-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Research Archive of Indian Institute of Technology Hyderabad

Composition Operators and Classical Function

Theory

Satyabarta Majee

A Thesis Submitted to
Indian Institute of Technology Hyderabad
In Partial Fulfillment of the Requirements for

The Degree of Master of Science

sty ST S e
Izaliam baslitute of Technslogy Hpdershid

Department of Mathematics

6th May-2018


https://core.ac.uk/display/159216772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this written submission represents my project work, and where ideas or
words of others have been included, I have adequately referenced the original sources. I
own the mistake, if any, crept into this report and do not hold anybody or any reference

My

=

(Signature)

responsible for such mistakes.

SATIPBRATA MATEE

(Satyabrata Majee)

MpJEMSCST 11014

(Roll No.)


http://www.tcpdf.org

Approval Sheet

This Thesis entitled Composition Operators and Classical Function Theory by Satyabr:%ta Ma-

jee is approved for the degree of Master of Science from IIT Hyderabad .

(Dr. Venku Naidu Dogga) Adviser
B Dept. of Mathematics
IITH

C ‘ £ L ﬂ\{\f \\a‘(’

(Dr. C. S Sastry) Faculty-Adviser
Dept. of Mathematics
IITH

: ﬂb
o

(Dr. J. Balasubramaniam) H.O.D
Dept. of Mathematics
IITH



http://www.tcpdf.org

Acknowledgements

The success of this work is accredited to many. At first I am in debt to my family members for their
constant moral support. I am privileged to work with my supervisor Dr.Venku Naidu Dogga, who
guided me in each and every way he can guide me and I got to learn, understand my topic throughly
and infact appreciate a whole new branch of mathematics, Composition Operator. Not only this,
but also under his expert guidance and motivation, I could successfully come up with results which
I aimed to acquire since the beginning of this project. I am highly obliged for his rigorous efforts in
the accomplishment of this project. I would like to thank my classmates and PhD schalar who have

always supported me in every matter.

iv



Abstract

(1) The section Linear Fractional Prologue is a context, to be consulted as needed , on the basic
properties and classification of linear fractional transformations. Linear fractional maps play a vital

role in my work, both as agents for changing coordinates and transforming settings.

(2) In the section Fourier series, I discuss how to construct a inner product from given Fourier
series , the Dirichlet Kernel and its properties. Then I give the proof of Plancharal theorem and

Parseval’s theorem which play a good role through out my project.

(3) This Littlewood’s Theorem section is most important part of my work. After developing
some of the basic properties of H2, here we shows that every composition operator acts boundedly

on the Hilbert space. As pointed out above, this is essentially Littlewood’s Subordination Principle.

I present Littlewood’s original proof - a beautiful argument that is perfectly transparent in its beauty,
but utterly baffling in its lack of geometric insight. Much of conclusion can be regarded as an effort

to understand the geometric underpinning of this theorem.

(4) Having established that every composition operator is bounded on H?, we turn to the most
natural follow-up question: ”Which composition operators are compact?” The Chapter Compact-
ness:Introduction sets out the motivation for this problem. The property of ”boundedness” for
composition operators means that each one takes bounded subsets of H? to bounded subsets. The
question above asks us to specify precisely how much the inducing map ¢ has to compress the unit
disc into itself in order to insure that the operator Cj; compresses bounded subsets of H? into rela-

tively compact ones.

(5) In Chapter Compactness and Univalence we discover that the geometric soul of Littlewood’s
Theorem is bound up in the Schwarz Lemma. Armed with this insight, we are able to character-
ize the univalently induced compact composition operators, obtaining a compactness criterion that

leads directly to the Julia-Caratheodory Theorem on the angular derivative.

(6) In Chapter The Angular Derivative, I give the idea of the proof of Julia-Caratheodory Theorem

in a way that emphasizes its geometric content, especially its connection with the Schwarz Lemma.
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Chapter 1

Introduction

The study of the composition operators links some of the most basic we can ask about linear operators
with beautiful classical results from analytic-function theory. The process invests old theorems with
new meanings and bestows upon functional analysis in intriguing class of concrete linear operators.

The setting is the simplest one consistent with serious ” function-theoretic operator theory”: The
unit disc U of the complex plane, and the Hilbert space H? of functions holomorphic on U with
square summable power series coefficients. To each holomorphic function ¢ that takes U into itself

we associate the composition operator C,, defined by

Cof=fogp (f is holomorphic function on the disc)

and set for ourselves the goal of discovering the connection between the function theoretic properties
of ¢ and behaviour of C, on H? . Here is a summary of major notational and linguistic conventions

used throughout my project.



1.1 Notation and Terminology

Here is a summary of major notational and linguistic conventions used throughout my project.

1. Disc and Half Plane : The symbol U denotes the unit disc of the complex plane (or simply
the the disc ). U denotes the closed unit disc and AU is the unit circle. 7 is the open right half
plane (w : Re(w) > 0) and 7 is closure of 7 .

2.The space of the holomorphic function: We denote H(U) = (f : U — C) , the space of
holomorphic function on U and this space is always understood to be endowed with the topology &
of uniform convergence on compact subset of U and the notation f,, —"* f means that the sequence
fn of functions converges to uniformly on every compact subset of U.

3. Hilbert space: "Hilbert space” always means separable Hilbert space. The norm in any Hilbert
space is denoted by ”||.||,” and the inner product by ” < .,. >"”. We have to work with these Hilbert
space: The usual Lebesgue space L?, square integrable with respect to arc-length measure.: and {2,
the space of square summable (one sided) complex sequences.

4. Operators: The term operators always means bounded linear transformation and finite-rank operators

are bounded linear transformation with finite dimensional range. That means finite-rank operator is
a bounded linear operator between Banach spaces whose range are finite dimensional. The symbol
|I.]| originally used for the Hilbert space norm, will also be used for the norm of the bounded linear
operator, or for any other norm that we want to discuss.

5.Special automorphism: We will frequently employ the linear fractional transformation « :
U — U such that

ap(z):p_z for peU-:

1—pz

This is the special automorphism (a bi-holomorphic mapping of the set onto itself) of U that inter-
changes the origin and the point p.
6. Iterates: If ¢ is a holomorphic self mapping of U and n is a positive integer, then the n-th

iterates of ¢ is the n-fold composition of ¢ with itself. We always denote this map by ¢, :
Pn=popopo ....0 (ntimes).
7.Estimates: We frequently write estimate for non-negative functions that look like
A(z) < const.B(x),

for some range of x. In such inequalities the constant is always positive and finite, and is allowed to

one occurrence to another, but it never depends on x. when we write
A(z) = B(x) (for some range of x)

We mean
const. A(zx) < B(z) < const.A(x)



for relevant values of x. Frequently occurring instances of this are the simple equivalences:
l-2?~1-2 (0<z<1)
and

1
l—z=~log— (asxz— 1-)-
x

1.2 Some Essential Definition

We have to discuss some definitions which will be used throughout my project.

Definition 1.2.1. (Normed Linear Space) Let, V be a vector space over the field F(RorC). A norm

on V is a mapping(or function ) ||.|| from V to R ,

I : V — Rt

satisfying the following three axioms:

(N1) [lu| =0=u=0, forueV [Positivity]
(N2) [[Au]| = [A|||ull, Yu € V and YA € F [Homogeneity|
(N3)|lw+ o] < |Jull + ||v]l, Vu,v eV [Triangleineqality).

we call the pair (V,||.||) a normed linear space.

Definition 1.2.2. (Banach Space)

A complete normed linear space is called Banach space -

Definition 1.2.3. (Inner Product Space) Let V be a vector space over a field F(R or C). By an

inner product on V, we mean a mapping
fi=<.,.>VxV-—F (uv)—<u,v>= f(u,v)

that assigns for each (u,v) € V x V a value in F' , denoted by ju,v;, called the inner product of u
and v, such that for each u,v,w € V and A € F we have
(I1) <u,u>>0and <u,u>=0=u=0. [Positivity]

(12) < u,v >=< v, u > [Conjugate symmetric]
(I3) < Au,v >= A < u,v > [Homogeneous]
(I4) < u,v+w>=<u,v >+ < u,w > [Additivity]

we call the pair (V, <,>) a inner product space.

Definition 1.2.4. (Hilbert Space)

An inner product space V is called a Hilbert space if it is complete with respect to the induced
norm ||.]]y. That means, a vector space V over the field F is a Hilbert space iff the following two
conditions hold:

(a) there is an inner product on V.

(b) every Cauchy sequence with respect to the induced norm is convergent.

Note 1.2.1. The function ||.|| defined by ||u|| = /< u,u > makes V into a normed linear space.



Definition 1.2.5. (Linear Operator) Let X and Y be two linear spaces over the same field F. Then
the mapping T': X — Y is called linear operator (or mapping) if-

(DT (21 + w2) = T(21) + T(22)

2)T(axy) = aT(x1) Vo, z2€ X, a€F.

Definition 1.2.6. ( Bounded Linear Operator) Let X and Y be two normed linear spaces over the
same field F(R or C) and T : D(T) — Y a linear operator where D(T') C X . The operator T is

said to be bounded if 3 a real no ¢ such that,

Ve e D(T),  [T(x)]y <cfzllx.



Chapter 2

Linear Fractional Prologue

2.1 Properties
A linear fractional transformation is a mapping T4 : C — C of the form

az+b
Ta(z) = S 1)

subject to the condition ad-bc # 0, which is necessary and sufficient condition for T to be a non
constant. We denote the set of all such maps by LFT(@), where the notation is intended to call
attention to the fact that, with the obvious convention about the point at oo, each linear fractional
transformation can be regarded as a one-to-one holomorphic mapping of the Riemann Sphere C onto

itself.

Group properties:

LF T(C) is a group under composition. Each of its members maps every circle on the sphere (i.e.
every circle or line in the plane) to another circle, and given any pair of circles, some members of
LFT(C) maps one onto the other. The same is true for the set of triples of distinct points of the
sphere. In the language of group theory :

LF T(C) acts transitively on the set of circles of @, and triply transitively on the points.

Matrix representation:

Each non-singular 2 x 2 complex matrix

gives rise to a linear fractional transformation T4 by means of definition (1) above. So, easily we

can say that Ty = Tha for any A € C.

Definition 2.1.1. If ad-bc=1 in the definition (1), then T is in standard form.
Actually there are two standard forms, since the determinant is not changed when all coefficients
are replaced by their negatives.

The utility of matrices in dealing with linear fractional transformations comes from the fact that



Ty oTg = Tap. Borrowing again from the group theory, we say that S,7 € LFT(C) are conjugate
if there exist V € LFT(C) such that S =V oT o V1. Thus :

Conjugate linear fractional transformations corresponds to similar matrices.

2.2 Fixed Points

az+b
cz+d

fixed point iff a=d and b#0 . Otherwise the fixed point equation is a quadratic with solutions

The linear fractional transformation fixes the point oo iff ¢=0, in which case oo is the only

(a—d) =+ [(a—d)? +4bc]2

o, f = 90

From this equation we can say that :

(a) If c£0 and (a — d)? + 4bc # 0 then we will get two distinct finite fixed points.

(b) If ¢ # 0 and (a — d)? + 4bc = 0 then we will get only one finite fixed point.

(¢) If ¢=0 and a~-d#0 then we will get two fixed points, one of these will be co and other one will be
a finite fixed point.

(d) If ¢=0 and a~-d=0 then we will get only one fixed point which will be co.

The Trace: If T(z)=2t
to be x(T)==x(a + d).

is in standard form (i.e. ad-bc=1), then the define of the trace of T

Example 2.2.1. T has oo as its only fixed point on the sphere iff T(z)=2z+Db, in which case |x(T")|=2.

If T has only finite fixed points, then th equation written above for these fixed point can be at

least partially expressed in terms of the trace:

(a—d) £ [X(T)? +4]

o, f = %

(2)

This equation and the given remark about maps with unique fixed point at oo shows that

Te LFT(C) has a unique fixed point in C iff |x(T)| =2.

