.4(a) and 3.4(b) respectively. The BTSP algorithm

is shown in Algorithm 3.

Algorithm 1 : NNH Algorithm
Input : GraphG
Output : An upper-boundUB for BTSP Solution

/* Let C be an Hamiltonian cycle in G. Output of this1

algorithm is maximum cost edge in C. */
Let current_vertex be any vertex in graphG and markcurrent_vertex as2

visited ;
Let start_vertex becurrent_vertex ;3

Letmax_cost bezero. ;4

while there is any unvisited vertex in graph G do5

Let V be any unvisited vertex inG such that edge cost between6

current_vertex andV is minimum;
Let current_cost be edge cost betweencurrent_vertex, V ;7

Letmax_cost be themax(max_cost, current_cost) ;8

Let current_vertex beV ;9

end10

Let current_cost be edge cost betweencurrent_vertex, start_vertex ;11

Letmax_cost be themax(max_cost, current_cost) ;12

returnmax_cost.13

Before going into the details of this algorithm, we will next explain an operation

calledControlled shake operation, which is extensively used in this algorithm. Let

G
′

be a graph andδ be a positive number.Controlled shake operation on graphG
′

with valueδ creates a graphGs as follows

• Vertex set ofGs is the same as vertex set ofG
′

• Edge set ofGs is the same as edge set ofG
′

• cost of an edgee in Gs is zero if the cost of the corresponding edge inG
′

is less
than or equal toδ

• cost of an edgee in Gs is any positive random number if the cost of the corre-
sponding edge inG

′

is greater thanδ

Having understood theControlled shake operation, we will now try to briefly under-

stand the different steps in Algorithm 3. A detailed description of the same can be found

20

Algorithm 2 : BBSSP Algorithm

Input : GraphG
Output : A lower-boundLB for BTSP Solution

/* Let G
′

be a biconnected spanning subgraph of G such1

that maximum cost edge in G
′

is minimum. Output of
this algorithm is maximum cost edge in G

′

. */
LetZ1 < Z2 < · · · < Zk be the distinct edge costs ofG sorted in increasing2

order;

Let l = 1, u = k;3

while l < u do4

δ = ⌊ (u−l
2
⌋+ l;5

G
′

= (V,E
′

) whereE
′

= {(i, j) ∈ E : Cij ≤ Zδ }6

if G
′

is biconnected then7

u = δ;8

end9

else10

l = δ + 1;11

end12

end13

returnZl.14

in (Larusicet al., 2012). The following points summarize the different stepsinvolved

in Algorithm 3.

• LetGs be a graph obtained from a graphG
′

by controlled shake operation with
valueδ. Note that ifGs contains Hamiltonian tour with cost zero thenG

′

contains
a BTSP tour with cost at mostδ.

Suppose BTSP tour cost in a graphG
′

is ≤ δ. Then if we apply
controlled shake operation on G

′

several times with the sameδ then one of
the graphs generated by these operations will have Hamiltonian tour with cost
zero with high probability.

In the algorithm 3,while loop from line 10 to 18 uses these two ideas while trying
to findBTSP tour with cost atmostδ. With high probability it will find such a
tour if there exists one.

• The while loop from line 5 to 26 tries to find an indexi, where1 ≤ i ≤ k,
such that given graphG

′

contains a BTSP tour with cost at mostZi using binary
search.

• In line 21 of the algorithm, whenever we are setting upper boundu equal tomid
then we are certain that BTSP tour cost inG

′

is at mostZu.

• In line 24 in the algorithm, if we are setting lower boundl to mid + 1 does not
mean that BTSP tour cost inG

′

is at leastZl. It can be less thanZl with some
small probability. This is because we are using a heuristic to test whether the
given graph contains a Hamiltonian cycle or not.

21

0

1 3

2

4

4
5

3

4

4

5

00

0

0

0

(a) Bottleneck biconnected spanning
subgraph inG′

0

1 3

2

4

4

5

3

4

5
0 0

(b) Nearest Neighbourhood inG′

Figure 3.4: BBSS and NN inG
′

• Whenever this algorithm terminates, lower boundl is equal to upper boundu and
given graph contains a BTSP tour with cost at mostZu.

Now, the lower bound given byBBSS Algorithm 2 is not a tight lower bound. Keep-

ing this in mind, in order to optimize further, we propose Algorithm 4, which tries

to tighten this lower bound value. It compares bottleneck value given byBTSP

Algorithm 3 and maximum cost edge value given byBBSS Algorithm 2, and tries

to tighten the lower bound value. We refer to the lower bound thus obtained by

Algorithm 4, asEnhanced lower bound. In the experimental results, we use this

Enhanced lower bound to quantify the performance ofBTSP Algorithm.

Algorithm 5 explains the entire process of computing bottleneck value.

3.4 Experimental Results

3.4.1 Experimental Setup

We have considered ITC’99 benchmark circuits listed in table3.1 for all of our exper-

iments. Each of the ITC’99 benchmark circuit is synthesized using SynopsysR©Design

22

Compiler with a45nmstandard-cell library. Test vectors were generated for each of the

synthesized netlists usingMentor’s FastScanATPG tool. The synthesized netlists are

taken through Place And Route (PAR) phase usingCadence Encountertool, which is

subsequently taken throughCadence RCXtractto extract gate and interconnect capaci-

tance values. Next, we explain the results obtained by applying the proposed heuristic

on these netlists.

3.4.2 Results

Tables 3.2, 3.3 and 3.4 show the savings in peak input toggles, peak circuit toggles and

peak circuit power obtained upon applying the proposed heuristic on benchmark circuits

for the cost-functionsprimary input toggles, total circuit togglesandtotal circuit power

respectively. In all the three tables,LB corresponds to the lower bound obtained using

theEnhanced Lower Bound Algorithm 4. SimilarlyTool andBTSPPcorrespond to

the peak toggles/power values in the combinational circuitC obtained, by applying the

test vectors in the order suggested by theFastScanTM tool and the BTSPP algorithm

respectively.

Table 3.2 shows that whenprimary input togglesis used as the cost-function, the

peak input-toggles inC, obtained using the BTSPP algorithm is equal to theLB com-

puted, for all benchmark circuits, while the peak input-toggles inC got by applying the

test vectors in the order suggested byFastScanTM is 31.56% higher thanLB, on the

average. Similarly Table 3.3 shows that whentotal circuit togglesis used as the cost-

function, the peak total-toggles inC, obtained by applying the test vectors in the order

suggested by the BTSPP algorithm is equal to the lower boundLB value for all bench-

marks considered, exceptb19. In the case ofb19, step.9 in Enhanced Lower Bound

algorithm ran for many days and did not converge. This step was thus aborted, and the

value ofEW2 was assigned to theLB, sinceEW2 is also a lower bound to the BT-

SPP algorithm. It is interesting to note that althoughEW2 (37, 387) was not proved

to be a tight lower bound, the peak total toggles inC got by applying vectors in or-

dering suggested by BTSPP (37,726) is within1% of EW2 value, indicating the good

performance of the BTSPP algorithm, in terms of the solution quality. On the other

hand, the peak-toggles inC got by applying the test vectors in the order suggested by

23

FastScanTM is 59.67% higher thanLB, on the average. Similarly, Table 3.4 shows

that whenCircuit Total Poweris used as the cost-function, the peak-power dissipated in

C by applying the test vectors in the order suggested by the BTSPP algorithm is equal

to lower boundLB value for all considered benchmarks, similar to the case ofprimary

input toggles(Table. 3.2), while the peak-power dissipated inC got by applying the test

vectors in the order suggested byFastScanTM is 62.99% higher thanLB, on the aver-

age. Since, total energy consumed by the circuit during capture cycles is dependent on

average capture-power, it is interesting to analyze the impact of the ordering suggested

by the BTSPP algorithm onaverage capture-power. Table 3.5 shows the results for the

same for all the three cost-functions discussed previously. It can be observed that for

all benchmarks, for all three cost-values, the average toggles/power values inC got by

applying the test vectors in the ordering suggested by BTSPP,is lesser than that got by

applying the test vectors in the ordering as suggested by tool. On the average, taken

over all benchmark circuits, the reduction in average toggles/power for the three cost-

values was 27.2%, 27.8% and 28.3% respectively when compared with those yielded

by the commercial tool.

24

Algorithm 3 : BTSP Algorithm

Input : GraphG
′

Output : Bottleneck Edge

Compute lower-boundlb and upper boundubusing Bottleneck Biconnected1

Spanning Subgraph Problem (BBSSP) algorithm and Nearest Neighbour
Heuristic (NNH) respectively in given graphG

′

;

LetZ1 < Z2 < · · · < Zk be an ascending arrangement of the distinct edge costs2

in graphG
′

such thatZ1 ≥ lb andZk ≤ ub;

/* find an index i, where 1 ≤ i ≤ k, such that given3

graph G
′

contains a BTSP tour with cost at most Zi

using binary search */
Let l← 1, u← k;4

while l < u do5

mid← ⌊(l + u)/2⌋ ;6

count← some positive integer sayN ;7

flag← 1 ;8

δ ← Zmid ;9

while count > 0 andflag = 1 do10

Apply controlled shake on graphG
′

with valueδ to get graphGs ;11

Find a lowest cost TSP tour inGs usingLin-Kernighan TSP heuristic;12

Let T be this tour ;13

if the length ofT is zerothen14

flag← 0;15

end16

count← count-1;17

end18

if flag = 0 then19

u←mid;20

end21

else22

l←mid+1;23

end24

end25

Result: BTSP cost is equal toZu.

25

Algorithm 4 : Enhanced Lower Bound Algorithm
Input : TV G of a combinational circuitC constructed for a given set of test

vectorsT
Output : An Enhanced Lower BoundLB

Solve theBTSPP onTV G as described earlier. Let the maximum weight of1

any edge on the computed Bottleneck Traveling Salesman Path beEW1;

ComputeBBSS(TV G); Let the maximum weight of any edge on2

BBSS(TV G) beEW2;

/* When the cost of the bottleneck edge(EW1) is same3

as max cost edge in Biconnected spanning subgraph
(EW2) then the solution given by BTSP is
optimal solution, and max cost edge in Biconnected
spanning subgraph is greatest lower − bound */

if EW1 == EW2 then4

LB ← EW1;5

end6

if EW1 > EW2 then7

Remove all edges inTV G with edge-weight greater than or equal toEW1.8

Let the new graph beG
′

;

Test ifG
′

has a Hamiltonian cycle using the methodology suggested in9

(Vandegriend, 1998);

if G
′

does not have a Hamiltonian cyclethen10

/* Since G
′

does not have a Hamiltonian cycle the11

solution given by BTSP is optimal solution,
hence the greatest lower − bound value is EW1 */

LB ← EW1;12

end13

else14

/* Since G
′

has a Hamiltonian cycle the solution15

given by BTSP might not be optimal solution,
hence the lower − bound value is at least EW2 */

LB ← EW2;16

end17

end18

returnLB;19

26

Algorithm 5 : BTSPP Algorithm
Input : π = {T1, T2,.. Tn} set of completely specified test vectors
Output : π

′

= {T1, T2,.. Tn} sequence of completely specified test vectors
Let Ti...Tk be the set of test vectors of CircuitC1

Let ci,j be the cost of applying test vectorj afteri, cj,i be the cost of applying test2

vectori afterj.Note thatci,j=cj,i,1 ≤ i ≤ k; 1 ≤ j ≤ k; i 6= j.
/* Construct a Graph G as follows */3

Let {v1...vk} be the vertex set ofG. Note that vertexvi corresponds to test vector4

Ti, for 1≤ i ≤ k.
Place an edge betweenvi,vj whose cost iscij,∀ i, j. 1 ≤ i ≤ j ≤ k.5

/* Construct a Graph G
′

as follows */6

Add an vertexvk+1 to G.7

Place an edge betweenvk+1,vi in G with a costzero, ∀i, 1 ≤ i ≤ k.8

Compute lower boundLB and upper boundUB using Bottleneck Biconnected9

Spanning Subgraph ProblemBBSSP Alogrithm and Nearest Neighbor
Heuristic(NNH) respectively in given graphG

′

.
LetZ1 < Z2 < ... < Zk be an ascending arrangement of the distinct edge costs in10

graphG
′

such thatZ1 ≥ LB andZk ≤ UB.
Let l = 1, u = k11

while l < u do12

Letmid = (l + u)/2)13

/* Construct a graph Gs as follows */14

Vertex set ofGs is the same as vertex set ofG
′

15

Edge set ofGs is the same as edge set ofG
′

16

Cost of an edgee in Gs is zero if the cost of the corresponding edge inG
′

is17

less than or equal toZmid.
Cost of an edgee in Gs is any positive random number if the cost of the18

corresponding edge inG
′

is greater thanZmid.
Find a lowest costTSP tour in Gs usingLin−Kernighan TSP heuristic.19

if tour lenght = 0 then20

Let u = mid;21

else22

Let l = mid+ 1;23

end24

end25

Let P be a path inG
′

obtained by removing vertexvk+1 from TSP tour. Note26

thatP is aHamiltonian path in G such that cost of any edge is atmostZu.
Ordering of the vertices in pathP gives the required test vector ordering such27

thatpeak cost is atmostZu.

