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Abstract 16 

Reinforced concrete (RC) elements are often subjected to combined actions including torsion under seismic 17 

events. Understanding the behavior of RC members under combined actions including torsion is essential 18 

for safe design. Behavioral predictions of RC columns under combined loading can be improved by 19 

including the bi-directional stress effects. The objective of this work is to propose improved combined 20 

actions softened membrane model (CA-SMM) for predicting the behavior of RC elements under combined 21 

torsion (T) and shear loading (V).  In this approach, the rectangular cross-section is modeled as an assembly 22 

of four cracked shear panels. The applied external loads are distributed among these four shear panels. This 23 

assumption helps in reducing the complex stress state from combined loading to four different simple stress 24 

states on these panels. Additional equilibrium and compatibility conditions are imposed, and the system of 25 

non-linear equations are solved by using an optimization technique called gradient descent method. The 26 

developed improved model (CA-SMM) is validated with the experimental data available in the literature. 27 

After that, an interaction between the shear and torsion is developed to understand the behavior under 28 

various combinations of torsion and shear. A parametric study is carried out for understanding the effect of 29 

various sectional parameters such as longitudinal reinforcement ratio, transverse reinforcement ratio, and 30 

concrete strength. The predictions of the improved model had a close correlation with the test results.  31 
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INTRODUCTION 35 

Reinforced concrete (RC) bridge columns are subjected to combined loading including torsion under 36 

seismic events. In general, numerous structural elements namely arch ribs, L-shaped bridge columns, and 37 

spiral staircases are subjected to combinations of loading. General system of forces and moments acting in 38 

RC member subjected to combined loading are shown in Fig. 1. Accurate predictions of the behavior of RC 39 

members subjected to combined loading is essential for optimal design solutions. In typical design practices 40 

of RC members, the effect of the torsional moment is ignored or indirectly considered in the design. 41 

However, previous studies indicate that the presence of torsion during seismic events could significantly 42 

affect the performance of the RC members (Tirasit and Kawashima 2007, Prakash et al. 2010, Prakash et 43 

al. 2012). Previous researchers have extensively studied predicting the behavior of RC columns subjected 44 

to torsional loading analytically through various approaches (Onsongo 1978, Chalioris 2007, Prakash and 45 

Belarbi 2010, Belarbi et al. 2010, Deifalla 2015, Mondal et al. 2017). The cyclic torsional behavior of the 46 

square and circular RC columns has also been investigated (Li 2012, Chalioris and Karayannis 2013, Li 47 

and Belarbi 2013).  In the past, only few studies (Klus 1968, Lampert and Thurlimann 1969, McMullen and 48 

Warwaruk 1970, Onsongo 1978, Ewida and McMullen 1982, Greene and Belarbi 2009 ) have 49 

experimentally investigated the effect of combined bending moment, shear and torsional loads on the 50 

behavior of RC members. 51 

 52 

Noncircular RC members warp under torsional loading (Collins and Mitchell 1997, Hsu 1993, Jeng 2014, 53 

Zhang and Hsu 1998; Mullapudi and Ayoub 2013) and pose challenges in developing a rational model 54 

under combined loading including torsion. Different analytical models such as softened truss model (STM) 55 

from University of Houston (Hsu and Belarbi; Hsu and Zhu 2002; Greene and Belarbi 2009; Mondal and 56 

Prakash 2015) and modified compression field theory (MCFT) from University of Toronto (Onsongo 1978; 57 

Rahal 1993, Rahal and Collins 1995) were developed. These rational models were based on the principles 58 

of mechanics and evolved over the years with increasing sophistication. The present study comes in the 59 

purview of studies that include modeling the behavior of cracked concrete using STM developed at the 60 

University of Houston. Mondal and Prakash (2015a, 2015b) showed that inclusion of tension stiffening 61 



could significantly improve the torque twist prediction using STM. The effect of Poisson’s ratio is observed 62 

by the researchers and is found to be significant in the prediction of the behavior of RC members. Due to 63 

the Poisson effect, the stresses get induced in the direction perpendicular to the direction in which loads are 64 

applied. This stress state is known as bi-directional stress state and occurs due to Poisson effect. Zhu and 65 

Hsu (2002) proposed a softened membrane model (SMM) including the effect of bi-directional stress states. 66 

Jeng and Hsu (2009) proposed a softened membrane model for torsion (SMMT) for rectangular cross 67 

sections by considering the effect of strain gradient. The consideration of bi-directional stresses using 68 

Poisson’s ratio helps in predicting the post-peak behavior accurately (Hsu and Zhu 2002). The fundamental 69 

differences between CA-STM and CA-SMM are summarised in Table 1.  SMMT was extended to other 70 

geometries, and configuration like box girders (Greene and Belarbi 2009), hollow RC members (Jeng and 71 

Hsu 2009), and rectangular sections strengthened with fiber reinforced polymer (FRP) composites 72 

(Ganganagoudar et al. 2016) under pure torsion. Ganganagoudar et al. (2016) have also extended the SMM 73 

based model for torsion (SMMT) for circular members and validated with the experimental test results. 74 

 75 

Previous researchers have developed rational models for analysis of RC members under bending, shear, 76 

axial load and their combinations (Rahal and Collins 1995; Mullapudi and Ayoub 2010, 2013). However, 77 

combined loading with torsion can result in brittle failure of RC members and calls for deeper understanding 78 

and development of improved models. Using MCFT, Rahal and Collins (1995) proposed a theoretical 79 

model for predicting the behavior of RC rectangular columns subjected to combined torsion and shear 80 

loading. They have modeled the rectangular section as an assembly of four cracked shear panels. The 81 

applied loads are distributed among the shear panels in such a way that equilibrium and compatibility 82 

conditions are satisfied. The stress states in each shear panels will be different due to different loads acting 83 

on it. Greene and Belarbi (2009a, 2009b) developed a softened truss model (STM) based approach for 84 

predicting the response of rectangular girder subjected to combined loading. Greene’s model is developed 85 

based on STM and can predict the behavior until peak load. Also, both the previous MCFT and STM 86 

approaches were iterative and ignored the bi-directional stress effects. Recently, Silva et al. (2017) adopted 87 

an optimization technique for solving the system of equations for analyzing the behavior of concrete 88 



members. Adopting such optimization technique significantly reduces the computation time in the case of 89 

multiple variables in the system. Developing a more sophisticated SMM theory for combined loading 90 

analysis and solving the system by adopting an optimization technique is the focus of this study. 91 

 92 

RESEARCH SIGNIFICANCE AND OBJECTIVES 93 

Only limited analytical models are available for predicting the response of rectangular RC members 94 

subjected to combined loading including torsion. This study presents an improved and robust combined 95 

action softened membrane model (CA-SMM) for the analysis of rectangular RC members. To include the 96 

effects of combined actions, the cross-section of the concrete member is modeled as an assembly of four 97 

shear panels. The equations satisfying the equilibrium and compatibility conditions between the panels are 98 

developed. Solving the nonlinear set of equations using trial and error is tedious especially in the case of 99 

combined loading. In this study, an optimization technique namely gradient descent method is adopted to 100 

solve the CA-SMM system of non-linear equations rather than conventional trial and error approach. In 101 

particular, the following advancements are made in the CA-SMM model developed in this study: 102 

1. Sophisticated softened membrane based model is adopted for analyzing the behavior of RC 103 

members subjected to combined shear and torsion loading. 104 

2. The effect of bi-directional stress (Poisson’s effect) is considered in the formulations of CA-SMM 105 

for improved post-peak predictions. 106 

3. An improved tension stiffening effect model is used to account for the strain gradient effect. 107 

4. A robust optimization based solution algorithm is proposed for significantly reducing the 108 

computational time involved in the analysis of RC members under combined actions including 109 

torsion.  110 

 111 

COMBINED ACTION-SOFTENED MEMBRANE MODEL (CA-SMM) 112 

Assumptions of the model 113 



The improved CA-SMM model makes the following assumptions for satisfying the equilibrium and 114 

compatibility conditions. The assumptions made are related to the modeling of geometry, strain profile, and 115 

various material aspects as given below:  116 

i. The rectangular cross-section is divided into four RC shear panels. The overall distribution of stresses 117 

across the section are consolidated into four stress states, and each panel corresponds to a particular 118 

stress state. 119 

ii. The concrete member is assumed to act as a truss after cracking, i.e., concrete in diagonal struts is 120 

assumed to resist the compression stresses, steel in longitudinal and transverse directions resist the 121 

tensile stresses. 122 

iii. The externally applied loads on the member are distributed to each of the panels as uniform normal 123 

and shear stresses.  124 

iv. The model neglects the dowel action of the reinforcement and assumes a perfect bond between 125 

concrete and reinforcement. 126 

v. Bredt’s thin tube theory is considered for satisfying the torsion equilibrium at the sectional level. In 127 

case of solid sections, the core of the member does not contribute to the torsional resistance and 128 

therefore, neglected as per this theory. 129 

The assumption of a concrete member acting as a truss is valid for a cracked RC member. The behavior of 130 

the concrete member is known to be linear until cracking. The stress and strain at cracking can be calculated 131 

from the expressions given by Collins and Mitchel (1991). The behavior is linear until cracking, and the 132 

post-cracking behavior is predicted using the proposed CA-SMM theory. 133 

The idealization of RC cross-section: 134 

A rectangular RC section can be idealized as a thin-tube, assuming the shear stress due to torsion to be 135 

constant over the thickness of the thin-tube. The centreline of the shear flow zone in a rectangular cross-136 

section has dimensions of by 0b , and a constant thickness of 
,d it  along each side as shown in Fig. 2. The 137 

modeled thickness of each panel is the depth of the shear flow zone dt  in that panel. The width of panels 138 