2.3 Derivatives at the Fixed Points

. If Te LFT(C) is in standard form, then

ad —be 1
T'(2) = —
(2) (cz+d)?  (cz+d)?

and now using (2) the above equation shows that the derivative of T at its fixed points can be

represented in terms of the trace :

1
— 2_
((a d)i\Q/cX(T) 4 +d)2

T'(e), T'(B) =



4
(@) £ X(T)F - 4)

where the ambiguity in the sign of the trace is absorbed by the fact that the right hand side is

a perfect square. From this it follows that

T (o) = and  T'(a)+T'(B) = x(T)* -2 (4)

In the case T has fixed point at oo and another finite one, it must have the form T(z)=az+b , in
which case we define 7"(c0) = (1/T)(0)~! = L. Hence , the relation (4) holds. In summary we can
write:

Theorem (Fixed points and derivatives):

Suppose T' € LFT (@) then these are equivalent:

N

. T’ =1 at a fixed point of T.

. T has just one fixed point on C.

If T has two distinct fixed points, then its derivative at these points are reciprocals and their

sum is x(7)? — 2.

2.4 Classification

Amap T € LFT((@) is called parabolic if it has a single fixed point in C. Suppose T is parabolic
and has its fixed point at « € C.

If T is not parabolic, there are two fixed points «, 5 € C.

Multipliers furnish the following classification of non-parabolic maps.

Definition 2.4.1. Suppose T € LFT(C) is neither parabolic nor identity. Let A # 1 , be the
multiplier of T. Then T is called

e Elliptic if [A| = 1.

e Hyperbolic if A > 0.

e Loxodromic if T is neither elliptic nor parabolic.

Theorem:(Classification by the trace )

Suppose T is linear fractional map that is not the identity. Then T is loxodromic iff its trace x(7T')
is not real. If x(7') is real, T is

e Hyperbolic < |x(T)| > 2

e Parabolic <= |x(T)| =2

o Elleptic «— |x(T)| <2



Important results on Fixed points:

(i) Every bilinear transformation with two finite fixed points a, 8 can be put in the form

w—a | Z—-a
w—pB Tz
(a) If |A] =1, then the transformation is elliptic.
(b) If A > 0 (#£ 1), then the transformation is hyperbolic.

(ii) Every bilinear transformation which has only one fixed point o can be put in the form

1 1
w— zZ—

In this case transformation is parabolic.

Now I am clearing these transformation by some examples:

z
2—z

Solution: The fixed points are given by

Example 2.4.1. w=

z
z = or, 2z—2>=z
2—z

or, 2(z—1)=0 = 2z=0,1

Hence 0 and 1 are the two fixed points in this case.To obtain the normal form we can write,

z 2z — 2

w 2—-2 an w 2__2
wo z 71 z
w—1 22-—2 2 22-1

which is the required normal form.
So here, A= % > 0.
Hence, this transformation is hyperbolic.

3z—4
z—1

Solution: The fixed points are given by,

Example 2.4.2. w=

3z—4
z =
z—1

or, 2> —2=32—-4 or,(2-2)*=0
== z2=2,2
i.e. z=2 is the only fixed point in this case. To obtain the normal form, we have

3z —4
w =

— wz—w=32—4
z—1

= (w—2)(z—2)+2z24+2w—w—-32=0

= (w—2)(#-2)—(2—-2)+(w—=2)=0



1-— = 1
- w—2+272 OT’w—Q z—2+ ’

which is required normal form.

Here, the transformation is parabolic.

-1
T
Solution: The fixed points are given by

Example 2.4.3. w=

z—1 9 .
z = == 2°4+1=0 = z=41
z+1

Hence i and — ¢ are two fixed points in this case. to obtain the normal form we have,

_z—l
T oz+1
Cooz=1 Cooz=1
— w—1= —tandw+i=——++1
z4+1 z+1

w—i z—1—iz—31 (1—14)(z—1)
w+i z—14idiz+4i 1+4+4)(z+1)
w—1 (1—1i)%(z — 1) Lz

 wti 0+ 0A-0G+) z+i

which is required normal form.
Here A= —i = |A| =1

Hence the transformation is elliptic.

_ (2419)2—2
Example 2.4.4. W= —

Solution: The fixed points are given by

2+1)z—2
z:% = 22 -224+2=0
zZ+1

2+ +,/(4-278) _
z2=——"""-="=1=%1
2
Hence 1+i and 1-i are the two fixed points in this case.

To obtain the normal form, we have

(2+1i)z—2
zZ4+1

w— (1+1) = S22 (1 1)

22 +iz—2—z—iz—i+1 z—(141)
z+i ozt

and w—(1—i)= &2 (1)

_2z+iz—2—z—iz—i—1
z4+1




z—(1—i)+2i(z+i—1)

zZ4+1
(14 2i)[z— (1 —1)]
z+1

w—(1414) _ z—(1+1)
w—(1—2) = (1421)[z—(1—1)]

C1-2iz—(1+1)
5 z—(1-4)

which is the required normal form.
Here, \ = % So , neither A is real nor |A\|=1 .

Hence , the transformation is loxodromic.

10



Chapter 3

Fourier Series

We have to know some relation from the Fourier Series which will be used through out my project.

For this purpose I am giving a summary of Fourier Series.

3.1 Basics of Fourier Series

Notation:

Cla,b]- The space of all continuous function on [a,b].
Cor|=m, 7] ={f € Cl=m, 7| : f(=m) = f(m)}

Now defining the inner product of f and g s.t.

b
< fig>i / F(Og@dt Y f.g € Cla,b

Definition 3.1.1. A function is of the form

n

P(z)=ag+ Z(ak cos kx + by, sin kx)
k=1

is called Trigonometric polynomial.
clearly, P(x)e Car[—m, 7]

Note 3.1.1. Let,

n

P(x) =ao+ Z(an cos kx + by, sin kx)

k=1
We know that . . . .
IRT —IRT 1RT __ —1IRT
coskx = e te ™ and sinkx = i
2 21
Then,
n ikx —ikx ikx —ikx
e +e e e
P = b
(r) =ao+ ) lag 5 + by 5 ]
k=1
n . .
B ar — k. ik ar + 10k, ik
=0t LGN+ (B

11



Now assuming,
_ _ak—ibk d _ak-‘ribk
Co=ao, cx=——(— and cp=—F—

then

P(z) =co+ Z(ckeik"c + c_pe k)
k=1

n n
=co+ § ckeikz + E c_ke—zkm
k=1 k=1
ik
= Cp + cke + cke

k=—n

n
_ Z Ckezka:
k=—n
Recall: Now (Car[—m, 7], <,>) is an inner product space where
s

< f,g>= f(t)@dt YV f,g € Cor[—m, 7]

—Tr

111k = Gz [ 1f0Pay?

—T

Note 3.1.2. We know that , ™" € Co[—m, 7] ¥V m € Z then,

1 T ) 1 if m=1
- ezmte—lltdt —
21 ) 0 if m#£1
e Now let
N
— Z Ckezk:c
k=—N
then
N
P(l,)efzmz: Z ckezkz —imx
k=—N
— 1 P( —zmmd Z / kx —ima:d
-_— C e & i
2m - F
1 " —imzx
= — P(x)e dx = ¢y
s

Definition 3.1.2.

Fourier Series and Coefficient: Let f € Cor[—m, 7]

We call f(m) as a m-th Fourier coefficient of .

And the sum Y~ f(m)ei™ is called Fourier Series of f.

Definition 3.1.3. A series of the form Y 02 a,e™ is called trigonometric series.

12



The above series can be written as

ap + Z(an cos nx + by, sinnc).

n=1

Definition 3.1.4. Let f(z) be a single valued function defined in the interval [—m,7].
If f(x) is bounded, it be integrable in[—m, 7] .
If f(x) is unbounded, the improper integral f:r f(z)dz be absolutely convergent. Then the trigono-

metric series,

oo
ag + Z(an cos nx + by, sinnx)

n=1

is called the Fourier Series corresponding to the function f(z), where

2 s
agp = — f(z)dz,
T J)_x
2 (7 2 [T .
an = — f(z)cosnadx, b, =— f(z) sinnzdz.
) )

Note 3.1.3. Without deciding whether the series converges to f(x) or not, We use the notation ’'~’
and write f(z) ~ ag+ Y., (an cosnz + by, sinnz) where '~ means is not actually equal to but
generates or series corresponding to the function f(x).

However if the Fourier corresponding to f(x) converges to f(x) then we can write,

flx)= ao+ Z(an cosnx + by, sinnx).

n=1

Partial Sum of the Fourier Series Let, f € Co,[—m, 7] and if >.°° __ f(n)e™* be the Fourier

series of f then

N
Sw(f)@) =3 fm)e
n=—N

is called the N-th partial sum of the Fourier series of f.

Here, for each n € N

e Sn(f) is continuous.

e Sn(f) is 27 periodic function, i.e. Sy(f)(z + 27) = Sn(f)(x).

An important consequence of the uniform convergent theorem is ” if the Fourier Series of f converges
uniformly to f, then f must be continuous on [—m, 7] with f(7) = f(—n) ”. Then the following basic
question arise:

Is there an important relationship between f(x) and its Fourier series?

Does the partial sum Sy (f)(z) approximate f(x) for large values of N in some sense ?

Does the Fourier series ij:_N f(n)e'™ converges to f(x)?

We are not aiming to discuss these questions, but wish to show there exist a continuous 27 periodic
function with a divergent Fourier series. We remark that the problem of deciding whether or not the

Fourier series Zg:_ N f (n)e'™® converges at a specific point(or, everywhere) is difficult as it usually

13



requires some degree of smoothness (differentiability and some uniform convergence condition).

3.2 Dirichlet Kernel and its properties

Let >.°° _ f(n)e™* be the Fourier series of f € Cyr[—m, 7] and
N .
Sn()@) = > fme™, zel-m]
n=—N

be the N th partial sum of Fourier series f(x).

Then
Moo

SN = Y (o= [ s maner
n=—N -

N

— i _ﬂ. f(t)( Z e—inteinrc)dt

2
n=—N

N

_ _‘n' f(t)(% Z e_in(m—t))dt

n=—N
= f@&)Dn(z —t)dt
1 N inx
where Dy (z) = 5- >, __ e
Observe that,
1 X
D _ inT
~() - n:Z:N e

2N

1 . .
— — ¢ iNxz § ein
27

n=0

1 2N
_ 767iNz e(im)"
27 ;

_ iefin 1— (eia:)QNJrl
27 1—ei®
1 e~ Nz _ ei(N+1):1:

T or 1—e¢®

1 e~ N+3)z _ Gi(N+3)z

ix

2 e‘%—ez

= Dy(z) = LsinNtg)e g o [—m,m

in Z
2m sin 3

is called the Dirichlet’s Kernel. So,

swi@)= [ 50DxGe— it

14



Now the properties of Dirichlet’s kernel are:

(i) Dy is even function.
(i) [ Dn(z)dz =1 VNe€N

(iii) limp—o0 /7 |Dn(z)|dz = .

3.3 Some Important Theorem Related to Composition Op-
erators

Theorem 3.3.1. Let f € Cor[—m, ] and Sn(f) be the N-th partial sum of Y oo f(n)e™* and
N i
tn(x) =, N Cne™. Then,

= Sn(Hllz2 < [If = twll2-

Moreover the equality holds <= f: ¢, VvV —N<n<N.

