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ABSTRACT 

This project involves the study of heat shock protein 47 (HSP47), which is a 

molecular chaperone crucial for collagen biosynthesis. It exhibits a high degree of sequence 

homology with members of the serine protease inhibitor (serpin) superfamily, though HSP47 

does not possess the inhibitory activity. It is a single-substrate chaperone, and binds only to 

collagen. ‘Knock-out’ of the hsp47 gene impairs the secretion of correctly folded collagen 

triple helix molecules leading to embryonic lethality in mice. Thus the aim of this project was 

to elucidate the specific mechanism that governs the binding to and release from collagen at 

the molecular level, known as the ‘pH-switch mechanism’. Emphasis is given on histidine 

(His) residues as the HSP47-collagen dissociation pH is similar to the pKa of the imidazole 

side chain of His residues. Site directed mutagenesis was used to mutate surface His residues, 

based on a mouse HSP47 homology model. The effects of the mutations on the behaviour of 

HSP47 were then assessed by collagen binding assays and structural analyses with circular 

dichroism (CD). All mutants were found to have good solubility and retain their binding 

ability to collagen like wild-type HSP47 in batch assay, but perturbed behaviour was seen in 

column experiment. Mutation of His residue at position 191 (H191) causes the shift in the 

collagen dissociation pH, while mutation of H197 and/or 198 disrupt the specific HSP47-

collagen interaction. H191, 197 and 198 are predicted to be located in the region near the C-

terminus of strand 3 of β-sheet A (s3A) in the homology model, a region specifically known 

as the ‘breach cluster’ in serpin nomenclature. The extent of conformational rearrangement of 

this region was further investigated by means of intrinsic tryptophan fluorescence 

spectroscopy using a series of single tryptophan (Trp) mutants. Results from analyses 

performed on the mutants did not contradict the observation seen in His mutational work, as 

Trp residues in the ‘breach’ cluster are likely to be located in the dynamic region of HSP47 

pH-triggered conformational change. In conclusion, this study establishes the importance of 

His residues in the ‘breach cluster’ to HSP47 pH-switch behaviour. Finally, a model for 

HSP47 pH-switch mechanism was proposed from data obtained via mutagenesis 

experiments. The model is hoped to assist future research into HSP47 cellular behaviour and 

will also be of great use in therapeutic applications involving the molecular chaperone. 
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CHAPTER 1: INTRODUCTION 

 

The extracellular matrix (ECM) is a complex of proteins that defines the structural integrity 

and carries various physiological functions in organisms. Collagen, being the most abundant 

protein in ECM, has been extensively studied structurally and physiologically. This includes 

its biosynthesis and secretion to ECM (Bornstein, 1974; Canty and Kadler, 2005; Prockop et 

al., 1979). It has been discovered that a group of proteins, called molecular chaperones, assist 

the formation and transport of collagen triple helix in the endoplasmic reticulum (ER) and the 

Golgi compartment. Among the most important, but yet least understood of those chaperones 

is heat shock protein 47 (HSP47). Knock-out of the hsp47 gene disrupts the formation of 

collagen triple helices, consequently basement membrane formation leading to embryonic 

death (Nagai et al., 2000). These demonstrate the importance of this chaperone for the normal 

development of mice. Although the general function has already been suggested, a specific 

mechanism that governs the binding to and release from collagen, at the molecular level, is 

still being debated. Hence, it is the aim of this project to shed light on this mechanism by 

constructing mutants targeting important residues of HSP47 to investigate the consequent 

effects on the behaviour of the chaperone.    

 

1.1 Aims of the Project 

HSP47 research at the cellular level has been expanding rapidly with the increasing number 

of abnormalities and physiological processes reported to have connection with HSP47 

expression. Despite the fact that understanding HSP47 mechanism at molecular level is 

crucial for more advanced research and applications, studies on its molecular behaviour so far 

seem inadequate. This is especially true for the pH-switch mechanism, which is the only 

mechanism known to govern the binding and release of the chaperone to collagen. The 

importance of this mechanism to HSP47 function has previously been established, but has not 

been fully understood at the structural level. As the release of HSP47 from collagen is an 

ATP-independent process, His residues have been hypothesised to play a major role in this 
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mechanism. Thus, the contributions of several His residues to the pH-switch function were 

therefore set for investigation. Site directed mutagenesis, which is a tool commonly used by 

molecular biologists, is employed to construct a series of HSP47 mutants targeting His 

residues of interest.  Coupled with circular dichroism (CD) and fluorescence spectroscopy, 

the importance of those amino acid residues to the protein structure and function could then 

be investigated.  

 

Hence, the aims of this project were as follows: 

1. Construction of His-to-Ala (HA) mutants by site directed mutagenesis on hsp47 gene 

previously cloned into an expression vector. 

2. Assessment of the effects of HA mutations on the structure and function of HSP47.  

3. Investigation of the dynamics of certain regions of HSP47 during pH-transition using 

intrinsic Trp fluorescence on a series of Trp-to-Phe (WF) mutants. 

4. Proposing a molecular model for HSP47 pH-induced structural change based on own 

data and those already reported in the literature.  
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1.2 Collagen 

Collagen is the most abundant protein component of ECM that gives tissues their specific 

mechanical and biochemical properties in multicellular animals (Gelse et al., 2003). To date 

27 different types of collagen encoded by more than 40 different genes are identified (Koide 

and Nagata, 2005). All collagens can be characterised by the (Gly-X-Y)n triplets repeats in 

which position 1 is always occupied by glycyl- residue and positions 2(X) and 3(Y) are 

usually prolyl- and hydroxyprolyl- residues. Hydroxyproline (Hyp, O) is an amino acid 

residue formed upon hydroxylation of proline (Pro, P) residue in a reaction catalysed by 

prolyl hydroxylase (Myllylä et al., 1977; Tuderman et al., 1977). It is based on these 

molecular characteristics (amino acid repeats) and supramolecular arrangements that give rise 

to the different types of collagen (I to XXVIII) (Kadler et al., 2007), consisting of specific α-

chains encoded by more than 40 different genes (Koide and Nagata, 2005). 

Polypeptide chains of collagen molecules are called α-chains while the polypeptides 

of procollagen are called proα-chains since they contain the additional propeptides at both N- 

and C-termini as depicted in Figure 1.1 (Prockop et al., 1979). These α-chains subsequently 

assemble to form a collagen triple helix which is a right-handed supercoil with three 

polyproline II-like left-handed helices (Figure 1.2A-C). All peptide bonds in the helix are in 

trans- configuration and the triple helix can exist both as homotrimers or heterotrimers with 

different α-chains (Beck and Brodsky, 1998). The structure of collagen was first proposed by 

Ramachandran and co-workers in 1955 (Ramachandran and Kartha, 1955). They suggested 

that collagen basically consists of three polypeptide chains, winding around each other to 

form a coiled coil. Each chain was said to be held to its neighbouring chains by two hydrogen 

bonds (H-bonds). Their proposal was rejected by Rich and Crick for not being 

stereochemically correct and the impossibility of having two sets of H-bonds to stabilise it 

(Rich and Crick, 1955). They then went further to suggest two new possible conformations of 

collagen triple helix based on the (GPO) amino acid repeats, and their own work on 

polyproline and polyglycine type II. Their new conformations suggested only one H-bond 

could form between neighbouring chains. Structure I has a glycyl- amino (-NH2) pairing with 

an adjacent glycyl- carbonyl (-CO) group which creates a bond pointing anticlockwise when 

observed from the C-terminal of the peptide chain, while structure II has the bond pointing 

clockwise as the pairing is between prolyl- carbonyl group. Analyses of X-ray images of 



(PGP)n peptide suggested that structure II was more viable (Yonath and Traub, 1969). A 

followed-up investigation using native collagen from kangaroo tail tendon corroborated this 

finding, and credited structure II of Rich-Crick model for being more accurate (Fraser et al., 