1 and 3 is 0h , and 0b for panels 2 and 4. The cross-sectional area of a panel (𝐴𝑜) is equal to a product of 139 



its modeled width and thickness. The idealised 𝑏𝑜, ℎ𝑜, 𝐴𝑜 and 𝑝𝑜 are calculated using Eq. 1, formulated by 140 

Greene and Belarbi (2009). The panel dimensions used to analyse the cross-section and the cross-sectional 141 

area of panel one is shown in Fig. 2. 142 

    𝑏𝑜 = 𝑏 − (
𝑡𝑑,1+𝑡𝑑,3

2
)                                               (1a) 143 

    ℎ𝑜 = ℎ − (
𝑡𝑑,2+𝑡𝑑,4

2
)                                               (1b) 144 

    𝐴𝑜 = 𝑏𝑜ℎ𝑜                                                             (1c) 145 

    𝑝𝑜 = 2(𝑏𝑜 + ℎ𝑜)                                                    (1d) 146 

The longitudinal and transverse reinforcement in the section also has to be distributed among the shear 147 

panels. If the sections have symmetrical reinforcement, then longitudinal steel and transverse steel are 148 

distributed equally among all the shear panels. The transverse reinforcement is distributed equally among 149 

all the shear panels as it is symmetric for all the specimens adopted in the current study. The longitudinal 150 

steel area is assigned to that shear panel in which the longitudinal bar is located. In the cases of overlap of 151 

steel area between two shear panels, it is distributed as a function of the width of the shear panels that are 152 

overlapping. A detailed account of the distribution of longitudinal reinforcement can be obtained from 153 

Greene and Belarbi (2009). 154 

 155 

Equilibrium equations 156 

The applied external loads are distributed as normal, and shear stresses on the membrane element. Fig. 3 157 

depicts the stress state at the element level. The normal stresses are distributed among the concrete and steel 158 

components of membrane element. The principle of transformation is used for determining the stresses in 159 

principal directions 1 and 2, making an angle 𝛼𝑖 with 𝑙-direction. It is worth mentioning that SMM is based 160 

on fixed angle theory. More details on fixed angle theory can be found elsewhere (Hsu and Zhu 2002, 161 

Ganganagoudar et al. 2016). The cracks are assumed to occur in the principal directions of RC composite 162 

element. The crack angle in the concrete element will be different as it is subjected to shear stresses. The 163 

equilibrium equations (Eqs. 2-4) of membrane element can be derived using the principle of transformation. 164 



The planes of primary interest in the membrane element are the principal planes (1-2 planes) and the planes 165 

in which loads are applied (L-T planes), as shown in the Fig. 3.  166 

 167 

𝜎𝑙,𝑖 = 𝜎2𝑐,𝑖𝑐𝑜𝑠2𝛼𝑖 + 𝜎1𝑐,𝑖𝑠𝑖𝑛
2𝛼𝑖 + 2𝜏12𝑐,𝑖𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖 + 𝜌𝑙𝑓𝑙                                           (2) 168 

𝜎𝑡,𝑖 = 𝜎2𝑐,𝑖𝑠𝑖𝑛
2𝛼𝑖 + 𝜎1𝑐,𝑖𝑐𝑜𝑠2𝛼𝑖 − 2𝜏12𝑐,𝑖𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖 − 𝜌𝑡𝑓𝑡                                          (3) 169 

𝜏𝑙𝑡,𝑖 = ((−𝜎2𝑐,𝑖 + 𝜎1𝑐,𝑖)𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖 + 𝜏12𝑐,𝑖(𝑐𝑜𝑠2𝛼𝑖 − 𝑠𝑖𝑛2𝛼𝑖)) . 𝑠𝑖𝑔𝑛(𝑞𝑖)                  (4)   170 

 171 

The shear flow due to torsional loading is constant along the cross-section. The applied shear loads are 172 

distributed in accordance with the direction of load application as shown below in the Fig. 4. The shear load 173 

is added to loads on one of the panels and is subtracted from the other panel due to combined shear and 174 

torsion loading (Fig. 4). Eq. 5 (Rahal and Collins 1995, Greene and Belarbi 2009) gives the net shear flow 175 

(qi) in each panel. 176 

𝑞1 =
𝑇𝑥

2𝐴0
+

𝑉𝑦

2ℎ0
                                                                  (5a) 177 

𝑞2 =
𝑇𝑥

2𝐴0
+

𝑉𝑧

2𝑏0
                                                                  (5b) 178 

𝑞3 =
𝑇𝑥

2𝐴0
−

𝑉𝑦

2ℎ0
                                                                  (5c) 179 

𝑞4 =
𝑇𝑥

2𝐴0
−

𝑉𝑧

2𝑏0
                                                                  (5d) 180 

 181 

Bredt’s thin tube theory: 182 

When torsion acts on an RC member, it induces shear stress within the member. Bredt’s thin tube theory 183 

assumes that the applied torsion is resisted by the shear stresses developed across a tube of thickness known 184 

as shear flow depth. The elastic shear stress distribution varies linearly across the section with maximum 185 

stress at the surface and reaches zero at the center. However, Bredt’s thin tube theory assumes the stress 186 

distribution to be constant across the depth of thin tube as shown in Fig. 5. The relation between the external 187 

torque and shear flow is given by Bredt’s thin tube theory, as in Eq 6. 188 



                                                 𝑇𝑥 = 𝑞 [2(
𝑏0

2
ℎ0 + 

ℎ0

2
𝑏0)]                                         (6𝑎) 189 

From the Fig. 6 (Hsu 1993), the integration around the cross section gives twice the area inscribed by shear 190 

flow region:  191 

[2(
𝑏0

2
ℎ0 + 

ℎ0

2
𝑏0)] = 2𝐴0 192 

       𝑇𝑥 = 2𝐴0𝑞                                             (6b) 193 

Compatibility equations:  194 

The equations of compatibility (Eqs. 7-10) are derived using the principle of transformation (Hsu and Zhu 195 

2002). In-plane strain compatibility should be satisfied for all the membrane elements. 196 

𝜀𝑙,𝑖 = 𝜀2,𝑖𝑐𝑜𝑠2𝛼𝑖 + 𝜀1,𝑖𝑠𝑖𝑛
2𝛼𝑖 + 𝛾12,𝑖𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖                  (7) 197 

𝜀𝑡,𝑖 = 𝜀2,𝑖𝑠𝑖𝑛
2𝛼𝑖 + 𝜀1,𝑖𝑐𝑜𝑠2𝛼𝑖− 𝛾12,𝑖𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖                    (8) 198 

𝛾𝐿𝑇,𝑖 = (2(−𝜀2,𝑖 + 𝜀1,𝑖)𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝛼𝑖 + 𝛾12,𝑖(𝑐𝑜𝑠2𝛼𝑖 −  𝑠𝑖𝑛2𝛼𝑖)). 𝑠𝑖𝑔𝑛(𝑞𝑖)      (9)        199 

𝜀𝑡,𝑖 =  𝜀2,𝑖 + 𝜀1,𝑖 − 𝜀𝑙,𝑖            (10) 200 

 201 

The equations of compatibility are derived at the section level by imposing the strain compatibility 202 

requirement at the center of the cross-section. It is assumed that shear stress due to combined shear flows 203 

from an applied torsion and shear acts as a uniformly distributed shear stress, LT , over the thickness of the 204 

shear flow zone. Eq. 11 gives the curvature of the concrete strut of each panel. 205 

 206 

𝛹𝑖 =
−𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝑡𝑑,𝑖
         (11) 207 

The thickness of shear flow zone (𝑡𝑑,𝑖) is calculated using a simplified expression given by Ganganagoudar 208 

et al. (2016), as given below 209 

   𝑡𝑑,𝑖 = 
−𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝛹𝑖
         (≤   

𝑏𝑜

2
)                            (12a) 210 

   𝛹𝑖 =  𝜃sin (2𝛼𝑖)                                           (12b) 211 



   𝐻𝑖 = 
4𝜀2,𝑖̅̅ ̅̅ ̅

𝛾𝐿𝑇,𝑖sin (2𝛼𝑖)
                                        (12c) 212 

   𝑡𝑑,𝑖 = 
1

2(𝐻+4)
[𝑃𝑐 (1 +

𝐻

2
) − √(1 +

𝐻

2
)
2

− 4𝐻(𝐻 + 4)𝐴𝑐]       (12d) 213 

where  𝜃 =  [(𝛾𝐿𝑇,1 + 𝛾𝐿𝑇,3)ℎ0 + (𝛾𝐿𝑇,2 + 𝛾𝐿𝑇,4)𝑏0]
1

2𝐴0
                       (13) 214 

The calculated shear flow depth 𝑡𝑑,𝑖 should be limited to the thickness of the wall in the case of hollow 215 

specimen and should be limited to half of the depth of the idealized cross-section (
𝑏𝑜