Proof:
If —tnllz =< f—tn, f—tn>
=< f,f>—<fitn>—<tn,f>+<tn,tn>
= [I£115 — 2Re < f,tx > +|[tnll3 (1)
Now,
||tN||g =<tn,tny >
N ) N .
_ < Z Cneznz’ Z cneimz>
n=—N m=—N
N N
_ Z Cn o < eznw’ezmz >
n=—N m=—N
N . _
— Z |Cn|2 g eiTzac’eimx >— 1 Zf m=n
n=N 0 if m#n
Again,

N
<ty >=<f, Y cne™ >
n=—N

N
= Y < fems
n=—N

N oo

= Z Cn— f(x)e ™ dy
n=—N 271- -7

N

= Z Enf(n)

n=—N

15



And f = Sn(HIF =< f = Sn(f). f = Sn(f) >

=<f,f>=<[f,5v(f)>—=<Sn(f),f>+<Sn(f),Sn(f) >

N
=[Ifll5 = 2Re < f.Sn(f) >+ > |f()P
=—N
N N
= [IfIE =2 _If P+ > Ifm)I
—N n=—N
N
=fIE— > If)P
n=—N

Now from equation (1) we can write ,

N
I/ —tnl2 = |If]2 - 2Re Z Enf(n)+ Y leal®
n=—N

n=—N

N

= |IfI12 - Z f(n Z 1)) = 3 @nf(n) +cnf(n) +

n=—N

= [1f = Sn(HIE + Z (1) = enf(n) — cnf(n) + [cal?)

N
=[If =Sx(DIF+ D lew—F)P?
n=—N
== 1f = Sn(DIE < IIf =t VI3
= I1f = SN2 < 1f =t N2

Equality holds <~ ZQL_N len — f(n)|2 =0

e cnzf(n) V—N<n<N\.

Corollary 3.3.2. f € Co[—7, 7] then ZZO?OO |f(n)|2 < ||f||%
Proof: ‘- I1f = Sn(f)ll2 >0

IIf = Sn(HIE =< f—=Sn(f), f—Sn(f)>

N

D el

n=—N

=< f,f>—<[f,Sn(f) > = <SNn(f), [ >+ <Sn(f),Sn(f) >

N
= |IflI3 = 2Re < £,Sn(£) >+ > |f(n)?
n=—N

16



N

N
=13 =2D_ lf PP+ Y fn)
-N

n=—N
N A
=[AB- Y fmP = o
n=—N
= SN _NIf@P<|IflI3 YneN

= Yoo LF )1 < 1I£113

this inequality is called Bessel’'s inequality.

Note 3.3.3. (1) Let f € Cy[—m, 7] and P(z) = Zr[j:f]v e then

f = Sn(Dllz2 < [If = Pll2-

(2) Given f € Cor[—m, 7], 3 a sequence of trigonometric polynomial say P, , such that P, — f in
(Con[—m, 7], <,>) as n —» oo.

Theorem 3.3.4. Let f € Cor[—m,w|. Then we have the followings :
(i) Sn(f) — f as N — o0 in (Cox[—7, 7], <, >).

@15 = 3200 | (n)]? [Plancharal Theorem]

n=—oo

(ii)If g € Cor|—m, 7|, then< f,g >= > f(n)g(n). [Parseval’s Theorem]
i.€.
L, —— R
7. | fla)g(a)de = > fm)gn)
Proof:
(i) Given f € Cor[—m, 7], let € > 0 the 3 a trigonometric polynomial P(w):zg:_N cn €™ such that
lf = Pll2 < e
Also we know that

I[f =SN(Ollz <|[f=Pll2 VNeN

= ISn(f) = fll2<e VYN>M
Hence ,
NSN(f) = fll2—0as N — oo

= Sn(f) — f as N— o0 in (Cor[—m, 7], <,>).
(i) Now from (i) we can write ,
SN(f) — fas N — oo in (Con[—m, 7], <,>)

17



= SN (N2 — [Ifll2 as N — o0

- ISn (N3 — [IfI3 as N — o0
= 25:7N|f(")|2 — ||f]? as N — o
= AP =300 1 f(n)2.

(i1i) Let f,g € Cox[—m, 7| and
~ S fEn and gy~ S Gn)en

n=—00 n=—oo

Since f € Cor|—m, 7|, so from (i) we have ,

Sn(f) — fas N — o in (Cox|—m, 7],<,>)

Now,
Isw(g - falld =5 [ 151 f(@)g@)Pds
— o [ lsw@) - ) Pas
< lISn(r) = fIB llgllz — 0 as N — oo
- Sn(f)g — fg as N — o in (Cax[—, 7))
Then, )
57 [ SvD@a@) St
<o [ 1@ - f@lgte)lds
=2 / Isn(N)@) = F@IM / l9() *da)’?

—0 as N — o0

= —/ Sy f(zx)g(x)dr — — /f g(zdz as N — 0o (%)

Now observe that,

18



N T~
> fn) 5 [ gmme s
n=—N -7

N N -
Z f(n) §(n) (%)

n=—N

Now using (x) and (»x) we have ,

m o N 7
%[ﬂf(x)g(xdx: Z f(n) gn) as N — o0

n=—N
— <fg>= > fn)gn)

Moreover,

o | @R = 3 (P

n=—oo
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Chapter 4

Littlewood’s Theorem

In this chapter I introduce the Hilbert space H? of analytic function, discuss its norm, and give

the original proof that every composition operator takes H? boundedly into itself.

4.1 The Hardy Space H?

Definition 4.1.1. A function
f(z)=>_ f(n)z" e HU) (1)
n=0

belongs to the Hardy Space H? if its sequence of the power series coefficients are square summable,

ie.

H?>={feHU): Y |f(n)* < oo}

where U=Open unit disc ={z € C: |z| < 1}
and H(U)= The space of the holomorphic function

={f: U — C holomorphic}.

Example 4.1.1. f(z) = sinz, f(z) =cosz, f(z)=¢€*

these all are holomorphic in open disc and also square summable.

Note 4.1.2. Every square-summable sequence {f(n)} = {f(0), f(1), f(2),...... } of the complex
numbers is the coefficient sequence of an H?-function; if {a,}5°, is square summable, then it is
bounded, so the corresponding power series ZZOZO anz™ converges on U to an analytic function that
belongs to H?.

By the uniqueness theorem for power series , the map that associate the function f with the
sequence {f(n)} is therefore a vector isomorphism of H? onto I2.

where {2=The Hilbert space of square summable complex sequences.
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Now we can turn the, H? into a Hilbert space by declaring the map to to be an isometry :
[o o]

£l = 1 ()

[N

(f € H?)

So some properties of H? follow readily from this definition. Now using this the next result

shows, the H? function cannot grow too rapidly.

Growth Estimate: For f € H?

[I£1]

for each z € U.

Proof: The equation (1) gives the power series representation of f as

o0

= fn)"

Now applying the Cauchy-Schwarz inequality to this power series representation of f, we obtain for
each z € U,

2 <Y 1 F ()]l
n=0
Z|f 2)z Z|z|2"%

= |IFIl L+ 2+ J2* + ) \fII*ZI 2)%]
n=0
=1I£1l/(5 H2>% [ 2] < 1)
I1£]]

VI=TlP

Corollary 4.1.3. Every norm convergent sequence in H? converges (to the same limit) uniformly
on compact subset of U.

Proof: Suppose {f,} is a sequence in H? norm-convergent to a function f € H?>

ie. ||fn— fll — 0.

Now for 0 < R < 1, from the Growth estimate

for each fixed n,

B Ifa = £I

<M= Sl
Vi

So f, — f uniformly on the closed disc |z| < R.

- 0< |z <R<1]
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Since R is arbitrary, f,, — f uniformly on every compact subset of U.

Note 4.1.4. Tt is also easy to see from the definition that H? contains some of unbounded functions.

For example,

It is unbounded because,
asz — 17, logl—2z — —
= asz — 17, logi — 00

However the definition of H? in terms of the coefficients more often obscures than reveals. Here

two important facts are arise :

e H> C H?. More generally, if b € H>® and f € H? then the pointwise product bf € H?2.

(where the symbol H* denotes the space of bounded analytic functions on U)

e If © is a holomorphic self-map of U, then f o € H?. (This statement is known as Little-

wood’s Theorem.)

Both statements say something about linear operators. The first one asserts that the operator

of "multiplication by b”,

Myf = bf (f € H?)

takes H? into itself, while the result we are calling Littlewood’s Theorem says the same thing about

the composition operator C.:

Cof = fop (f € H?).

4.2 H? via Integrals Means

Suppose f(z) = 3227, f(n)z" is a function of holomorphic on U.
Writing z = 7€, and using the orthogonality of the functions {e’?}5° in L2, for 0 < r < 1 we

have,

2 J_,
= Z |f(n)|*r®" [By Parseval’s theorem]
n=0
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<SP fo<r<]
n=0

If f € H? then
Mg (f,r) <Y IF )P = 11111
n=0

- Ma(f,r) < |[If]l
So  Ms(f,r) is bounded by H? norm of f.

Conversely, if
lim Ms(f,r)= M < oo

r—1-

then for each non-negative integer N, the N-th partial sum of the power series of f

N o0
SofmPr <Y f )P < P
n=0 n=0

So sending  to 1 we see that each partial sum of the series for || f||? is bounded by M?2.
Hence this ia true for the whole series .

Thus f € H? and ||f]| < M

This complete the derivation of the alternative expression for the H? norm. i.e. ||f|| = oo whenever
f ¢ H>
Proposition: Suppose f is a holomorphic on U. Then as » — 1~ the mean My (f,r) increases to
IFALE
1P = tim o [ IseePas, ()
r—1- 27 J_

thus f € H? if and only if My(f,r) is bounded for 0 < r < 1.

To test the utility of these results, let us return to the two important facts left hanging at the
end of the last section.
For each b € H* let

[[bl[oc = sup |b(z)].
zeU

Since the integral of the large function is larger , So we can write Ma(b,r) < ||bllcc, VO <7 < 1.
Since H*® C H?
oobe H? with |b]] <|]b]]o
Now L
bfIP = lim — bf)(re®®)>do
A1 = tim_ 5o [ 1er)ee?)

= lim i/ b(re®) |2 f(re'®)|?d6
™ J)_

< tim_(sup o) o= [ 1700

—T
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= 1617 < Tim, - (b3 5 S, 1F (ret)) 20 = [[b]IZ 111112

00 271
= ofl] < [ollol £l (b€ H>, fe H?) (5)

—  for each f € H? , the pointwise product bf € H?.

4.3 Littlewood’s Subordination Principle

Fortunately, none of this discouraged Littlewood from using the tools at hand to construct the
beautiful proof we are going to present. Everything revolves around the special case ¢(0) = 0,
after which the result follows by means of the manageable conformal change of variable. The case
©(0) = 0, which is only one Littlewood actually considered, furnishes two surprises. First, the proof
requires only the fact that, since ¢ maps U into itself, so from (5) the multiplication operator M,

acts contractively on H?,

IMfI <Al (f € H?) (6)

Second, the contractive property of M, get passed on to Cl,.

Recall: A linear operator T on a Hilbert space H is said to be bounded if it takes the unit ball B

into a bounded set., and that the norm of such an operator is defined to be

Tl = sup{||TfI| : f € B}

So the equation (5) gives , if b € H> then the operator of multiplication by b is bounded on H?,
and has norm < ||b]|oo-

Note 4.3.1. The bounded linear operators on a Hilbert space H are precisely the continuous ones.
If [|ITf|] < ||f]| for each f € H(i.e. ||T|| < 1) then T is called a contraction on that Hilbert space

H. Thus the multiplication operator M, is a contraction on H 2.

Littlewood’s Subordination Principle(1925):
Statement:suppose ¢ is a holomorphic self-map of U, with ¢(0) = 0. Then for each f € H? ,

Cof € H? and ||Cofl| < [I£]l

Proof:The backward shift operator B , defined on H? by

Bf(z) =3 f(n+1)z" (f(z) =) f(n)z" € H?)
n=0

n=0
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From the define of Bf(z) for any f € H(U) we can write following two identities:
f(2) = F(0) + zBf(2) (z€U) (7)

B"f(0) = f(n) (n=0,1,2,...) (8)

To begin the proof assuming f is a holomorphic polynomial. Then,

|fow(2)] = 1f(e(2))]
= [an@(2)" + an—190(2)" " 4 s + a1p(2) + ag|
< lanlle(@)]" + lan-1llp(2)[" ™" + oo + |ar]lo(2)] + |ao]
< an| + [an—1] + cooveee + |ao] (- le(z)] < 1)

=>  foyis bounded on U.