27

Table 3.1: ITC’99 Benchmarks

Circuit # PIs #Gates # Test Vectors
b01 5 57 17
b02 4 31 11
b03 29 103 16
b04 77 615 98
b05 35 608 81
b06 5 60 19
b07 50 431 61
b08 30 196 49
b09 29 162 33
b10 28 217 54
b11 38 574 104
b12 126 1.6K 118
b13 53 396 44
b14 275 5.4K 658
b15 485 8.7K 594
b17 1452 28K 786
b18 3357 75.8K 913
b19 6666 146.52K 1,147
b20 522 9.4K 652
b21 522 9.4K 671
b22 767 13.4K 589

28

Table 3.2: Edge cost : Primary input toggles per vector pair

Circuit LB Tool BTSPP % gap with LB Run Time
Tool BTSPP

b01 2 5 2 150.00 0.00 0.04s
b02 2 4 2 100.00 0.00 0.05s
b03 7 11 7 57.14 0.00 0.34s
b04 31 49 31 58.06 0.00 2.01s
b05 12 24 12 100.00 0.00 0.33s
b06 2 4 2 100.00 0.00 0.06s
b07 19 34 19 78.95 0.00 1.33s
b08 11 21 11 90.91 0.00 0.22s
b09 10 21 10 110.00 0.00 0.05s
b10 11 19 11 72.73 0.00 1.52s
b11 14 27 14 92.86 0.00 0.88s
b12 53 79 53 49.06 0.00 1.00s
b13 21 34 21 61.90 0.00 0.11s
b14 114 158 114 38.60 0.00 4.47m
b15 216 280 216 29.63 0.00 2.97m
b17 679 785 679 15.61 0.00 22.93s
b18 1,601 1,760 1,601 9.93 0.00 3.18m
b19 3,218 3,447 3,218 7.12 0.00 15.20m
b20 231 294 231 27.27 0.00 16.70s
b21 228 294 228 28.95 0.00 4.06m
b22 349 512 349 46.70 0.00 13.76s

Average - - - 31.56 0.00 1.47m

29

Table 3.3: Edge cost : Circuit total toggles per vector pair

Circuit LB Tool BTSPP % gap with LB Run Time
Tool BTSPP

b01 21 37 21 76.19 0.00 0.02s
b02 13 18 13 38.46 0.00 0.07s
b03 29 52 29 79.31 0.00 0.07s
b04 226 375 226 65.93 0.00 0.68s
b05 189 323 189 70.90 0.00 2.81s
b06 18 39 18 116.67 0.00 0.02s
b07 143 252 143 76.22 0.00 0.15s
b08 64 119 64 85.94 0.00 1.28s
b09 51 107 51 109.80 0.00 0.70s
b10 66 132 66 100.00 0.00 1.36s
b11 154 264 154 71.43 0.00 5.32s
b12 443 682 443 53.95 0.00 3.49s
b13 149 212 149 42.28 0.00 0.17s
b14 1,565 2,449 1,565 56.49 0.00 16.77s
b15 2,078 3,148 2,078 51.49 0.00 8.90m
b17 7,125 9,217 7,125 29.36 0.00 15.68m
b18 20,103 24,694 20,103 22.84 0.00 27.81s
b19 37,387 44,934 37,726 20.19 0.91 112.77m
b20 3,003 4,007 3,003 33.43 0.00 7.75m
b21 2,962 3,911 2,962 32.04 0.00 9.27m
b22 4,341 5,188 4,341 19.51 0.00 3.31m

Average - - - 59.67 0.05 7.56m

30

Table 3.4: Edge cost : Circuit total power (inµW) per vector pair

Circuit LB Tool BTSPP % gap with LB Running Time
Tool BTSPP

b01 1.92 3.97 1.92 107.04 0.00 0.02s
b02 1.47 2.30 1.47 56.08 0.00 0.07s
b03 2.03 3.54 2.03 74.58 0.00 0.07s
b04 14.319 24.94 14.32 74.17 0.00 11.40s
b05 10.34 17.31 10.34 67.46 0.00 0.51s
b06 2.04 4.40 2.04 115.76 0.00 0.28s
b07 10.09 18.42 10.09 82.54 0.00 4.31s
b08 4.41 8.64 4.41 95.81 0.00 1.75s
b09 4.71 11.18 4.71 137.53 0.00 0.80s
b10 5.64 10.91 5.64 93.37 0.00 1.03s
b11 10.28 17.28 10.28 68.11 0.00 5.42s
b12 32.08 53.430 32.08 66.54 0.00 1.07s
b13 11.97 17.65 11.97 47.45 0.00 0.11s
b14 71.19 115.23 71.19 61.86 0.00 18.89s
b15 140.36 199.50 140.36 42.14 0.00 14.03m
b17 808.36 967.69 808.36 19.71 0.00 18.98m
b18 2,451.40 2,729.24 2,451.40 11.33 0.00 29.51m
b19 7,205.46 7,815.73 7,205.46 8.47 0.00 44.09m
b20 198.49 275.54 198.49 38.82 0.00 19.50s
b21 188.82 245.53 188.82 30.04 0.00 20.05s
b22 321.32 397.66 321.32 23.76 0.00 9.29m

Average - - - 62.99 0.00 5.59m

31

Table 3.5: Impact of Test Vector Ordering on Average Toggles/Power for cost values (PIT: Primary Input Toggles, CTT: Circuit Total Toggles,
CTP: Circuit Total Power)

Edge Cost : PIT per Vector Pair Edge Cost : CTT per Vector Pair Edge Cost : CTP per Vector Pair
Circuit Average Input Toggles Average Circuit Toggles Average Circuit Power (inµW)

Tool BTSPP % Improvement Tool BTSPP % Improvement Tool BTSPP % Improvement
b01 2 1 50.00 29 18 37.93 2.76 1.64 40.83
b02 2 1 50.00 15 11 26.67 1.80 1.28 28.75
b03 8 3 62.50 34 16 52.94 2.41 1.06 56.01
b04 37 29 21.62 283 209 26.15 18.66 13.54 27.45
b05 17 11 35.29 239 167 30.13 13.04 9.32 28.58
b06 3 1 66.67 28 14 50.00 3.19 1.49 53.35
b07 24 16 33.33 187 128 31.55 13.56 8.92 34.19
b08 14 10 28.57 85 55 35.29 6.09 3.71 39.03
b09 14 9 35.71 82 42 48.78 8.19 4.01 51.00
b10 14 9 35.71 93 56 39.78 8.19 4.76 41.86
b11 18 13 27.78 198 132 33.33 13.79 8.95 35.08
b12 62 51 17.74 555 412 25.77 40.00 29.83 25.42
b13 27 20 25.93 182 140 23.08 14.87 11.29 24.11
b14 134 109 18.66 1957 1457 25.55 91.66 66.33 27.63
b15 241 212 12.03 2547 1950 23.44 167.92 133.33 20.33
b17 722 672 6.93 8025 6976 13.07 877.52 797.09 9.17
b18 1671 1591 4.79 21846 19875 9.02 2574.81 2433.27 5.50
b19 3317 3206 3.35 40703 37434 8.03 7458.16 7174.18 3.81
b20 257 226 12.06 3451 2909 15.71 229.95 192.01 16.50
b21 257 223 13.23 3446 2856 17.12 215.51 183.17 15.01
b22 387 344 11.11 4712 4265 9.49 353.27 316.21 10.49

Average - - 27.2 - - 27.8 - - 28.3

32

Since three different cost functions are considered, it is interesting to see the dif-

ferences in using them. Table 3.6 provides the peak capture power values for the

test vector orderings obtained by using cost functions (PIT: Primary Input Toggles,

CTT: Circuit Total Toggles, CTP: Circuit Total Power). Since CTP considers the actual

power, it gives the best power saving for almost all benchmark circuits. Additionally

Table 3.6 shows that among the three cost-functions, CTP is the best, followed by CTT

and then PIT, in their effectiveness in saving power. As far computational requirements

are concerned, PIT is the best since only input toggles need to be computed. Since total

circuit activity needs to be computed to compute CTT, it is slower than PIT computa-

tion. In addition to total circuit activity, since placement and routing also need to be

done to compute CTP, it is slowest of all the three. Thus, one has to strike a trade-off

between power saving and computational efficiency in choosing the appropriate cost

function among PIT, CTT and CTP cost functions, for the test vector ordering process.

Table 3.7 provides the average capture power values for the test vector orderings

obtained by using these different cost functions (PIT: Primary Input Toggles, CTT:

Circuit Total Toggles, CTP: Circuit Total Power). This table shows that CTP is most

effective, followed by CTT and then PIT, in saving average power. Even though this

BTSP algorithm is designed to minimize peak power, it did reasonably well for reducing

average power also.

3.5 Summary

In this chapter we mapped the peak-power minimization problem on to an instance of

the Bottleneck Traveling Salesman Problem (BTSP), which is known to be NP-hard. An

efficient BTSP heuristic is deployed to find the minimum peak capture-power. Three

different cost functions were used for evaluating the proposed heuristic. For each cost

function, the solution given by this BTSP heuristic is optimal for almost all ITC’99

benchmark circuits, in optimizing the corresponding BTSP cost-function. As far as

minimizing peak capture power is concerned, it is found thattotal circuit power is

most effective, however is computationally most expensive; primary input togglesis

the fastest, however the solution is most inferior among three. Hence, there is a trade-

33

Table 3.6: Peak Circuit Power Comparisons (inµW) for different cost functions consid-
ered (PIT: Primary Input Toggles, CTT: Circuit Total Toggles,CTP: Circuit
Total Power)

Peak Circuit Power % Improvement of BTSP over Tool
Circuit Tool BTSP for edge cost value

PIT CTT CTP PIT CTT CTP
b01 3.97 2.34 2.12 1.92 41.06 46.6 51.64
b02 2.3 1.8 1.79 1.47 21.74 22.17 36.09
b03 3.54 2.42 2.11 2.03 31.64 40.4 42.66
b04 24.94 19.56 16.73 14.32 21.57 32.92 42.58
b05 17.31 14.74 11.52 10.34 14.85 33.45 40.27
b06 4.4 3.32 2.18 2.04 24.55 50.45 53.64
b07 18.42 15.76 12.12 10.09 14.44 34.2 45.22
b08 8.64 7.49 5.09 4.41 13.31 41.09 48.96
b09 11.18 9.31 4.77 4.71 16.73 57.33 57.87
b10 10.91 9.27 6.43 5.64 15.03 41.06 48.3
b11 17.28 15.05 11.78 10.28 12.91 31.83 40.51
b12 53.43 41.77 35.59 32.08 21.82 33.39 39.96
b13 17.65 14.87 12.83 11.97 15.75 27.31 32.18
b14 115.23 105.44 84.43 71.19 8.5 26.73 38.22
b15 199.5 187.88 148.96 140.36 5.82 25.33 29.64
b17 967.69 901.29 854.22 808.36 6.86 11.73 16.46
b18 2729.24 2649.9 2578.74 2451.4 2.91 5.51 10.18
b19 7815.73 7540.99 7559.69 7205.46 3.52 3.28 7.81
b20 275.54 250.85 218.58 198.49 8.96 20.67 27.96
b21 245.53 230.6 212.74 188.82 6.08 13.35 23.1
b22 397.66 371.55 341.77 321.32 6.57 14.05 19.2

Average - - - - 14.98 29.18 35.83

34

Table 3.7: Average Circuit Power Comparisons (inµW) for different cost functions
considered (PIT: Primary Input Toggles, CTT: Circuit Total Toggles, CTP:
Circuit Total Power)

Average Circuit Power % Improvement of BTSP over Tool
Circuit Tool BTSP for edge cost value

PIT CTT CTP PIT CTT CTP
b01 2.76 2.11 1.72 1.64 23.55 37.68 40.58
b02 1.8 1.28 1.26 1.28 28.89 30 28.89
b03 2.41 0.99 1.12 1.06 58.92 53.53 56.02
b04 18.66 14.99 14.05 13.54 19.67 24.71 27.44
b05 13.044 10.62 9.42 9.32 18.58 27.78 28.55
b06 3.19 2.44 1.6 1.49 23.51 49.84 53.29
b07 13.56 10.33 8.84 8.92 23.82 34.81 34.22
b08 6.09 4.88 3.89 3.71 19.87 36.12 39.08
b09 8.19 5.37 4.04 4.01 34.43 50.67 51.04
b10 8.19 5.82 4.92 4.76 28.94 39.93 41.88
b11 13.79 10.95 9.15 8.95 20.59 33.65 35.1
b12 40 34.19 29.76 29.83 14.53 25.6 25.43
b13 14.87 12.41 11.47 11.29 16.54 22.86 24.08
b14 91.66 80.16 69.61 66.33 12.55 24.06 27.63
b15 167.92 153.41 133.85 133.77 8.64 20.29 20.34
b17 877.52 828.02 807.11 797.09 5.64 8.02 9.17
b18 2574.81 2483.06 2466.77 2433.27 3.56 4.2 5.5
b19 7458.16 7261.64 7280.73 7174.18 2.63 2.38 3.81
b20 229.95 211.46 194.35 192.01 8.04 15.48 16.5
b21 215.51 196.29 184.65 183.17 8.92 14.32 15.01
b22 353.27 333.22 320.14 316.21 5.68 9.38 10.49

Average - - - - 18.45 26.92 28.29

35

off between solution quality and computational efficiency.

Usually, the test vectors generated by the ATPG tool are typically dominated by

don’t care (X) bits, especially for large circuits. Thus, X-filling is a very effective

technique for peak power minimization during testing. It should be noted that after

the X-bits are already filled, the algorithms proposed in this chapter, offer very elegant

solutions. However, it is possible that X-bit filling and ordering of the test vectors can

be done in an integrated fashion, to obtain much better peak power savings. The next

chapter explores this possibility and reports the results thereby obtained.

36

CHAPTER 4

An Efficient X-filling algorithm for Minimizing Peak

Switching Activity

The ATPG tool will give us the option to identify the don’t care bits that can be replaced

with 0 or 1, without loss in fault coverage (Miyase and Kajihara, 2006). Interestingly,

the percentage of don’t care bits is 67.8% on an average in theITC circuits shown in

Table 4.1.

Table 4.1: ITC’99 benchmarks (X % : Average % of X-bits in test cubes)

Benchmark # PIs # Gates # Test Cubes X %
b01 5 57 14 7.14
b02 4 31 10 5.00
b03 29 103 19 70.42
b04 77 615 67 64.35
b05 35 608 69 36.77
b06 5 60 16 12.50
b07 50 431 46 58.57
b08 30 196 38 60.44
b09 29 162 23 38.23
b10 28 217 43 58.72
b11 38 574 83 64.11
b12 126 1.6K 100 76.94
b13 53 596 36 65.41
b14 275 5.4K 511 77.90
b15 485 8.7K 405 87.75
b17 1452 27.99K 618 89.85
b18 3357 75.8K 666 86.92
b19 6666 146.5K 953 89.81
b20 522 9.4K 476 75.29
b21 522 9.4K 479 73.20
b22 767 13.4K 435 74.05

A test vector, when some bits are left as don’t cares, is knownas atest cube. In this

chapter we concentrate on filling these don’t cares in test cubes and ordering them to

minimize the peak power. We propose an efficient heuristic for test cube ordering and

don’t care filling in an integrated fashion, that produces solution which reduce peak test

power significantly. The organization of this chapter is as follows: section 4.1 defines

the Peak Input Toggle (PIT) Minimization Problem in the presence of X-bits, following

which we explain our balanced X-Filling Algorithm in section 4.2. Next, we explain the

Test Vector Ordering (TVO) Algorithm in the presence of X-bits in section 4.3.1. Fi-

nally, we explain the integrated ordering+X-filling algorithm in section 4.4 and provide

the experimental results in section 4.5.

4.1 Peak Input Toggle Minimization Problem (PITMP)

Problem Definition: Given a combinational circuitC and a set of test cubes

TC = {TC1 . . . TCk}, the problem is to compute an orderingπ of these test cubes

and filling the don’t cares to generate test vector sequenceTπ1
, . . . Tπk

such that

the max{Hd(Tπ1
, Tπ2

), Hd(Tπ2
, Tπ3

) . . . Hd(Tπk−1
, Tπk

)} is minimized, where

Hd(Tπi
, Tπi+1

) is the Hamming distance between test vectorsTπi
andTπi+1

.