1979). 
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Figure 1.1: General structure of collagen.  
Adapted from (Gelse et al., 2003). The structure of procollagen molecule (type I) with the 
various subdomains and the cleavage sites for N- and C-proteases (or procollagenases). Also 
shown are the sugars attached to the helical domain and its non-helical termini. In the C-
terminal, the propeptide chains are held together by intrachain and interchain disulfide bonds, 
and have about 10 residues of mannose. These sugar moieties are probably important for 
secretion. Whereas in the N-terminal, only intrachain peptide bonds exist, with a small 
amount of sugar (Gelse et al., 2003; Guzman et al., 1978; Prockop et al., 1979).  
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Figure 1.2: The structure of (Pro-Hyp-Gly)10 in which the fifth Gly is replaced by Ala.   
A. Full length triple helical peptide, showing the interchain H-bond (yellow dashed line) 
between Pro carbonyl- and Gly amido- groups. The structure is rendered in ball-and-stick 
view, PDB ID: 1CAG. It can also be seen from the structure that there is ‘local unwinding’ in 
the middle of the triple helix at the Gly replacement site. Visualisation was done with 
Deepview SwissPDB Viewer v4.0.1. Adapted from (Bella et al., 1994; Voet and Voet, 2005). 
B. The peptide viewed along the helix axis (white dashed lines represent the H-bonds). 
Adapted from (Bella et al., 1994; Voet and Voet, 2005). C. The structures of poly-L-proline 
type I (PPI, right-handed) and type II (PPII, left-handed) shown in sticks representation. PPI 
is formed when the backbone dihedral angles are (φ, ψ: -75°, 160°) and are less compact than 
PPII as the peptide bonds are in cis isomers; while PPII have (φ, ψ: -75°, 145°) and the 
peptide bonds are in trans configuration. There is no intrachain H-bond present in either 
types of helices (Cubellis et al., 2005). Structures adapted from 
(http://www.cryst.bbk.ac.uk/pps97/assignments/projects/szabo/pphelix.htm). 
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Because of the cyclic nature and the rigidity of Pro and Hyp, the rotation of the 

polypeptide backbone is limited and thus contributes to the stability of the triple helix. In 

addition, the hydroxyl group of Hyp has also been found to help stabilising the triple helix 

(Prockop et al., 1979). Extensive studies on how Hyp stabilises the triple helix shows that the 

residue at position-Y is crucial for collagen triple helical conformation. It was earlier 

proposed that stabilisation is attained through water-mediated hydrogen bonding as the 

hydroxyl group of Hyp is directed outside the helix (Ramachandran and Chandrasekharan, 

1968). Collagen with increased Hyp content also shows increased enthalpic stabilisation. 

Another mechanism that has been suggested is the inductive effect of the electron 

withdrawing group (-OH) which prefers trans- to cis- peptide bond (Brodsky and Persikov, 

2005; Eberhardt et al., 1996). Many of these observations were made on short peptides that 

mimic the sequence of naturally-occurring collagen rather than the full-length native 

molecule. The reason for this is that these peptides offer the advantages of being easily 

manageable over natural collagen in terms of the desired amino acid sequence, length and 

physicochemical properties.  

 

1.2.1 Collagen-mimetic Peptides: Synthesis and Applications 

Reseach on collagen-mimetic peptides (CMPs), also known as collagen-related peptides 

(CRPs) and collagen-like triple helical peptides (THPs) (Cejas et al., 2007; Fields et al., 

1996) has been expanding rapidly, ranging from the modelling of collagen structure, to the 

interaction study between collagen binding clients. The huge amount of information that 

could be obtained with CMPs has also been utilised in biomedical research, often involving 

manipulation of collagen-binding receptors acting at various cellular locations (Fields, 2010).   

Many CMPs were synthesised using the solid phase procedure, with the earliest 

peptides synthesised have the repeats of Pro and Gly amino acids (Sakakibara et al., 1972). 

After that, method to incorporate Hyp into the systematically synthesised peptide was 

devised, using benzyl- side chain protection of the 4-carbon hydroxyl. The (POG) peptide 

was found to have higher melting temperature compared to the analogous (PPG) peptide, 

leading to suggestion that Hyp might have a stabilising effect on the triple helix (Sakakibara 

et al., 1973). Currently, almost all CMPs are synthesised based on stepwise solid-phase 
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method using tert-butyloxycarbonyl (Boc) or 9-fluorenylmethoxycarbonyl (Fmoc) 

chemistries. Recent advancement in synthetic techniques enables the making of various 

CMPs with different chain constituents, not only limited to homotrimer triple helices (Fields, 

2010). 

The propensity of the peptides to form triple helix is usually monitored using optical 

rotatory dispersion (ORD) or circular dichroism (CD) spectroscopy. Triple helical peptide 

gives a distinctive positive molar ellipticity at around 225 nm and a negative ellipticity at 

around 200 nm. At appropriate wavelengths, these techniques are also used to obtain the 

temperature at which triple helical to coil structural transition occurs, also known as melting 

temperature (Fields and Prockop, 1996).  

 

Circular Dichroism Spectroscopy 

 CD spectroscopy is a very useful technique to study protein folding and as well as the 

structural elements in both native or unfolded conformation (Schmid, 1997). The CD 

phenomenon arises from the difference in the absorption of the left-handed (L) and right-

handed (R) circularly polarised light. A CD signal will be observed when the optically active 

molecule differentially absorbs the L and R components giving rise to light that possesses 

elliptical polarisation. Spectropolarimeters are used to measure the difference in absorbance 

between the L and R components (∆A = AL – AR) but it is usually reported in ellipticity unit (θ) 

in degrees. A simple numerical relationship between ∆A and ellipticity is given by Equation 

1.1 below.  

 

θ = 32.98 ∆A  (Eq. 1.1) 

 

Some of the CD data in this thesis are given in ∆A unit, but mostly in mean residue ellipticity 

(MRE, deg cm2 dmol-1) unit which normalises the effect of concentration in cases where 

different samples on different experiments are to be compared. The conversion between these 

units is given in Chapter 6 (Materials and Method).  



Information on the structural composition of proteins can be obtained from their CD 

spectra. In the far-UV region (170-250 nm), different types of regular secondary structures 

contribute to distinctive CD spectra (Figure 1.3). Mainly α-helical proteins have negative 

bands at 222 and 208 nm and a positive band at 193 nm. Proteins with anti-parallel β-sheets 

have a negative band at 218 nm and a positive band at 195 nm while disordered proteins with 

irregular structure have a very low ellipticity above 210 nm but have a negative band at 

around 195 nm. For collagen triple helix, each strand has the conformation that resembles the 

poly-L-proline in which all of the bonds are trans to each other. The CD spectrum of this 

polypeptide gives a positive band at 218 nm and a negative band at around 195 nm (Figure 

1.3). Another type of structure observable with CD is the β-turn (Greenfield, 2007; Kelly et 

al., 2005). As proteins usually have different types of secondary structures, comparison of a 

spectrum with those of known three-dimensional structures is usually needed to estimate its 

structural content. There are several databases that can provide the information on known 

protein spectra (such as DICHROWEB), and their corresponding structural information based 

on the experimentally-determined structure (Whitmore and Wallace, 2008).   
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Figure 1.3: Far-UV CD spectra showing the different bands originating from different 
types of protein secondary structure.  
Adapted from (Kelly et al., 2005).   
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Applications of Collagen Mimetic Peptides 

One of the first purposes that led to the synthesis of CMPs is the interest in solving 

collagen’s structure. Many CMPs have been synthesised and characterised for that purpose in 

the past half a century. A major breakthrough in this path was when Ramachandran and 

Kartha introduced their model of collagen structure in 1955, quickly followed by Rich-Crick 

model in the same year and then Yonath-Traub model in 1969. The use of peptides for 

structural elucidation was initiated by Okuyama and co-workers in 1981. In their study, 

peptide (PPG)10 was crystallised and analysed. Its structure suggested that a hydrogen 

bonding between the individual peptide strands is contributed by the amino group of Gly to 

oxygen group of the first Pro residue of the (PPG) repeat in the neighbouring chain. The other 

specific H-bonds involve water molecules (Okuyama et al., 1981). This was not much 

different from the Rich-Crick structure II making it the generally acceptable model to date. 

The first high resolution crystal structure of a collagen triple helix was eventually solved in 

1994 using a CMP containing 10 repeats of (POG) amino acids with one replacement of Gly 

to Ala in the middle of the peptide chains (Bella et al., 1994). The structure allowed the 

assessment of the effects of Gly substitution, which causes local ‘twist relaxation’ of the 

triple helix to accommodate the additional methyl- group from Ala side chain. The high 

resolution X-ray structure also revealed the specific interaction of the peptide with water 

molecules in the stabilisation of the disrupted triple helix. This stabilisation is attained by the 

formation of H-bonds between glycyl- and hydroxyprolyl- residues, with interstitial water 

molecules, other than the predicted H-bonds between carbonyl- and amide- groups of Pro and 

Gly respectively (Figure 1.2B) (Bella et al., 1994). The structure of unsubstituted (POG) 

peptide was eventually solved to explain the implications of proline ring puckering on the 

triple helix stability (Okuyama et al., 2004). 