So from the previous theorem we can say that
foype H? i.e. C,f € H.

Now it is remains to proof that , NCH < |1l
We begin this norm estimate by substituting ¢(z) for z in (7), to obtain

f(e(2)) = £(0) + ¢(2)(Bf)(¢(2))

Rewriting in the language of composition and multiplication operators as

C@f = f(O) + chsoBf (9)

Now
IICofIIP = < Cof,Cof >=<fop,fop>

=< f(0) + M,C,Bf, f(0) + M,C,Bf >
=|£(0)]* + |M,C,Bf|* +2Re < M,C,Bf, f(0) >

Since ¢(0) =0 then we can say < M,C,Bf, f(0) >=0. So,
ICFI? = [FO) + My Co BfII?

< [f(OP +IC,BfI]” (10)

where the last inequality follows from (6), the contractivity property of M.

Now successively substitute Bf, B2f, B3f, ..... for f in (10) we get,
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ICBIII?

N

IBfO)]* +IC.B*fII*

1C. B> fII?

IN

|B2f(0)? + [|Co B> f?

1C.B"™ fII* < BYO)P +[ICB"T I

Putting all these inequalities together , we get

n
ICofIP <Y IBEFO)? +11Co B™ T £
k=0
for each non-negative integer n. Since f is a polynomial and choosing n be the degree of f, then
B"t1f = 0. and this reduces the last inequality to

ICFI2 <Y 1B F(0))

k=0
= Z |f (k) |? (using 8)
k=0

=1/

which shows that Cy, is an H 2_norm contraction , at least on the vector space of holomorphic poly-

nomials.

For finishing the proof, suppose f € H? is not a polynomial. Let f, be the n-th partial sum of
its Taylor series f(2) = Y00 f(n)2" .

Then f, — f in the norm of H? i.e. ||full2. — [|f]]2-

Since, every norm convergent sequence in H? converges uniformly to the same limit on compact
subset of U.

So, fn — f in the compact subset x of U.

Hence , fnow — fopin the compact subset .

Clearly ||fal| < |1/

And we have just shown that, ||fn o ¢|| < ||fnll- (fn is the n th partial sum so it is n-th degree

polynomial.)

Thus recalling the abbreviation Ma(f,r) for the L? norm of f over the circle of radius r and for
fixed 0 < r < 1 we have ,

My(fop,r)= lim My(fnoep,r) (“fnop — fopink)
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<lim sup |[|fno ¢l
n—o0o

<lim sup {|fn]l CoAllfno FIF<(1lD
<171l CoAlfull < T1FID-
Now,
1f ol = tm M;(fop,r) <|IfI
= I1f ol < Il
i-e. CfII < 1Al (for each f € H?)

Hence complete the proof.

4.3.1 Proof of Littlewood’s Theorem

Littlewood’s Theorem: Suppose ¢ is a holomorphic self-map of U. Then C,, is a bounded operator

on H? and

1+ |(0)]

ICel| < 1= 1000
l0(0)]

Automorphism-induced composition operators: To prove the C, is bounded even when ¢

does not fix the origin, we utilize the conformal automorphisms to move points of U from where

they are to where we want them. For each p € U , the special automorphism «, : U — U s.t.

a(e) = = (1)

. This is the special automorphism of U which interchanges p with origin, and is its own inverse.
Writing p = ¢(0). Then the holomorphic function 9 = «, o ¢ takes U into itself and fixes the origin
i.e. ¢(0) = 0. By the self-inverse property of o, we have

QDZQpva

and this translate the operator equation C, = CC,,,.
We have just seen that, Cy is bounded (in fact a contraction, from the Littlewood’s Subordina-
tion principle), and we know that the product of two bounded operator is always bounded. So to

proof C, is a bounded operator, we have to show C,, . Thus, the boundedness of Cy on H 2 will

follow from the following lemma.
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Lemma 4.3.2. For each p € U the operator Cy,, is bounded on H?. Moreover

1+ |p|
1 —|p|

|Ca, I <

Proof: Suppose that f is a holomorphic in a neighbourhood of the closed unit disc, say in RU for
some R > 1.Then the limit in formula (4) can be passed inside the integral sign, with the result that,

191 = o= [ 15y pao

—T

Then Ly
o0l =5 [ Ity P

—T

— o [ 1Pl e

= o [P e = 22
L o [ ielan
il

= the desired inequality holds for all functions holomorphic in RU; in particular it holds for
polynomial. It remains only to transfer the results to the rest of H2. And to show this we have to
repeat the argument which used to finish the proof of Littlewood’s Subordination principle.

(Hints: we have take the N-th partial sum of the Taylor series of f and that N-th partial sum will

treat as polynomial.)

Note 4.3.3. At this point we have assembled everything we need to show that composition operators
act boundedly on H?2.

Littlewood’s Theorem: Suppose ¢ is a holomorphic self-map of U. Then C, is a bounded

operator on H?, and

L+]¢(0)
Il <\ T2

Proof: From Automorphism-induced composition operators, we have C, = CyC,, , where ¢(0) = p
and ¥(0) = 0.

Now from the last lemma and Littlewood’s Subordination Principle show that, both operators of
the right-hand side are bounded on H?2.

Hence, C, is the product of bounded operator on H?, and therefore C,, is itself bounded.
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CICa | < 1Pl and C, is contraction. So we can write,
- epll =\ T—]p] ¥

L+ |(0)]

< ||C Co <
[|Coll < [ICy[ICa, | 1 —|p(0)]
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Chapter 5

Compactness: Introduction

Having established that every composition operator is bounded on H?, now we turn to the most

natural follow-up question:
W hich composition operators are compact ?

The property ”boundedness” for composition operators means that each one takes bounded subset
of H? to bounded subsets.

The question above asks us to specify precisely how much the inducing map ¢ has to compress the
unit disc into itself in order to ensure that the operator Cjs compresses bounded subsets of H? into

relatively compact ones.

5.1 Compact Operators

Definition 5.1.1. Relatively compact: A subset of a topological space is said to be relatively

compact if its closure in the space is compact.

A linear operator T on a Hilbert space H is said to be compact if it maps every bounded set into
relatively compact one. It is not necessary to check every bounded set here; since translation and
multiplication by a scalar are homeomorphism of H, it is enough to test only on the unit ball.

By Heine-Borel theorem, every linear transformation on a finite dimensional Hilbert space is
compact. Similarly, on an infinite dimensional Hilbert space, every bounded operator with finite
dimensional range is compact.

My first observation is that th compact operators are precisely those that can be approximated
by such finite rank operators.

Actually compact operators on Hilbert space is an extension of the concept of a matrix acting
on a finite-dimensional Vector Space; i.e. Compact operator are precisely the closure of finite rank

operators in the topology induced by the operator norm.
Finite Rank Approximation Theorem: Suppose T is a bounded linear operator on a Hilbert
space H. Then T is compact iff there is a sequence F,, of finite rank bounded operators such that

||T — F,|]| — 0.
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Proof: Suppose first that , T is compact on H. Let e, ba an orthonormal basis for H and consider
the projection operators .
Pof =) (frex)ex  (f€H)

k=0
where ” <,> 7 denotes inner product in H.
So clearly, || P, f]| <||f|| for each n
—> P, is a contraction on H and ||P,f — f|| — 0 for each f € H.
Let B denote the unit ball of H (open or closed).
We are assuming that T'(B) is relatively compact in H. sine a absolutely fundamental fact about

sequences of transformations on a metric space:

Pointwise Convergence + Equicontinuity = Uniform convergence on compact subsets.
We just observed that, P, — I (the identity map) pointwise on H.
Since, the operators P,, are all contractions, the whole family is equicontinuous on bounded ses,
so applying the equicontinuity principle state above to the closure of T(B), which are assuming is
compact, so we can say that P, — I uniformly on T'(B).
ie. P, T — T on B, which means that ||P,T — T|| — 0. Since P,T is bounded finite rank

operator for each n, this establishes the desired approximation.

Conversely, suppose some sequence F;, of bounded finite rank operators converges in operator norm
to T. We need to show that T'(B) is relatively compact in H.

Another result metric space theory makes short work of this proof:

A subset K of a metric space X is relatively compact iff for every ¢ > 0 there is a finite set

of points N, C X such that each point of K lies at most ¢ distance for N..

The set N is often called ”totally bounded.” So a set is totally bounded iff it is relatively com-
pact. If K is relatively compact, we get IN. by covering the closure of K by open e- balls, extracting
a finite subcovering, and choosing as N, the centers.

In other way , if we have N, then for any open covering of the closure of K, a finite covering
subordinate to the original one, from which follows the compactness of that closure.

Returning to Hilbert space , let € > 0 be given, and fix a value of n so that ||F},, — T|| < €/2. Let N
be an €/2-net for F,,(B). Then it is easy to check that N be an e-net for T'(B).

Now from the above characterization it follows that, T'(B) is relatively compact.

5.2 First Class of Example

The most drastic way ¢ can compress the unit disc is to take it to a point, in which case the resulting
composition operator has one dimensional range(the space of constant functions), and is therefore
compact. The next result shows that this compactness persists if we merely assume that ¢(U) is

relatively compact in U .
First Compactness Theorem:If ||¢||o, < 1 then Cj is a compact operator on H?.

31



Proof:For each positive integer n define the operator
T.f =) fk¢"  (feH).
k=0

Thus 7T, maps H? onto the linear span of the first n powers of ¢.

By our comparison of H? and H* norms, T}, is therefore a bounded, finite rank operator on H?>
and we can obtain ||T,,|| < v/n + 1.

Our claim is ||Cy — T},|| — 0.

Now, 1Co =T fIl - =130 s F(R)SM 1o
< S 16t
k=n-+1
< S 1w Il
k=n+1
< IF®PYECY el
k=n-+1 k=n-+1
Pllnt
o L)
V1-=lloll%
The given condition is ||¢||cc < 1. Thus
n+1
||C¢—Tn|\§w—>0 as m— 0.

V1I=ll9l%

This exhibits that Cy is an operator norm limit of finite rank operators, so it is compact on H?.

This results shows that H2 supports a lot of compact composition operators. In order to state
the improved result without distracting complications, we need a boundary version of the integral

representation of the H2.

5.3 A Better Compactness Theorem

The H? norm revisited: Since the polynomials are dense in H? it seems reasonable that some
form of this boundary representation of the norm should carry over to all of H2. If f € H? , then
inf

because the coefficients are square summable , the Fourier series Y -, f(n)e™? converges in L? to

some f* € L2, so clearly the equation

1P = 5= [ 1re)Pas (1)

—T

holds with f(e??) replaced on the right by f*(e?). What makes the formula really useful in the
study of H? is something much deeper.
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The Radial Limit Theorem: Suppose f(z) = > -, f(n)z" is a function in H?, and f* is the
function in L? with the Fourier Series Y-, f(n)ei®. Then
lim  f(re®?) = f*(e?)
r—1-
for almost every e’ € 9U, and the H? norm of f is theL? norm of f*.
The deep part of the theorem is the existence and identification of the radial limit function f*. From

now on we will use this boundary form of the H? norm whenever it is convenient, always writing
f(e'?) instead of f*(e?) for the radial limit.

The better compactness theorem: In the proof of "First Compactness Theorem” we used
the fact that the supremum norm dominates the H? norm. The calculation would have looked like

as follows:

oo

1Cs =T)fll < > IfR)II"|

k=n-+1

oo o0

(D F®RPEECYS (1eMHY?

k=n+1 k=n+1

IN

oo

(> H" 20

k=n-+1

IN

o

— 1Cs = Tall < () [le"IP)V2
k=n-+1

and as before, this implies the compactness of Cy provided that
oo
Do l10")7 < e (2)
n=0

Condition (2) can in turn be rewritten as follows, where we use the boundary form of the H? norm

discussed in the last section.
oo > — " do
> | 1ot

1 T .
=5 | D_l6(@)Prde [by Fubini
T

~Tn=0

1 [T 1
2m /_77 1—[p(e?)]?

where the interchange of integration and summation is justified by positivity, and the summation of

the geometric series is already justified by its convergence.
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The Hilbert-Schmidt Theorem for composition operators:

Tt .
/_,r T laEeop® < )

then Cy is compact on H2.