4.2 Balanced X-Filling (B-Fill) Algorithm

Problem Definition: Given a sequence of test cubesTC1 . . . TCk each of

length m, replace each don’t care in test cubes by either 0 or 1 such that

max{Hd(TC1, TC2), Hd(TC2, TC3) . . . Hd(TCk−1, TCk)} is minimized, where

Hd(TCi, TCi+1) is the Hamming distance between test cubesTCi, TCi+1 after replac-

ing don’t cares by either 0 or 1.

4.2.1 Motivation

By definition, the X-bits (don’t care bits) in the test cubes generated by ATPG tool can

be filled with 0 or 1, without affecting fault coverage. Table4.1 shows the average

percentage of X-bits (over all the test cubes) for each benchmark circuit. It can be seen

that as circuit size increases, the average number of X-bitsalso increases, motivating the

need for an effective and efficient X-filling algorithm to reduce the peak capture power

38

consumption during scan test. Our aim is to perform X-fillingto convert test cubes

to test vectors in such a way that peak input toggles is minimized. The existing well

known X-filling techniquesrandom-fill (R-fill), zero-fill (0-fill), one-fill (1-fill), and

Minimum Transition-fill (MT-fill) (Sankaralingamet al., 2000), which are explained

in the following subsection, are not optimized for minimizing peak input toggles. This

motivated us to design an efficient algorithm which is customized for peak input toggle

minimization without compromising in average number of toggles. Additionally there

are serveral other X-filling techniques proposed in the literature such as (Wuet al.,

2011; Miyaseet al., 2011; Li et al., 2010; Balatsoukaet al., 2010; Wuet al., 2009;

Kundu and Chattopadhyay, 2009; Tzeng and Huang, 2009; Liet al., 2008; Wenet al.,

2007; Remersaroet al., 2006) which are not feasible with CSP-Scan, hence not very

effective and therefore not compared against techniques proposed in this thesis.

4.2.2 Existing X-Filling Techniques

A list of existing techniques to X-filling for power reduction are as follows:

1. R-fill : This technique replaces all don’t cares by zero or one randomly. As a
result of randomness in filling, with high probability this technique will also not
give the optimum value. As shown in Fig. 4.1, after applying this type of filling
of X-bits in the test cubes, peak input toggle count is4.

2. 0-fill : This technique replaces all don’t cares by zero, as shown inFig. 4.1. As a
result of applying this type of filling of X-bits in the test cubes, peak input toggle
count is4.

3. 1-fill : This technique replaces all don’t cares by one, as shown in Fig. 4.1. As a
result of applying this type of filling of X-bits in the test cubes, peak input toggle
count is4.

4. MT-fill : This technique attempts to reduce adjacent toggles between vectors. As
a result, it minimizes the total number of input toggles, as shown in Fig. 4.1. Note
that, as a result of applying this type of filling of X-bits in the test cubes, peak
input toggle count is5, which is more than optimum value which is2.

39

1 X 0

1 X 0

1 X 0

X X X

1 X 0

1 1 1

TC1 TC2 TC3

(a) Input

1 0 0

1 0 0

1 0 0

1 0 0

1 1 1

TC1 TC2 TC3

0 0 0

(b) 0-Fill

1 1 0

1 1 0

1 1 0

1 1 0

1 1 1

TC1 TC2 TC3

1 1 1

(c) 1-Fill

1 0 0

1 1 0

1 0 0

0 1 1

1 0 0

1 1 1

TC1 TC2 TC3

(d) R-Fill

1 1 0

1 1 0

1 1 0

0 0 0

1 1 0

1 1 1

TC1 TC2 TC3

(e) MT-Fill

1 1 0

1 1 0

1 0 0

0 0 0

1 0 0

1 1 1

TC1 TC2 TC3

(f) B-Fill

Figure 4.1: Motivation for Balanced-X-Filling (B-Fill)

4.2.3 Algorithm Details

The proposed algorithm for X-filling is shown in Algorithm 6.Before getting

into the details of this algorithm, let us explain a few things. We define the

modified Hamming distance (mHd) function between test cubesTCi, TCj as fol-

lows:

mHd (TCi, TCj) = Number of positions in which(TCi, TCj) = 01 or 10.

Note that while computing this function, we ignore the positions where don’t cares

appear either inTCi or TCj. These don’t cares are filled at a later step based on the

X-filling strategy shown in Table 4.2.

Table 4.2: Lookup table for X-filling

Input Output
V (i− 1) V (i) V (i+ 1) V (i) % of cases

0 X 0 0 100
1 X 1 1 100
0 X X 0 100
1 X X 1 100
X X 0 0 100
X X 1 1 100
X X X X 100

0 X 1 V (i− 1) 50
0 X 1 V (i+ 1) 50
1 X 0 V (i− 1) 50
1 X 0 V (i+ 1) 50

40

WheneverTCi andTCj are free from don’t cares, then this function is equivalent

to theHamming distance function. Having understood this, a brief explanation of

Algorithm 6 is given as follows:

1. For loop between lines 1 to 13 in algorithm scans the test vectors from two to n-1
in sequential manner and perform the following actions
• Let TCi be the current test cube under consideration for this for loop. Let
TCj,i denotesjth bit in ith test cube.

• If (TCj,i−1, TCj,i, TCj,i+1) = (0, X, 0) or (0, X,X) then replaceTCj,i by
zero.

• If (TCj,i−1, TCj,i, TCj,i+1) = (1, X, 1) or (1, X,X) then replaceTCj,i by
one.

At the end of execution of this for loop, if we look at any row itcontains one of
XX..X0, XX..X1 as a prefix or one of X0, X1 as a suffix or one of 0X1, 1X0 as a
substring.

2. At the end of the lines 14 to 18, any row contains one of 0X1, 1X0 as a substring.

3. For loop between lines 28 to 42 scans the test vectors from two to n-1 in se-
quential manner and fill the don’t cares inTCi such that difference between
mHd (TCi−1, TCi) andmHd (TCi, TCi+1) is minimized, whereTCi is the cur-
rent test cube under consideration for this for loop.

Running time of this algorithm isO(mn) wherem is number of bits in test cube

andn is number of test cubes.

In this section, we have explained the balanced X-filling algorithm, that aims at

minimizing peak input toggles by filling the X-bits in an efficient manner. Next, we

show the importance of initial test vector order, that maximizes the savings produced

by this balanced X-filling algorithm in minimizing peak testpower.

4.3 Test Cube Ordering Algorithm

As already explained, test vector ordering and balanced X-filling are both efficient in

reducing peak test power. Then, it is important to use an intelligent mix of the two,

to obtain the best possible peak test power savings. In this context, we propose an

algorithm that achieves this objective. Before getting intothe details of the proposed

Integrated Test Cube Ordering and X-filling Algorithm, we will motivate the need for

41

Algorithm 6 : Balanced X-Fill (B-Fill) Algorithm
Input : TC = TC1, TC2,.. TCn be the sequence of input test cubes
Output : T = T1, T2,.. Tn sequence of completely specified test vectors

/* processing of 0XX..XX0 and 1XX..XX1 stretches */1

for i = 2→ n− 1 do2

for j = 1→ Number of bits in Test V ector do3

/* TCj,i denotes jth bit in ith vector */4

switch (TCj,i−1,TCj,i,TCj,i+1) do5

case(0, X, 0)or(0, X,X) TCj,i ← 0;6

case(1, X, 1)or(1, X,X) TCj,i ← 1;7

otherwise8

TCj,i ← TCj,i;9

end10

end11

end12

end13

/* processing of XX..X0, XX..X1, 0X and 1X stretches14

*/
If { jth row contain a prefixXXX...XX0} then replace every don’t care in this15

prefix by zero
If { jth row contain a prefixXXX...XX1} then replace every don’t care in this16

prefix by one
If { jth row contain a suffix0X} then replace don’t care in this suffix by zero17

If { jth row contain a suffix1X} then replace don’t care in this suffix by one18

/* processing of 1X0 and 0X1 stretches */19

for i = 2→ n do20

Counti← 0;21

for j = 1→ Number of bits in Test V ector do22

if (TCj,i−1, TCj,i) = (0, 1)or(1, 0) then23

Counti← Counti+1;24

end25

end26

end27

for i = 2→ n− 1 do28

for j = 1→ Number of bits in Test V ector do29

if (TCj,i−1, TCj,i, TCj,i+1) = (0, X, 1) or (1, X, 0) then30

if Counti ≤ Counti+1 then31

TCj,i← TCj,i+1;32

Counti← Counti+1;33

end34

else35

TCj,i← TCj,i−1;36

Counti+1← Counti+1+1;37

end38

end39

end40

end41

Let Ti=TCi for 1 ≤ i ≤ n42

Result: return T 42

an efficient test cube order for balanced X-filling to be very effective in reducing peak

test power.

4.3.1 The Need for an Efficient Test Cube Order

According to our observation, for a given test cube sequence, the highest number of

toggles occur between a pair of adjacent test cubes, in whichboth test cubes have large

number of specified bits. If we take a test cube sequence generated by ATPG, we can

find such an adjacent test cube pair quite often. This is because ATPG follows two phase

approach of test generation. The distribution of don’t cares in test cubes generated by

commercial ATPG tool is shown in Figure 4.2, for four different benchmarks. For

a given benchmark, the scale on X-axis signifies the percentage of don’t care bits in

a given test cube, and the scale on Y-axis signifies the numberof test cubes whose

don’t care percentage lies in a given interval on X-axis. TheX-axis is divided into ten

intervals of size 10% each. The distribution for a given benchmark shown in Figure 4.2

shows the collection of data points corresponding to each interval on X-axis, for that

particular benchmark, joined through straight lines. The reason for this trend is that the

test cubes in the initial part of the ordering are typically random vectors, also known as

fault independent tests and test cubes in the latter part of the ordering are fault oriented

vectors targeted to detect hard-to-detect faults (Abramovici et al., 1994). Thus, the

initial vectors have few X-bits, and the number of X-bits in each test cube tapers down

as we go further into the ordering given by the ATPG tool. As a result of this behavior,

the difference in X-bit count between adjacent vectors in the original test cube order,

does not give much room for minimizing toggle count through X-filling. Keeping this

in mind, we need to order the test cubes such that the test cubes with large number of

don’t cares are interspersed with those test cubes with lessnumber of don’t cares. This

gives a lot of freedom while converting don’t cares into zeroor one for minimization

of peak input toggles. Having motivated the relationship between test cube order and

effective of the balanced X-filling algorithm in reducing peak test power (or toggles),

we will next proceed to explain the proposedIntegrated Test Cube Ordering and X-

filling Algorithm. From now on, for the ease of explanation, we will use the words test

vectorandtest cubeinterchangeably, without loss of generality.

43

Figure 4.2: Don’t care distribution in test cubes generatedby commercial tool ; X axis:
Percentage of X-bits in a given test cube ; Y axis: Number of test cubes

4.3.2 The X-Based Ordering Algorithm

We partition the proposedIntegrated Test Cube Ordering and X-filling Algorithminto

two phases: the first phase is the test cube ordering step, following which the second

step of balanced X-filling is performed. The first step, whichpertains to the ordering

of the test cubes is performed according to Algorithm 7. Thisalgorithm can be briefly

explained as follows:

1. Line 2 of the algorithm sorts the input test cubes into non decreasing order of
number of don’t cares in the test cubes;

2. Lines 3 to 8 of the algorithm intersperse the test cubes; and

Running time of this algorithm isO(nlog(n)) wheren is number of test cubes.

Next, we shall see the effectiveness of the proposedX-Based Ordering Algorithm.

4.3.3 Effectiveness ofX-Based Ordering Algorithm

We introduce a new statistic calledX-baseto analyze the adjacency X-bit distribution

in test cube pairs, for a given test cube ordering. Given a ordered set consisting of non-

specified test cubes , we form a binary matrix by placing the test cubes in columns, as

shown in Fig. 4.3. Each row corresponds to a Primary Input (PI) or Pseudo Primary

44

Algorithm 7 : X-Based Test Cube Ordering Algorithm
Input : Non-Specified Test Cube Set{TC1 , TC2, TC3 . . .TCn} in the order

suggested by the Tool.
Output : Reordered Test Cube Setπ

′

= {TC1 , TC2, TC3 . . .TCn}

/* X-based TVO */1

Let π = {TC
′

1, TC
′

2, TC
′

3 . . .TC
′

n} be an ordering of{TC1, TC2, TC3 . . .TCn}2

such that the number of X-bits inTC
′

i is less than or equal to the number of
X-bits in TC

′

i+1, for all 1 ≤ i ≤ n− 1;

if n is even then3

π
′

= {T1, T2 . . .Tn} = {TC
′

1, TC
′

n, TC
′

2, TC
′

n−1, TC
′

3, TC
′

n−2 . . .TC
′

n/2,4

TC
′

n−(n/2−1)};
end5

else6

π
′

= {T1, T2 . . .Tn} = {TC
′

1, TC
′

n, TC
′

2, TC
′

n−1, TC
′

3, TC
′

n−2 . . .TC
′

⌊n/2⌋,7

TC
′

n−(⌊n/2⌋−1), TC
′

⌈n/2⌉} ;
end8

Result: return π
′

Input (PPI), i.e., output of a scan flip flop. Hence each row is denoted with the label

(P)PI, and the corresponding index as subscript.

Fig. 4.3 shows how to compute theX-basefor adjacent test cubesTC1 andTC2. For

every pair of test cubes, theX-baseis initialized to zero. Each row in the sliding window

contains two bits and all rows are sequentially visited to incrementX-base. When a row

is visited, even if one among the two bits is an X-bit, theX-baseis incremented by one,

before visiting next row. ForTC1, TC2 pair shown in Fig. 4.3, we encounter four cases

of ′XX ′ and one case of′X0′, making theX-basesettle at 4+1=5. If we analyze the

same for all adjacent column pairs in the binary matrix, we get a distribution forX-base.

Let MIN-X-BASEbe theminimum of X-base values of all adjacent test cube pairs and

MAX-X-BASEbe themaximum of X-base values of all adjacent test cube pairs.