Recently, focus of CMP synthesis has been towards obtaining new collagen mimetic 

materials for use in medical applications. The reason for this is to avoid potential rejection of 

natural collagen by the host (immunogenic responses), especially if it is sourced from a 

different species, and also on religious basis. There is also the risk of transferring harmful 

agents, such as prions to humans. The ultimate goal is to design synthetic peptides that are 

fairly stable in vitro, able to form higher order collagenous fibril at certain conditions, non-

toxic endogenously, and should also possess properties that can easily be manipulated. The 
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fact that the field of peptide chemistry is reaching deeper into realm of possibilities makes 

this aim seemingly within reach. The development of technologies that can covalently link 

the three strands of triple-helical peptides together, such as solid-phase branching, solution-

phase cross-linking, chemoselective and native chemical ligation, disulfide (cystine) knots 

and various modifications could pave the way for more advanced techniques in peptide 

design (Fields and Prockop, 1996; Przybyla and Chmielewski, 2010).  

One of the most preferred modifications is the linking of the three peptide chains with 

cystine knots at the C-terminal region, arranged in such a way to mimic the staggered 

arrangement of collagen fibril. This arrangement occurs when collagen triple helices are 

arranged end-to-end in a tight conformation to minimise surface area by volume ratio (see 

section 2.7) (Kadler et al., 1996). The ‘templated’ approach with cystine knots usually 

enhances the thermal stability of the resulting triple helix (Fields, 2010), but obtaining a 

much bigger structure proved to be challenging, though possible. Using both (POG)n and 

(PPG)n peptides held together by cystine knots, Kotch and Raines were able to achieve what 

they called ‘self-assembly’ of the triple helix via intra- and intermolecular triple helix 

formations (Kotch and Raines, 2006). (POG)n peptides have a much higher stability than 

(PPG)n, as apparent from the stabilisation effect of Hyp. They also showed that the peptides 

self-assembled to form bigger fibrils more than 400 nm. This is longer than that of natural 

type I collagen (about 300 nm), even though the fibrils formed still contain short-length 

chains (Kotch and Raines, 2006). An approach giving a gel-like material was also reported by 

Yamazaki and co-workers using (POG) repeat peptides (Yamazaki et al., 2008). Cystine 

knots were introduced at different positions along the peptide length with the intention to 

create a staggered arrangement during self-assembly. The peptides form hydrogel upon 

incubation at 4°C with varying stability, depending on the knot location (Yamazaki et al., 

2008). In all reports, the synthesis routes described to obtain the starting molecules are still 

considerably long, especially for commercialisation. Hence, research is currently undergoing 

to find a much shorter route to achieve the highly desirable staggered arrangement in vitro for 

the purpose of gel formation. 
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1.2.2 Procollagen Assembly in the Endoplasmic Reticulum (ER)    

Procollagen biosynthesis occurs in the endoplasmic reticulum (ER) initially as 

‘preprocollagen’ molecule with a signal sequence attached at the N-terminus. The presence of 

this sequence causes the proα- polypeptide to be translocated into the lumen of rough ER. 

This signal sequence is removed as the chain enters the cisternae of rough ER. Post-

translational modifications including hydroxylations of the amino acids at the X- and Y-

positions, and glycosylations  by the action of hydroxylases and transferases also occur in the 

ER (Koide and Nagata, 2005). The most extensively characterised of these enzymes is prolyl 

4-hydroxylase (P4H) which is responsible for converting prolyl- residues to 4-hydroxyproline 

(4-Hyp). These hydroxylases act in a specific manner, where the position of the residue 

hydroxylated in the amino acid sequence is very important. The peptide must also be non-

helical, and for P4H and lysyl hydroxylase (LH), only proline or lysine at -Y position is 

recognised. On the other hand, prolyl 3-hydroxylase (P3H) acts on prolyl residue at position -

X. Upon folding to triple helix, these polypeptide chains must possess about 90 4-Hyp 

residues per chain to be stable at body temperature (out of a total of about 1000 amino acids 

for fibril forming collagens type I, II and III (Gelse et al., 2003)). The triple helical 

conformation then prevents further hydroxylation. Glycosylations of the hydroxylysyl 

residues then follows (Prockop et al., 1979).             

 Following association of the three pro-α chains at the C-propeptide, formation of 

interchain disulfide bridges initiates the formation of triple helix in the ER. There is a strict 

requirement for Gly at the third residue as these residues are small enough to allow them to 

be buried in the core of the helix. The helix then propagates towards the N-terminus, with 

several chaperones reported to help accelerating this process. The triple helix is actually still 

unstable at body temperature, leading to suggestion that molecular chaperones in the ER, 

such as HSP47, act to help to stabilise it in vivo (Koide and Nagata, 2005; Leikina et al., 

2002).      

 Similar to other proteins, after being assembled in the ER, procollagen molecules are 

transported to the Golgi before leaving the cell (Prockop et al., 1979). Beforehand, the 

globular propeptides at the amino- and carboxy- termini are cleaved by aminoprotease and 

carboxyprotease respectively. This then triggers fibrillogenesis process, which then prevents 

further unfolding (Leikina et al., 2002). Eventually, the collagen molecules assemble into 
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fibrils, either in the plasma membrane or in the transport compartment between Golgi and 

plasma membrane (Canty and Kadler, 2005). These so-called ‘immature fibrils’ do not 

possess the necessary tensile strength and require covalent cross-linking to strengthen them. 

This process is catalysed by lysyl oxidase (LO), which oxidises certain terminal lysyl- and 

hydroxylysyl- residues. As a result, two types of cross-links are generated. Firstly, 

intramolecular cross-links whereby two α-chains of the same molecule are joined together by 

aldol condensation of two aldehydes generated during the oxidation process. Secondly, cross-

links between the collagen triple helices which involve bond formations between aldehyde 

generated from lysine and hydroxylysine and amino group of a second lysine or 

hydroxylysine. These are then followed by several more stable cross-links (Prockop et al., 

1979). These processes are summarised in Figure 1.4. 
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Figure 1.4: Schematic diagram of procollagen assembly showing roughly the enzymes 
involved during various stages of the biosynthesis.  
(SP: signal peptidase; GT: hydroxylysyl galactosyltransferase and galactosylhydroxylysyl 
glucosyltransferase; LH: lysyl hydroxylase; PH: prolyl hydroxylase; OTC: oligosaccharyl 
transferase complex; PDI: protein disulfide isomerase; PPI: peptidyl-prolyl cis-trans-
isomerase; NP: procollagen N-protease; CP: procollagen C-protease; LO: lysyl oxidase; 
HSP47: heat shock protein 47). Adapted from (Gelse et al., 2003). 
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1.2.3 Molecular Chaperones in Collagen Biosynthesis 

The process of collagen biosynthesis from procollagen production in the ER to transport to 

Golgi apparatus, and then finally to ECM involves actions by several general and specific 

molecular chaperones. Molecular chaperones are a group of proteins that assist the correct 

folding of other polypeptides or proteins but are not components of the final folded structures 

(Ellis and van der Vies, 1991). The term ‘molecular chaperone’ describing proteins that 

ensure the correct folding of other proteins into functional oligomeric structures was 

proposed by John Ellis (Ellis, 1987) when describing the chaperoning action of a chloroplast 

protein in the assembly of a photosynthetic CO2-fixing enzyme, ribulose bisphosphate 

carboxylase-oxygenase (Rubisco) from its subunits.  

 Earlier, the information required for correct folding of protein was said to be specified 

by the amino acid sequence, as proposed by Anfinsen from the observation made with 

ribonuclease molecules (Anfinsen, 1973; Anfinsen et al., 1961). Due to this, earlier protein 

folding studies were based on the knowledge that proteins fold in the cell by the self-

assembly process. Until it was found that during some studies, at certain temperatures and 

polypeptide concentrations, a fraction of the peptide chains failed to fold correctly, and 

formed aggregates instead (Ellis and Minton, 2006). This is even more significant in cells 

where the concentration of proteins and others macromolecules are very high (up to 400 g/L) 

(Hartl and Hayer-Hartl, 2009). The discovery of molecular chaperones then prompted 

scientists to re-evaluate their initial theory on protein folding, taking into account the crucial 

function of chaperones in assisting the folding of polypeptide in vivo and preventing the 

undesirable misfolding steps that could lead to aggregations. The chaperones are also 

reported to assist protein assembly in vitro by decreasing the aggregated chain fractions (Ellis 

and Minton, 2006). 