Remark:The heart of our proof showed the integral condition (3) to be equivalent to (2), which can
be rewritten Y [|Cy(2")]]* < o0.

A operator T on a Hilbert space H is called a Hilbert-Schmidt operator if, for some orthonormal
basis {e,} of H ,if

oo
Z || Ten||? < oo.
n=0

The argument that deduced the compactness of Cy from (2) works in general and shows:

Every Hilbert-Schmidt operator is compact.

The title of the Theorem above comes from the fact that its proof shows Cy to be a Hilbert-Schmidt
operator whenever ¢ satisfies (3).The Hilbert-Schmidt condition (2) does not depend on the partic-
ular choice of orthonormal basis, shows that our proof actually characterizes the Hilbert-Schmidt
composition operators as the ones for which ¢ satisfies condition (3).

In the last section we showed that Cy is compact whenever ||¢||s < 1. Our Hilbert Schmidt Theo-

rem allows for a significant improvement.

The Polygonal Compactness Theorem: If ¢ maps the unit disc into a polygon inscribed in

the unit circle, then Cy is compact on H2.

The proof will show that, Cy is actually a Hilbert Schmidt operator. The major step involves
proving the result for an important class of example.
Lens Maps: For 0 < a < 1 define ¢, to be holomorphic self-map of U i.e. ¢, : U — U that we

will get by using the Mobius transformation

o) = 1 (@)

to take U onto the right half-plane IT = {z € C : Re z > 0}, then employing the a-th power to
squeeze the half plane onto the sector {|argw| < an/2}, and completing the task by mapping back
to U via 0~1. The result is:

o(z)* =1

ba(2) = o) +1

()
Because ¢, takes the unit disc onto the lens-shaped region L., we call it ”lens map”. Our first

asserts that each lens map induces a Hilbert-Schmidt operator on H2.

Lemma: Each lens map satisfies the Hilbert-Schmidt condition (3).
Proof:For convenience we write ¢ instead of ¢,. Since ¢ fixes the points +1 and sends every other
point of AU into U. it is enough to examine that the integrability 0f (1 — |¢(e?)|?)~! over small

arcs centered at £1, and by symmetry it is enough to consider just one of these points, say +1.
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To study the behavior of ¢ near this point, observe that

2
= o(e) =icot(0/2)

so for 0| < w/2,

) = |co 2
o (e”)] = |eot(6/2)] < a

whereupon

11— ¢(e)| > E > constant |0|*.

2
(e +1
Since 0 < o < 1 this estimate shows that the function [I — ¢(e?®)]! is integrable over the interval

-3, 3

Now each point ¢(e?) lies between the real axis and a line through the point +1 that makes an

angle ar/2 with that axis. Now using the law of cosines we can write
1 — ()| > constant.|]1 — p(e?)]

for all @ near 0 i.e. the distance from ¢(e'?) to the unit circle is about the same as its distance to the
point +1. Thus (1 — |¢(e??)[?)~! is integrable in an interval centered about # = 0, and this complete
the proof of Hilbert Schmidt Theorem.

Proof of the Polygonal Compactness Theorem:
From the last proof of Hilbert-Schmidt theorem for composition operator showed that, for any
holomorphic self-map ¢ of U,

i . ; — - P 2
277/7r 1_|¢(€i9)‘2d9 ;”Cé( i (6)

where we allow the possibility that one side of the equation (and therefore both sides) might be

infinite.

To begin the proof, suppose that, ¢ maps the unit disc into one side of the lenses L, i.e.
¢ : U —> L is defined. Then ¢ = ¢, " 0 ¢ is a holomorphic self-map of U, and ¢ = ¢, o 1. Thus
C¢ = C¢C¢a, SO

1Cs I < ICy ] |G, (2] VneZt.

Our lemma about lens maps along with (6) above shows that

1 i 1 0
9 T 7 oo < 2 ny\12
2m [ﬂ 1- |¢(619)|2d9 < 1G]l Z 1. (z")II° < o0 (7)

n=0

This shows that anything that maps the unit disc into a lens induced a Hilbert-Schmidt operator.
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Now for the general case, the factorization argument above shows that it is enough to consider
maps ¢ that take the unit disc conformally onto polygons inscribed in the unit circle. Each such ¢

extends to a homeomorphism from the closed disc onto the closure of the polygon.

Consider a vertex of the polygon, which, without loss of generality, we may assume to be the
point +1. We may also assume this point is fixed by ¢. Thus the map x = (1 + ¢)/2 fixes +1 and
takes the disc into a lens L, for some a sufficiently close to 1, so by the work of the last paragraph
the function (1 — |x(e?)|?)~! is integrable over the unit circle. Now as # — 0, both ¢(e*?) and
x(e") approach +1, while staying inside L,, (i.e. they approach +1 ”non-tangentially”), so we have
for all sufficiently small 6,

1—- ¢(e"9)‘ L= p(e?)?
2 - 2

1= |x(e”)]* = 1 = x(e”)| = |

Thus, the reciprocal of the function on the right is integrable over an interval symmetric about
0=0.

The function (1 — |¢(e?®)[?)~! is therefore integrable over an interval centered about the pre-
image of each vertex of the polygon, so it is therefore integrable over the whole unit circle. Our
Hilbert-Schmidt Theorem now shows that Cy is compact on H?.

5.4 Compactness and Weak Convergence

When studying compactness in metric spaces it often helps to express everything in terms of sequen-
tial convergence. The same holds for the study of compact operators. The definition of compactness
for Hilbert space operators can be rephrased to read something like “compact operators are the ones

that take weakly convergent sequences into norm convergent ones.”

Weak Convergence Theorem: For ¢ a holomorphic self-map of U, the following statements
are equivalent:

(a) Cy is a compact operator on H2.

(b) If {f,.} is a sequence that is bounded in H? and converges to zero uniformly on compact subsets
of U, then ||Cy fr]| — 0.

Proof: The key to this proof is the fundamental growth condition (2), which asserts that H? con-
vergence implies pointwise convergence on U, and that bounded subsets of H? are, as classes of
functions, uniformly bounded on compact subsets of U. Let B denote the closed unit ball in H?2.
(a) = (b): Assuming that Cy is a compact operator, i.e., that Cy4(B) is a relatively compact
subset of H?.

We are giving a sequence {f,} that lies in M B (the ball of radius M), and converges to zero uni-
formly on compact subsets of U i.e. f, — 0 in k.

Claim s [|Cy ful] — 0

i.e. it suffices to show that the zero-function is the unique limit point of the sequence {Cyf,} for

the norm topology.
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since f, — 0 in k which implies f, o ¢ — 0 in k
- C¢fn — 0.

Since H? convergence = pointwise convergence in U.
So zero is the only possible limit point.
Since Cy is compact and {f,,} lies in M B.
Now by the compactness of Cy the set {Cy fy, } is relatively compact, so there must be a limit point.
Hence the theorem is proved.
(b) = (a): Suppose {fn} is a sequence of functions in B. We have to show that the image
sequence {Cyf,} has a convergent subsequence.
Since the functions in B are bounded uniformly on compact subsets of U.
By Montel’s Theorem we can say 3 a subsequence {giy = fn, } that converges uniformly on compact
subsets of U to a holomorphic function g.
Claim g € H?.
Indeed, for each 0 < r < 1,
1 7

, 1T ;
o [ lotreio)ds = tim 7/ 19 (rei® [2d6 < sup ||ge || < 1
(L k—soc0 27 - k

= |lg|| <1 — g€ H%

Then the sequence {gx — g} is bounded on H? and g, —g — 0 in k .
By the hypothesis (b) we can say that,

1Ce (g — 9)I| — 0
= The image sequence {Cy f, } has a convergent subsequence.

i.e. From finite rank approximation theorem we can say that, Cy is compact operator.

5.5 Non-Compact Composition Operators

We use the "sequential” characterization of compactness to show that Cy can fail to be compact if
#(e'?) approaches the boundary of U either too quickly or too often. Our first example shows that
C, can fail to be compact even if |p(e?’)| = 1 at a single point e? € OU.

Example: (The values of ¢ approaches the boundary too quickly).
For 0 < A <1, Let, ¢(z) = Az + (1 — A). Then Cj is not compact on H?.
Proof: For each fixed 0 < r < 1, define

V1—1r2

fr(z) = 1—rz

, zeU

Since,

o 1/2
A1l = (Z If(n)|2>
n=0
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So, ||f-|] =1 i.e. each of these functions has norm 1.
And as r — 17, f, — 0 uniformly on the compact subset of U.

Now
V1—7r2
Cofr="Ffrop=FfAz+1-X) =
of frod=fr(Az+ ) 1—r+rA—riz
VI—12 A A 2
_ r n r . r 2
1—r+ri 1—r+ri 1—r+r
Now,
1—72 1
ICofr 112 = lfr o gl” = :
1—-r+rX)? 1-— 7(1_’:;\;\)2
1—r? 147

A—r+2N(l—r) 1+r2r-1) (o<r<1)

So as, r — 1—

2 1
|fro0l> — X
= ||Csfrll — A2 #£0

So by the previous theorem, Cy is not compact.

If a map induces a non-compact operator, then any map whose values approach the unit circle
”faster” should also induce a non compact operator. The theorem below formalizes this idea, and

allows us to turn results for specific classes of maps like the ones above into general compactness

theorems.

Comparison Principle for Compactness:
Suppose, ¢ and 1 are holomorphic self-maps of U with ¢ univalent and (U) C

compact on H?, then so is Cy.

Proof: We use an argument similar to the one that occured in the proof of Polygonal Compactness

Theorem.

Since ¢ is univalent

that means, ¢! is also analytic in U and ¢(U) C ¢(U).
So, x = ¢! 09 which takes U — U holomorphically.
Thus ¢ = ¢ o x

= Oy =C,Ch.

If S and T are operators on a Hilbert space H with S bounded and T compact, then both ST

and TS are compact.

The bounded operators preserve both boundedness and relative compactness of subsets of H.

Since Cy is compact and Cy, is bounded , so from the above complement we can say that C, Cy = Cy

is compact. This completes the proof.

We can use our new Comparison Principle to generalize the class of examples that led off this

section.

38

o(U).



Corollary: Suppose ¢ is a univalent self-map of U, and that ¢(U) contains a disc in U that is
tangent to the unit circle. Then Cy is not compact.

Proof:We may suppose, without loss of generality, that the disc (saying A) is tangent to the unit
circle at +1.

Therefore if A be the radius of disc A then we have 0 < A <1 and A = AU + (1 — \) C ¢(U).
Thus A is the image of U under the map ¢ (z) = Az + (1 — A) and ¢(U) C ¢(U).

Now from first result of this section Cy is not compact. By the Comparison Principle, Cy is not

compact.

* If ¢(z) approaches to the unit circle to closely’, is not compact as a univalent map contains

a disc which tangent to a unit circle in U.

Remarks: (a) In the Comparison Principle we cannot do without the univalence of ¢. Indeed,

there exists a map that takes U onto itself in no more than two-to-one fashion, but nonetheless
induces a compact composition operator.

(b) Later, we will show that non-compactness persists if ¢)(U) contains a domain whose boundary
approaches the unit circle ”as smoothly as the curve y = 2* approaches the real axis (1 < o < 2).”
The corollary above deals with the case @ = 2, while the Polygonal Compactness Theorem shows
that the result fails for a = 1.

(¢) Subordination. In the proofs of both the Polygonal Compactness Theorem and the above Com-
parison Principle we used the fact that:

If ¢ and ¢ are holomorphic self-maps of U with ¢ is univalent and ¥(U) C ¢(U), then ¢ = ¢ o x
where x is a holomorphic self-map of U .