Figure. 4.4 shows the MIN-X-BASE and MAX-X-BASE values for different bench-

marks for Test cube ordering given by the Tool. It is interesting to note that the more

the MIN-X-BASE value, there is huge scope for X-filling to reduce peak toggles. Since

peak toggle computation requires a consideration of all thetest cube pairs in the order-

ing, theMIN-X-BASEcolumn is especially significant since it creates a bottleneck as to

how much the peak toggles can be reduced by X-filling. It can beseen that for larger

45

1 1 X X X 0 X

1 X X 0 X X 1

1 0 0 X X 0 X

X X X X X 0 X

1 0 0 X X X X

1 1 1 X X 0 X

X

X

X

X

X

0

X

0

0

X

X

X

TC1 TC2 TC9

(P)PI1

(P)PI2

(P)PI6

Figure 4.3: Computing X-base metric, X-base(TC1, TC2) = 5

circuits,MIN-X-BASEis an order of magnitudesmaller thanMAX-X-BASE, showing a

very weak scope for minimizing peak toggles. This motivatesthe need to reorder the

test cubes to increase theMIN-X-BASE, thereby reducing peak toggles.

Figure. 4.5 shows the MIN-X-BASE and MAX-X-BASE values for different bench-

marks for Test cube ordering given by the X-based TVO Algorithm. It is observed

that by performing test cube ordering in this fashion, theMAX-X-BASEvalue remains

as high as before but theMIN-X-BASEvalue approaches very close toMAX-X-BASE

value. This is a very good sign, since bringingMIN-X-BASEclose toMAX-X-BASE

by retaining theMAX-X-BASEnearly intact signifies maximizing scope for peak toggle

reduction.

This motivates that X-based test cube ordering has the potential to reduce the peak

toggles during capture cycles.

Having seen the effectiveness of both X-based ordering and balanced X-filling algo-

rithms, next we shall see how the combination of both minimizes thebottlenecktoggle

count.1

1It is to be noted that Figures 4.4 and 4.5 are having Y-axis in logarithmic scale, making the reduc-
tions very significant.

46

Figure 4.4: Gap between MAX-X-BASE and MIN-X-BASE for test cube ordering
given by commercial tool

4.4 Integrated Test Vector Ordering and X-filling Algo-

rithm

Algorithm 8 takes a set of input test cubes and finds the ordering of test cubes and filling

of don’t care bits such that peak input toggles is minimized.

Running time of this algorithm ismax(O(nlogn), O(nm)), wherem is number of

bits in test cube andn is number of test cubes.

Next, we shall see the experimental results obtained by applying the proposedBot-

tleneck Minimization Algorithmon test sets of benchmark circuits.

47

Figure 4.5: Gap between MAX-X-BASE and MIN-X-BASE for X-based test cube or-
dering

Algorithm 8 : Bottleneck Minimization Algorithm
Input : TC = TC1, TC2,.. TCk be the set of input test cubes.
Output : TV = Sequence of fully specified input test vectors,bottleneck_value

/* Reorder the test cubes by interspersing test cube1

with high don’t cares with test cube with low don’t
cares */

Let S be the Test cube sequence given by the Algorithm 7 by takingTC as input.2

/* Perform balanced don’t care filling */3

Let TV be the Test vector sequence given by the Algorithm 6 by takingS as4

input.
/* Compute bottleneck value for the given test vector5

sequence */
Let bottleneck_value be6

max{Hd(TV1, TV2), Hd(TV2, TV3), ...Hd(TVk−1, TVk)}, where
Hd(TVi, TVi+1) is the Hamming distance between test vectorsTVi, TVi+1

Result: return TV, bottleneck_value

48

Table 4.3: Peak input toggles : Tool-Ordering with different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill
b01 4 4 4 4 4
b02 4 4 4 4 4
b03 15 21 17 16 14
b04 41 50 47 45 39
b05 20 23 19 20 17
b06 4 4 5 4 4
b07 31 30 34 27 23
b08 20 20 20 18 14
b09 18 20 22 18 18
b10 12 19 17 15 10
b11 22 27 29 21 20
b12 63 76 62 89 59
b13 31 34 38 30 30
b14 181 180 194 159 157
b15 305 334 344 298 292
b17 916 923 943 880 871
b18 2134 2167 2251 2114 2066
b19 3926 4099 4201 3955 3819
b20 309 314 315 305 302
b21 317 307 315 305 276
b22 489 494 507 471 472

4.5 Experimental Results

4.5.1 Experimental Setup

We have considered the ITC’99 benchmark suite to validate ouralgorithms. A

45nm standard library is used for synthesis and placement.DesignCompilerTM ,

TetraMaxTM andSoCEncounterTM are used for Synthesis, ATPG and Place-And-

Route (PAR) phases respectively. After PAR, usingSoCEncounterTM interconnect

capacitances are extracted to compute actual power values.Table 4.3, shows compar-

ison of peak input toggles for various X-Filling methods w.r.t test cube ordering given

by TetraMaxTM (commercial tool). Table 4.4, shows comparison of peak input tog-

gles for BTSP-Ordering applied after different X-fillings methods on vector sequence

given by the commercial tool. We name this procedure as ISA. Table 4.5, shows com-

parison of peak input toggles for various X-Filling methodsw.r.t Test Vector Ordering

given by X-Base-Ordering. Table 4.6 shows Peak Input Togglescomparison between

49

Table 4.4: Peak input toggles : BTSP-Ordering followed by different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill
b01 2 2 2 2 2
b02 1 1 1 1 1
b03 10 12 11 10 11
b04 35 31 41 35 32
b05 12 13 12 12 13
b06 2 2 2 2 2
b07 20 21 28 18 21
b08 11 12 13 11 10
b09 12 12 11 12 12
b10 10 10 10 10 9
b11 15 15 13 12 14
b12 46 53 59 51 54
b13 22 22 23 20 22
b14 124 119 142 89 110
b15 226 219 231 172 200
b17 648 683 747 585 573
b18 1482 1604 1765 1384 1416
b19 2875 3235 3290 2609 2864
b20 242 234 265 214 238
b21 249 235 288 181 256
b22 364 350 407 324 360

proposed technique and existing techniques. Column 2 shows minimum input toggles

among all existing X-filling methods for Vector ordering given by the tool (circled val-

ues from Table 4.3). Column 3 shows minimum input toggles among BTSP-Ordering

applied after different X-fillings methods on vector sequence given by the commercial

tool (circled values from Table 4.4). Column 4 shows minimum input toggles given

by the method in (Wuet al., 2011). Column 5 shows minimum toggles using pro-

posed balanced-X-filling method for proposed X-Base Vector ordering. Columns 6,7

and 8 show percentage improvement of proposed technique over existing techniques. It

is evident that proposed technique outperforms all existing techniques and percentage

improvement is consistently increasing as circuit size increases. Similarly, Table 4.7

shows Peak Power comparison between proposed technique andexisting techniques.

Proposed technique outperforms all existing techniques and percentage improvement

is consistently increasing as circuit size increases. We can observe that the magnitude

of improvement in Tables 4.6 and 4.7 is not same. The difference is due to the fact

50

Table 4.5: Peak input toggles : X-Base-Ordering with different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill
b01 3 4 4 3 3
b02 4 4 4 4 4
b03 15 19 18 15 8
b04 45 52 47 43 25
b05 21 24 21 23 15
b06 5 4 5 5 5
b07 27 33 38 25 15
b08 16 20 18 15 8
b09 20 19 17 16 14
b10 14 20 16 14 10
b11 18 26 22 20 10
b12 60 76 99 68 31
b13 37 32 28 23 17
b14 181 164 208 152 79
b15 308 277 314 198 144
b17 912 774 953 680 421
b18 2130 1752 2200 1569 1011
b19 3926 3457 4340 3168 1877
b20 314 291 352 297 152
b21 288 290 346 237 130
b22 483 419 475 440 237

that the relation between Peak Input Toggles and Circuit Toggles is not perfectly lin-

ear and while computing Peak Power of the Circuit we need to consider interconnect

capacitances into account. However our proposed method is outperforming all existing

methods considerably both in Peak Input Toggles and Peak Circuit Power.

4.6 Summary

We have shown that test vector ordering or X-filling, when applied separately, are inad-

equate for producing the best possible savings in peak powerdissipation during testing.

We showed that the X-based test vector ordering method supplemented with balanced

X-filling technique is shown to be very effective in reducingpeak capture power, com-

pared to other existing test vector ordering and X-filling techniques.

51

Table 4.6: Peak input toggles : Comparison of XStat-Method (X-Base-Ordering+B-
Fill) over existing Ordering+Filling methods

Peak Input Toggles % Improvement
of XStat-Method over

Circuit Tool ISA Adj-Fill XStat Tool ISA Adj-Fill
Method Method Method Method Method

b01 4 2 4 3 25 -50 25
b02 4 1 3 4 0 -300 -33.33
b03 15 10 6 8 46.67 20 -33.33
b04 41 31 29 25 39.02 19.35 13.79
b05 19 12 19 15 21.05 -25 21.05
b06 4 2 4 4 0 -100 0
b07 27 18 17 15 44.44 16.67 11.76
b08 18 11 9 8 55.56 27.27 11.11
b09 18 12 17 14 22.22 -16.67 17.65
b10 12 10 9 10 16.67 0 -11.11
b11 21 12 18 10 52.38 16.67 44.44
b12 62 46 77 31 50 32.61 59.74
b13 30 20 26 17 43.33 15 34.62
b14 159 89 69 79 50.31 11.24 -14.49
b15 298 172 149 144 51.68 16.28 3.36
b17 880 585 438 421 52.16 28.03 3.88
b18 2114 1384 1065 1011 52.18 26.95 5.07
b19 3926 2609 2100 1877 52.19 28.06 10.62
b20 305 214 198 152 50.16 28.97 23.23
b21 305 181 182 130 57.38 28.18 28.57
b22 471 324 232 237 49.68 26.85 -2.16

52

Table 4.7: Peak circuit power : Comparison of XStat-Method (XBase-Ordering+B-Fill)
over existing Ordering+Filling methods

Peak Circuit Power (inµW) % Improvement
of XStat-Method over

Circuit Tool ISA Adj-Fill XStat Tool ISA Adj-Fill
Method Method Method Method Method

b01 3.8 2.3 3.3 3.07 19.21 -33.48 6.97
b02 2.4 1.5 2.8 2.8 -16.67 -86.67 0
b03 6.3 4.63 4.6 3.95 37.3 14.69 14.13
b04 18.43 18.43 15.8 16.9 8.3 8.3 -6.96
b05 16 13.59 16.4 14.63 8.56 -7.65 10.79
b06 4.4 2.64 4.4 4.35 1.14 -64.77 1.14
b07 16.28 14.83 13.1 14.55 10.63 1.89 -11.07
b08 8.2 6.8 8.1 7.74 5.61 -13.82 4.44
b09 10.05 8.42 10.7 8.93 11.14 -6.06 16.54
b10 9.73 8.76 9 8.74 10.17 0.23 2.89
b11 16.37 15.36 15.2 14.58 10.93 5.08 4.08
b12 57.82 49.38 58.4 39.3 32.03 20.41 32.71
b13 18.04 13.69 15.1 14.65 18.79 -7.01 2.98
b14 102.6 101.7 99 86.46 15.73 14.99 12.67
b15 204.1 171 155.3 140.44 31.19 17.87 9.57
b17 1087.5 873.3 665.5 641.7 40.99 26.52 3.58
b18 3382.4 2405.3 2012.2 1761 47.94 26.79 12.48
b19 8014.7 6708.3 5885 4412.15 44.95 34.23 25.03
b20 255.2 243 214.8 202.62 20.6 16.62 5.67
b21 251.3 226.1 223.8 183.17 27.11 18.99 18.15
b22 395.6 372.8 328.9 304.75 22.97 18.25 7.34

53

Table 4.8: Computation time in performing test vector ordering

Circuit # PIs ISA X-base Speed Up
b01 5 0.1s 0.027s 3.7×
b02 4 0.05s 0.027s 2.0×
b03 29 0.24s 0.029s 8.1×
b04 77 0.42s 0.031s 13.9×
b05 35 3.73s 0.032s 116.7×
b06 5 0.243s 0.024s 10.1×
b07 50 0.227s 0.03s 7.6×
b08 30 2.80s 0.025s 112.0×
b09 29 0.05s 0.026s 2.0×
b10 28 0.19s 0.031s 6.2×
b11 38 7.31s 0.035s 208.9×
b12 126 0.95s 0.055s 17.2×
b13 53 1.37s 0.032s 42.8×
b14 275 12.87s 0.316s 40.7×
b15 485 221.48s 0.408s 542.8×
b17 1452 20.36s 1.752s 11.6×
b18 3357 39.34s 4.332s 9.1×
b19 6666 20.72s 12.309s 1.6×
b20 522 11.73s 0.508s 23.1×
b21 522 12.32s 0.514s 24.0×
b22 767 11.18s 0.685s 16.3×

54

CHAPTER 5

An Optimal X-Filling algorithm for Minimizing Peak

Switching Activity

In the previous chapter, we have seen howXStatis capable of performing of simultane-

ous test vector ordering and X-filling to produce very effective savings in peak power

dissipation during testing, and that the solutions converge very fast. It is also interesting

to see if, for a given ordering of test vectors, there is an optimal way of filling the X-bits,

such that the peak toggles at the inputs is minimized. Clearly, we cannot optimally fill

the X-bits such that the peak circuit toggles is minimized, since it relates to the Boolean

Satisfiability problem, which is NP-hard. Since we already know that input toggles

correlate well to total circuit toggles (Girardet al., 1998), we are interested to find an

optimal way of filling the X-bits, so as to minimizing the peakinput toggles during

testing. Interestingly, the answer to this question is positive. We propose an algorithm

usingDynamic Programming, that produces the optimal solution. The algorithm and

its proof of optimality, can be explained as follows:

5.1 Peak Input Toggle Minimization Problem (PITMP)

Problem Definition: Given a combinational circuitC and a set of test cubes

TC = {TC1 . . . TCk} the problem is to compute an orderingπ of these test cubes

and filling the don’t cares to generate test vector sequenceTπ1
, Tπ2

. . . Tπk−1
, Tπk

such

that themax{Hd(Tπ1
, Tπ2

), Hd(Tπ2
, Tπ3

) . . . Hd(Tπk−1
, Tπk

)} is minimized, where

Hd(Tπi
, Tπi+1

) is the Hamming distance between test vectorsTπi
andTπi+1

. We decom-

pose the solution into three components, which are explained in sections 5.2, 5.3, 5.4

and the final algorithm is explained in section 5.5.

5.2 Bottleneck Coloring Problem (BCP)

5.2.1 Problem Statement

Problem Definition in terms of Hotel Room Booking

Suppose a hotel received several guest requests for accommodation each of which is

giving start date and end date of a time period, and asking thehotel to provide accom-

modation for exactly one day which falls in the given period.The aim of the hotel is

to assign rooms to all guest requests such that number of guests staying in the hotel on

any given day is minimized.

Mathematical Definition of Problem

• Let S= (s1, e1), (s2, e2) . . . (sk, ek) be a sequence of intervals such thatsi andei
are integers corresponding to starting and ending times of intervali respectively,
for all 1 ≤ i ≤ k.