2
) in the case of solid 216 

cross-sections. 217 

 218 

Constitutive laws: 219 

The constitutive laws shown in Fig. [7, 8] are adopted in this study. The constitutive laws used in this study 220 

are developed based on flat panels which are a 2D element (Vecchio and Collins 1986, Hsu 1993) and 221 

includes the effects of softening and tension stiffening. Torsion is a 3-dimension problem. However, these 222 

constitutive laws are the current state of the art. The evaluation of constitutive laws for a 3-dimension panel 223 

is recently investigated by Labib et al. (2017). These constitutive laws for compression and tension based 224 

on a warped 3-dimension panel, Poisson effect on these 3-D panels and their application for torsion are not 225 

fully understood yet and is scope for further work. 226 

 227 

Concrete in compression:  228 

The presence of tensile cracks in principle compression plane causes softening of concrete struts. The 229 

softening coefficient (𝜁) of concrete is a function of principle tensile strain (Vecchio and Collins 1986), 230 

compressive strength (Zhang and Hsu 1998) and deviation angle (β). The softening co-efficient used by 231 

Jeng and Hsu (2009), that accounts for all the above effects has been used in the present study. The concrete 232 

compression law has been given in Eq. 14. 233 

   𝛽𝑖 = 
1

2
[𝑡𝑎𝑛−1 (

𝛾12𝑐,𝑖

𝜀2𝑐,𝑖−𝜀1𝑐,𝑖
)]                                                       (14a) 234 



   𝜁𝑖 = 
5.8

√𝑓𝑐′

0.9

√1+400𝜀2𝑐,𝑖̅̅ ̅̅ ̅̅
 (

1−𝛽𝑖

240 )                                                     (14b) 235 

    𝜎2𝑐,𝑖 =    𝐾2𝑐,𝑖 𝜁𝑓𝑐
′                                                                     (14c) 236 

    𝐾2𝑐,𝑖 = [
𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝜁𝑖𝜀0
−

𝜀2𝑠,𝑖
2

3(𝜁𝑖𝜀0)2
]   for 

𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝜁𝑖𝜀0
 ≤ 1                                 (14d) 237 

    𝐾2𝑐,𝑖 = 1 − 
𝜁𝑖𝜀0

3𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅
− 

1

3𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅
[
(𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅ − 𝜁𝑖𝜀0)3 

(4𝜀0− 𝜁𝑖𝜀0)2
]    for 

𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝜁𝑖𝜀0
 ≥ 1         (14e) 238 

Concrete in tension: 239 

The current study employs the tension stiffening relation used by Jeng and Hsu (2009) for modeling the 240 

tension behavior of concrete. Fig. 9 shows the tension constitutive law of the concrete. 241 

    𝑓𝑐𝑟 = 0.652√𝑓𝑐𝑘                                               (15a) 242 

    𝐸𝑐 = 5620√𝑓𝑐𝑘                                                  (15b) 243 

    𝜎1𝑐,𝑖 = 𝐸𝑐𝜀1,𝑖̅̅ ̅̅                for  
𝜀1𝑠̅̅ ̅̅̅

𝜀𝑐𝑟
 ≤ 1                  (15c) 244 

    𝜎1𝑐,𝑖 = 𝑓𝑐𝑟 (
𝜀𝑐𝑟

𝜀1,𝑖̅̅ ̅̅ ̅
)
0.4

      for  
𝜀1𝑠̅̅ ̅̅̅

𝜀𝑐𝑟
 ≥ 1                  (15d)           245 

 246 

Stress-strain relationship of steel: 247 

The smeared stress-strain behavior of steel embedded in concrete as adopted by Jeng (2009) and 248 

Ganganagoudar et al. (2016) in the previous SMMT formulations is used in the present study (Fig. 9). In 249 

the below equations, 𝑓𝑠,𝑖  represents both longitudinal and transverse steel. 250 

  𝑓𝑠,𝑖 = 𝐸𝑠𝜀𝑙.𝑖̅̅̅̅                                                             for  𝜀𝑙.𝑖̅̅̅̅ ≤  𝜀𝑙𝑛.𝑖̅̅ ̅̅ ̅       (16a) 251 

  𝑓𝑠.𝑖 = [(0.91 − 2𝐵𝑖) + (0.02 + 0.25𝐵𝑖)
𝜀𝑙.𝑖̅̅ ̅̅

𝜀𝑙𝑦
]        for  𝜀𝑙.𝑖̅̅̅̅ ≤  𝜀𝑙𝑛.𝑖̅̅ ̅̅ ̅      (16b) 252 

  𝐵𝑖 = [
(
𝑓𝑐𝑟

𝑓𝑙𝑦
⁄ )

1.5

𝜌𝑖
]                                                                                 (16c) 253 



  𝜀𝑙𝑛.𝑖̅̅ ̅̅ ̅  = 𝜀𝑙𝑦 ( 0.93 − 𝐵𝑖)                                                               (16d) 254 

 255 

The constitutive relation for concrete in shear 256 

The shear modulus is expressed as a function of normal stresses and strains in concrete element. The 257 

relation is given in Eq. 17. 258 

𝜏12𝑐,𝑖 = 
(−𝜎2𝑐,𝑖+ 𝜎1𝑐,𝑖)

2(𝜀1,𝑖−𝜀2,𝑖)
𝛾12𝑐,𝑖                (17)  259 

 260 

Poisson’s effect in SMMT: 261 

Stresses in one direction can result in the development of stresses in its perpendicular direction due to 262 

Poisson’s effect. This Poisson’s ratio is considered in the formulation of CA-SMM. The strain in one 263 

direction is not only a function of stress in its direction but will also depend on the stress in its perpendicular 264 

direction. Zhu and Hsu (2002) investigated the Poisson’s ratio of shear panels experimentally and proposed 265 

a parameter called Hsu/Zhu ratio, which quantifies the bi-directional stress effect. Hsu/Zhu ratio relates the 266 

strains and bi-directional stresses as given in equation 17. 267 

 268 

    𝜀1 = 
𝜎1𝑐

𝐸1𝑐
− 𝜐12

𝜎2𝑐

𝐸2𝑐
                                (17a) 269 

    𝜀2 = 
𝜎2𝑐

𝐸2𝑐
− 𝜐21

𝜎1𝑐

𝐸1𝑐
                                (17b) 270 

where  271 

   𝜐12 = (0.16 + 680𝜀𝑠𝑓)              for 𝜀𝑠𝑓 ≤ 𝜀𝑦         (18a) 272 

   𝜐12 = 1.52                                 for 𝜀𝑠𝑓 ≥ 𝜀𝑦 273 

   𝜐21 = 0                                                                       (18b) 274 

 275 



Here, 𝜐12 is the strain increment in direction 1 for an applied unit strain in direction 2. Now, defining 276 

uniaxial strains as 𝜀1̅ = 
𝜎1𝑐

𝐸1𝑐
 and 𝜀2̅ = 

𝜎2𝑐

𝐸2𝑐
 and re-writing the equation (17), the relation between uniaxial 277 

strains and biaxial strains can be arrived. 278 

    𝜀1 =  𝜀1̅ − 𝜐12𝜀1̅                     (19a) 279 

    𝜀2 =  𝜀2̅ − 𝜐21𝜀2̅                            (19b) 280 

After re-arranging the equations (19), one can get 281 

   𝜀1̅ = 
𝜀1

(1−𝜐12𝜐21)
+

𝜐12𝜀2

(1−𝜐12𝜐21)
                         (20a) 282 

   𝜀2̅ = 
𝜐21𝜀2

(1−𝜐12𝜐21)
+

𝜀1

(1−𝜐12𝜐21)
                         (20b) 283 

The constitutive law of material relates stresses and uniaxial strains as given by equation (18). 284 

 285 

OPTIMIZATION BASED GRADIENT DESCENT METHOD 286 

An alternative and efficient procedure to the conventional trial and error method is used for solving the 287 

system of equilibrium and compatibility equations in CA-SMM. Gradient descent method is a first-order 288 

iterative optimization algorithm for finding the minimum of a multi-variable function. To solve for the local 289 

minimum of a function, the subsequent iterations take steps in a direction negative to the gradient of the 290 

function at the current point. The solution algorithm is described in detail in the following sections. 291 

 292 

Primary Variables 293 

The primary variables are the variables that are varied numerically until the objective functions are set to 294 

zero. In the proposed algorithm, the primary variables are 𝑇𝑥, 𝜀2𝑠,𝑗,𝜀1,𝑖, and 𝛾12,𝑖 (j = 2,3,4 and i = 1,2,3,4). 295 

𝜀2𝑠,1 of panel 1 is fixed for each step and is incremented until a concrete failure strain of -0.0035. The 296 

primary variable 𝜀2𝑠,𝑗 is varied until the shear stresses 𝐹𝐶𝐴𝑆𝑀𝑀(𝑗) (j=2,3,4) of Eq. 21 are in agreement. The 297 

equilibrium Eq. 2- 3 are summed and subtracted to get the set of objective functions 𝐹𝐶𝐴𝑆𝑀𝑀(𝑖 + 8) and 298 

𝐹𝐶𝐴𝑆𝑀𝑀(𝑖 + 12), whose primary variables are chosen as 𝜀1,𝑖 and 𝛾12,𝑖, respectively. 299 

 300 



Residual Equations and Objective function 301 

The set of equations of the model that has to be solved are developed from the equilibrium and compatibility 302 

conditions as explained in earlier sections. This set of equations that has to be solved are called residual 303 

equations as given in Eq. 21.  304 

[
 
 
 

𝐹𝐶𝐴𝑆𝑀𝑀(1)

𝐹𝐶𝐴𝑆𝑀𝑀(𝑗)

𝐹𝐶𝐴𝑆𝑀𝑀(𝑖 + 8)