 It is not surprising that the assembly and transport of collagen molecules are assisted 

by a succession of molecular chaperones. The ER alone has many chaperones that are 

involved in the biosynthesis of various other types of proteins. A review by Koide and Nagata 

(2005) provides an extensive overview on most chaperones involved in the synthesis of 

collagen, as early as the production of nascent procollagen chain to the formation of complete 

collagen triple helical molecule. The chaperones can be divided into ‘general’ and ‘specific’ 
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chaperones. Among the general chaperones are the immunoglobulin heavy-chain binding 

protein (BiP) or also known as 78 kDa glucose-regulated protein (GRP78), GRP94, calnexin 

and calreticulin, peptidyl-prolyl cis-trans isomerase (PPIase) and protein disulfide isomerase 

(PDI), while HSP47 is classified as a specific chaperone due to its single substrate 

recognition. Figure 1.5 lists these general and specific chaperones and their suggested binding 

sites on collagen molecule during biosynthesis. 
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Figure 1.5: Collagen chaperones binding regions (reported and predicted) at various 
stages of collagen biosynthesis in the ER.  
These include general ER chaperones like BiP, PDI, Grp94, CNX, CRT and PPIase, while 
P4H and HSP47 are classified as specific collagen chaperones. Adapted from (Koide and 
Nagata, 2005). 
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BiP/GRP78 and GRP9 

The immunoglobulin heavy-chain binding protein (BiP), also known as 78-kDa glucose-

regulated protein (GRP78), is the only member of heat shock protein 70 (Hsp70) family that 

resides in the ER. The chaperone is required for translocation of newly synthesised 

polypeptides across the ER membrane and subsequently for their folding and assembly in the 

ER lumen. BiP recognises a wide variety of nascent polypeptides that have no sequence 

similarity but can accurately discriminate between properly folded and unfolded structures 

(Blond-Elguindi et al., 1993). In collagen biosynthesis, BiP is proposed to promote protein 

assembly especially at the early stage of triple helical formation. It has been shown to bind to 

abnormal type I procollagen, specifically the pro-α chains that possess C-terminal propeptide 

mutation that interferes chain association and interchain disulfide bond formation (Lamandé 

et al., 1995). BiP binding to secretory proteins is transient before they have folded correctly, 

but it remains bound to misfolded and aberrant proteins (Lamandé et al., 1995). Hence, it is 

also possible that BiP is involved in the quality control of the terminal propeptide of the 

newly-synthesised procollagen molecules. GRP94 has been shown to form a complex with 

BiP in the stabilisation of nascent collagen chains (Ferreira et al., 1994; Ferreira et al., 1996).   

 

Calnexin and calreticulin 

Calnexin (CNX) was discovered in 1991 in several forms but was mainly related to 

multimeric T-cell antigen receptor (TCR), a chaperone that interacts with partially folded 

protein complex in the ER and is absent from the fully folded one (Degen and Williams, 

1991; Hochstenbach et al., 1992). CNX was found to share sequence motifs with calreticulin 

(CRT), a major calcium-binding intraluminal resident ER protein. The name CNX was 

proposed as it represents a membrane-bound homologue of CRT (Wada et al., 1991). CNX 

and CRT have been shown to interact transiently with a wide array of nascent proteins in the 

ER, especially the folding or assembly intermediates but not with fully folded structures (Ou 

et al., 1993). Hence, these chaperones are associated with the quality control by prolonging 

the retention of unfolded protein in the ER. Specifically, CNX and CRT interact with the 

glycan moieties of substrate glycoproteins after they have been trimmed by glucosidases I 
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and II to the monoglucosylated form (Helenius and Aebi, 2001). The critical function of these 

chaperones in collagen biosynthesis is yet to be demonstrated, but they have been postulated 

to bind to the C-terminal propeptide region that has been glycosylated with N-oligosaccharide 

right at the early stage of procollagen synthesis (Harwood et al., 1975). In type II collagen for 

example, glycosylations have been suggested to mediate the interaction with proteoglycans 

(Gelse et al., 2003). 

 

PPIase and PDI 

Peptidyl-prolyl cis-trans isomerase (PPIase) catalyses the cis-trans isomerisation of proline 

peptide bonds, which can be a rate-limiting reaction in many slow molecular conversions 

(Lang et al., 1987). Unfolded type I procollagen was shown to have 16% of X-Pro peptide 

bonds (where X is any amino acid) in cis conformation, and 8% in X-Hyp bonds (Sarkar et 

al., 1984) while the rest are in trans. Hence the newly-folded procollagen molecules require a 

chaperone to assist the formation of trans peptide bond for increased stability. This chaperone 

is important in the synthesis of correctly-folded collagen molecules as inhibition of its action 

in the presence of cyclosporin A results in the collagen produced by fibroblasts are over-

modified (especially lysine hydroxylation) with raised intracellular degradation (Steinmann et 

al., 1991).  

 Protein disulfide isomerase (PDI) is a chaperone that catalyses the correct pairing of 

disulfide bonds during folding processes assisted by disulfide bridges. It involves a redox 

reaction to form reduced/oxidised forms of PDI and the protein substrate (Creighton et al., 

1980; Darby and Creighton, 1995). In procollagen molecules, PDI is involved in the 

formation of disulfide bonds within the α-chains (intra-chain) and among the chains (inter-

chains) (Wilson et al., 1998). Another collagen chaperone in the ER, which is normally 

associated with PDI, is prolyl 4-hydroxylase (P4H). P4H catalyses the formation of 4-

hydroxyprolines by the hydroxylation of proline residues. The formation of hydroxyproline 

helps to stabilise the triple helical conformation of collagen, through water-mediated 

hydrogen bonding (Ramachandran and Chandrasekharan, 1968) or inductive effect of the 

hydroxyl group attached to the proline residues (Eberhardt et al., 1996). PDI also exists as a 

subunit of the active oligomeric complex of P4H (Koivu et al., 1987). As a subunit of P4H, 

the chaperone complex prevents the formation of insoluble aggregates of procollagen 
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molecules by binding to the unhydroxylated chains in the ER. Additionally, the complex also 

binds the incompletely folded parts of the collagen triple helices, increasing their solubility 

and preventing immature secretion by longer ER retention (Wilson et al., 1998). 

1.3 Heat Shock Protein 47 (HSP47) 

HSP47 has been identified by several names including colligin (Kurkinen et al., 1984), CB48 

(Yannariello-Brown and Madri, 1990), J6 (Wang and Gudas, 1990) and gp46 (Clarke et al., 

1991) based on the cell type by which it was discovered. All other nomenclatures have rarely 

been used to identify this chaperone, and hence for standardisation the name HSP47 is used 

throughout this study. Historically, HSP47 was first found in 1986 in heat-inducible chick 

embryo fibroblasts and was shown to be able to bind type I collagen (Nagata et al., 1986). 

HSP47 synthesis is increased upon cell incubation at 42°C, hence the name. The isoelectric 

point (pI) of HSP47 is around 9.0 and it is an unusually basic protein. The localisation of 

HSP47 in the ER was demonstrated using immunocytochemical studies with monoclonal and 

polyclonal antibodies against HSP47 in vitro (Satoh et al., 1996). The presence of an ER 

retention sequence, Arg-Asp-Glu-Leu (RDEL) can also signify that HSP47 is recycled back 

to the ER upon dissociation in the Golgi via the action of receptors to maintain the 

concentration of HSP47 inside the ER (Satoh et al., 1996).  

HSP47 is a cell-specific protein, and only expressed in collagen-synthesising cells 

(Saga et al., 1987), such as in fibroblasts. The complementary DNA (cDNA) has been cloned 

independently from F9 mouse carcinoma cells (Wang and Gudas, 1990) and from a cDNA 

library of heat-shocked chick embryo fibroblasts (Hirayoshi et al., 1991).  
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1.3.2 pH-dependent Conformational Change of Proteins 

pH is a critical factor in determining a correct folding and optimum function of proteins. 

Enzymes for example, have certain narrow pH ranges at which they become active. pH 

affects the binding affinity of the substrate to the enzyme, either due to the ionisation of 

amino acid residues of the enzyme; or due to the  ionisation of the substrate itself. A classic 

example is haemoglobin, where its affinity to oxygen depends on pH and carbon dioxide 

concentration.   

 Haemoglobin is a well-characterised protein made up of four subunits (tetramer). In 

vertebrates, the subunits are called α and β subunits. Each subunit also has a heme group and 

hence one oxygen binding site. Upon binding to oxygen, haemoglobin undergoes changes in 

the quarternary structure that brings the β subunits closer and narrows its central cavity. pH 

plays a crucial role in haemoglobin action as an increase in proton concentration enhances its 

tendency to release oxygen, a phenomenon known as the Bohr effect. This process reportedly 

involves the protonation of a His residue (H146) located at the C-terminus of each β subunit. 

In the non oxygen-binding form, this residue forms a salt bridge with an Asp residue (D94) 

thus stabilises the protonated form against dissociation and increases its pKa. The salt bridge 

is not observed in the binding form. This means that at low pH (high proton concentration), 

the non binding form is preferable and this increases the tendency of haemoglobin to release 

oxygen. This is important in the event of high metabolic activity when tissues produce more  

lactic acid, hence higher proton concentration. This in turn causes haemoglobin to release 

more oxygen molecules to cope with the higher metabolic requirement (Mathews et al., 1999; 

Stryer, 1995). 