• Letmax_color = max(e1, e2, e3, . . . ek).

• Letmin_color = min(s1, s2, s3, . . . sk).

• Let { cmin_color, cmin_color+1, cmin_color+2 . . . cmax_color } be a set of colors.

• For each interval(si, ei) assign a colorcj such thatsi ≤ j ≤ ei.

• Let hmin_color, hmin_color+1, hmin_color+2 . . . hmax_color be a sequence of integers
such thathj be the number of intervals which are assigned colorcj.

• Our objective is to assign colors to intervals such that
max(hmin_color, hmin_color+1, hmin_color+2 . . . hmax_color) is minimized.

Each interval corresponds to an accommodation request in the subsection 5.2.1.

Each color corresponds to a day. Assigning colorcj to the interval(si, ei) is same as

allocation of hotel room onjth day to this request. Note thathj denotes the number of

guests who are assigned room onjth day.

56

Algorithm 9 : Algorithm for Computing Lower-Bound
Input : S= (s1, e1),(s2, e2) . . .(sk, ek) be a sequence of intervals
Output : Lower-Bound Value.

Let π1, π2, ...πm−1, πm be the increasing sorted sequence of distinct possible1

values in the sequences1, e1, s2, e2 . . .sk−1, ek−1, sk, ek
Let Ti,j, wherei ≤ j, denotes number of intervals whose starting time is≥ πi2

and ending time is≤ πj, where1 ≤ i ≤ j ≤ m;

If i > j then letTi,j = 0 elseTi,j can be expressed recursively as follows :Ti,j =3

Ti,j−1 + Ti+1,j - Ti+1,j−1 + Number of intervals whose staring time is equal toπi

and ending time is equal toπj.
/* Note that Ti+1,j−1 is subtracted since the set of4

intervals whose starting time is at least πi+1 and
ending time is at most πj−1 are counted in both
Ti,j−1,Ti+1,j. */

Lowerbound LB = max{⌈Ti,j/(πj − πi + 1)⌉|1 ≤ i ≤ j ≤ m}5

/* If we take any interval whose starting time is at6

least πi and ending time at most πj then we should
assign a color ck to this interval such that
πi <= k <= πj. This means there exists a color ck
such that at least ⌈Ti,j/(πj − πi + 1)⌉ intervals are
assigned color ck, where πi <= k <= πj */

Result: return LB

5.2.2 Dynamic Programming Algorithm to compute Lower-Bound

(LB) for Bottleneck Coloring Problem

Algorithm 9 gives the lower bound on the number of intervals which are assigned the

same color. Running time of this algorithm isO(k2), wherek is the number of intervals.

5.2.3 Greedy Algorithm for Bottleneck Coloring Problem

Algorithms 10 assign colors to intervals such that for each interval(si,ei) it assigns a

color cj such thatsi ≤ j ≤ ei and maximum number of intervals which are assigned

the same color is at most the lower bound value computed in Algorithm 9. Running

time of this algorithm isO(klogk), wherek is the number of intervals.

57

Algorithm 10 : Algorithm for assigning color to intervals
Input : S= (s1, e1),(s2, e2) . . .(sk, ek) be a sequence of intervals, LB -

lower-bound
Output : Intervals with assigned colors

Sort the intervals in S based on starting time.1

Let H be a min heap. Each node of this heap can store information of an interval2

(starting time and ending time). Nodes of this heap are ordered by ending times
of intervals i.e ending time of interval stored in a node is less than or equal to
ending times of intervals stored in that node’s children.

for i = 1→ n do3

Insert into heapH all intervals whose starting time is equal toi.4

/* if we take any interval in H starting time is at5

most i. */
Greedily remove topl elements from heap and assign colorci, where6

l = min(heap_size, LB);
/* The reason for picking top elements and7

assigning colors ci is we want to assign colors
to intervals which are ending soon. We prove in
section Proof of correctnessthat ending times of all
these removed intervals are at least i. */

end8

5.2.4 Proof of correctness

In the following paragraph we will prove that at the end ofith iteration of the above

algorithm ending times of all intervals contained inmin heapare greater thani. This

means each interval(si,ei) it assigned a colorcj such thatsi ≤ j ≤ ei.

Suppose at the end of some iterationi min heapcontains an interval whose ending

time is less than or equal toi. Let i be such that it’s value is minimum. Letj < i

such that number of intervals which are assigned color injth iteration is less thanlower

bound. Let j be such that it’s value is maximum. If there is no such aj then letj = 0.

We selectedj such that heap became empty after iterationj, and in each iteration from

iterationj+1 to i, number of intervals assigned color are exactly equal to lower bound.

Let j < k < i such that in thekth iteration the above algorithm assigned color to an

interval whose ending time is more thani. Let k be such that it’s value is maximum.

If there is no suchk then letk = j. We selectedk such that, all intervals which are

assigned color from iterationk + 1 and iterationi have ending times≤ i and their

starting times cannot be less thank + 1, as we assigned color to an interval whose

58

ending time is more thani in kth iteration. Ending times and starting times of all

intervals which are assigned color fromk + 1th iteration toith iteration are less than or

equal toi and greater thank respectively. Number of intervals which are assigned color

in from k+1th iteration toith is equal tolowerbound ∗ (i−k) andmin heapcontains an

interval whose ending time is equal toi and starting time is greater thank. This implies

number of intervals whose starting time is greater thank and ending time is less than or

equal toi is more thanlowerbound ∗ (i− k), which is a contradiction.

5.3 Optimal X-Filling Algorithm

Problem Definition: Given a sequence of test cubesTC1, TC2, ...TCn each of

length m, replace each don’t care in test cubes by either0 or 1 such that

max{Hd(TC1, TC2), Hd(TC2, TC3) . . . Hd(TCn−1, TCn)} is minimized, where

Hd(TCi, TCi+1) is the Hamming distance between test cubesTCi andTCi + 1, after

replacing don’t cares by either0 or 1.

5.3.1 Motivation

The X-Stat algorithm follows a two phase approach. In the first phase, it uses adja-

cent X-fill technique to convert don’t care (X-bit) stretches 0XX...X1 and1XX...X0

into smaller X-bit stretches0X1 and1X0 respectively as shown inPhase 1column

of Fig 5.1. In the second phase, it replaces X-bits by either0 or 1 in order to mini-

mize peak toggles as shown inPhase 2column of Fig 5.1. Because of greedy approach

used inPhase 1, it does not achieve the global optimal-fill for peak toggle reduction,

as shown inOptimum-Fillcolumn of Fig 5.1. Motivated by this, we choose aDynamic

Programmingparadigm which takes global picture into consideration andoptimally fill

the X-bits with binary values to achieve the best reduction in peak toggles.

5.3.2 Algorithm Details

In this section we will reduce the above problem to an instance of Bottleneck Coloring

Problem (BCP)explained in section 5.2 and use the algorithm forBottleneck Coloring

59

Figure 5.1: Motivation for Optimum-X-Filling (O-Fill)

Problem (BCP)for computing an optimal solution. We explained reduction process and

construction of solution in Algorithm 11.

5.4 Test Vector Ordering Algorithm

5.4.1 Motivation

For a given any sequence of test cubes, Algorithm 11 replacesdon’t cares by either 0

or 1 to minimize the peak input toggles. If lengths of don’t care stretches in rows of

matrix A defined in Algorithm 11 are sufficiently large, then this algorithm has more

freedom to decide the positions of toggles which in turn minimize the peak input tog-

gles. To achieve such a large don’t cares stretches in the rows of matrixA we propose

the following test vector ordering Algorithm 12, we call this ordering as Interleaved -

Test Vector Ordering (I-Ordering).

5.4.2 Algorithm Details

Algorithm 12 takes an input test cube sequenceTC and an integerk (interleave count)

and outputs a re-ordered test cube sequenceS.

60

Figure 5.2:b19 don’t care-stretch analysis (Tool vs X-Stat vs I-Ordering)

5.4.3 Experimental Results

In Fig 5.2 x-axis shows different don’t care stretch (0XX..X1 and 1XX..X0) sizes and

y-axis shows number of such don’t care stretches for Tool,X-Stat and I-Ordering for

b19. One can observe that I-Ordering increasing the sizes ofdon’t care stretches which

are exploited by the Algorithm 10.

5.5 Bottleneck Minimization Algorithm

Algorithm 13 takes a set of input test cubesTC and finds the ordering of test cubes

and filling of don’t care bits such that peak input toggles is minimized. Fig 5.3 shows

the plot between Number of iterations and Peak input toggles. For each benchmark,

the number of interations corresponding to lowest peak input toggles is chosen. Fig 5.4

shows the plot between this chosen iteration count and the number of test cubes. This

figure shows that iteration count varies aslog(n). Thus the number of times while loop

in the Algorithm 13 executed isO(log(n)), wheren is number of test cubes.

61

Figure 5.3: Bottleneck minimization algorithm iterations:Number of iterations vs Peak
input toggles

5.6 Experimental Results

5.6.1 Experimental Setup

We have considered the ITC’99 benchmark suite to validate ouralgorithms. A

45nm standard library is used for synthesis and placement.DesignCompilerTM ,

TetraMaxTM andSoCEncounterTM are used for Synthesis, ATPG and Place-And-

Route (PAR) phases respectively. After PAR, usingSoCEncounterTM interconnect

capacitances are extracted to compute actual power values.The test cubes for large

circuits are typically dominated by don’t care (X) bits as shown in Table 5.1, making

X-filling an effective technique for minimizing peak test power.

5.6.2 Results

Table 5.2, shows comparison of peak input toggles for various X-Filling methods w.r.t

Test Vector Ordering given by the Tool. Table 5.3, shows comparison of peak input tog-

gles for BTSP-Ordering applied after different X-fillings methods on vector sequence

given by the commercial tool. We name this procedure as ISA. Table 5.4, shows com-

parison of peak input toggles for various X-Filling methodsw.r.t Test Vector Ordering

62

Figure 5.4: Bottleneck minimization algorithm iterations:Optimum number of itera-
tions vs log(n)

given byXStat (X-Base Ordering). In tables 5.2, 5.3 and 5.4 graded cell shows best

X-filling method among all X-filling methods. We can observe that O-Fill X-Filling

method is performing better than all other X-Filling methods for these three test vector

ordering techniques.

Table 5.6 shows Peak Input Toggles comparison between proposed technique and

existing techniques. Column 2 shows minimum input toggles among all existing X-

filling methods for Vector ordering given by the Tool (circled values from Table 5.2).

Column 3 shows minimum input toggles among BTSP-Ordering applied after differ-

ent X-fillings methods on vector sequence given by the commercial tool (circled values

from Table 5.3). Column 4 shows minimum input toggles given bythe method in (Wu

et al., 2011). Column 5 shows minimum input toggles among all existing X-filling

methods for Vector ordering given by X-Base Ordering (circled values from Table 5.4).

Column 6 shows minimum toggles using proposed O-filling method for proposed Vec-

tor ordering (I-Ordering) scheme.

Columns 7,8,9 and 10 show percentage improvement of proposedtechnique over

existing techniques. It is evident that proposed techniqueoutperforms all existing

techniques and percentage of improvement is consistently increasing as circuit size in-

creases.

63

Similarly Table 5.7 shows Peak Power comparison between proposed technique and

existing techniques. Proposed technique outperforms all existing techniques and per-

centage improvement consistently increasing as circuit size increases. We can observe

that the magnitude of improvement in tables 5.6 and 5.7 is notsame. The difference is

due to the fact that the relation between Peak Input Toggles and Circuit Toggles is not

perfectly linear and while computing Peak Power of the Circuit we need to consider in-

terconnect capacitances into account. However our proposed method is outperforming

all existing methods considerably both in Peak Input Toggles and Peak Circuit Power.

In (Girard et al., 1998), it was shown that there is a strong correlation between

input toggles and internal toggles inside the circuit. Basedon this assumption, we went

ahead to find an optimal algorithm that will minimize the input toggles to the circuit

during the testing phase. In the next section, we relax this assumption and try to search

for solutions near the solution so-far obtained, using the local search technique and

observe that the savings is marginal, thereby proving the effectiveness of the proposed

technique.

5.7 Local Search With Iterative 1-bit Neighbourhood

We denoteSDP−fill as the solution obtained using DP-fill suggested in this thesis. In

every iteration,Scur stands for the best-so-far solution in the current iteration of the local

search technique. The local search technique used to prune the solutions generated by

DP-fill is outlined in Figure 5.5. Although we have adhered to1-bit neighbourhood in

this thesis, in principle, the local search technique shownin Figure 5.5, can be extended

to n-bit neighbourhood, for a givenn, in a straightforward manner. However, it should

be noted that searching all the possiblen-bit neighbourhoods (1 ≤ n ≤ T , whereT is

test vector size) is intractable, because the size of the search space is
∑T

n=1

(

T
n

)

= 2T .

The results obtained by applying the described local searchtechnique forgreedy as

well asSimulatedAnnealing(SA) strategies is shown in Table 5.8. It can be seen that

the savings is marginal, thereby validating our idea of optimal minimization of input

toggles as an effective technique for minimizing peak powerdissipation during testing.