𝐹𝐶𝐴𝑆𝑀𝑀(𝑖 + 12)]
 
 
 

=  

[
 
 
 
 
 

𝜏
𝑙𝑡,1− 

𝑞1
𝑡𝑑,1

⁄

𝜏
𝑙𝑡,𝑗− 

𝑞𝑗
𝑡𝑑,𝑗

⁄

(𝜌𝑙𝑓𝑙 + 𝜌𝑡𝑓𝑡)𝑖 − ((𝜎𝑙,𝑖 + 𝜎𝑡,𝑖) − (𝜎2𝑐,𝑖 + 𝜎1𝑐,𝑖))

(𝜌𝑙𝑓𝑙 − 𝜌𝑡𝑓𝑡)𝑖 – ((𝜎𝑙,𝑖 − 𝜎𝑡,𝑖) − (𝜎2𝑐,𝑖 − 𝜎1𝑐,𝑖)𝑐𝑜𝑠2𝛼𝑖 + 2𝜏12𝑐,𝑖𝑠𝑖𝑛2𝛼𝑖)]
 
 
 
 
 

      (21) 305 

The above set of equations are compactly represented as 𝒇(𝒙) = 0 . 306 

where 𝒙 is a vector of primary variables taken as 𝒙 = {𝑇𝑥, 𝜀2𝑠,𝑗,𝜀1,𝑖, 𝛾12,𝑖}. (where j = 2,3,4 and i = 1,2,3,4). In 307 

conventional way of solving, the function 𝒇(𝒙) is solved by trial and error way of varying primary variables. It 308 

is very tedious and time consuming. In the present study, the set of equations of the model are solved by 309 

adopting an optimisation technique (Gradient descent method). Instead by directly solving for 𝒇(𝒙) = 0, we 310 

will minimise the objective function “𝐽”. The objective function “𝐽” is the norm of the function 𝒇(𝒙), as defined 311 

in Eq. 22. 312 

𝐽 =  
1

2
(𝒇𝑇(𝒙). 𝒇(𝒙))                          (22) 313 

The scalar output given by the objective function at every step is called a residue. The residue is zero only when 314 

each of the residual functions 𝑓1(𝒙), 𝑓2(𝒙) …𝑓12(𝒙) is zero. The value of primary variables gets updated for 315 

each step as per gradient descent method as given in Eq. 23.  316 

𝒙+ = 𝒙− −  𝛾
𝜕𝐽

𝜕𝒙
                    (23) 317 

where 𝛾 is chosen as a small incremental decimal value such that  𝐽(𝒙+) <  𝐽(𝒙−) . 318 

The characteristic of residue (𝐽)  at a fixed value of 𝜀2𝑠,1̅̅ ̅̅ ̅̅  for specimen tested by Klus (1968) is shown in 319 

Fig. 10, till the objective function reaches a tolerable value. The tolerance for Klus specimen has been set 320 

a value of 1𝑒−3 after 5700 steps (Fig. 10). By moving towards the minimum of the objective function (𝐽) 321 



at each step, the residue (𝐽) decreases. The optimal minimum solution within the tolerant limits is obtained 322 

by minimising the objective function. 323 

 324 

Solution procedure 325 

The proposed solution algorithm is explained in Fig. 11. The solution algorithm is executed using a program 326 

developed and executed in the software MATLAB. The geometry of the member cross-section, the 327 

equivalent longitudinal and transverse reinforcement in each panel, the mechanical properties for the 328 

concrete and steel, the ratios of the internal acting forces to the torsional moment (NX/TX, VY/TX, VZ/TX) 329 

and the initial strain 𝜀2𝑠,1, are known or assumed to start with.  The unknown variables 𝑇𝑥, 𝜀2𝑠,𝑗,𝜀1,𝑖, and 330 

𝛾12,𝑖 (j = 2,3,4 and i = 1,2,3,4) are determined by solving the nonlinear system of twelve equations 𝒇(𝒙) =331 

0. For these system of equations, the residue of the objective function (𝐽) should be within an acceptable 332 

tolerance. This is formulated as a nonlinear least-squares problem, where FCA–SMM, Eq. (21) are the residual 333 

equations.  334 

 335 

EXPERIMENTAL VALIDATION 336 

The proposed solution algorithm is validated using experimental data obtained from the literature. Prakash 337 

et al. (2010, 2012) conducted experiments on RC columns subjected to torsion. Li (2013) tested square 338 

columns with torsion and axial loads. Columns tested by Prakash and Belarbi (2010) and Li et al. (2013) 339 

are denoted as Missouri columns.  Rahal and Collins (1993) and Klus (1968) tested RC beams under 340 

combined torsion and shear loading. The data of following RC members are used in validation of the CA-341 

SMM model proposed in this study: Missouri-1 (Pure Torsion); Missouri 2 (Torsion + Axial); one RC 342 

square girder of Greene (Pure Torsion); two beams tested by Rahal and Collins (Torsion + Shear + Axial) 343 

and three beams tested by Klus (one in Pure Torsion and two in Torsion + Shear). The details of all these 344 

specimens are given in Table 2.  Cross sections of specimens are shown in Fig. 12. 345 

 346 

Torque – Twist Behavior: 347 



The torque-twist behavior of the specimens under different load combinations is shown in Fig. 13. The 348 

behavior is linear until cracking. The stiffness reduces considerably after the peak torque. The peak torque 349 

and the corresponding twist are captured reasonably well by the CA-SMM. The proposed model predicted 350 

the peak torque and twist more accurately for the specimen of Missouri, Rahal, and Collins while the results 351 

of CA-STM are close to experimental peak values of Greene’s and Klus specimen. However, it can be 352 

observed from the Table 3 that the predictions in the peak torque and peak twist predictions of CASTM and 353 

CASMM are very close. The observed behavior until cracking is similar to the torsional response of plain 354 

concrete elements as observed by Karayannis and Chalioris (2013). Comparison of predictions is provided 355 

in Table 3 and Table 4. Table 3 presents the comparison of values of peak torque and twist values. Table 4 356 

presents the comparison of values of ultimate torque and corresponding ultimate twist values. It is evident 357 

that the response predicted by the CA-SMM is better in the post-cracking regime and close to the 358 

experimental peak values. It is observed that due to consideration of bi-axial stress effects, CA-SMM 359 

predicts the ultimate torque values with fair accuracy. The ultimate twist values predicted by the CA-SMM 360 

are close to experimental values. Specimens considered for analysis had the following failure progression: 361 

shear cracking followed by yielding of transverse reinforcement and the longitudinal reinforcement 362 

respectively. All the specimens finally failed by crushing of the concrete under diagonal compression. The 363 

same failure progression was observed in the predictions of CA-SMM. The strain distribution in the steel 364 

for the specimens is shown in Figs. [14-15]. The parametric study also depicts that the effect of transverse 365 

steel on torsional behavior is very significant when compared to any other sectional parameters. 366 

 367 

Distribution of Strains in Reinforcement: 368 

Predictions of behavior at the local level, i.e. the distribution of strains in reinforcement are analyzed using 369 

CA-SMM.  Variation of strain in longitudinal and of transverse steel reinforcement with change in applied 370 

torque are presented in Figs. 14 &15. It is worth mentioning that the strains predicted by the model are 371 

smeared strains. The strains are calculated as an average of all the strains smeared across the number of 372 

cracks. Before the onset of cracking in the concrete, the contribution from reinforcement is negligible. After 373 

cracking, steel reinforcement gets engaged and starts contributing to the load resistance. Moreover, the 374 



transverse reinforcement is known to be a prime contributor in resisting shear, and torsional loads and the 375 

same is reflected in the predictions (Figs. 14,15).   It can be observed that at any given loading level, the 376 

strains in the transverse steel reinforcement is higher than that of strains in the longitudinal steel. Due to 377 

unavailability of experimental data pertaining to the longitudinal and transverse strains, only the analytical 378 

predictions are presented in the Fig. [14-15]. When the section is subjected to the combined loading of 379 

torsion and shear as shown in the direction as represented in Fig. 4, the shear flow due to torsion and shear 380 

gets added up in panel 3 and gets subtracted in panel 1. The shear flow in the panels 2 and 4 are only due 381 

to torsion and are not affected by the applied shear in Y-direction.  It is due to this difference in the shear 382 

flow that the strains are different in each of the panels for the specimen that are loaded with torsion and 383 

shear (Fig. 15). The strains predicted by the model are observed to be increasing smoothly with an increase 384 

in the level of torsional loading. Steel in the transverse direction is the key component of resisting shear 385 

and torsion.  It is expected typically that the strains in the transverse direction increase till the loading 386 

reaches peak value and decreases after that (Ganganagoudar et al. 2016, Prakash et al. 2012).  The model 387 

is capable of capturing the same trend of strain variations in accordance with the expectation, that in Fig. 388 

15 the transverse strains were increasing smoothly till the peal load is reached and decreased after that. 389 

 390 

The interaction between torsion and shear loads 391 

The torsion and shear loads are distributed as shear stresses at the element level. Therefore, the presence of 392 

any external shear loads directly influences the shear flow (𝑞𝑖) of the cross-section. The presence of shear 393 

load either increases or decreases the shear flow in the panels depending on its direction of application. The 394 

effect of shear load and torsion on shear flow has been quantified through Eq. (5). The developed algorithm 395 

has been used for developing these interaction diagrams of torsion and shear. Fig. 16 depicts the validation 396 

of predicted interaction with that of the experimental data of specimens tested by Rahal and Collins and 397 