More generally, if f and g are any two holomorphic functions, with f = go o x where x is a holo-
morphic self-map of U, we say that f is subordinate to g (in the usual definition of subordination it

is also required that x(0) = 0, but here we ignore this .)

The above results assert that a composition operator cannot be compact if the values of its
inducing map approach the unit circle too quickly, even if this only happens at a single point. Here

is an apparently different way to defeat compactness.

Proposition:(The values of ¢ approach the boundary too often)
Suppose ¢ is a holomorphic self-map of U for which the set

E(¢) ={0 € [-m 7] : |¢(e")| =1}

has positive Lebesgue measure. Then Cy is not compact on H 2,
Proof: Set E = E(¢).
Clearly each monomial 2" (n > 0) belongs to the unit ball of H2 and the whole sequence {2} — 0

uniformly on compact subsets of U. On the other hand,

1ColeIP = 5= [ lotePrdo = 5 [ o) an = 518 > 0
™ J_r T™JE ™

= 1Cs (") # 0
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So, C4 is not compact.

Summary:We have seen that ¢ is compact if ¢(z) stays inside an inscribed polygon, but that it is
not compact whenever ¢(z) approaches to the unit circle ”too often,” in the sense that ¢(e? = 1 for
f in a set of positive measure, or "too closely,” as is the case for a univalent inducing map whose
image contains a disc that is tangent to the unit circle. These results all suggest that Cy is compact

if and only if ¢(z) does not get too close to the unit circle too often.
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Chapter 6

Compactness and Univalence

We are now ready to classify the univalent self-maps of U that induce compact composition operators
on H?. A fragment of operator theoretic folk-wisdom will help us guess the answer:
If a ”big-oh” condition describes a class of bounded operators, then the corresponding ”little-oh”

condition picks out the subclass of compact operators.

6.1 The H?-Norm via Area Integrals

We have employed each of the following formulas for the norm of a function f € H?:

A2 = S 10 = lim — / Fre®) 2o

0 r—s1- 27 o
1 (™ ;
o G

This section will contribute one more item to the list: a representation of the norm by an integral over
the unit disc itself. In what follows we write dA for two dimensional Lebesgue measure, restricted
to the unit disc, and normalized to have mass one (dA = tdzdy).

Proposition:(Area Integral estimate for the H? norm)

For f € H(U);

I = 1O < [ IF@Pa-EPdAE <l - fOF 0
U
Proof:

L /ﬂ |f'(rei9)|2d9> (1= r2)rdr

(
_9 /01 (i n2.|f(n)|2r2"2> (1= r2)rdr



=23 G - s

1
7,.271 7,2n+2 :|
0

Now

So, easily we can say that,
the quantity » ., niﬂ\f(nﬂ2 lies between ||f — f(0)[|* and ||f — f(0)||*. Hence the theorem is

proved.

6.2 The Theorem

Littlewood’s Theorem revisited:

Armed with the area integral representation of the H? norm, we can now give the ”right” proof of
Littlewood’s theorem, at least for univalent inducing map ¢(0) = 0.

For f € H?, we substitute f o ¢ for f in the equation (1),

G170 SO < [ 1700 (R0~ l:aAc2)
= [ 1F@EPA- 1) ()P aA)
< [ 1FOEDPA - eI )PAAR)  (By Schwars lomma)
U
— [ 1P @R~ wP)dAw) (Putting w = 0(2))
(V)

<|If = O <[If1I?
= 1Cs = FOI* < 2/|£11*

Now,

ICo Il < 1ICsf = FO)I[ +[1£(O)]
< 2[[f[I +[I£11 = 3[I£1l

Hence C, is bounded on H?.
At first glance this method of proving boundedness for composition operators seems to lose a lot,

since we actually know that Cy is a contraction whenever ¢(0) = 0, even if ¢ is not univalent.
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But the method provides what we need most: the ”big-oh” condition that stands behind Littlewood’s
Theorem; it is nothing but the Schwarz Lemma, disguised in the form

1— |22 = O(1 — |¢(2)|*)as|z| +— 1—, where the ”big-oh” constant is 1.

According to the Folk Wisdom dispensed at the beginning of this chapter, the corresponding ”little-
oh” condition should tell a lot about compactness.

This intuition is confirmed by the next result, which is the main result of this chapter.

6.3 The Univalent Compactness Theorem:

Statement: Suppose ¢ is univalent self map of U. then C, is compact on H? iff

lz2]—1- 1 —|%]

6.3.1 Proof of sufficiency:

We are assuming ¢ is univalent and satisfies the condition (2)

1-9(x)| _
T—[z] —

To show Cphi is compact in H 2. we employ the the sequential charaterization of compactness.

i.e. ¢ satisfies lim, -

It is sufficient to show that, if {f,} is sequence that is bounded in H? and converges to 0 uniformly
on the compact subset of U then ||cg fr|] — 0.
So without loss of generality let , ||f,| < 1Vn.

Let € > 0 be given then the condition (2) guarantees a number 0 < r < 1 s.t.
1— 22 < e —|p(2)]?) for r<|z| <1 (3)

We fix this this for the remainder of the proof. According to the area integral estimate (1) of the

H? norm:

1 _ 2 o V() 12(1 — 12/2 5
1ot = @O < [ 4 [ (o8P~ )

Given f,, — 0 uniformly on compact subset of U.

i.e. fn o — 0 uniformly on the compact subset of U.

i.e. Cgfn — 0 uniformly on every compact subset of U.

- (fn 0 ®)) — 0 uniformly on every compact subset of U. So the first integral of above
converges to 0.

Now for the second integral,

1Cofn = fa(0(0))I]” < o(1) + 6/ |fa(6(2))¢' (2)P(1 = |(2)|*)dA(2)

U—rU
<o(l)+ €/U (@) (1 = |o(2)]*)] (2)|*dA(2)
<o(l) + G/U [fa(w)P(1 = Jw[*)|dA(w)  (putting ¢(2) = w)
< o(1) + 2¢||fn — ful(O)]I? (by (1) again)
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< o(1) + 2,

where in the last line we used the fact that ||f, — fn(0)|| < ||fx]| < 1 for each n.
Since f,(¢(0)) — 0, so the above estimate shows that

limsup,||Cy fnl] < 2e.

= |Cysfnl]l — O because € was an arbitrary positive number

= Cy is compact.

The more subtle part of the theorem is the proof that condition (2) is necessary for compactness.
There are several paths to this result, each of which requires a new idea. We choose one based on

elementary operator theory.

6.3.2 The Adjoint Operator

The scene now shifts to an abstract (separable) Hilbert space H. Recall that the norm of each

element y € H can be expressed in terms of the inner product by
llyl| = sup | <2,y > | (4)
reB

where B is the unit ball in H, and the supremum is attained at the unit vector x = y/||y|| (assuming

y # 0). In particular, the linear functional induced on H by y:
T < x,y > (r € H)

is bounded linear functional on H of norm ||y||.
Now the Reisz representation Theorem asserts that each bounded linear functional on H is induced
in this way by some (necessarily unique) vector y € H.

If T is a bounded linear operator on H, and y € H, then the linear functional
r=<Tr,y > (x € H)

is bounded, so there is a unique vector in H, which we denote by Ty, that represents this functional
in equation (4). The operator T* so defined on H is called the adjoint of T} its definition can be
summarized like this:

<z, Ty >=<Tz,y > (z,y € H).

Clearly T* is a linear transformation on H, and (4) implies that ||T * || = ||T||. It is also routine to
check that
(T1+T2)"=T"+T" and (cT)" =cT™.

where the symbol T, with or without subscripts, denotes a bounded linear operator on H and c is
a complex number. In short, we have proved the following result, where £(?) denotes the space of

bounded linear operators on H, taken in the operator norm.
Lemma: The map T'— T* is a conjugate-linear isometry on L(H).
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The adjoint of a finite rank operator: Suppose T is a bounded operator of rank one on H.

This means that for some x,y € H,
Tz=<zy>z(z€H)
Using equation (5) we easily compute for each z,w € H,
<z,T'w>=<Tz,w>=<< 2,y > z,w >

=<z,y><z,w>=<2<T,W>Y >
=<z, <w,x >Y >,

from which it follows that T*w =< w,x > y.
It is customary to write the one dimensional operator T as )., so the result just proved can be

succiently rephrased as follows.
Lemma: The adjoint of a rank one operator has rank one; in fact if ,y € H, then (z @ y)*x =y Q) «.

Since every finite rank operator is a sum of rank one operators, the Lemma and the linear na-
ture of the adjoint operation yield this:

Corollary: The adjoint of a finite rank bounded operator again has finite rank.

All the results developed in this section now combine to show that the adjoint operation preserves

compactness.
Proposition: The adjoint of a compact operator is compact.

Proof: Suppose T is a compact operator on H.

By the approximation theorem we that there exists a sequence F,, of bounded finite rank operators
such that ||T — F,|| — O. Since the adjoint operation is additive and isometric in the operator
norm,

lim ||T* — F,*|| = lim ||(T — F,)*|| =0

Since each of the operators F,,* is of finite rank and bounded.

So by the approximation theorem shows that 7™ is compact.

Adjoint composition operators and reproducing kernels: Our second computation involves
the adjoint of a composition operator. Although there is no good description of the adjoint that
works for all composition operators on all H? functions, we can always compute its action on an

important special family of functions in H?: the reproducing kernels.

For each point p € U, let
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So clearly k, € H?. It is called reproducing kernel for the point p, and it gets the name from the
fact that for each f € H?,

< fiky>=Y f(n)p" = f(p). (6)
n=0

Lemma: Cjk), = k() for each p € U.
Proof: For each f € H? we have

< f,Chkp >=< Cyf, ky >= Cyf(p) = f(o(p)) =< [, kpp) >

— C;kp = k¢(p).

6.3.3 Proof of Necessity

TheoremNecessary condition for compactness Suppose ¢ is a holomorphic self-map of U and that

Cy is compact on H2. Then
1~ |o(2)]

lz2]—1- 1 —]z]

Proof: For each p € U, let

_ 2
o) = o = VLTI

kol — 1-p2
the normalized reproducing kernel for p.
We are going to show that,
ICG oIl — 0 as |p[ — 17, (7)

This will finish the proof, since from the last lemma we can say that

1008y = (1= ) g 12 = 2
= |o(p)?|

. To prove (7), recall that the adjoint operator Cj inherits the compactness of Cj.
Thus the collection of C:; images of normalized reproducing kernels is a relatively compact subset
of H?, so every sequence of these images has a convergent subsequence.
We need only show that, the zero function is the only possible limit of such a subsequence. Suppose
lpn| — 17
mboxand C *, hif,, — g in the H? norm.
We’ll be finished if we can show that g = 0.
To see this, let h be any polynomial.

Then the continuity of the inner product gives,
< g,h>=lim < Cifp, ,h >
n
=lim+/1— |p,|?2 < C*kp, , h >
n
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=lim /1= [pal? < k(). h >

= liTILn \/1 - |pn|2 h(¢(pn))
=0

where the third line follows from the Lemma at the end of the last section, and the last one from
the fact that h is bounded on U.

Thus g is orthogonal to every polynomial.

Since the polynomials form a dense subset of H?, it follows that ¢ is the zero function.

With this result, the proof of the Univalent Compactness Theorem is complete.

6.4 Compactness and Contact

The results of Chapter 5 suggested a strong connection, at least for univalently induced composition
operators, between compactness and the ”degree of contact” that the image of the inducing map
has with the unit circle.

It was shown, for example, that the operator is compact if this image is confined to an inscribed
polygon, and non-compact if the image contains a disc tangent to the circle. The Univalent Com-
pactness Theorem allows us to considerably refine these results. In this section we show that a
univalently induced composition operator will fail to be compact whenever, for some o > 1, its
image approaches the unit circle ”faster than y = x® approaches the real axis.”

In the other direction, we give an example that shows that the corners in Polygonal Compactness

Theorem can be rounded off ”just a little” without loss of compactness.