Like haemoglobin, many proteins change their conformations at different pH values 

and most of which are critical for their functions. It is also well known that pH can greatly 

affect the tendency of proteins to precipitate, causing collapse in their structural integrity. 

Notwithstanding, milder pH variation can trigger measureable changes, that can either be 

localised to certain regions of the protein (particularly the ligand binding site), or the whole 

protein itself. In most cases, the changes are triggered by the ionisation of amino acid side 

chains strategically located in the protein interior that are accessible to solvent. In the cellular 

pH range, several amino acid side chains are ionised (Figure 1.6).  
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Figure 1.6: Major ionisation zones of several amino acid side chains.  
The side chains can be divided into acidic (Asp has a side chain pKa of about 3.9, Glu 4.2) 
and basic (Lys pKa of 10.0, Arg 12.5). His has a pKa of around 6.0 and is loosely classified as 
basic. Cys and Tyr are omitted as the side chains are mostly neutral at physiological pH range 
(Chan and Warwicker, 2009; Mathews et al., 1999). The ionisation regions for the  
–amino and –carboxyl groups are also shown for comparison. 
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An example of a side chain-triggered local conformational change is in the case of a 

protein that forms part of viral infection machinery. A His residue (H263) located in a fusion 

loop (called FL2) of glycoprotein B of herpes simplex virus type 1 (HSV-1) has been 

reported to trigger a local conformational change upon exposure to low pH. This 

rearrangement is suggested to play a role during endosomal entry of HSV probably via 

enhanced interaction with other glycoproteins of the acidic state (Stampfer et al., 2010). The 

local conformational changes of FL2 are illustrated in Figure 1.7. In this case, H263 is 

suggested to be a ‘trigger’ residue that controls the change in conformation that largely 

affects the function of the virus.   

A more profound pH-triggered conformation change was observed in monomer-to-

dimer transition of dynein light chain protein (DLC8). DLC8 is the smallest subunit of the 

microtubule-associated cytoplasmic dynein motor assembly, usually involves in intracellular 

transport of materials within cell cytoplasm (King, 2000). Very much like in glycoprotein B 

of HSV, the dimer dissociation of DLC8 is also controlled by the protonation of His residues. 

Instead of just a single residue, this process is suggested to involve the ionisation of several 

residues, which gradually increases the flexibility of the β-sheet loops at the dimer interface. 

Three His residues which are predicted to have slightly different pKa by NMR assignments, 

are ionised at different pH values and subsequently trigger strand repulsions. The repulsions 

finally cause the abolition of salt bridges before the dimer fully dissociate into monomer at 

pH as low as 3.0 (Mohan et al., 2006).  
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Figure 1.7: Proposed pH-induced conformational changes of loop FL2 of glycoprotein B 
of HSV. 
Firstly in (A), as illustrated by step 1, His 263 (H263) becomes protonated and tends to repel 
the uncharged region formed by Trp 174 (W174) and Tyr 265 (Y265). Then in (B) the loop is 
pulled into more hydrophilic environment, as a result the hydrogen bond between H177 and 
Glu 260 (E260) is abolished (step 2). Finally in (C) H263 forms a new salt bridge with Asp 
226 (D226) keeping the new conformation stable and in place (step 3) (Stampfer et al., 2010). 
Neutral WT protein is shown as white surface representation, residues 258-264 shown as 
sticks representation in cyan and the acidic conformation is shown in green stick 
representation.    
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1.3.3  HSP47 Binding and Releasing Properties  

The expression of HSP47 correlates with collagen expression indicating that HSP47 plays an 

important role in the processing, secretion and higher order assembly of collagen (Dafforn et 

al., 2001; Ishida et al., 2006; Satoh et al., 1996). Binding is also observed with gelatin, which 

is a denatured form of type I and III collagen. Unlike some proteins, glycosylation and 

phosphorylation of HSP47 are not essential for the binding event (Jain et al., 1994b; 

Kurkinen et al., 1984). HSP47 was earlier shown to be able to bind both single-stranded 

procollagen chains and triple helical collagen (Satoh et al., 1996). A more recent studies 

demonstrated that it is more likely to bind triple helical collagen instead of the single-

stranded ones (Koide et al., 2006a). Dafforn and co-workers (Dafforn et al., 2001) has 

established that under normal folding conditions, HSP47 is likely to exist as a native, five-

stranded β-sheet A (similar to the structure of α1-AT shown in Figure 1.8A, B) and is 

metastable. Metastability in serpins exists because the native state of serpins is not the most 

thermodynamically stable, and this increases the tendency of the protein to form more stable 

conformations (Im and Yu, 2000). This is achieved either after cleavage of the centre loop 

(RCL) upon binding with protease (Engh et al., 1989), or through conformational 

rearrangement at suitable conditions (Mottonen et al., 1992). 

Certain chaperones, such as heat shock protein 70 (Hsp70), DnaJ, GroEL and GroES 

complex, requires ATP for energy supply during chaperoning action. Hsp70 family members 

have the basic function of binding and releasing hydrophobic segments of unfolded 

polypeptide chain in a reaction cycle involving the hydrolysis of ATP. This class of 

chaperone can be found in the ER, cytosol, mitochondria and chloroplast (Georgopoulos and 

Welch, 1993). Hsp70 homologue in bacteria is called DnaK. Another chaperone, DnaJ is 

found to interact closely with DnaK by stimulating its ATP hydrolysis activity, which is 

significantly higher in the presence of another chaperone GrpE. It was suggested that DnaJ 

binds DnaK, causing the rate of ATP hydrolysis to accelerate. GrpE then binds and 

subsequently accelerates the rate of release of the bound ADP (Liberek et al., 1991). These 

chaperones are involved in bacterial protein assemblies during stress conditions and also 

some other normal cellular functions. Likewise, GroEL/ES are chaperone complex originally 

the products of groE gene locus of E. coli. GroEL, which is the large sub-unit possesses a 

cylindrical-shaped molecular arrangement with a central hole about 6 nm in diameter, 



 

 

45

constituted of 14 identical subunits that are arranged in two stacked rings of seven sub-units 

each. Electron micrograph revealed that GroEL has a ‘double-doughnut’ shape. At one end of 

the double-doughnut is GroES, which is a smaller subunit, heptameric ring-like molecule and 

known to bind only to GroEL (Lodish et al., 1995). In short, the complex assists protein 

folding when ATP and GroES bind the same GroEL ring (called cis ring) as misfolded 

polypeptide. The polypeptide is allowed to fold correctly in the ring cavity until dissociation 

from the ring is triggered by ATP hydrolysis in the other ring (trans ring) that allows ATP 

entry and another polypeptide. This process then continues back and forth (Horwich et al., 

1999). So these chaperone complexes utilises ATP as energy source while assisting the 

folding of polypeptides. HSP47, unlike these chaperone systems, does not require the 

presence of ATP for association with and dissociation from collagen, prompting a number of 

studies to investigate its mechanism of action (Nakai et al., 1992).  

Binding of HSP47 to collagen in vitro was reported to be in a pH-sensitive manner. 

The binding was observed at pH 8.0 and abolished at pH 6.3 (Saga et al., 1987). The 

structural aspects of this pH-change property studied using circular dichroism (CD) and 

fluorescence spectroscopy suggested that HSP47 undergoes a two-step conversion from high 

to low pH state via an intermediate structure. The β-sheet content is estimated to increase 

during the transition by up to 10-20%, based on CD spectra curve-fitting procedure 

(Thomson and Ananthanarayanan, 2000). This property is attributed to the protonation and 

deprotonation of histidine (His) imidazole side chain due to the transition midpoint around 

pH 6.2, which resembles that of the pKa of His side chain (El-Thaher et al., 1996). In the 

presence of HSP47, fibril formation of collagen is prevented at neutral but not at low pH 

(Thomson and Ananthanarayanan, 2000). Further research reported on the pH-dependent 

binding of HSP47, including to a synthetic collagen-like peptide (PPG)10,  showed HSP47 

undergoes conformational change as pH is reduced from 7 to 6 causing dissociation from the 

peptide (Dafforn et al., 2001).          
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Figure 1.8: Typical structure of serpin family members. 
A. The ‘front’ view of α1-AT (PDB ID: 1QLP) showing the positions of central β-sheet A 
(sA), sheet B (sB) and sheet C (sC) above sB. B. ‘Back’ view of α1-AT showing that all the 
helices (A to I, labelled hA to hI) except hF lie on the relative back side of the protein. The 
serpin reactive centre loop (RCL) is exposed at the top of the molecule. C. The cleaved 
(single chain) structure of α1-AT (PDB ID: 7API). The RCL is shown in blue and the rest of 
A-sheet is in red. D. The latent structure of PAI-1 (PDB ID: 1C5G). Figures adapted from 
(Elliott et al., 2000; Engh et al., 1989; Gettins, 2002; Tucker et al., 1995).  
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More detailed binding studies suggested that the dissociation of HSP47 from 

procollagen occurs as the HSP47/procollagen complex enters cis-Golgi compartment when 

the concentration of free HSP47 decreases as the ER-retention receptors retrieve HSP47 