Klus. The results predicted by the algorithm are in good agreement with the experimental results. 398 

 399 

Parametric studies using CA-SMM 400 



The effect of transverse reinforcement ratio (𝜌𝑡), longitudinal reinforcement ratio (𝜌𝑙)  and concrete strength 401 

(𝑓𝑐𝑘 ) on the behavior of specimens are investigated by carrying out a detailed parametric study and shown 402 

in Fig. 16. The torsion shear interaction curves are plotted for the Rahal and Collins series 2 specimen by 403 

varying the parameters (𝜌𝑙 , 𝜌𝑡𝑎𝑛𝑑 𝑓𝑐𝑘).  Torsion (T) and shear (V) interaction curves are presented in Fig. 404 

16. Transverse reinforcement is a key element in resisting the shear loads. Therefore, the increase in 405 

transverse reinforcement ratio directly increases the torsional capacity of the specimen. The parametric 406 

study of varying concrete compressive strength and longitudinal reinforcement ratio for predicting the 407 

torsion shear interaction is also presented in Fig. 16. The variation in torsional capacity with respect to the 408 

variation of longitudinal reinforcement is observed to be marginal and insignificant. 409 

 410 

SUMMARY AND CONCLUSIONS 411 

A robust algorithm is used in this study for predicting the behavior of RC members subjected to different 412 

combinations of torsion, shear and axial loads. The set of equations of CA-SMM are employed by modeling 413 

the geometry of section as an assembly of four shear panels. The accuracy in predictions can be improved 414 

by increasing the number of panels and by establishing compatibility conditions among the panels, but this 415 

occurs at the cost of a significant increase in computation time. Also, the inclusion of bending effects 416 

(Ewida and McMullen 1981, Rahal 2007) and prestress effects (Karayannis et al. 2000) would also be 417 

interesting. The bending effects can be included by altering the longitudinal strain variable in the solution 418 

algorithm and is scope for future work. It is also to be noticed that the constitutive laws adopted in the 419 

model are derived based on 2-dimensional flat panels. Since torsion is a 3-dimensional problem, it causes 420 

the walls of the member to warp. However, the constitutive laws for warped 3-dimensional elements are 421 

not established yet. Currently researchers (Labib et al., 2017) are focusing in the direction to establish the 422 

constitutive laws of concrete based on 3-dimensional panels. It is referred to future work that the results 423 

can be refined accurately by adopting constitutive laws that are developed based on a 3-dimensional panel. 424 

Based on the results presented in this study, the following major conclusions can be drawn: 425 



1. An improved analytical model is proposed for predicting the response of the RC rectangular members 426 

using softened membrane model at the element level analysis. The predictions from the analytical 427 

model were in agreement with the experimental results.  428 

2. For combined shear and torsional loading, the inclusion of Poisson’s effect and strain gradient effect 429 

resulted in improved torque twist predictions and strain variations in the reinforcement.  430 

3. Transverse reinforcement plays a key role in improving the overall torque – twist performance of RC 431 

members under combined torsion and shear loading. It is observed that the reinforcements in panel 3 432 

(torsion and shear as additive) experienced higher strain levels than the other individual panels. 433 

4. A detailed parametric investigation considering the effect of concrete strength and various steel 434 

reinforcement ratio under combined shear and torsion loading was carried out. Results indicate that the 435 

transverse reinforcement plays a major role in the load resistance when compared to longitudinal 436 

reinforcement ratio and concrete strength under all combinations of torsion and shear loading. 437 

Acknowledgements 438 

This analytical work is carried out as part of the project funded by SERB, Department of Science and 439 

Technology, India. Grant No. SB/S3/CEE/0060/2013 and FAST center of excellence for sustainable 440 

development at IIT Hyderabad. Their financial support is gratefully acknowledged.  441 

 442 

Notations: 443 

The notations used in the paper are: 444 

𝐴𝑙 The total cross-section area of longitudinal steel bars 

𝐴𝑡 The cross-section area of transverse steel bar 

𝐴𝑜 The core area of the idealized cross-section 

B Variable as defined in the constitutive relation of steel bar 

𝑏 Breadth of the actual cross-section 

𝑏𝑜 Breadth of the idealised cross-section 

𝐸𝑐 Modulus of elasticity of concrete 

𝐸𝑠 Modulus of elasticity of steel 



𝑓𝑙,𝑖, 𝑓𝑡,𝑖 Stress in Longitudinal steel and transverse steel 

𝑓𝑦 Yield strength of steel bar 

𝑓𝑐
′ Cylinder compressive strength of concrete 

𝑓𝑐𝑟 Cracking stress of concrete 

𝐻𝑖 A variable to calculate shear flow depth 

ℎ Depth of the actual cross-section 

ℎ𝑜 Depth of the idealized cross-section 

𝐾2𝑐,𝑖 Ratio of average compressive stress to peak compressive stress in concrete struts 

𝑃𝑜 Perimeter of the idealized cross-section 

𝑞𝑖 Shear flow force in 𝑖𝑡ℎ panel 

𝑟0 Radius or perpendicular distance from centre to centre of shear flow region  

s Spacing of transverse steel bars 

𝑇𝑥 Applied Torsion with respect to X-direction 

𝑡𝑑,𝑖 Shear flow depth of 𝑖𝑡ℎ panel 

𝑉𝑦, 𝑉𝑧 Applied Shear force in Y and Z directions 

𝛼𝑖 Cracking angle of 𝑖𝑡ℎ panel of RC element 

𝛽𝑖 Deviation angle of 𝑖𝑡ℎ panel 

𝜀𝑙,𝑖, 𝜀𝑡,𝑖 Strain along longitudinal and transverse directions 

𝜀𝑙,𝑖̅̅̅̅ , 𝜀𝑡,𝑖̅̅ ̅̅  Smeared uniaxial strain in L and T directions respectively 

𝜀1,𝑖, 𝜀2,𝑖 Principle tensile strain and Principle compressive strains 

𝜀2,𝑖̅̅ ̅̅ , 𝜀1,𝑖̅̅ ̅̅  Smeared uniaxial strain in 1 and 2 directions respectively at centre of shear flow 

zone. 

𝜀2𝑠,𝑖̅̅ ̅̅ ̅, 𝜀1𝑠,𝑖̅̅ ̅̅ ̅ Smeared uniaxial strain in 1 and 2 directions respectively at top surface of strut. 

𝛾12,𝑖 Shear strain in 1 and 2 coordinate system 

𝜌𝑙, 𝜌𝑡 Ratio of Longitudinal steel and transverse steel 

𝛹𝑖 Curvature of strut 

𝜃 Twist per unit length of the member 

𝜁𝑖 Softening co-efficient of concrete in compression 

𝜐12, 𝜐21 Hsu/Zhu ratios 

𝜎𝑙,𝑖 Longitudinal Normal stress in 𝑖𝑡ℎ panel in RC element 



𝜎𝑡,𝑖 Transverse Normal stress in 𝑖𝑡ℎ panel in RC element 

𝜎2𝑐,𝑖, 𝜎1𝑐,𝑖 Smeared Normal stresses on concrete element in directions 1 and 2 

𝜏𝑙𝑡,𝑖 Shear stress in 𝑖𝑡ℎ panel in RC element 

𝜏12𝑐,𝑖 Smeared Shear stress on concrete element in 1 and 2 coordinate system 
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Table 1: Comparison between CA-STM and CA-SMM 

Details CA-STM CA-SMM 

Theory Rotating angle theory Fixed angle theory 

Crack Direction 
Cracking is assumed along principal 

coordinate of the concrete element 

Cracking is assumed along Principal 

Coordinates of RC Element 

Poisson’s Effect Not considered Included in the formulation 

Strain Gradient effect 
Considered only for  principal 

compression 

Considered for both principal 

compression and principal tension. 

Post Peak Behavior Cannot predict accurately Predictions are better than CA-STM 

Post-Cracking 

Stiffness 
Cannot predict accurately Predictions are better than CA-STM 

The contribution of 

Concrete in Shear 

 Shear stress contribution from the 

concrete element is not considered. 

Shear stress contribution from the 

concrete element is considered. 

Solution procedure Iterative trial and error 
Optimisation of functional residue 

(Gradient descent method) 

Computation time Very large Significantly less(few seconds) 
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Table 1: Specimen Details 

Specimen ID 

Rahal-

Collins 

Series-1 

Rahal-

Collins 

Series-2 

Greene –

Box Girder  
Klus 

specimen 
Missouri Columns 

    I II I II 

Cross-section type Rectangle Rectangle Square Rectangle Rectangle Square Square 

Section dimension          

(m x m) 
0.30 X 0.60 0.34 X 0.64 0.76 X 0.76 0.2 X 0.3 0.2 X 0.3 

0.56 X 

0.56 

0.56 X 

0.56 

Hollow core area 

(m x m) 
- - 0.50 X 0.50 - - - - 

Effective Column 

height (m) 
1.66 1.66 3.66 1 1 3.35 3.35 

Cylinder strength 

(MPa) 
28.4 28.4 45 27 27 34.6 34.5 

Long. Reinf. Ratio 

(%) 
1.27 1.27 0.63 1.48 1.48 2.1 2.1 

Trans. Reinf. Ratio 

(%) 
0.75 0.75 0.95 0.08 0.08 1.32 1.32 

Longitudinal bar 

yield strength 

(MPa) 

354 354 446 439 439 512 512 

Transverse bar 

Yield strength 

(MPa) 

328 328 446 270 270 454 454 

Axial Force (kN) 160 160 0 0 0 0 668 

Elastic modulus of 

steel (MPa) 
200000 200000 226000 200000 200000 200000 200000 

T/V ratios 1500 mm 1500 mm 0 0 
656 mm 

& 281 mm* 
0 0 

*The presented T/V ratios were that of those used in validation, out of various Klus specimen of Klus 1968. 
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Table 1: Comparison of Predictions with Experimental Data ( at Peak) 

Parameter/ 

Specimen ID 

Peak Torque (KN-m) Peak twist (degrees) 

Exp. 