Contact with the boundary: The first order of business is to decide how to measure the or-
der of contact made by a region in U with the unit circle.

For simplicity we consider only contact at the point +1; all the arguments work with obvious mod-
ifications for any other point of OU.

Let v : [0,7] — [0,1) be a continuous function with «(0) = 0 but v(#) > 0 otherwise.

We use v to define a Jordan curve I' in U by means of the polar equation
1—r=~(0]) (16] < m).

Thus I' is symmetric about the real axis, and lies in U except for a single point of intersection with
the unit circle at + 1.

For a positive number «, let us agree to call I an a- curve at +1 if 6~*v(6) has a (finite) non-zero
limit as 8 — 0.

For example, a triangle that is symmetric about the real axis and lies in U except for a vertex
at +1 is a 1-curve, while a circle properly contained in U, and tangent to OU at + 1 is a 2-curve.

Finally, we say I approaches the unit circle smoothly at +1 if 6~1v(§) — 0 as § — 0F. Thus,
every a-curve for o« > 1 approaches QU smoothly.

We say a region w C U has contact « with the unit circle at + 1 if it contains an a-curve at +
1 (we could be more precise and say w has contact at least a at + 1). If w merely contains a curve

that approaches the boundary smoothly at 4+ 1 then we say the region has smooth contact with 0
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at that point.

We will find it useful to express these definitions in terms of distances, both in the unit disc and
the right half-plane.

Lemma 6.4.1. Suppose o > 1 Then I is an a—curve if and only if

1— 2|

lim ————
1m‘1_2|a

(z—1, z€l)

exits (finitely) and is non-zero.
Thus T is an a-curve if and only if for each of its points, the distance to the boundary is comparable
to the a-th power of the distance to +1.

Proof: For z =re? € T, we calculate
1— |22 = (1 —re)(1 — reif)
=1+72—2rcosf

= (1-7)*+r(2sind/2)?

Hence for |§] — 0,

<|1 - z|a>2/“ _ (0D + (1 + o(1))6?
L=zl DR
)

=020+ (1 o) (7

If a« = 1 then 1st summand of the last line is = 1, while if a > 1 then it converges to 0 as |0] — 0.
So the 2nd summand is also finite (non-zero) by the definition of a-curve.

This establishes our assertion.

We will be constructing univalent self-maps of the unit disc by working instead in the right half-

plane II, and then returning to the disc through the change of variable w = 7(z) = }fz Thus we
need to know how the concept of ”a-curve” fares under this change of scene. To make sense out of
what is going to happen, it helps to keep in mind that 7 transforms line segments through +1 into

other line segments, but it also transforms circles tangent to OU at +1 into (vertical) lines.

Lemma 6.4.2. Suppose v and I' are as above. Let T be the image of v under the map 7. Then Tis

an a-curve iff

limﬂ (w — co,w € T)
fwfs

exists and 1s non-zero.

Proof: The change of variable can be written z = z—ﬁ, from which follows two important distance
formulas:
1 2 4 1P = |2 PR )
—y= an — |z] = |——|*Re w.
w41 w41
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These show that as z — 1, (equivalently: as w — oo ),

1—2 11—z

[T—z* " 14z [1—z

_ 1 2 9 .
_<2+0(1))|w+1| Re w
Re w

|w|2—a’

=217%(1 +0(1))

Re w

‘w|2—o¢

So, by previous lemma we can say that which yields the desired result.

A class of examples: We can now write down for each 1 < o < 2 examples of univalent maps
¥ for which ¥(U) is a Jordan domain whose boundary is, near the point +1, an a-curve, and for
which Cy is not compact on H 2. we introduce two additional parameters a,b > 0 for later use

(inviting the reader to set them both equal to 1 in the proof below), and define
U(w) =V, 4p(w) = a+w+bw?

where the principal branch of the argument is used to define the fractional power on the right.
Clearly ¥ maps the right half-plane into itself. Let ¢ = 94 4,5 be the corresponding holomorphic
self-map of U .

Proposition: For each 1 < a < 2 and a,b > 0 the map ¢ has these properties:

(a) v is univalent on U, and ¥(U) C U U {1}.

(b)y(0U) is an a-curve at +1.

(c) Cy is not compact on H?2.

Proof:

(a) We work in the right half-plane.

Univalence follows from the fact that the derivative of ¥ has positive real part. More precisely note

that
(2—a)b

wa—l

(w) =14+ (2 —a)bw' ™ =1+
has positive real part in II — {0}.

Hence if w; and ws are distinct points of that set, and L is the line segment joining the points,then

U(wa) — W(wy) = / U'(¢)d¢ = (wa — wl)/o ' (twy + (1 — t)wy )dt.

L
Since the integrand in the last integral is strictly positive, so is the integral, hence ¥(w;) # U (ws).
The argument works as well for w; = 0 since the singularity in the derivative is integrable, and
clearly ¥ extends continuously to C, with ¥ (00) = 00.

(b)By the definition of ¥, we have for each real y,

Re¥(iy) = a+ be(a)ly[*~*
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where c(a) = cos(5(2 — a)), which, because 0 < 2 —a < 1, is a positive number. Now the definition
of U shows that |U(iy)| = (1 +0(1))|y| as |y| — oo, hence

Re ¥(iy)
1im — Y5 o
lyl—oo W (iy)]

= be(a) (9)
This result, along with Lemma 2 above shows that the boundary of ¢(U) is an a-curve at +1.

(c) To prove that Cy is not compact on H 2 it suffices, by the Univalent Compactness Theorem
of the last chapter, to show that as x — 1 (in the unit interval) we have
1 -9z
lim inf ﬁ < 00,
r—1— 1—2
This is easy: for 0 < x < 1set u= (14+x)/(1—x), the corresponding point of the positive real axis,

use the first of formulas (8) to calculate:

1—(x) 2 1+u
-z  1+¥(u) 2

14+u
a+1+u+bu—«

Since 1 < a < 2 the last expression converges to 1 as u — oo, that is, as x — 1.

Improved Non-compactness Theorem: If ¢ is univalent and ¢(U) has contact o > 1 with
the unit circle at some point, then Cy is not compact on H? .

Proof: Without loss of generality we may assume that the point of contact is +1. Thus we are
assuming that the image of ¢ contains an a-curve at +1.

By the Comparison Principle, it suffices to prove that the Riemann map of the unit disc onto the
region bounded by this a-curve induces a non-compact composition operator. So without loss of
generality we may assume that ¢ is this Riemann map.

By Lemmas 1 and 2, and (9) above, we can choose the parameter b small enough so that the part
of the boundary of ¥0,(U) that lies in some neighborhood V' of +1 is contained in ¢(U).

We claim that a sufficiently large choice of the ”translation” parameter a forces ¢ = 1q,q,p to
map U into V, and therefore completely into ¢(U), at which point the non-compactness of Cy will

guarantee, via the Comparison Principle, that Cy is not compact.

The argument is best visualized in the right half-plane, where the boundary of ¢(U) becomes a
simple curve in II that is symmetric about the real axis and heads out to co, and the neighborhood
V becomes a neighborhood (which we still denote by V) of oo, i.e. the exterior of some half-disc

with center at the origin. Let £ = ¢)4,0,5(U) and write ® for the counterpart of ¢ acting on II.

We have previously chosen the dilation parameter b so that @ NV C ®(II). Now it is easy to
check that Q is taken into itself by horizontal translation. Indeed, €2 is symmetric about the real

axis and its upper boundary has the form y = A+ Bz, where A, B > 0 and v > 1. The translation
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property follows from this symmetry and the fact that the upper boundary curve is the graph of a
monotone increasing function.

Now choose a > 0 so that a + Q C V. Then by the work of the last paragraph,
Uyap(Il) =a+Q C O(II),

and the proof is complete.

We close this chapter by using the Univalent Compactness Theorem to construct an example of
a compact composition operator whose inducing map takes the disc onto a domain that touches the

boundary smoothly.

Example of ”smooth compactness”: There exist univalent self-map ¢ of U such that

(a) o(U) C UU{+1},
(b) ¢(U) contacts OU smoothly at +1,
(c) Cy is compact on H?.

Proof: Instead of the unit disc, we work in the half-disc
A={well:|u| < —}
={w dw| < —
2e
with the holomorphic function
f(w) = —cw logw (w e A)

where ¢ > 0, and and the principal branch of the logarithm is employed on the right.

One easily checks that f maps A into a bounded subset of the right half-plane, so the constant ¢ can
be chosen so that f(A) C A.

Moreover, f’ has positive real part on A\{0}, so as in the proof of the Proposition, f is univalent
on A.

Now let 7 be a univalent map taking A onto U, with 7(0) = +1. This map extends to a
homeomorphism of the corresponding closed regions-as can be seen by either writing it down as a
composition of elementary mappings, or quoting Caratheodory’s Extension Theorem .

Thus, the Reflection Principle insures that 7 extends analytically to a mapping that takes the
entire disc |w| < 1/2e univalently onto a simply connected domain containing both U and the point
+ 1.

Let ¢ be the univalent self-map of U that corresponds, via 7, to f on A.

Since 7 is analytic with non-vanishing derivative in a full neighborhood of the origin, distance esti-
mates in transfer over to corresponding distance estimates in U.

In particular, if |y| < 1/2e and €% = 7(iy), then

1—[9(e)] _ dist.(6(c"),00)

|1 —¢(ei®)|  dist.(p(ef®), +1
dist.(f (iy), OM)
© dist.(f(iy),0)




mlyl/2
{(mlyl/2)* + (ly| loglyl)*}'/?

= const.

const.
~ —logly|
— 0

as ly| — 0, i.e. as |0] — 0.
Thus the image of the unit disc under ¢ approaches the boundary smoothly at +1.
The compactness of Cy, on H?, will follow from the Univalent Compactness Theorem once we
show that
1—o(2)]

_ 1
=2 — 00 (10)

as z tends to any point of QU. We need only check this limit at the point +1, since the closure of

¢(U) approaches the unit circle nowhere else.

For z € U let z = 7(w), and estimate as above,

1— [o(2)] dist.( (), OIT)
W > const.m

= const. R;‘);E:}U)

— const, e w)(log(jw))) + (Im w)arg w

Re w
> const. log(1/|w]),

— 0

asw — 0, i.e. as z — +1.
where the last inequality follows from our use of the principal branch of the argument, which insures
that both argument and imaginary part always have the same sign.

So Cy is compact on H?.

Note:The idea behind this proof can be modified to produce Hilbert-Schmidt composition oper-
ators induced by univalent mappings that take the unit disc onto sub domains that contact the
boundary smoothly. Used in conjunction with the Comparison Principle, these examples produce

"rounded corners” versions of the Polygonal Compactness Theorem.
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Chapter 7

The Angular Derivative

The condition

1—|¢(z

|z|lin1— 1¢|(z|>| - (1)
which characterizes compactness for univalently induced composition operators. Because this con-
dition involves the limit of a difference quotient, one might suspect that its real meaning is wrapped
up in the boundary behavior of the derivative of ¢. This is exactly what happens: we will see shortly
that condition (1) is the hypothesis of the classical Julia-Caratheodory Theorem, which characterizes
the existence of the ”angular derivative” of ¢ at points of OU, and provides a compelling geometric
interpretation of (1) in terms of ”conformality at the boundary.”
After discussing its connection with the compactness problem, we present a proof of the Julia-
Caratheodory Theorem that emphasizes the role of hyperbolic geometry. The following terminology
describes the limiting behavior involved in this circle of ideas.
Definition:
(a) A sector (in U) at a point w € OU is the region between two straight lines in U that meet at w
and are symmetric about the radius to w.
(b) If f is a function defined on U and w € 9U, then

Z lim f(z)=1L

zZ—rw

means that f(z) — L as z — w through any sector at w. When this happens, we say L is non

-tangential (or angular) limit of f at w.