(Natsume et al., 1994). Using surface plasmon resonance, it was shown that this rapid 

decrease of free HSP47 causes dissociation because of its high dissociation rate constant 

(kdiss) from collagen of more than 10-2 s-1 (Natsume et al., 1994; Satoh et al., 1996). Despite 

this, the occurrence of pH-dissociation in vivo could not yet be confirmed. The 

conformational requirements of collagen/collagenous peptide for HSP47 recognition has been 

studied extensively by Koide and co-coworkers (Koide et al., 2000). Using a library of 

collagenous peptides, they demonstrated that the hydroxylation of the second Pro residue in 

the sequence (Pro-Pro-Gly)n reduced the interaction between HSP47 and the peptide. As 

tested in yeast two-hybrid systems, Pro residues in the X and Y positions do not contribute 

equally to the interactions with HSP47 as single Pro to Ala substitution at the X position 

abolishes the binding but this does not occur at the Y position. Peptide library screening 

showed that Arg at position Y is preferred for HSP47 binding, followed by Pro, up to 5-6 

times more. This is related to the triple helix stability of the former peptides compared to the 

other amino acids (Koide et al., 2000).  

The tendency of HSP47 to bind the triple helical part of collagen molecules was also 

reported by other studies (Thomson and Ananthanarayanan, 2000). Using CNBr fragments of 

collagen type I and II, the region in collagen molecule which has got the highest affinity for 

HSP47 binding was determined to lie towards the N-terminus (Thomson et al., 2003). 

Synthetic peptides, like (PPG)10 were also used to study the interaction with HSP47 leading 

to the finding that the binding of HSP47 to (PPG)10 is less tight when compared to full-length 

collagen, given that (PPG)10  is monomeric. The binding event also promotes the 

conformational ordering of the peptide bonds in Pro residues leading to PII  helix formation 

(Dafforn et al., 2001). An investigation has also revealed that HSP47 recognises triple-helical 

collagen clients, and is unlikely to bind to the molecules before the triple helix is formed 

(Koide et al., 2006a). By using short (POG) heterotrimeric collagen peptides, it was 

demonstrated that at least one Arg residue per triple helix at Y position is sufficient for 

HSP47 recognition. Enhanced interaction was also observed when the amino acids at -3 

position (Y-3) from Arg at the Y position is Thr, with the highest affinity observed when both 

Arg and Thr are located at the same polypeptide in the triple helix. These suggest that HSP47 
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helps stabilising the triple helix when the cell is under stressed condition, by increasing 

binding to the lower affinity sites under stressed environment, other than the usual high 

affinity ones during normal chaperoning function (Koide et al., 2006b).         

As in the case of other pH-dependent proteins, pH changes are suggested to be 

particularly important for HSP47 as it is a collagen-specific chaperone and its release from 

collagen is triggered by protonation. This means that the only mechanism of action for 

HSP47 is via pH-induced conformational change and thus justifies the needs to fully 

understand the general and specific structural rearrangement during the process.  



1.3.4  Functions in Collagen Biosynthesis 

As a unique chaperone that only binds to collagen, various functions have been proposed for 

HSP47. Although the actual mechanism of the chaperone is still being debated, among the 

suggested functions include: 

a) Protecting the newly-synthesised pro-collagen chains from being folded or aggregated 

until translation is complete (Satoh et al., 1996).  

b) Stabilising newly-synthesised pro-collagen in the event of metabolic stress (Ferreira et 

al., 1994). 

c) Inhibiting the degradation of pro-collagen in the ER (Jain et al., 1994a). 

d) Helping the formation of three-dimensional assemblies of collagen molecules 

(Dafforn et al., 2001; Kurkinen et al., 1984; Nakai et al., 1992) by inducing the 

formation of a polyproline type II conformation (Dafforn et al., 2001). 

e) Assisting the formation of correct trimers among different α-chains in heterotrimeric 

collagens, probably with other collagen chaperones, and preventing the secretion of 

incorrectly-folded heterotrimers (Kobayashi and Uchiyama, 2010). 

f) Stabilising the correctly-folded triple helix against external stress, such as elevated 

temperature (Koide et al., 2006b; Makareeva and Leikin, 2007). 

g) Stabilising partially folded triple helical intermediates that would be unstable at body 

temperature (Koide et al., 2000; Koide et al., 2006b). 

h) Binding to misfolded areas within fully formed collagen to reduce aggregation 

(Dafforn et al., 2001). 

i) Preventing the secretion of immature or misfolded procollagen molecules (Nakai et 

al., 1992). 

j) Retaining the underhydroxylated procollagen in the ER longer (Satoh et al., 1996). 

The advent of many sophisticated techniques in biological research has enabled HSP47 

researchers to further support or refutes all the suggested functions listed above. For example, 

the function of HSP47 to help stabilise the collagen chain in the event of cellular stress has 
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been receiving more attention as recent study on HSP47 binding motives on collagen 

molecules suggests the presence of high-affinity and low affinity binding sites. These low 

affinity binding sites are thought to be the sites where HSP47 molecules bind to in stress 

conditions, apart of the normal binding site during regular cellular events (Koide et al., 

2006a; Koide et al., 2006b). Furthermore, HSP47 involvement as early as pro-collagen 

synthesis is now heavily debated as it is recently found to bind to single stranded collagen 

peptide significantly less than the triple helical molecules (Koide et al., 2006a; Koide et al., 

2002). These then suggest that other collagen chaperones are involved in stabilising the single 

stranded nascent pro-collagen molecules, like BiP, CNX and CRT. The ability of HSP47 to 

retain underhydroxylated collagen triple helices is also supported by further research on the 

importance of hydroxylation for HSP47 binding and collagen transport to the Golgi (Koide et 

al., 1999; Koide and Nagata, 2005; Walmsley et al., 1999). Despite these, there are many 

other functions that are still being investigated, especially involving the molecular changes 

induced upon HSP47 binding to collagen molecules. 
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1.3.5 HSP47 and Diseases 

Wound Healing 

HSP47 is a chaperone that is expressed constitutively in collagen-synthesising cells and 

tissues. Its expression has been shown to increase during induced skin and gastrointestinal 

wound. In neonatal rat for example, a few days after wound introduction, increased collagen 

expression and thus an increase of HSP47 expression could be observed in dermis and 

subcutaneous tissues (Wang et al., 2002). Detection of HSP47 expression was performed 

using immunoblotting while collagen expression was probed using RT-PCR of collagen type 

I mRNA. Similarly, in rat model induced with gastric ulcer, an increase in HSP47 expression 

was recorded, especially from the third day to twelfth day after ulcer induction. Most of the 

increased expression was observed in fibroblast cells around the ulcer wound, probably 

involved in ulcer healing. Healthy gastric tissues also showed HSP47 expression, but at a 

much lower level (Guo et al., 2002). Other than just in skin and gastric ulcers, HSP47 

expression was also detected in induced oral ulcer. In normal tissues, HSP47 is usually found 

in the suprabasal layer of the oral epithelium and the lamina propria, which is a layer of 

connective tissue under the epithelium. Upon ulcer induction, HSP47 expression increases 

significantly especially at the stage of wound healing, before decreasing to the initial level 

after complete regeneration. Hence, like in the case of gastric ulcer healing, this suggests that 

HSP47 also assists collagen deposition during remodelling phase of the induced oral 

ulcerative wound (Vasques et al., 2010). 

 

Fibrosis 

HSP47 has been known to be involved in many types of fibrotic diseases, characterised by 

the extensive depositions of collagens. A large number of studies have reported the up-

regulation of HSP47 in the event of fibrosis. A recent observation suggested that the increase 

in HSP47 expression promotes excessive collagen assembly in patients with chronic graft-

versus-host disease (cGVHD), which involves uncontrolled fibrosis in the lacrimal glands 

(Ogawa et al., 2007). Furthermore, HSP47’s abnormal expression has also been associated 

with oral submucosal fibrosis, which is a pre-cancerous condition (Yang et al., 2008).  
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 Another type of fibrosis that would be a potential target for treatment is liver fibrosis. 