64

Figure 5.5: Flow chart description of the local search technique with 1-bit neighbour-
hood

65

Algorithm 11 : Optimal X-Filling Algorithm
Input : TC = TC1, TC2,.. TCn be the sequence of input test cubes
Output : T = T1, T2,.. Tn sequence of completed specified test vectors and

bottleneck_value
Let TC1, TC2, ...TCn be a sequence of test cubes each of lengthm1

Construct am× n matrixA such thatith column ofA is equal to the test cube2

TCi.
for i = 1→ m do3

/* Preprocessing of 0XX..X0,1XX..X1 stretches */4

If { ith row contain a subsequence 0XX...X0} then replace every don’t care in5

this subsequence by zero since there exists an optimal solution in which all of
these don’t cares are replaced by zeros irrespective of how other don’t cares
are replaced.
If { ith row contain a subsequence 1XX...X1} then replace every don’t care in6

this subsequence by one since there exists an optimal solution in which all of
these don’t cares are replaced by ones irrespective of how other don’t cares
are replaced.

end7

Let S=φ8

for i = 1→ m do9

/* Creating intervals for 0XX..X1,1XX..X0 */10

If there existk < l such thatAi,k=0,Ai,l=1 andAi,k+1...Ai,l−1 are don’t cares11

then append an interval(k, l − 1) to sequence of intervals S.
Comment :Note that there exists an optimal solution such that12

Ai,k=0,Ai,k+1=0,. . . ,Ai,j=0,Ai,j+1=1,Ai,j+2=1,. . . ,Ai,l=1, wherek ≤ j < l,
irrespective of how other don’t cares are replaced. There isonly one toggle
betweenjth andj + 1th test vectors in this subsequence. The color assigned
by the Algorithm 10 called inline 17 to this newly added interval captures
the location of this toggle in this subsequence.
If there existk < l such thatAi,k=1,Ai,l=0 andAi,k+1...Ai,l−1 are don’t cares13

then append an interval(k, l − 1) to sequence of intervals S.
Comment :Note that there exists an optimal solution such that14

Ai,k=1,Ai,k+1=1,. . . ,Ai,j=1,Ai,j+1=0,Ai,j+2=0,. . . ,Ai,l=0, wherek ≤ j < l,
irrespective of how other don’t cares are replaced. There isonly one toggle
betweenjth andj + 1th test vectors in this subsequence. The color assigned
by the Algorithm 10 called inline 17 to this newly added interval captures
the location of this toggle in this subsequence.

end15

Let bottleneck_value be the lower-bound value computed using Algorithm 9 by16

giving S as input.
Construct optimal bottleneck solution forS using Algorithm 10 by giving17

S,bottleneck_value as input.
/* Constructing Optimal solution for X-Filling */18

Suppose colorcj is assigned to interval(si, ei) in the optimal solution given by19

Algorithm 10. Look at the row in matrixA correspond to interval(si, ei), make
all bits from columnsi to j same as bit value at columnsi and make all bits from
columnj + 1 to ei + 1 same as bit value at columnei + 1
Let T = T1, T2,.. Tn be the columns of matrixA.20

Result: return T, bottleneck_value

66

Algorithm 12 : Test Vector Ordering Algorithm
Input : TC = TC1, TC2,.. TCn be the sequence of input test cubes
Input : k = an integer
Output : S = Reordered sequence of input test cubesTC.

Let S = ∅1

for i = 1→ ⌊n/(k + 1)⌋ do2

/* pick ith vector from TC and append to S */3

S = S,T
′

i4

/* pick n− (i− 1) ∗ k th vector to n− (i− 1) ∗ k − k + 1 th5

vector from T
′

and append to S */

S = S,T
′

n−(i−1)∗k, T
′

n−(i−1)∗k−1, ..T
′

n−(i−1)∗k−k+16

end7

Select all the vectors inT
′

which are not inS and add them toS, there can be at8

mostk such vectors.

Result: return S

Algorithm 13 : Bottleneck Minimization Algorithm
Input : TC = TC1, TC2,.. TCn be the set of input test cubes.
Output : TV S = Sequence of fully specified input test vectors.

/* Sort the test cubes in non decreasing order of1

number of don’t cares */

Let TC
′

= TC1
1 , TC

′

2,.. TC
′

n be an ordering of input test cubes such that number2

of don’t cares inTC
′

i ≤ TC
′

i+1 where1 ≤ i < n.
Let current_optimal_value =∞3

Let current_k = 04

Let exit_flag = false5

while exit_flag = false do6

Let current_k = current_k + 17

/* Reorder the test cubes by interspersing test8

cube with high don’t cares with test cube with
low don’t cares */

LetS be the Test cube sequence given by the Algorithm 12 with inputTC
′

, k.9

/* Compute bottleneck value for the given test cube10

sequence */
Let temp_optimal_value be the optimal bottleneck value computed on11

sequenceS using Algorithm 11
if temp_optimal_value < current_optimal_value then12

current_optimal_value = temp_optimal_value;13

else14

exit_flag = true;15

end16

end17

Result: return S

67

Table 5.1: ITC’99 benchmarks (X % : Average % of X-bits in test cubes)

Benchmark # PIs # Gates # Test Cubes X %
b01 5 57 14 7.14
b02 4 31 10 5.00
b03 29 103 19 70.42
b04 77 615 67 64.35
b05 35 608 69 36.77
b06 5 60 16 12.50
b07 50 431 46 58.57
b08 30 196 38 60.44
b09 29 162 23 38.23
b10 28 217 43 58.72
b11 38 574 83 64.11
b12 126 1.6K 100 76.94
b13 53 596 36 65.41
b14 275 5.4K 511 77.90
b15 485 8.7K 405 87.75
b17 1452 27.99K 618 89.85
b18 3357 75.8K 666 86.92
b19 6666 146.5K 953 89.81
b20 522 9.4K 476 75.29
b21 522 9.4K 479 73.20
b22 767 13.4K 435 74.05

68

Table 5.2: Peak input toggles : Tool-ordering with different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill O-Fill
b01 4 4 4 4 4 4
b02 4 4 4 4 4 4
b03 15 21 17 16 14 14
b04 41 50 47 45 39 39
b05 20 23 19 20 17 17
b06 4 4 5 4 4 4
b07 31 30 34 27 23 23
b08 20 20 20 18 14 12
b09 18 20 22 18 18 18
b10 12 19 17 15 10 10
b11 22 27 29 21 20 20
b12 63 76 62 89 59 58
b13 31 34 38 30 30 29
b14 181 180 194 159 157 156
b15 305 334 344 298 292 282
b17 916 923 943 880 871 841
b18 2134 2167 2251 2114 2066 2009
b19 3926 4099 4201 3955 3819 3753
b20 309 314 315 305 302 299
b21 317 307 315 305 276 260
b22 489 494 507 471 472 466

69

Table 5.3: Peak input toggles : BTSP-Ordering followed by different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill O-Fill
b01 2 2 2 2 2 1
b02 1 1 1 1 1 1
b03 10 12 11 10 8 11
b04 35 31 41 35 32 36
b05 12 13 12 12 13 12
b06 2 2 2 2 2 2
b07 20 21 28 18 21 20
b08 11 12 13 11 10 12
b09 12 12 11 12 12 12
b10 10 10 10 10 9 10
b11 15 15 13 12 14 15
b12 46 53 59 51 54 46
b13 22 22 23 20 22 22
b14 124 119 142 89 110 124
b15 226 219 231 172 200 224
b17 648 683 747 585 573 648
b18 1482 1604 1765 1384 1416 1473
b19 2875 3235 3290 2609 2864 2861
b20 242 234 265 214 238 242
b21 249 235 288 181 256 252
b22 364 350 407 324 360 364

70

Table 5.4: Peak input toggles : X-Base-Ordering with different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill O-Fill
b01 3 4 4 3 3 3
b02 4 4 4 4 4 4
b03 15 19 18 15 8 7
b04 45 52 47 43 25 24
b05 21 24 21 23 15 14
b06 5 4 5 5 5 4
b07 27 33 38 25 15 14
b08 16 20 18 15 8 7
b09 20 19 17 16 14 14
b10 14 20 16 14 10 7
b11 18 26 22 20 10 9
b12 60 76 99 68 31 31
b13 37 32 28 23 17 17
b14 181 164 208 152 79 79
b15 308 277 314 198 144 144
b17 912 774 953 680 421 421
b18 2130 1752 2200 1569 1011 1008
b19 3926 3457 4340 3168 1877 1877
b20 314 291 352 297 152 152
b21 288 290 346 237 130 130
b22 483 419 475 440 237 234

71

Table 5.5: Peak input toggles : I-Ordering with different X-filling methods

Circuit MT-Fill R-Fill 0-Fill 1-Fill B-Fill O-Fill
b01 3 4 4 3 3 3
b02 3 3 3 3 3 3
b03 12 19 15 15 8 6
b04 41 45 43 39 23 15
b05 20 22 21 23 15 14
b06 4 4 4 4 4 4
b07 24 31 38 23 15 11
b08 16 18 16 14 8 6
b09 14 18 16 16 11 11
b10 10 18 14 13 9 7
b11 15 25 22 18 10 9
b12 59 72 99 65 30 15
b13 28 31 28 23 15 10
b14 168 158 208 148 77 40
b15 296 267 314 193 141 33
b17 882 770 953 676 419 85
b18 2030 1741 2200 1550 980 232
b19 3862 3436 4340 3167 1871 364
b20 301 285 352 284 143 65
b21 280 286 333 237 129 67
b22 451 409 475 425 210 91

72

Table 5.6: Peak input toggles : Comparison of DP-Method (I-Ordering+O-Fill) over
existing Ordering+Filling methods

Peak Input Toggles % Improvement
of DP-Fill Method over

Circuit Tool ISA Adj-Fill XStat DP-Fill Tool ISA Adj-Fill XStat
Method Method Method Method Method Method Method

b01 4 2 4 3 3 25 -50 25 0
b02 4 1 3 4 3 25 -200 0 25
b03 14 8 6 8 6 57.1 25 0 25
b04 39 31 29 25 15 61.5 51.6 48.3 40
b05 17 12 19 15 14 17.6 -16.7 26.3 6.7
b06 4 2 4 4 4 0 -100 0 0
b07 23 18 17 15 11 52.2 38.9 35.3 26.7
b08 14 10 9 8 6 57.1 40 33.3 25
b09 18 11 17 14 11 38.9 0 35.3 21.4
b10 10 9 9 10 7 30 22.2 22.2 30
b11 20 12 18 10 9 55 25 50 10
b12 59 46 77 31 15 74.6 67.4 80.5 51.6
b13 30 20 26 17 10 66.7 50 61.5 41.2
b14 157 89 69 79 40 74.5 55.1 42 49.4
b15 292 172 149 144 33 88.7 80.8 77.9 77.1
b17 871 573 438 421 85 90.2 85.2 80.6 79.8
b18 2066 1384 1065 1011 232 88.8 83.2 78.2 77.1
b19 3819 2609 2100 1877 364 90.5 86 82.7 80.6
b20 302 214 198 152 65 78.5 69.6 67.2 57.2
b21 276 181 182 130 67 75.7 63 63.2 48.5
b22 471 324 232 237 91 80.7 71.9 60.8 61.6

73

Table 5.7: Peak circuit power : Comparison of DP-Method (I-Ordering+O-Fill) over
existing Ordering+Filling methods

Peak Circuit Power (inµW) % Improvement
of DP-Fill Method over

Circuit Tool ISA Adj-Fill XStat DP-Fill Tool ISA Adj-Fill XStat
Method Method Method Method Method Method Method

b01 3.8 2.3 3.3 3.1 3.1 18.8 -33.1 6.1 0
b02 2.4 1.5 2.8 2.6 2.6 -6.2 -68.3 7.3 0
b03 5.6 4 4.6 3.9 4.2 25 -5.5 9.2 -5.6
b04 17.2 17.1 15.8 16.9 14.8 14 13.9 6.6 12.7
b05 15.6 13.6 16.4 14.6 14.9 4.4 -9.8 9 -2
b06 4.4 2.6 4.4 4.3 4.4 0.9 -67.2 -0.1 -1.7
b07 15.7 14.8 13.1 14.6 13.3 15.7 10.6 -1.5 8.9
b08 7.8 6.8 8.1 7.7 6.3 18.5 6.8 21.5 18.1
b09 9.8 8.4 10.7 8.9 7.4 24.7 12.1 30.8 17.2
b10 9.3 8.8 9 8.7 8.2 11.6 6.5 9.2 6.3
b11 16.4 15.4 15.2 14.6 13.9 15.2 9.6 8.9 4.8
b12 56.5 49.4 58.4 39.3 36.4 35.5 26.3 37.6 7.2
b13 18 13.7 15.1 14.7 10.9 39.4 20.1 27.6 25.3
b14 99.3 101.7 99 86.5 85.4 14 16.1 13.8 1.3
b15 197.1 171 155.3 140.4 122 38.1 28.7 21.4 13.1
b17 1085.5 847.1 665.5 641.7 431.6 60.2 49.1 35.1 32.7
b18 3350.7 2405.3 2012.2 1761 1192 64.4 50.4 40.8 32.3
b19 7621.6 6708.3 5885 4135 2699.4 64.6 59.8 54.1 34.7
b20 252.8 243 214.8 202.6 195.3 22.7 19.6 9.1 3.6
b21 248.4 226.1 223.8 183.2 166.4 33 26.4 25.6 9.2
b22 395.6 372.8 328.9 304.8 277.1 30 25.7 15.8 9.1

74

Table 5.8: Additional Peak Power Savings obtained by Local Search Technique with 1-bit Neighbourhood

Greedy Pruning SA Pruning
Circuit DP-fill DP-fill + %Improvement Additional DP-fill + %Improvement Additional

(in µW) Greedy Pruning(inµW) Simulation time SA Pruning(inµW) Simulation time
b01 3.07 3.07 0 0s 3.07 0 0.001s
b02 2.6 2.19 15.67 0m0.03s 2.19 15.59 0m0.481s
b03 4.17 4.12 1.18 0m0.64s 4.12 1.3 0m4.728s
b04 14.76 13.23 10.36 0m6.83s 13.23 10.39 1m49.907s
b05 14.92 14.91 0.09 0m0.91s 14.86 0.43 0m13.423s
b06 4.35 4.28 1.68 0m0.06s 4.28 1.63 0m0.208s
b07 13.26 12.24 7.71 0m3.10s 12.24 7.68 0m26.645s
b08 6.89 6.79 1.47 0m0.48s 6.79 1.54 0m8.717s
b09 7.4 6.94 6.15 0m0.17s 6.94 6.1 0m0.790s
b10 8.19 8.03 1.92 0m0.41s 8.03 1.93 0m13.768s
b11 13.88 13.88 0 0m1.023s 13.88 0 0m26.877s
b12 36.42 36.12 0.82 0m30.62s 36.12 0.83 4m23.086s
b13 10.94 10.79 1.39 0m1.68s 10.79 1.36 0m21.156s
b14 85.37 82.78 3.03 2m47.09s 81.48 4.56 8m13.430s
b15 122.01 113.73 6.78 66m14.21s 117.18 3.96 39m20.670s
b17 431.6 422.17 2.19 45h37m37s 424.57 1.63 28h10m45s
b18 1192.03 1179.93 1.02 46h7m22s 1184.7 0.61 28h40m35s
b19 2699.35 2696.11 0.12 47h35m47s 2696.11 0.12 30h14m20s
b20 195.34 190.22 2.62 57m0.19s 189.76 2.86 56m56.429s
b21 166.38 161.54 2.91 3m35.40s 161.54 2.91 20m44.411s
b22 277.07 265.98 4.0 14h15m51s 267.39 3.5 9h12m25s

Average 3.39 3.28

75

5.8 Summary

We mapped the problem of X-filling to an variant ofinterval coloring problem called

bottleneck coloring problem and proposed dynamic programming based algorithm for

optimal X-filling such that peak input toggles is minimized.This algorithm obtains the

optimal solution for minimizing peak input toggles. Since input toggles is well corre-

lated to circuit power (Girardet al., 1998), we assume that the proposed algorithm au-

tomatically generates a good solution that minimizes peak circuit power during testing.