7.1 The Definition

We say a holomorphic self-map ¢ of U has an angular derivative at w € 9U, if for some n € U

/ lim 190G

z—w W — 2

exists finitely. We call the limit the angular derivative of ¢ at w, and denote it by ¢'(w).

Warning: The existence of the angular derivative = that ¢ has angular limit at w. We are
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requiring that 1 be a point of the unit circle, so regardless of how smooth ¢ may be at the boundary,
our definition demands:
”¢ cannot have an angular derivative at any boundary point at which it fails to have an angular
limit of modulus one.”
The work so far shows that for the compactness problem, the important phenomena occur as ¢(z)
approaches the boundary. For example, according to our definition, the function ¢(z) = z/2 (which
induces a compact composition operator) has an angular derivative nowhere on 9U. While the map
¢(z) = (14 z)/2, which has an angular derivative at the point +1 (and, according to our definition,
nowhere else) induces a non-compact operator.
These examples raise the possibility that the results of the last chapter might be restated in terms
of the angular derivative. This is exactly what is going to happen. The “necessary” part of the
program follows immediately from the definitions, and as before, does not require univalence.
Proposition: If ¢ has an angular derivative at a point w € U then C is not compact on H?.
Proof: Letting n denote the angular limit of ¢ at w we have,

1—|o(2)] - Ifb(?“w)l| _

1_
liminf ————* < liminf M < liminf n
|zl —1- 1 —|z] lz|—1- 1—r |z2|—1— W — Tw

¢ (w)]

= ()} is not compact by the necessary condition of the compactness.

7.2 The Julia-Carathéodory Theorem

In addition to raising the issue of compactness, the definition of the angular derivative suggests that
¢ has some kind of conformality at the boundary points where it exists, and it further raises the

possibility that the derivative of ¢ might also have a non-tangential limit at w.

Statement of The Julia-Carathéodory Theorem: Suppose ¢ is a holomorphic selfmap of

U, and w € OU. Then the following three statements are equivalent:

(JC 1) liminf,__,,, 1;‘7‘#‘(5‘)‘ =) < oo.

(JC 2) Zlim,__,,, ";‘i(;) exists for some n € OU.

(JC 3) ZLlim, ., ¢'(2) exists and Llim, ., ¢(z) =n € IU.

Moreover

e0>0in (JC1),

e the boundary points 1 in (JC 2) and (JC 3) are the same, and

e the limit of the difference quotient in (JC 2) coincides with that of the derivative in (JC 3), with

both equal to wnd.

Since condition (JC 1) is just the compactness criterion of the last chapter, this allows the results

of that chapter to be restated in terms of the angular derivative.
Angular derivative Criteria for Compactness:Suppose ¢ is a holomorphic self-map of U,

(a) If Cy is compact on H? then ¢ has an angular derivative at no point of OU.

(b) If ¢ is univalent and has no angular derivative at any point of U, then Cy is compact on H?2.
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To appreciate the purely function-theoretic power of the Julia-Caratheodory Theorem, observe how,
almost as an afterthought, it asserts that if, on a sequence z, of points in U that converges to a
boundary point w, the images ¢(z,) tend to the boundary rapidly enough, then regardless of how
sparse or tangential z, may be, the function ¢ must have a radial limit at w. So even ignoring what
it says about derivatives, the Julia-Caratheodory Theorem already yields a non-trivial result about

boundary behavior.

Remark: Condition (JC 2) implies that ¢ is “non-tangentially conformal” at w. To understand
this conformality, we may without loss of generality take w = 1. Then (JC 1) and the fact that
0 > 0, make it possible to recycle the proof from elementary complex analysis that “holomorphic
plus non vanishing derivative implies conformal.” The argument yields this:

“If a smooth curve in U ends at a point w € 9U, at which it makes an angle o < 7/2 with the
radius to that point, then the same is true of the image curve at the boundary point n.”

In particular, the image of the radius itself meets the unit circle perpendicularly, and if two non-

tangential curves intersect at w at some angle, then their images intersect at the same angle.

First applications: As an example of what the Julia-Caratheodory Theorem contributes to the
compactness problem, note how it clarifies the intuition behind the Polygonal Compactness The-
orem: if ¢ takes U into a polygon inscribed in the unit circle, then at no vertex preimage does ¢
have the conformality demanded by the Angular Derivative Criterion. Because of our requirement
that the angular derivative can only exist at points whose (radial) pre-image is on the unit circle, it
exists at none of the other points either, so Cy is compact.

For another example, recall the assertion of the “First Compactness Theorem” :

“Cy is compact whenever ||¢||o < 1.7
Corollary: If ¢ is univalent and has no radial limit of modulus 1, then Cy is compact.

Proof of easy parts of the JC theorem

e Before beginning to prove the Julia-Carathoodory Theorem, we need to isolate the main issue.
The “upward implications” of the theorem are routine. For example, if both function and derivative
converge as in (JC 3), then we integrate the derivative to get (JC 2), obtaining in the process the
same limit we had for the derivative.

oThe implication (JC 2) = (JC 1) is immediate if we let z tend to w along the radius to w, take

absolute values, and use the “reverse triangle inequality.” This also shows that the quantity § on
the right-hand side of (JC 1) is dominated by the magnitude of the limit in (JC 2).

e The implication (JC 2) = (JC 3) requires a little more care, but it does not pose a real problem.
e The heart of the Julia-Caratheodory Theorem is the implication (JC 1) = (JC 2).

7.3 The Invariant Schwarz Lemma

The subject of this section, also called the Schwarz-Pick Lemma, is what results when you subject
the Schwarz Lemma to a conformal change of variable. In order to state the result efficiently, we

need a conformally invariant way of measuring distance in the unit disc.
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Schwarz Pick Lemma: A variant of Schwarz Lemma can be stated that is invariant under analytic

automorphism on U. The variant is known Schwarz-Pick theorem.

Now , recall the special conformal automorphisms «, ,

I
1 —pz

ap(2)

Definition. The pseudo-hyperbolic distance between points p and ¢ of U is:

ip.a) = layla)] = | L. @
The pseudo-hyperbolic distance is actually a metric on U that induces the usual Euclidean topology;
however our work requires only the following easily verified observations:

(a) For each pair of points p,q € U we have d(p,q) = d(q,p), and d(p,q) < 1.

(b) d(p,q) =0 = p=g¢q.

(c) d is continuous when viewed as a real-valued function on U x U.

(

d) For each compact subset K of U,

lim inf d(p,q) = 1.
ok (r,q)
Property (d) asserts that the pseudo-hyperbolic distance from a point to a fixed compact set tends
to 1 as the point tends to the boundary. This is obvious if K is a single point, and not difficult to
prove in general.
For example, it is rendered perfectly transparent by the formula
1 —1[pl*)A —la*)

L) = S 3)

which is itself the of a straightforward calculation. This formula will prove very useful in our further
study of the pseudo-hyperbolic distance.

With the pseudo-hyperbolic distance in our corner, we can state a simple but far-reaching gen-

eralization of the Schwarz Lemma.

The Invariant Schwarz Lemma. If ¢ is a holomorphic self-map of U, then for every pair of

points p, g € U we have
d(¢(p), #(q)) < d(p, q).

Moreover there is equality here for some pair of points if and only if there is equality for all pairs,

and this happens if and only if ¢ is a conformal automorphism ofU.

Proof: If p = ¢(p) = 0 then we are talking about the original statement of the Schwarz Lemma.
Otherwise, let b = ¢(p) and consider the map oy, 0 ¢ o a, which takes the disc into itself, and fixes
the origin. Upon applying the Schwarz Lemma to this map, evaluating at the point z = a,(g) , and

noting that the automorphism ¢, is its own inverse, we obtain the inequality

lap 0 p(q)| < ay(q)l,
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which is precisely what we want. The case of equality follows from the corresponding part of the
original Schwarz Lemma.

This form of the Schwarz Lemma, asserts that holomorphic self-maps of U that are not automor-
phisms strictly decrease all pseudo-hyperbolic distances. To make a geometric statement out of this
we have to examine the balls associated with the pseudo-hyperbolic distance.

For p € U and 0 < r < 1 the r-ball centered at p is
Z—p

1—pz

Alp,r) = {z:

< r} = a,(rU),

We call A(p,r) the pseudo-hyperbolic disc of (pseudo-) center p and (pseudo-) radius r. Since A(p,r)
is the image of the disc 7U under a conformal automorphism of U, it is an ordinary open disc.

In terms of these discs, the statement of the Invariant Schwarz Lemma becomes

P(A(p,)) C A((p), 7).

If p = 0 the assertion is that ¢rU) C rU, which is of course just the geometric interpretation of the

original Schwarz Lemma.

7.4 A Boundary Schwarz Lemma

In this section we push the Invariant Schwarz Lemma “out to the boundary.” The idea is to examine
pseudo-hyperbolic discs whose centers tend to a point w of the unit circle, and whose radii tend to
one, and find the condition on centers and radii that guarantees the convergence of such a family of
discs to a disc tangent to the unit circle at w.

Equation (3) for the pseudo-hyperbolic distance, allows the definition of pseudo-hyperbolic disc

to be rewritten as:

A ={z -k < 20—}, @

This equation wants to tell us something about the limiting behavior of discs.

For if p — w € OU and r — 1 in such a way that

1 —|p|
1—r

— X € (0,00),

then the expression on the right-hand side of the inequality in (4) converges to A(1 — |z|?), while
the one on the left goes to |1 — zw|?. Therefore A(p,r) must be converging (somehow) to the set
H(w, \) defined by

H(w,\) = {z: |1 —z0> <AX1-|2*)}. (5)

Upon completing the square in the inequality on the right, we find that H(w, ) is the Euclidean disc
centered at w/(14 M), of radius A/(I4+A). In particular, H(w, \) is tangent to QU at the point w, it ex-
pands as A increases, and as A — oo it fills up the whole unit disc. We call H(w, A) a horodisc at w.
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The Disc Convergence Lemma: Suppose w € 90U, and p, is a sequence of points in U that
converges to w. Suppose 0 < r, — 1 in such a way that
1- ‘pn‘

A =lim ————.
17rln 1—r,

Then

H(w,A) C liminf A(py, ) C limsup A(py, ) C H(w, N).

Here the lim sup of a sequence of sets is the collection of points that belong to infinitely many of the
sets, and the corresponding lim inf is the collection of points that belong to all the sets from some
index onward.

The Lemma says that if we treat the converging discs as if they behaved like points, our error will
be confined to boundary points.

Now we are in position to use the Disc Convergence Lemma to get a boundary version of the Invari-

ant Schwarz Lemma.

Julia’s Theorem: Suppose ¢ is a non-constant holomorphic self-map of U, and that and w are

points of OU . Suppose further that {p,} is a sequence of points in U that converges to w in such a
way that both ¢(p,) — 1 and

1—

1- ‘pn

Then:
(a)d >0,
(b)¢p(H (w, \)) C H(n, Ad) for every A > 0, and
(c)Llim,—wd(2) = 7.

Proof: (a) We first show that § > 0. Note that if ¢ were to fix the origin then the Schwarz
Lemma would tell us straightaway that § > 1. The same idea works when we apply the Invariant

Schwarz Lemma with ¢ = 0, and it yields

d(¢(p), 9(0)) < d(p,0) = |p|

for every p € U. Upon rewriting this inequality using the identity (3), and doing a little algebra, we

obtain

L= @O _ 1 [o()?
6O = TR

Now the triangle inequality shows that

1 6] _ |1~ 5@)o0)
T160)] = 1-16(0)P

and upon putting the last two inequality together, setting p = p,, and letting n — oo, we obtain

1= [6(0)] _ 1 [9(pn)]?

— 0
L+ 1p(0)] = 1 —|paf?
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hence § > 0 as desired.
Corollary: If 4{p,} is a sequence in U that converges to w € OU au, and on which the quo-
tients % are bounded, then {¢(p,)} converges to some point n € OU, and ¢ has angular

limit 7 at w.

Note: Now using this last corollary and Julia theorem we can prove that the remaining two part of

the Julia- Caratheodory Theorem.
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