It is a result of the chronic damage to the liver due to the accumulation of extracellular matrix 

(ECM) proteins. Cirrhosis mortality, which is the end stage of fibrosis, has been rising in 

numbers in the UK lately (Henderson and Iredale, 2007) suggesting an urgent need for 

treatment. It is worthy to note that in industrialised nations, the main reasons for this fibrosis 

are hepatitis C infection, alcohol abuse and non-alcoholic steatohepatitis (NASH). The 

relationship of HSP47 expression and the progression of fibrosis have been well researched 

(Masuda et al., 1994; Razzaque et al., 1998), and in cirrhotic liver, HSP47 is shown to be 

expressed intensely (Brown et al., 2005; Sato et al., 2008). Nonetheless, HSP47 is also 

present in control liver tissue suggesting that the chaperone might serve as an important 

function in normal healthy liver. This poses a real challenge to knock-down therapy 

approaches (Brown et al., 2005). 

 

Osteogenesis imperfecta (OI) 

As has been anticipated by HSP47 researchers and collagen biologists in general, the first 

direct connection between HSP47 and osteogenesis imperfecta (OI) was reported in 2009, 

based on the study on OI Dachshunds dogs (Drögemüller et al., 2009). A mutation at Leu 

position 326 to Pro (L326P) in HSP47 was found in OI individuals. The amino acid is highly 

conserved across all vertebrates carrying HSP47 protein. Later on, a similar mutation was 

also found in human individuals suffering from OI (Christiansen et al., 2010). The abnormal 

HSP47 is degraded via proteasome pathway and the absence of normal HSP47 appears to 

have several effects on type I procollagen production. Firstly, procollagen trimers are rapidly 

transported from the ER to the Golgi. Then the overall transit time from the ER to the 

extracellular space is also increased. The trimers were also found to be hypersensitive to 

protease degradation suggesting that they are immaturely expressed. These in the end affect 

the collagen fibril assembly in the ECM and lead to irregular bone mineralisation pertinent to 

OI (Christiansen et al., 2010). 
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Connection with Cancer Progression 

HSP47 gene expression (also called SERPINH1), has been detected in many types and stages 

of cancer. Recently, a comparative study of public gene expression data of seven types of 

cancer found that SERPINH1 is one of the top marker genes for stomach cancer, particularly 

at the early stage. Collagen type XII gene (COL12A1), is also one of the possible markers in 

the aforementioned cancer type (Xu et al., 2010). Similarly, HSP47 antigen has been detected 

in sera of breast cancer patients, among 27 other biomarkers (Anderson et al., 2011). The 

gene has also been shown to be highly upregulated in neuroblastoma tumour cells after 

treatment with demethylating agent 5'-aza-2'-deoxycytidine (5-aza-dC). This is because 

hypermethylation of various genes has been reported to be closely-related to NB. In the 

presence of 5-aza-dC, SERPINH1 gene expression is induced more than 80-fold thus the 

growth of neuroblastoma is impaired. It was also found that, in the NB cell lines, the higher 

the level of collagen expression, the higher the tumorigenicity (Yang et al., 2004). In some 

cases of carcinomas, HSP47 is highly expressed. For example in the epithelial cells of 

ulcerative colitis associated carcinoma, that relates to the increase in collagen type I 

production. The function of collagen from epithelial cells is somewhat unclear (Araki et al., 

2009). Overexpression is also observed in oral squamous cell carcinoma induced by areca nut 

chewing, which is a famous pastime among East, South, and South East Asian communities. 

This habit has been declared as unhealthy due to the carcinogenicity of the compounds 

present in the nut. The high expression of HSP47 was found to accompany collagen 

expression in the tissues surrounding the tumour, probably to prevent metastasis (Lee et al., 

2011). Similar overexpression has also reported in head and neck squamous cell carcinoma 

(Li et al., 2008), and pancreatic carcinoma (Maitra et al., 2002). These findings suggest the 

growing significance of HSP47 as biomarker and potential target for therapy for various 

types of cancerous cells.  

 

Potential HSP47-related Treatments 

Treatments of various fibrotic diseases by targeting HSP47 mechanism are actively being 

developed due to its binding specificity to collagen. Among these include small molecule 

inhibitors and RNA interference (RNAi), using viral and non-viral gene delivery system (Li 
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et al., 2008; Sato et al., 2008; Thomson et al., 2005). But there has been another treatment 

method reported to be able to suppress HSP47 expression thus suppressing collagen 

deposition in fibrotic diseases, namely employing the antisense oligonucleotides. 

Oligonucleotides are short (13-25 nucleotides) unmodified or chemically modified single 

stranded DNA molecules that hybridises to a unique sequence in the total pool of targets in 

cells. Generally, the mechanism of inhibition of gene expression by oligonucleotides can be 

divided into two: 1. Via the RNase H-dependent oligonucleotides, which induces mRNA 

degradation. 2. The steric-blocker oligonucleotides which prevents or inhibit splicing or 

translational machinery progression. The majority of drugs employing oligonucleotides are 

based on the first mechanism (Dias and Stein, 2002). Antisense oligonucleotides has been 

shown to abrogate the expression of HSP47 in peritoneal fibrosis in rats, thus suppressing the 

expression of collagen types I and III (Nishino et al., 2003). Later on, the oligonucleotides 

have been shown to suppress pulmonary fibrosis induced by paraquat (a herbicide) ingestion. 

The level of HSP47 expression was halved and fibrotic lesions was inhibited based on the 

difference in connective tissue deposition (Hagiwara et al., 2007c). Furthermore, experiments 

on a rat model suffering from pulmonary fibrosis induced with bleomycin and 

lipopolysaccharide was also found to inhibit or decrease HSP47 expression (Hagiwara et al., 

2007a; Hagiwara et al., 2007b). Bleomycin is a cytostatic drug commonly used in the 

treatment of cancer, with an undesirable side effect of inducing chronic pulmonary 

inflammation that may progress to fibrosis in some cases. Compared to other techniques, 

oligonucleotides administration does not require gene transfection. 

Vector systems on the other hand, also have their own potential. Adenoviral vector 

targeting HSP47 as tumour-specific biomarker has been developed, and used to target the 

head and neck squamous cell carcinoma (HNSCC) (Li et al., 2008). Liposomes, as an 

alternative to viral delivery system, have also been applied to deliver small interference RNA 

(siRNA) against gp46 (the rat homolog of HSP47). The vitamin A-coupled liposome system 

carrying the siRNA has been shown to resolve collagen deposition in cirrhotic rat liver  by 

suppressing HSP47 expression (Sato et al., 2008). Hepatic stellate cells, which are the 

principal cell type responsible for liver fibrosis, were particularly selected as the cells take up 

vitamin A from circulation before storing it. For this reason, vitamin A was coupled to the 

surface of liposome to achieve a more specific targeting to the cells, before the siRNA targets 

gp46 and suppresses its expression. Finally, the use of small molecules is also appealing for 
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pharmacological targeting of HSP47. Four small molecules have been identified to inhibit 

HSP47 function in vitro, but the efficacy of these compounds in cells and in vivo is yet to be 

tested (Thomson et al., 2005).    

Inhibiting excessive collagen synthesis in various fibrotic diseases by blocking HSP47 

function is a promising mechanism for the treatment of such diseases. Therefore, it is 

essential to understand the mechanism by which HSP47 binds to collagen. This will facilitate 

the development of drug design strategies so that the best treatment method can be devised.    

 

1.4 Serpins 

HSP47 is a slightly unusual member of the heat shock proteins as it belongs to the serine 

protease inhibitor (serpin) family as well. Serpins generally have a highly conserved 

secondary structure that is usually made up of a core of three β-sheets surrounded by nine α-

helices (Huber and Carrell, 1989). They can be found widely across eukaryotes, in their 

related viruses and also in higher plants (Gettins, 2002). As a member of the serpin 

superfamily, HSP47 has been shown to possess several of the archetypal serpin 

characteristics. Hence, it is helpful to consider the structure and behaviour of the members of 

this family to assist in studying HSP47 functions.  

Serpins are single chain proteins with conserved domains of around 370-390 amino 

acid residues. Members of this group of proteins have a highly conserved secondary 

structure. Serpins are characterised by the presence of three groups of β-sheets (A to C) and 

eight to nine α-helices (hA to hI) (Figure 1.8A, B) named according to the Huber and Carrell 

nomenclature of α1-antitrypsin (α1-AT) (Huber and Carrell, 1989). Many members of this 

group are serine protease inhibitors, but some are non-inhibitors such as ovalbumin, pigment 

epithelium derived factor (PEDF), thyroid- and corticosteroid binding globulins (T- and 

CBG) and angiotensinogen (AGT) (Silverman et al., 2001). In inhibitory serpins (native 

form), the interaction with their target proteases is at a reactive site within a loop structure 

(reactive centre loop or reactive serpin loop, RCL or RSL) of about 30-40 amino acids from 

the C-terminus (Figure 1.8A, B). The loop is exposed on the surface making it susceptible to 

proteolysis by non-target proteases (Potempa et al., 1994). The bond cleaved during 
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proteolysis is known as the ‘scissile bond’ which linked residues called P1 and P΄1 on the 

RCL. Upon binding to target proteases, the residues N-terminal to the scissile bond then 

insert into β-sheet A forming the ‘cleaved’ form of serpin (Engh et al., 1989). The protein is 

said to undergo a ‘stressed’ to ‘relaxed’ (S to R) transition which gives rise to an increase in 

thermostability and loss of inhibitory activity (Figure 1.8C). In the case of α1- AT, the 

binding of trypsin protease at the active site causes the protease to be translocated to the distal 

end from the point of initial docking, the distance of which was suggested to be more than 70 

Å (Stratikos and Gettins, 1999).      