In order to validate this assumption, we performed local search around the local solu-

tion produced by DP-fill based on thepeak circuit powerduring testing. Thegreedy

andsimulated annealingbased strategies are used to perform the local search. After

performing this local search pruning for reducingpeak circuit powerduring testing, we

have observed that the savings is marginal. This helps us to understand that the solu-

tion produced by DP-fill not only optimizes peak input toggles but also automatically

generates a good solution for minimizingpeak circuit powerduring testing.

76

CHAPTER 6

Conclusions

It is well known that at-speed testing of delay faults and transition faults is necessary to

catch small delay defects in modern nanometer CMOS technologies. However, in the

presence of path delays that are comparable to the clock interval, delayed signal tran-

sitions or timing hazards influence the detection of defects. Due to the these variations

in signalling delays, it is important to perform at-speed testing even for stuck faults, to

reduce the test escapes (McCluskey and Tseng, 2000; Voriseket al., 2004). So, at-speed

stuck-at testing is necessary in the nanometer CMOS regime. Since power dissipation

increases proportionately with the clock speed, the power grid experiences higherIR-

drop, that is not observed during slow speed testing. This excessive IR-dropon power

grid, increases the delay of gates on the circuit, and leads to the following issues

1. a good chip is categorized as defective, which is the problem of false negatives,
that impacts the yield of a product and a loss to the manufacturer; and more
importantly

2. a defective chip is categorized as good, which is the problem of false positives,
that impacts the trust of the customers on the manufacturer,and ultimately a fi-
nancial loss to the manufacturer.

Keeping this in mind, under CSP-scan architecture, we proposed efficient algo-

rithms for test vector ordering and don’t care filling for peak power minimization during

at-speed stuck-at testing. The major conclusions based on the work done as part of this

thesis are as follows:

6.1 Test vector ordering for fully specified test sets

In Chapter 3, we had shown that given a fully specified test set,the problem of optimal

test vector ordering for peak power minimization, under theCSP-scan architecture,

maps to the bottleneck traveling salesman problem(BTSP), which is NP-hard. We have

used an efficient BTSP heuristic to solve the same. This heuristic is experimented on

all the 21 ITC circuits and interestingly, the solution obtained in each of the benchmark

circuits isglobally optimal. Although, the used BTSP heuristic haveglobally optimal

on all the benchmark circuits, the optimality for any given circuit, is not guaranteed,

as the underlying problem is NP-hard. This only suggests that the heuristic is very

effective in solving these instances of complete graphs, for peak power minimization

during testing. This is a very interesting case study, wherean NP-hard problem, can be

solved very efficiently using an intelligent heuristic.

6.2 Simultaneous test vector ordering and don’t care

filling

In practice, the test sets generated by commercial automatic test vector generation

(ATPG) tools like Mentor’sFastscanTM or SynopsysTetramaxTM , are dominated

by don’t cares, for large circuits. This makes don’t care filling very important for min-

imizing test power. If these don’t cares are filled using random-fill, 0-fill, 1-fill or

MT-fill, then the test vector ordering using the BTSP heuristic gives a very efficient

solution. However, the overall problem of simultaneous test vector ordering and don’t

care filling, may not be best solved this way. In fact, in this thesis, we show that this

leads to a sub-optimal solution.

Keeping this in mind, in this thesis, we focus on the problem of simultaneous test

vector ordering and don’t care filling. As we have already discussed, the problem of

test vector ordering is by itself NP-hard. Thus, including don’t care filling as part of

the optimization engine, increases the hardness of the peakpower minimization engine.

Keeping this in mind, in chapter 4 we proposed an efficient heuristic (XStat) for test

vector ordering and don’t care filling in an integrated fashion, that produces solutions

which reduce peak test power significantly, while taking very little time in arriving at

the solutions.

78

6.3 An optimal algorithm for peak input switching ac-

tivity

While XStat algorithm is an efficient heuristic for reducing peak input switching ac-

tivity, thereby reducing peak circuit switching activity,it does not guarantee optimality.

In chapter 5, to address this issue we had shown that given a test vector order, don’t

cares can be filled in an optimal way usingdynamic programmingso as to minimize

peak input switching activity.

6.4 Future Work

Input switching activity correlates well with circuit switching activity (Girardet al.,

1998), and is less compute intensive than circuit switchingactivity, we have designed

algorithms for minimization of peak input switching activity as a means to minimize

peak power dissipation during at-speed testing. It is an interesting future work, to pro-

pose efficient and scalable algorithms to minimize peak circuit switching activity.

Although this thesis suggests an optimal algorithm for don’t care filling, for a given

test cube ordering, the global problem of minimizing input switching activity also, is not

solved optimally. Optimal peak input switching activity problem by simultaneous test

vector ordering and don’t care filling is also an interestingopen problem. Additionally,

extending these algorithms for reducing peak power dissipation during testing of 3D-

ICS, is another interesting future work.

79

REFERENCES

1. Abramovici, M. , M. Breur , andA. D. Friedman. In Digital Systems Testing and
Testable Design. Wiley-Blackwell, 1994.

2. Abramovici, M. , P. Menon, andD. Miller , Critical path tracing - an alternative to fault
simulation.In Design Automation Conference. IEEE, 1983.

3. Ahmed, N., M. Tehranipoor , andV. Jayaram, Timing-based delay test for screening
small delay defects.In Proceedings of the 43rd Design Automation Conference, DAC
2006, San Francisco, CA, USA, July 24-28, 2006. 2006a. URL http://doi.acm.
org/10.1145/1146909.1146993.

4. Ahmed, N., M. Tehranipoor , andV. Jayaram, Timing-based delay test for screening
small delay defects.In Proceedings of the 43rd Annual Design Automation Conference,
DAC ’06. ACM, New York, NY, USA, 2006b. ISBN 1-59593-381-6. URLhttp:
//doi.acm.org/10.1145/1146909.1146993.

5. Almukhaizim, S. andO. Sinanoglu, Peak power reduction through dynamic partition-
ing of scan chains.In Test Conference, 2008. ITC 2008. IEEE International. 2008.
ISSN 1089-3539.

6. Balatsouka, S., V. Tenentes, X. Kavousianos, andK. Chakrabarty , Defect aware
X-filling for low-power scan testing.In 2010 Design, Automation Test in Europe Con-
ference Exhibition (DATE 2010). 2010. ISSN 1530-1591.

7. Bao, F., K. Peng, M. Tehranipoor , and K. Chakrabarty (2013a). Generation of
effective 1-detect TDF patterns for detecting small-delaydefects.IEEE Trans. on CAD
of Integrated Circuits and Systems, 32(10), 1583–1594. URLhttp://dx.doi.
org/10.1109/TCAD.2013.2266374.

8. Bao, F., K. Peng, M. Yilmaz , K. Chakrabarty , L. Winemberg, andM. Tehranipoor
(2013b). Efficient pattern generation for small-delay defects using selection of critical
faults.J. Electronic Testing, 29(1), 35–48. URLhttp://dx.doi.org/10.1007/
s10836-012-5345-9.

9. Bhattacharya, B. B., Double-tree scan: A novel low-power scan-path architecture. In
International Test Conference. IEEE, 2003.

10. Bhunia, S., H. Mahmoodi, D. Ghosh, S. Mukhopadhyay, andK. Roy (2005a). Low-
power scan design using first-level supply gating.Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 13(3), 384–395. ISSN 1063-8210.

11. Bhunia, S., H. Mahmoodi, A. Raychowdhury, andK. Roy, A novel low-overhead
delay testing technique for arbitrary two-pattern test application. In Design Automation
and Test in Europe. IEEE, 2005b.

80

12. Bonhomme, Y., P. Girard , L. Guiller , C. Landrault , S. Pravossoudovitch, andA. Vi-
razel, Design of routing-constrained low power scan chains.In Design, Automation and
Test in Europe. IEEE, 2004.

13. Bonhomme, Y., P. Girard , C. Landrault , andS. Pravossoudovitch, Power driven
chaining of flip-flops in scan architectures.In International Test Conference. IEEE,
2002.

14. Borkar, S. (1999). Design challenges of technology scaling.IEEE Micro, 19(4), 23–29.

15. Bosio, A., P. Girard , S. Pravossoudovitch, P. Bernardi, andM. Reorda, An exact
and efficient critical path tracing algorithm.In International Symposium on Electronic
Design, Test and Application. IEEE, 2010.

16. Chakraborty, T. andV. Agrawal, Robust testing for stuck-at faults.In VLSI Design,
1995., Proceedings of the 8th International Conference on. 1995a. ISSN 1063-9667.

17. Chakraborty, T. andV. Agrawal, Simulation of at-speed tests for stuck-at faults.In
VLSI Test Symposium, 1995. Proceedings., 13th IEEE. 1995b. ISSN 1093-0167.

18. Dabholkar, V. andS. Chakravarty (1994). Minimizing power dissipation in combina-
tional circuits during test application.State University of New York, Buffalo.

19. Dabholkar, V., S. Chakravarty, I. Pomeranz, andS. Reddy(1998). Techniques for
minimizing power dissipation in scan and combinational circuits during test applica-
tion. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions
on, 17(12), 1325–1333. ISSN 0278-0070.

20. Datta, R., R. Gupta, A. Sebastine, J. A. Abraham, andM. d’Abreu (2004). Tri-
scan: A novel DFT technique for cmos path delay fault testing. IEEE International Test
Conference (ITC), 0, 1118–1127. ISSN 1089-3539.

21. Dennard, R., F. Gaensslen, V. Rideout, E. Bassous, andA. LeBlanc (1974). Design
of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal of
Solid-State Circuits, 9(5), 256–268.

22. Dervisoglu, B. and G. Stong, Design for testability: Using scanpath techniques for
path-delay test and measurement.In International Test Conference. IEEE, 1991.

23. Devanathan, V., C. Ravikumar, R. Mehrotra , andV. Kamakoti , PMScan : A power-
managed scan for simultaneous reduction of dynamic and leakage power during scan
test. In International Test Conference. IEEE, 2007a.

24. Devanathan, V. R., C. P. Ravikumar, andV. Kamakoti , Glitch-aware pattern gener-
ation and optimization framework for power-safe scan test.In VLSI Test Symposium.
IEEE, 2007b.

25. Devanathan, V. R., C. P. Ravikumar, andV. Kamakoti , A stochastic pattern genera-
tion and optimization framework for variation-tolerant, power-safe scan test.In Inter-
national Test Conference. IEEE, 2007c.

81

26. Doroshko, N.andV. Sarvanov (1981). The minimax traveling salesman problem and
hamiltonian cycles in powers of graphs. vestsi akad. navuk bssr, ser. fiz.Mat. Navuk,
143, 119–120.

27. Eichelberger, E. B.(1974). Level sensitive logic system. US Patent 3,783,254.

28. Eichelberger, E. B.andT. W. Williams , A logic design structure for LSI testability.In
Design Automation Conference. IEEE, 1977.

29. Funatsu, S., N. Wakatsuki, andT. Arima , Test generation systems in Japan.In Design
Automation Conference. IEEE Press, 1975.

30. Ganesan, S.andS. P. Khatri, A modified scan-d flip-flop design to reduce test power.
In International Test Synthesis Workshop. IEEE, 2008.

31. Garey, M. R. andD. S. Johnson, Computers and Intractability; A Guide to the The-
ory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990. ISBN
0716710455.

32. Gerstendorfer, S. and H. J. Wunderlich , Minimized power consumption for scan-
based BIST.In International Test Conference. IEEE, 1999.

33. Girard, P. (2002). Survey of low-power testing of VLSI circuits.IEEE Design and
Test of Computers, 19(3), 80–90.

34. Girard, P. , L. Guiller , C. Landrault , andS. Pravossoudovitch, Circuit partitioning
for low power bist design with minimized peak power consumption. In Test Symposium,
1999. (ATS ’99) Proceedings. Eighth Asian. 1999. ISSN 1081-7735.

35. Girard, P. , C. Landrault , S. Pravossoudovitch, andD. Severac, Reducing power
consumption during test application by test vector ordering. In International Symposium
on Circuits and Systems. IEEE, 1998.

36. Glover, C. T. andM. R. Mercer , A method of delay fault test generation.In Design
Automation Conference. IEEE, 1988.

37. Goel, S. K., K. Chakrabarty , M. Yilmaz , K. Peng, andM. Tehranipoor , Circuit
topology-based test pattern generation for small-delay defects. In Proceedings of the
19th IEEE Asian Test Symposium, ATS 2010, 1-4 December 2010,Shanghai, China.
2010. URLhttp://dx.doi.org/10.1109/ATS.2010.59.

38. Huang, W. (2007). HotSpot - A Chip and Package Compact Thermal Modeling
Methodology for VLSI Design. Ph.D. thesis, University of Virginia.

39. Kavousianos, X., D. Bakalis, M. Bellos, andD. Nikolos, An efficient test vector order-
ing method for low power testing.In International Symposium on VLSI. IEEE, 2004.

40. Kumar, S. K., S. Kaundiya, andS. Chattopadhyay, Customizing pattern set for test
power reduction via improved x-identification and reordering. In International Sympo-
sium on Low Power Electronics and Design. IEEE, 2010.

41. Kundu, S. andS. Chattopadhyay, Efficient don’t care filling for power reduction dur-
ing testing. In Advances in Recent Technologies in Communication and Computing,
2009. ARTCom ’09. International Conference on. 2009.

82

42. Kurian, G. , V. V. N. Rao, V. Patidhar, andV. Kamakoti (2009). Test power reduc-
tion using integrated scan cell and test vector reordering techniques on linear scan and
double tree scan architectures.ASP Journal of Low Power Electronics, 5(1), 58–68.

43. Larusic, J., A. P. Punnen, andE. Aubanel (2012). Experimental analysis of heuristics
for the bottleneck traveling salesman problem.Journal of Heuristics, 18(3), 473–503.

44. Lawler, L. J. R. K. A. S. D., E.L., Traveling Salesman Problem : A Guided Tour of
Combinatorial Optimization. Wiley, Chichester, 1985. ISBN 978-0-471-90413-7.

45. Lee, K.-J., T.-C. Haung, andJ.-J. Chen, Peak-power reduction for multiple-scan cir-
cuits during test application.In Test Symposium, 2000. (ATS 2000). Proceedings of the
Ninth Asian. 2000. ISSN 1081-7735.

46. Li, J. , Q. Xu, Y. Hu, andX. Li , ifill: An impact-oriented X-filling method for shift- and
capture-power reduction in at-speed scan-based testing.In 2008 Design, Automation
and Test in Europe. 2008. ISSN 1530-1591.

47. Li, J. , Q. Xu, Y. Hu, andX. Li (2010). X-filling for simultaneous shift- and capture-
power reduction in at-speed scan-based testing.IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 18(7), 1081–1092. ISSN 1063-8210.