(𝑇𝑒𝑥𝑝) 
CA-

STM 

CA-

SMM 

(𝑇𝑐𝑎𝑙𝑐)  

𝑇𝑒𝑥𝑝

𝑇𝑐𝑎𝑙𝑐
⁄  

Exp. 

(𝜃
𝑒𝑥𝑝

) 
CA-

STM 

CA-

SMM 

(𝜃𝑐𝑎𝑙𝑐) 

𝜃𝑒𝑥𝑝
𝜃𝑐𝑎𝑙𝑐

⁄  

Missouri specimen 

Series I 330.1 322.6 353.4 0.94 6.3 4.1 7.4 0.85 

Series II 324.9 323.4 357 0.91 6.3 4.1 7.3 0.86 

Rahal and Collins specimen 

Series 1 141.0 114.0 117.5 1.20 4.2 2.4 3.5 1.20 

Series 2 134 145.7 144.8 0.92 2.4 2.2 3.5 0.68 

Greene specimen 

Greene 428.0 402.0 444.0 0.96 1.0 1.0 1.4 0.71 

Klus specimen* 

Series I 

(Pure Torsion) 
14.5 14.0 15.0 0.96 2.0 2.3 2.0 1.00 

Series II 

(T/V = 656 mm) 
12.8 13.5 14.0 0.91 1.8 2 1.9 0.94 

Series II 

(T/V = 281 mm) 
11.8 11.8 11.2 1.05 1.5 1.7 1.2 1.25 

*The presented T/V ratios were that of those used in validation, out of various Klus specimen of Klus 1968. 
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Table 1: Comparison of Predictions with Experimental Data (at ultimate) 

Parameter/ 

Specimen 

ID 

Ultimate Torque (KN-m) Ultimate twist (degrees) 

Exp. 

(𝑇𝑢,𝑒𝑥𝑝) 
CA-

STM 

CA-SMM 

(𝑇𝑢,𝑐𝑎𝑙𝑐)  

𝑇𝑢,𝑒𝑥𝑝

𝑇𝑢,𝑐𝑎𝑙𝑐
⁄  

Exp. 

(𝜃
𝑢,𝑒𝑥𝑝

) 
CA-

STM 

CA-

SMM 

(𝜃𝑢,𝑐𝑎𝑙𝑐) 

𝜃𝑒𝑥𝑝
𝜃𝑐𝑎𝑙𝑐

⁄  

Missouri specimen 

Series I 300.2 294.7 353.0 0.85 9.7 5.4 7.4 1.31 

Series II 295.0 303.0 357.0 0.82 9.7 5.3 7.2 1.34 

Rahal and Collins specimen 

Series 1 131.0 113.0 116.0 1.13 4.9 2.4 4.1 1.19 

Series 2 123.0 145.0 144.0 0.85 4.4 2.5 3.9 1.13 

Greene specimen 

Greene 354.0 394.0 440.0 0.80 1.4 1.5 1.9 0.76 
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Dear Editor, 

Thank you for reviewing and providing us with the opportunity to revise our manuscript (MS 

STENG-6964). We appreciate the careful review, complimentary comments, and constructive 

suggestions to improve our work. We believe that the manuscript is significantly improved by 

incorporating the suggestions. 

Following this letter are the point-by-point response to reviewers’ comments, including how and 

where the text has been modified. The revision has been developed, and each author has approved 

the final form of this revision. We hope that you find our responses satisfactory and that the 

manuscript is now acceptable for publication. 

Thank you for your consideration. 
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S. Suriya Prakash, Ph.D. 

Associate Professor  
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Response to Reviewer’s Comments 

Optimization Based Improved Softened Membrane Model for Rectangular Reinforced 

Concrete Members under Combined Shear and Torsion 

(Manuscript Number: MS STENG-6964) 

We are very much thankful to the reviewers for their deep and thorough review. We have revised 

the manuscript in the light of their useful suggestions and comments. We hope our revision has 

improved the manuscript to a level of their satisfaction. Number wise answers to their specific 

comments/suggestions/queries are as follows. 

Response to Reviewer #1 Comments 

General Comment: The paper entitled "Optimization-Based Improved Softened Membrane Model 

for Rectangular Reinforced Concrete Members under Combined Shear and Torsion" contains 

original contribution to the analytical study of Reinforced Concrete (RC) members under 

predominant torsion. A Combined Actions Softened Membrane Model (CA-SMM) to evaluate the 

entire behaviour of RC structural members under torsion, shear and axial load is developed and 

evaluated. The proposed model adopts an interesting optimization technique (namely gradient 

descent method) to solve the well-known non-linear equations of the SMM. Although there are 

several versions of the SMM available in the literature that face successfully the problem of torsion 

certain utility. Validation of the CA-SMM is achieved using comparisons between analytical and 

experimental torsional moment versus angle of twist curves. Further, an effort to investigate the 

interaction between shear and torsion using the developed method as a numerical tool for 

parametric analysis is attempted. The manuscript is well-structured, and the developed model is 

adequately presented. 

Response: The authors thank the reviewer for the positive feedback on the submitted work. 

Reviewers suggestions have been included as explained below: 

1. The linear, pre-cracking behavior of the analytical torsional moment versus angle of twist curves 

illustrated in the diagrams of Fig. 13 presents increased stiffness that is very close to the 



experimentally observed one. However, this is not justified since based on the assumptions of the 

model (see also line 118) "the concrete member is assumed to act as a truss after cracking." 

Further, it is claimed that (see also lines 330-332) "…the response predicted by the CA-SMM is 

better in the post-cracking regime and close to the experimental peak values." Additional 

comments on these issues and proper clarification are required.  

Response: The authors agree with the reviewer’s comment that the apparent truss model should 

lead to less stiff prediction. However, the assumption that the RC member acts as a truss is valid 

only after cracking. The pre-cracking behavior is known to be linear. The point corresponding to 

which cracking occurs is calculated from the expressions given by Collins and Mitchel (1991). 

The information explaining the same has been added in lines 128-131 (Page 3). As the current 

work focuses more on the truss model based SMM theory, the equations about cracking are not 

mentioned explicitly in the draft. Those equations are referred to the below references, and the 

same discussion has been included in the revised manuscript.  

References added: 

 Collins, M.P., and Mitchell, D. (1991),” Prestressed Concrete Structures,” Response 

Publications, Canada. 

 Mondal, TG, and Prakash, SS. (2015) "Effect of tension stiffening on the behavior of 

square RC columns under torsion." Struct. Eng. Mech. J 54.3 (2015): 501-520. 

 

As suggested by the reviewer, more clarifications on the predictions of model and comparisons 

with the experimental results are provided. 

2. The results and the concluding remarks derived from the torsional moment versus longitudinal 

and transverse strain diagrams presented in Fig. 15 are not adequately discussed. The statement 

reported in line 352 that "… the model is capable of capturing the trend of strain variations in the 

section accurately" needs further justification and explanation. 

Response: The experimental results pertaining to the variation of longitudinal and transverse 

strains are not available for all the specimens to compare with the analytical predictions. However, 

the authors wanted to highlight the variation of the strain distribution in the longitudinal and 

transverse steel to illustrate the capability of the model in calculating the strains at the local level. 

Depending upon the loading that the panel is subjected to (Pure torsion/ torsion + shear/ torsion – 

shear), there are four different strains on four different panels, as depicted in Fig. 15. Transverse 



steel reinforcement primarily resists loads of torsion and shear. Hence, as expected, the strains will 

increase smoothly until peak load and decreases after that. As the experimental data is not 

available, the authors want to depict with the graphs that the model is predicting the strains as 

expected from physical behavior. The section on “distribution of strains in reinforcement” has 

been elaborated in the revised manuscript. 

3. The interaction between torsion and shear and the use of the developed CA-SMM as a numerical 

tool for parametric analysis is very briefly presented. It is strongly recommended to enrich these 

sections. The influence of the axial load on the torsional response is also a parameter that could 

be further examined to provide useful interaction curves. The articles "Torsion-shear-flexure 

interaction in reinforced concrete members", "Strength of prestressed concrete beams in torsion" 

and "Combined torsion and bending in reinforced and prestressed concrete beams using simplified 

method for combined stress-resultants" could help in this direction since they present and discuss 

the flexure-torsion and shear-torsion interaction curves with and without axial force of RC 

members. 

Response: The authors thank the reviewer for the valuable suggestion. All the suggested 

references are included in the revised manuscript. Major findings from these references are also 

presented in the revised manuscript. 

The key interaction between torsion and shear is due to the change in shear flow (Eq. 5), which 

depends on the direction of application of the torsion and shear loads. Torsion-shear interaction 

diagram is shown in Fig. 4 and quantified in equation 5. The current work focuses on the 

interaction of torsion and shear, and the same has been validated with the available experimental 

data.  

Authors would like to clarify that the developed algorithm considers the effect of the axial load as 

well. Axial stress is included in the CA-SMM formulation. The interaction between axial stress 

and the shear stresses occurs at the membrane element level. The presence of axial compression 

stress increases the capacity of the shear element, and it is reciprocal for axial tensile stress. The 

same effect will be reflected at member level when the applied loads are torsion or shear. However, 

including the curvature and flexural effects in the proposed model is scope for further work. 

Therefore, only the axial load has been included in the algorithm but not the flexure.  



4. The concrete confinement in RC members with a short spacing of stirrups has been proved as a 

parameter of significant influence on the torsional response. Special stress-strain relationships of 

softened and confined concrete have been proposed for RC members, such columns with high ratio 

of transverse reinforcement. The Authors are invited to comment this issue. 

Response: The authors agree with the reviewer that the short spacing of stirrups will have a 

significant influence on the torsional response due to a possible reduction in softening of the 

concrete. The confinement of concrete due to the short spacing of stirrups will enhance the 

torsional performance of RC member. In the current work, the authors have used the close spacing 

of stirrups only in parametric studies. The transverse reinforcement ratio is increased theoretically, 

and the predictions are calculated. By keeping the behavior of concrete as a constant help in 

observing the changes predicted by the model, with the change in the intended parameter, i.e. 

transverse reinforcement ratio. The authors only want to depict the applicability of the model for 

parametric study. The confinement effect due to the close spacing of stirrups and its possible effect 

on the reduction in softening of concrete will be very interesting. More work is needed to 

understanding the interaction between the confinement and softening effect and is scope for further 

work. 

Response to Reviewer #2 Comments 

General Comment: The authors have presented a very detailed, well-written paper on the topic of 

the Optimization Based Improved Softened Membrane Model for Rectangular Reinforced 

Concrete Members under Combined Shear and Torsion. 

Response: The authors would like to thank the reviewer for his appreciation. 

  



 

1. The reviewer observes the analytical model results deviation from the experimental results in the 

non-elastic region of the load curve. Please explain the possible reasons more elaborately. 

Response: The authors agree with the reviewer that the predictions of the model deviate somewhat 

from the experimental results in the post-peak region. There are various assumptions involved in 

the model as follows: 

1.  “Section is modeled as an assembly of four cracked shear panels”. This assumption is 

essential to distribute the external loads among the shear panels. Though the actual stress 

state is very complex and the stress is distributed across the cross-section, the above 

assumption reduces the overall stress state into four different stress states (one stress state 

on each panel). The predictions can be refined more accurately by modeling the cross 

section using more number of panels and by establishing the compatibility conditions 

among the panels. However, this incurs a significant increase of computational time, and 

development of sophistical computational tools would be interesting and is scope for future 

work. 

2. Torsion is modeled using Bredt’s thin tube theory. According to which, the externally 

applied torsion is resisted by the shear flow stresses developed in the region of shear flow 

depth ‘td’ and also the stress is assumed to be uniform across the depth. The actual stress 

state due to torsion is very complicated for rectangular cross-sections. The results can be 

refined more accurately by including the exact stress state that occurs due to torsion which 

is very complicated and has not been established precisely for RC members. The authors 

here, have used the Bredt’s thin tube theory which is the current state of the art concerning 

the truss models for modeling torsional effects in RC section.  

The predictions of the proposed model are reasonably accurate considering the various 

assumptions and interactions among the parameters (i.e., sectional details, loading levels, 

spalling). Future work should focus on more refined predictions. The above discussion is 

included in the revised draft under the sections “Bredt’s thin tube theory” and “Summary and 

conclusions.” 

  



Response to Reviewer #3 Comments 

The authors thank the reviewer for his detailed review and suggestions. His comments were all 

included as discussed below: 

1. Page 2, Line 4: Omitted work by Onsongo for RC columns, although his paper is listed in the 

references (note column in the title). 

Response: The additional reference is included as suggested by the reviewer. 

2. Page 2, Line 50: Omitted work by Greene and Belarbi, although their specimen is used in the 

analysis included in the paper. 

Response: The additional reference is included as suggested by the reviewer. 

3. Page 3, Line 67-70: The paper incorrectly states that the SMMT which has a 2016 reference was 

the basis (“also extended”) for models that were developed before 2016 and published in 2009. 

This is not possible.  

Response: It is a typo. The authors only mean that the SMMT has been extended for various cross-

sectional shapes and applications that include box girders, circular sections and FRP strengthened 

specimen. The phrases that created confusion in the timeline has been rephrased in the same section 

as mentioned below: 

“SMM based torsional model was extended to other geometries, and strengthening configuration 

like box girders (Greene and Belarbi 2009), hollow RC members (Jeng and Hsu 2009), and 

rectangular sections strengthened with fiber reinforced polymer (FRP) composites 

(Ganganagoudar et al. 2016) under pure torsion. Ganganagoudar et al. (2016) have also extended 

the SMM based model for torsion (SMMT) for circular RC beams and validated with the 

experimental test results.” 

4. Page 3, Line 84: Bidirectional stress effects used here, but not adequately defined until page 3, 

line 103. Without a definition, the term is ambiguous and could mean a number of things. 

Response: The authors have introduced the Poisson effect and bi-directional stress states at their 

first usage in the revised draft, at lines 62-65.  



5. Page 5, Line 137 to 140: these four equations have been in at least one of the references cited in 

this paper. Reference should be given to the source. 

Response: Included as suggested. The work of Greene and Belarbi 2009 has been referred in this 

context. 

6. Page 6, Line 162 to 165: these four equations have been in at least one of the references cited for 

this paper. Reference should be given to the source. 

Response: Included as suggested. The works of Greene and Belarbi 2009, Rahal and Collins 1995 

have been referred in this context. 

7. Page 7, Line 181 to 184:  these four equations have been in at least one of the references cited in 

this paper. Reference should be given to the source. 

Response: Included as suggested. The work Hsu and Zhu 2002 has been referred in this context. 

8. Page 8, Line 191 and 194: Solving equation 11 into equation 12a would result in td,i equal to 

negative td,i. Please explain. 

Response: The equation is corrected in the revised draft as given below. The shear flow depth ‘td’ 

is always positive. Compression strains are taken as negative in the current analysis, therefore 

negative of negative number gives a positive value for ‘td’. 

𝛹𝑖 =
−𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝑡𝑑,𝑖
              (11) 

𝑡𝑑,𝑖 =  
−𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝛹𝑖
   (≤  

𝑏𝑜

2
)                    (12a) 

9. Page 8, Line 192: Equations are given to determine td. One of the specimens used in the 

comparison is hollow. None of the equations appear to limit the value of td to the actual wall 

thickness. The calculated td could be greater than the wall thickness at low torque (and small 

curvature). 



Response: The authors agree with the reviewer. The shear flow depth td is limited to the actual 

wall thickness of the specimen. The same information has been added in the revised draft by 

editing Eq. (12a)  

𝑡𝑑,𝑖 =  
−𝜀2𝑠,𝑖̅̅ ̅̅ ̅̅

𝛹𝑖
   (≤  

𝑏𝑜

2
)                             (12a) 

The following phrase has also been added: “ The calculated shear flow depth 𝑡𝑑,𝑖 should be limited 

to the thickness of walthe l in the case of the hollow specimen and should be limited to half of the 

depth of the idealized cross-section (
𝑏𝑜

2
) in the case of solid cross-sections” (lines 207-209) in the 

revised draft. 

10. Page 8, Line 205 to 209: the constituent laws for concrete in compression used in this paper were 

developed for flat panels. No justification is given in this paper for how the empirical relationships 

developed for flat panels are appropriate for the warping walls of a member under torsion. 

Response: The authors agree with the reviewer that the constitutive laws used in this work are 

developed based on test results of flat panels which are 2D elements. Torsion is a 3-dimension 

problem.. The evaluation of constitutive laws for a 3-dimension panel is currently investigated by 

a very recent publication of researcher Labib et al. 2017 (referred in the revised draft). These 

constitutive laws for compression and tension based on a warped 3-dimension panel, Poisson effect 

on these 3-D panels and their application for torsion are not fully established yet. Understanding 

these aspects are highlighted as scope for future work. The same limitation as pointed out by the 

reviewer is added in the revised draft (lines 422-427). 

Reference added: Labib, Moheb, Yashar Moslehy, and Ashraf Ayoub. (2017). “Softening 

coefficient of reinforced concrete elements subjected to three-dimensional loads.” Magazine of 

Concrete Research. 

11. Page 9, Line 216 to 217: the constituent laws for concrete in tension used in this paper were 

developed for flat panels. No justification is given in this paper for how the empirical relationships 

developed for flat panels are appropriate for the warping walls of a member under torsion. 



Response: The authors agree with the reviewer that the constitutive laws used in this model are 

developed based on flat panels which are 2D elements. Torsion is a 3-dimension problem. The 

same limitation as pointed out by reviewer has been added in the revised draft (lines 422-427). 

Reference added: Labib, M, Moslehy, Y and Ayoub A. (2017). “Softening coefficient of 

reinforced concrete elements subjected to three-dimensional loads”. Magazine of Concrete 

Research. 

12. Page 9, Line 226 to 229: these four equations have been in at least one of the references cited in 

this paper. Reference should be given to the source. 

Response: Included as suggested. The previous works of Jeng 2009, and Ganagnagoudar et al. 

2016 have been referred in this context. 

13. Page 10, Line 237 to 242: the Poisson effect used in this paper were developed for flat panels. No 

justification is given in this paper for how the empirical relationships developed for flat panels are 

appropriate for the warping walls of a member under torsion. 