48. Liaw, C.-C., S. Su, andY. K. Malaiya , Test generation for delay faults using stuck-at-
fault test set.In International Test Conference. IEEE, 1980.

49. Lin, X. andJ. Rajski, Test power reduction by blocking scan cell outputs.In Asian
Test Symposium. IEEE, 2008.

50. Lin, X. , J. Rajski, I. Pomeranz, andS. M. Reddy, On static test compaction and test
pattern ordering for scan designs.In International Test Conference. IEEE, Baltimore,
MD, USA, 2001.

51. Liu, X. (2004).ATPG and DFT algorithms for delay fault testing. Ph.D. thesis, Virginia
Polytechnic Institute & State University.

52. Magen, N., A. Kolodny, U. Weiser, andN. Shamir, Interconnect-power dissipation
in a microprocessor.In Proceedings of the 2004 International Workshop on System
Level Interconnect Prediction, SLIP ’04. ACM, New York, NY, USA, 2004. URL
http://doi.acm.org/10.1145/966747.966750.

53. Malaiya, Y. K. andR. Narayanaswamy, Testing for timing faults in synchronous se-
quential integrated circuits.In International Test Conference. IEEE, 1983.

54. Manku, G. S. (1996). A linear time algorithm for the bottleneck biconnected spanning
subgraph problem.Information Processing Letters, 59(1), 1–7.

55. Maxwell, P., R. Aitken, K. Kollitz , andA. Brown, IDDQ and AC scan: the war against
unmodelled defects.In International Test Conference. IEEE, 1996.

56. McCluskey, E. J.andC.-W. Tseng, Stuck-fault tests vs. actual defects.In IEEE Inter-
national Test Conference. IEEE, 2000.

83

57. Mishra, A. , N. Sinha, Satdev, V. Singh, S. Chakravarty, andA. Singh, Modified
scan flip-flop for low power testing.In Asian Test Symposium. IEEE, 2010.

58. Miyase, K. andS. Kajihara (2006). Xid: Don’t care identification of test patterns for
combinational circuits.Trans. Comp.-Aided Des. Integ. Cir. Sys., 23(2), 321–326. ISSN
0278-0070. URLhttp://dx.doi.org/10.1109/TCAD.2003.822103.

59. Miyase, K., Y. Uchinodan, K. Enokimoto, Y. Yamato, X. Wen, S. Kajihara, F. Wu,
L. Dilillo , A. Bosio, P. Girard , and A. Virazel, Effective launch-to-capture power
reduction for los scheme with adjacent-probability-basedx-filling. In 2011 Asian Test
Symposium. 2011. ISSN 1081-7735.

60. Pant, P., J. Zelman, G. Colon-Bonet, J. Flint , andS. Yurash, Lessons from at-speed
scan deployment on an Intel Itanium microprocessor.In International Test Conference.
IEEE, 2010.

61. Pant, S.(2008).Design and Analysis of Power Distribution Networks in VLSI Circuits.
Ph.D. thesis, University of Michigan.

62. Parimi, N. andX. Sun, Toggle-masking for test-per-scan VLSI circuits.In Interna-
tional Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems.
IEEE, 2004.

63. Parker, R. G. andR. L. Rardin (1984). Guaranteed performance heuristics for the
bottleneck travelling salesman problem.Operations Research Letters, 2(6), 269–272.

64. Peng, K., M. Yilmaz , K. Chakrabarty , andM. Tehranipoor (2013). Crosstalk- and
process variations-aware high-quality tests for small-delay defects.IEEE Trans. VLSI
Syst., 21(6), 1129–1142. URLhttp://dx.doi.org/10.1109/TVLSI.2012.
2205026.

65. Peng, K., M. Yilmaz , M. Tehranipoor , andK. Chakrabarty , High-quality pattern se-
lection for screening small-delay defects considering process variations and crosstalk.
In Design, Automation and Test in Europe, DATE 2010, Dresden, Germany, March
8-12, 2010. 2010. URLhttp://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=5457036.

66. Potluri, S. (2015). Power: Its Manifestations in Digital Systems Testing. Ph.D. thesis,
Indian Institute of Technology Madras.

67. Potluri, S., N. Chandrachoodan, andV. Kamakoti (2012). Interconnect aware test
power reduction.ASP Journal of Low Power Electronics, 8(4), 516–525.

68. Potluri, S., A. Satya Trinadh, C. Sobhan Babu, V. Kamakoti , andN. Chandrac-
hoodan (2015). DFT assisted techniques for peak launch-to-capture power reduction
during launch-on-shift at-speed testing.ACM Transactions on Design Automation of
Electronic Systems.

69. Prabhu, M. andJ. Abraham, Functional test generation for hard to detect stuck-at
faults using rtl model checking.In Test Symposium (ETS), 2012 17th IEEE European.
2012.

84

70. Punnen, A. P.andK. Nair (1994). A fast and simple algorithm for the bottleneck
biconnected spanning subgraph problem.Information Processing Letters, 50(5), 283
– 286. ISSN 0020-0190. URLhttp://www.sciencedirect.com/science/
article/pii/0020019094000417.

71. Qiu, X., Y. Ma, X. He, andX. Hong, IPOSA: A novel slack distribution algorithm
for interconnect power optimization.In International Symposium on Quality Electronic
Design. IEEE, 2008.

72. Ramakrishnan, R., P. Sharma, andA. P. Punnen(2009). An efficient heuristic algo-
rithm for the bottleneck traveling salesman problem.Opsearch, 46(3), 275–288.

73. Reddy, L. N., I. Pomeranz, andS. M. Reddy, Rotco:a reversed order test compaction
technique.In EURO-ASIC. IEEE, Paris, France, 1992.

74. Remersaro, S., X. Lin , Z. Zhang, S. M. Reddy, I. Pomeranz, andJ. Rajski, Preferred
fill: A scalable method to reduce capture power for scan baseddesigns.In 2006 IEEE
International Test Conference. 2006. ISSN 1089-3539.

75. Sankaralingam, K., R. Oruganti, and N. Touba, Static compaction techniques to
control scan vector power dissipation.In VLSI Test Symposium, 2000. Proceedings.
18th IEEE. 2000. ISSN 1093-0167.

76. Sankaralingam, K. and N. Touba, Controlling peak power during scan testing.In
VLSI Test Symposium, 2002. (VTS 2002). Proceedings 20th IEEE. 2002.

77. Sarvanov, V., Traveller minimax problem in plane: Complexity of approximate solu-
tion. In DOKLADY AKADEMII NAUK BELARUSI, volume 39. ACADEMII NAUK
BELARUSI F SCORINA PR 66, ROOM 403, MINSK, BYELARUS 220072, 1995.

78. Savir, J. andW. H. McAnney (1988). Random pattern testability of delay faults.IEEE
Transactions on Computers, 37(3), 291–300.

79. Saxena, J., K. Butler , andL. Whetsel, An analysis of power reduction techniques in
scan testing.In International Test Conference. IEEE, 2001.

80. Saxena, J., K. M. Butler , V. B. Jayaram, S. Kundu, N. V. Arvind , P. Sreeprakash,
andM. Hachinger, A Case Study of IR-Drop in Structured At-Speed Testing.In Inter-
national Test Conference. IEEE, 2003.

81. Schulz, M., E. Trischler, andT. M. Sarfert (1988). Socrates: a highly efficient auto-
matic test pattern generation system.IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 7(1), 126–137.

82. Singh, A., J. Plusquellic, D. Phatak, andC. Patel (2006). Defect simulation method-
ology for IDDT testing.Journal of Electronic Testing, 22(3), 255–272.

83. Sparso, J.andS. Furber, Principles of Asynchronous Circuit Design, A Systems Per-
spective. Kluwer Publishers, 2001.

84. Takahashi, N., N. Ishiura, andS. Yajima (2006). Fault simulation for multiple faults
by boolean function manipulation.IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, 13(4), 531–535.

85

85. Tehranipoor, M. , K. Peng, andK. Chakrabarty , Test and Diagnosis for Small-Delay
Defects. Springer, 2011. ISBN 978-1-4419-8296-4. URLhttp://dx.doi.org/
10.1007/978-1-4419-8297-1.

86. Tzeng, C. W. and S. Y. Huang (2009). QC-fill: Quick-and-cool X-filling for
multicasting-based scan test.IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 28(11), 1756–1766. ISSN 0278-0070.

87. Vandegriend, B. (1998). Finding hamiltonian cycles: Algorithms.Graphs and Per-
formance, Master of Science Thesis, Department of ComputingScience, University of
Alberta, Edmonton, Alberta.

88. Venkataraman, S., S. Sivaraj, E. Amyeen, S. Lee, A. Ojha, andR. Guo, An experi-
mental study of n-detect scan ATPG patterns on a processor.In VLSI Test Symposium.
IEEE, Napa Valley, CA, USA, 2004.

89. Vorisek, V., T. Koch, andH. Fischer, At-speed testing of soc ics.In Design, Automa-
tion and Test in Europe Conference and Exhibition, 2004. Proceedings, volume 3. 2004.
ISSN 1530-1591.

90. Waicukauski, J. A., E. Lindbloom, V. S. Iyengar, andB. K. Rosen, Transition fault
simulation by parallel pattern single fault propagation.In International Test Conference.
IEEE, 1986.

91. Wen, X., K. Miyase, T. Suzuki, S. Kajihara, Y. Ohsumi, andK. Saluja, Critical-
path-aware X-filling for effective IR-drop reduction in at-speed scan testing.In Design
Automation Conference, 2007. DAC ’07. 44th ACM/IEEE. 2007. ISSN 0738-100X.

92. Williams, M. and J. Angell (1973). Enhancing testability of large-scale integrated
circuits via test points and additional logic.IEEE Transactions on Computers, C-22(1),
46–60.

93. Wu, F., L. Dilillo , A. Bosio, P. Girard , S. Pravossoudovitch, A. Virazel, M. Tehra-
nipoor, K. Miyase, X. Wen, andN. Ahmed, Power reduction through X-filling of
transition fault test vectors for LOS testing.In International Conference on Design
Technology of Integrated Systems in Nanoscale Era. IEEE, 2011.

94. Wu, M.-F. , K.-S. Hu, andJ.-L. Huang (2009). Lptest: a flexible low-power test pattern
generator.Journal of Electronic Testing, 25(6), 323. ISSN 1573-0727. URLhttp:
//dx.doi.org/10.1007/s10836-009-5115-5.

95. Xu, G. andA. Singh, Delay test scan flip-flop: DFT for high coverage delay testing. In
International Conference on VLSI Design. IEEE, 2007.

96. Yao, C., K. Saluja, andP. Ramanathan(2011). Power and thermal constrained test
scheduling under deep submicron technologies.Computer-Aided Design of Integrated
Circuits and Systems, IEEE Transactions on, 30(2), 317–322. ISSN 0278-0070.

97. Yilmaz, M. , K. Chakrabarty , andM. Tehranipoor , Interconnect-aware and layout-
oriented test-pattern selection for small-delay defects.In 2008 IEEE International Test
Conference, ITC 2008, Santa Clara, California, USA, October 26-31, 2008. 2008a.
URL http://dx.doi.org/10.1109/TEST.2008.4700627.

86

98. Yilmaz, M. , K. Chakrabarty , andM. Tehranipoor , Test-pattern grading and pattern
selection for small-delay defects.In 26th IEEE VLSI Test Symposium (VTS 2008), April
27 - May 1, 2008, San Diego, California, USA. 2008b. URL http://dx.doi.org/
10.1109/VTS.2008.32.

99. Yilmaz, M. , K. Chakrabarty , andM. Tehranipoor (2010). Test-pattern selection for
screening small-delay defects in very-deep submicrometerintegrated circuits. IEEE
Trans. on CAD of Integrated Circuits and Systems, 29(5), 760–773. URLhttp://
dx.doi.org/10.1109/TCAD.2010.2043591.

100. Yilmaz, M. , M. Tehranipoor , and K. Chakrabarty (2011). A metric to tar-
get small-delay defects in industrial circuits.IEEE Design & Test of Computers,
28(2), 52–61. URLhttp://doi.ieeecomputersociety.org/10.1109/
MDT.2011.26.

87

List of publications based on the research work

Publications based on thesis

1. A. Satya Trinadh, S. Potluri, Ch. Sobhan Babu, S. G. Singh andV. Kamakoti,
“Optimal Don’t Care Filling for Minimizing Peak Toggles during At-speed
Stuck-at Testing”,ACM Transactions on Design Automation of Electronic Sys-
tems. Vol. 23,No. 1,2017, pp. 5:1-5:26.

2. A. Satya Trinadh, Ch. Sobhan Babu, S. G. Singh, S. Potluri andV. Kamakoti,
“DP-fill: A Dynamic Programming approach to X-filling for minimizing peak
test power in scan tests”,Design Automation and Test in Europe, IEEE, 2015
(Grenoble, France).

3. A. Satya Trinadh, S. Potluri, S. Balachandran, Ch. Sobhan Babu and V. Ka-
makoti, “XStat: Statistical X-Filling Algorithm for Peak Capture Power Reduc-
tion in Scan Tests”,Journal of Low Power Electronics, Vol. 10, No. 1, 2014, pp.
107-115.

4. A. Satya Trinadh, S. Potluri, Ch. Sobhan Babu and V. Kamakoti, “An Efficient
Heuristic for Peak Capture Power Minimization During Scan-Based Test”,Jour-
nal of Low Power Electronics, Vol. 9, No. 2, 2013, pp. 264-274.

Other related publications

1. S. Potluri, A. Satya Trinadh, C. Rajamanikkam and S. Balachandran. ”LPScan:
An Algorithm for Supply Scaling and Switching Activity Minimization during
Test”, International Conference on Computer Design, IEEE, 2013, pp. 463-466
(Asheville, USA).

2. S. Potluri, A. Satya Trinadh, R. Baskaran, N. Chandrachoodanand V. Kamakoti.
”PinPoint: An Algorithm for Enhancing Diagnostic Resolution using Capture
Cycle Power Information”, European Test Symposium, IEEE, 2013 (Avignon,
France).

3. S. Potluri, A. Satya Trinadh, Ch. Sobhan Babu, V. Kamakoti and N. Chandrac-
hoodan. “DFT Assisted Techniques for Peak Launch-to-Capture Power Reduc-
tion during Launch-On-Shift At-Speed Testing”,ACM Transactions on Design
Automation of Electronic Systems,21(1): 14,2015.

4. S. Potluri, A. Satya Trinadh, Siddhant Saraf and V. Kamakoti. “Component fault
localization using switching current measurements”,European Test Symposium,
IEEE, 2016. pp.1-2.

88