Response: Limitations and justification are highlighted in the revised manuscript.  

Reference added: Labib, M, Moslehy, Y and Ayoub A. (2017). “Softening coefficient of 

reinforced concrete elements subjected to three-dimensional loads”. Magazine of Concrete 

Research. 

14. Page 11, Line 271: It states that the principal compressive strain in panel 1 is varied from zero to 

failure. Equation 5a shows that the shear flows are additive in panel 1.  But according to 

conclusion 3, shear stress is additive in panel 3. Also, figure 15 shows that the strains are largest 

in panel 3. Which panel has the additive shear flows? If panel one does not have the additive shear 

flow, it may never reach large compressive strains, so how can the compressive strains be varied 

for this panel? Please explain. 

Response: The shear flow is uniform in all the panels when only torsion is applied. The shear flow 

due to external shear loads is added/subtracted to the existing shear flow depending upon the 

direction of external shear load (as depicted in Fig. 4 of the draft). The authors agree with the 

reviewer that the panel no. 1 will never reach large compressive strain if it does not have additive 

shear flow. At the same time, it has to be noted that the section failure will be governed by the 

compressive strain in the panel 3 in which shear flow is additive. The analysis will stop as soon as 



compressive strain reaches its failure limit in any one of the four panels. In the present discussion, 

it is panel-3, in which shear flows are additive.  

15. Page 13, Line 304:  no explanation is given for how the equivalent longitudinal and transverse 

reinforcement in each panel was determined. 

Response: The following information has been added to the revised draft, in the section 

“Idealization of Cross-section”: 

“The longitudinal and transverse reinforcement in the section also has to be distributed among the 

shear panels. If the sections are symmetrical regarding reinforcement, then longitudinal steel and 

transverse steel is distributed equally among all the shear panels. The transverse reinforcement is 

distributed equally among all the shear panels as it is symmetric for all the specimens adopted in 

the current study. The longitudinal steel area is assigned to that shear panel in which the 

longitudinal bar is located. In the cases of overlap of steel area between two shear panels, it is 

distributed as a function of the width of the shear panels that are overlapping. A detailed account 

of the distribution of longitudinal reinforcement can be in the work of  Greene and Belarbi (2009).” 

16. Page 13, Line 313 to 321: This list only shows the Missouri 2 specimen as having axial force. In 

Table 2, Rahal‐ Collins 1 and Rahal‐ Collins 2 also have an axial force given.  Which one is 

correct? 

Response: The list of lines 336-339 has been corrected to avoid the mismatch of information. 

17. Page 13, Line 313 to 321:  If axial force is included for columns, does the model account for 

spalling of the cover?  

Response: No. Spalling of concrete cover is not considered in the present work. In the present 

model, the cover concrete area has also been included in all the calculations of torsion, shear and 

also axial loads. The authors agree that the spalling phenomenon occurs when axial loads are 



present. The interaction of torsional, shear and axial loading on the spalling of concrete cover is 

not in the gambit of the present work. It is the scope of future work. 

18. Page 13, Line 326: 1) the grammar in this sentence is confusing. 2) assuming a comparison is 

being made between two models: the comparison is purely qualitative. Just looking at the figures 

14 a through e, the CASTM is much closer to experimental data than the proposed CASMM. So 

the validity of your statement is questionable. Instead, the comparison should be quantified or 

deleted. 

Response: The comparisons are quantified in Tables 3 and 4. There are instances in which the 

predictions of CASMM are better than CASTM and vice versa. The ambiguous nature of the 

sentence is addressed by rephrasing the sentence in the revised draft as given below: 

“The peak torque and the corresponding twist are captured reasonably well by the CA-SMM. The 

proposed model predicted the peak torque and twist more accurately for the specimen of Missouri, 

Rahal and Collins while the results of CA-STM are close to experimental peak values of Greene’s 

and Klus specimen. However, it can be observed from the Table 3 that the predictions in the peak 

torque and peak twist predictions of CASTM and CASMM are similar.”  

19. Page 14, Line 331: Comparison of models based on peak values is also qualitative. Looking at the 

figures 14 this statement is questionable. The comparison should be quantitative or deleted. 

Response: The comparisons are quantified in Tables 3 and 4. There are instances in which the 

predictions of CASMM are better than CASTM and even vice versa. The ambiguous nature of the 

sentence is addressed by rephrasing the sentence in the revised draft as given below: 

“The peak torque and the corresponding twist are captured reasonably well by the CA-SMM. The 

proposed model predicted the peak torque and twist more accurately for the specimen of Missouri, 

Rahal and Collins while the results of CA-STM are close to experimental peak values of Greene’s 

and Klus specimen. However, it can be observed from the table 3 that the predictions in the peak 

torque and peak twist predictions of CASTM and CASMM are very close.” 

20. Page 14, Line 338: Reference is made to figures 14 and 15. It is unclear whether the values shown 

in the figures are experimental or model predictions. It is unclear how it is useful to show only the 



experimental or model predictions of strain. Both need to be shown together to evaluate the 

adequacy of the proposed model.  

Response: The figures depict the predictions of the model. The experimental data of strains is not 

available in the literature. The authors presented the predicted strains to depict that the improved 

model is capable of capturing the behavior at the local level as well. Due to unavailability of 

experimental data, the predictions are not sufficed with experimental validation. The same 

information and the limitation are explained elaborately in the revised draft. 

21.  Page 14, Line 352: Statement is made, “the model is capable of capturing the trend of strain 

variations in the section accurately.” The figures 14 and 15 that are the basis for this statement 

do not show a comparison of experimental and prediction strain. It is unclear what the trend of 

strain variation is. How can you claim the model accurately predicts something without showing 

a comparison?  

Response: The experimental results pertaining to the longitudinal and transverse strains are not 

available in the literature, due to which the comparison could not be presented. The authors want 

to present the strain distribution in the longitudinal and transverse steel to depict that the model is 

capable of calculating strains at the local level also. Depending upon the loading to which the panel 

is subjected to (Pure torsion/ torsion + shear/ torsion – shear), there are four different strains on 

four different panels, as depicted in fig. 15. Transverse steel reinforcement primarily resists loads 

of torsion and shear. Therefore, it is expected that the strains will increase smoothly until peak 

load and decreases after that. As the experimental data is not available, the authors want to depict 

from the graphs that the model is predicting the strains by the expected trend. The corresponding 

section “distribution of strains in reinforcement” has been elaborated to include the above details. 

The authors hope that the discussion is valid and adds value to the manuscript. 

22.  Page 15, Line 373: Figure 16 does not show a variation in compressive strength or longitudinal 

reinforcement as stated in the text 

Response: The phrase is edited as given below. Fig. 16 depicts the parametric study of variation 

of concrete compressive strength, transverse and longitudinal reinforcements ratios. The authors 



want to depict the same that the model can be adopted for parametric study also and the same 

results are presented in fig. 16.  

“The parametric study of varying concrete compressive strength and longitudinal reinforcement 

ratio for predicting the torsion shear interaction is also presented in Fig. 16.” 

23.  Page 16, Line 389: Conclusion number 3 was not directly discussed in the body of the paper. Not 

sure that the figures in this analytical study really demonstrated this conclusion as currently 

written. 

Response: Conclusion 3 is drawn from the analysis of strains presented in Fig. 16. The transverse 

strains are more in the panels in which shear stresses due to shear and torsion are additive. 

Therefore, the conclusion is made that the transverse reinforcement plays a key role in improving 

the torque-twist behaviour for members under combined loading of torsion and shear. The 

conclusion could be strongly established if the results are sufficed with the experimental 

validation.  

24.  Page 25, Fig 6: this image was taken from another source and should be referenced 

Response: The figure is modified for a rectangular cross-section to suit the type of section 

investigated in this work. Relevant references to highlight the behavior are included in the text. 

25.  Page 25, Fig 7:  this image was taken from another source and should be referenced. 

Response: Fig. 7 has been adapted by the authors based on the previous work of Jeng 2009 and 

Ganganagoudar et al. 2016. References are included in the revised manuscript. 

26.  Page 31, Fig 16: Rahal Collins series 2 was a single specimen in table 2, 3, and 4. In figure 16, 

one specimen is shown as an interaction curve of four points. Not sure how this is possible. 

Response: The specimen is same as in table 2,3 and 4. The interaction points are calculated for 

different T/V ratios. For Rahal Collins specimen, the results are compared with Experimental data 

available for T/V ratio of 1500mm.  



27.  Page 31, Fig 16: Klus specimen was shown as two specimens in table 2, three specimens in table 

3, and excluded from table 4. These two or three specimens became 8 points on an interaction 

curve in figure 16. Not sure how this is possible. 

Response: In total, Klus has conducted tests on eight specimens, which fall under different T/V 

ratios. Only a few of them were validated by the authors, and the validated ones were included in 

the Tables 2 &3. Only three specimens are used in both the tables 2 and 3 (one under pure torsion 

and two other specimens of 2 different T/V ratios). In Table 4, the test data related to post-peak 

failure is not available for the Klus specimen and therefore it is omitted. However, all the 

experimental data of Klus’s specimen (eight of them) for different T/V ratios are used in the 

validation of T-V interaction diagram (Figure 16). A note has been added to the Table 2 and 3 to 

convey the same information.  

The manuscript has been resubmitted to your journal. We look forward to your positive response. 

Sincerely, 

Dr. S. Suriya Prakash. 