The native conformation of serpins required for their inhibitory activity consists of a 

five stranded β-sheet A with the RCL exposed to the environment. A more stable but non-

inhibitory conformation, called the ‘latent’ form can also be achieved via the insertion of 

RCL into the β-sheet A giving a fully antiparallel β-sheet (Figure 1.8D). This conformation 

explains the inactivity of the latent form as the RCL is inaccessible to the cognate proteases. 

The structural rearrangement also involves the extraction of the first strand of β-sheet C 

(s1C). The latent form can be observed in plasminogen activator inhibitor-1 (PAI-1) and 

antithrombin. In PAI-1, the newly-inserted β-strand forms hydrogen bonds and hydrophobic 

interactions with the third (s3A) and the fourth strand of β-sheet A (s5A) leading to the 

hyperthemostability of the latent form (melting temperature of up to 70°C). The native 

metastable form usually melts around 60°C (Mottonen et al., 1992; Munch et al., 1991). 

As more serpins are discovered, their functions are also moving away from the 

classical serpin function of protease inhibition. In fact the first structure of uncleaved serpin 

was the structure of a noninhibitory serpin ovalbumin (Stein et al., 1990). Ovalbumin in the 

most abundant protein found in egg white. In the ovalbumin structure, the peptide loop 

analogous to the RCL of inhibitory serpin forms a protruding α-helix (Stein et al., 1990). This 

is particularly important as structures of serpins before that were only available are in cleaved 

form, especially that of cleaved α1-AT (Loebermann et al., 1984). The structure of thyroxine-

binding globulin (TBG) has also been solved (Zhou et al., 2006). Thyroxine is the major 

hormone controlling cellular development as well as the rate of body metabolism. It is carried 

in the blood by TBG, which has a high binding affinity to it. The structure of thyroxine-

bound TBG revealed that the binding pocket of thyroxine molecule is formed by strands 3-5 

of β-sheet B and helices H and A (Zhou et al., 2006) (Figure 1.9A, B). The pocket provides 

an enclosed hydrophobic environment, and allows formation of H-bond between thyroxine 
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and the adjacent residues in the pocket. The reversible release of thyroxine from the pocket is 

governed by the partial insertion of the side chain of P14, a residue situated 14 residues 

before the ‘scissile’ residue P1 of the RCL, into β-sheet A. The release is triggered by the 

insertion of the RCL up to P12, which causes contraction of the binding pocket, hence the 

release of thyroxine. What triggers this insertion is still unclear; heat is among the factors 

proposed. Using the model of δ-ACT as model for TBG with unbound thyroxine, TBG is 

shown to be in equilibrium between the high-affinity binding and the low affinity forms, 

distinguished by the partial RCL insertion into β-sheet A (Figure 1.9C) (Zhou et al., 2006). 

In another case, the crystal structure of another noninhibitory serpin PEDF shows that 

at the RCL region, there are Pro residues adjacent to the scissile bond which probably do not 

facilitate loop insertion. The RCL region of PEDF was also predicted to project outward of 

the protein body. Another possible explanation of the loss of inhibitory activity of PEDF is 

the inability of the main β-sheet A to open up and accept the RCL insertion. PEDF is found 

as a component of the retinal inter-photoreceptor matrix as well as in the vitreous and 

aqueous liquid in the adult eye (Simonovic et al., 2001).   
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Figure 1.9: The structure of thyroxine-binding globulin (TBG) shown here with bound 
thyroxine. 
A. The structure of TBG, with the main β-sheet A is shown in blue, the β-sheet B that forms 
the pocket of thyroxine binding site (green) and helix A (hA, brown). The RCL is shown in 
red, with residues 350-357 of the loop not shown due to the unordered nature of the region. 
Thyroxine is shown in stick representation. B.  The binding pocket, enclosed by strands 3-5 
of β-sheet B as the base, and helices A and H. C. TBG equilibrium between the high-affinity 
form (right) and the low-affinity form (left). The location for threonine P14 is shown in 
space-filling representation. All adapted from (Zhou et al., 2006). 
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1.4.1 HSP47 as a Serpin 

HSP47 found in chick embryo fibroblast (CEF) was shown to have the highest homology to 

the serpin human protein C inhibitor (hPCI, 30% identity) and also a slightly lower sequence 

identity to the other serpin members (10-30% identity) (Hirayoshi et al., 1991). This is 

significant as serpins are well known to have a common scaffold of secondary structures. 

CEF HSP47 is homologous to the serpin family members especially the highly conserved 

serpin secondary structure, such as part of the serpin RCL region. The serpin characteristics 

are, some of which are observed in HSP47: (1) small glycoprotein with a single polypeptide 

chain and several oligosaccharide side chains (though the sugar group was later found not to 

be crucial for HSP47 function), (2) homologous amino acid sequences, (3) having a common 

secondary and probably tertiary structure, (4) possessing a conserved reactive centre loop 

(RCL) and (5) containing conserved flanking sequences around the RCL. The amino acids 

around the region homologous to serpin RCL of HSP47 resemble more to the sequence found 

in ovalbumin (a non-inhibitory serpin) and CEF HSP47 also lacks the reactive P1 bond. This 

prompted the suggestion that HSP47 is another noninhibitory member of serpin superfamily 

(Hirayoshi et al., 1991). 

In the same year, a HSP47 homologue found in rat skeletal myoblasts (known as gp46 

at that time) shows sequence similarities to human α1-AT and hPCI precursors with about 

30% of identical amino acid residues, unsurprisingly similar to that found in CEF. The even 

distribution of conserved residues suggests similar secondary structure which is syncronous 

with that observed with CEF HSP47. Rat gp46 shows sequence similarity to α1-AT and hPCI 

especially at the residues near the putative RCL cleavage site P1-P΄1. But unlike the inhibitory 

serpins, in gp46 residues upstream to the site possess larger side chains, another finding 

leading to suggestion of HSP47 noninhibitory function as large side chains makes loop 

insertion into β-sheet A less preferable (Clarke et al., 1991).   

It is now well established that HSP47 is a noninhibitory member of the serpin 

superfamily with a substantial amount of secondary and tertiary structural similarities. This is 

very helpful due to the lack of HSP47 crystal structure to date. As more serpin crystal 

structures are obtained, the information could be used to assist the homology modelling of 

HSP47.   
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1.4.2 HSP47 Homology Modelling 

Three dimensional structures of proteins provide the best information in order to investigate 

the mechanism and chemistry at atomic resolution. Two methods have been extensively 

utilised for protein structural determination; X-ray crystallography for crystallisable proteins, 

and nuclear magnetic resonance (NMR) spectroscopy for non crystallisable proteins and for 

determination of protein conformation in solution. X-ray is suitable for structure 

determination of proteins too large to be analysed by NMR. NMR, on the other hand, allows 

investigation at a condition closer to the native environment of proteins (Mathews et al., 

1999). Originally used for structure determination of proteins in aqueous environment, NMR 

has been actively developed for use for membrane proteins that dissolve in detergent micelles 

or lipid bilayers (Marassi and Opella, 1998). The use of both techniques to analyse one 

protein rarely gives conflicting outcome.  

Homology modelling has also been used as routine structure ‘determination’ as the 

speed at which gene sequences are discovered is too rapid for structural biologists to cope in 

solving the three dimensional coordinate of the coded proteins (Rodriguez et al., 1998). 

Additionally, for proteins that do not meet the criteria for, or resist X-ray crystallography and 

NMR spectroscopy, homology modelling is the best (or only) option available to guide 

biological experiments. These include site-directed mutagenesis and development of protein 

inhibitor based on structural information. To get a homology model of a considerable 

accuracy, templates of known protein structures closely-related to the protein of unknown 

structure must be present. These structures are usually obtained from online databases, 

namely the RCSB Protein Data Bank governed by the Research Collaboratory for Structural 

Bioinformatics (http://www.pdb.org) (Berman et al., 2000). As of December 2010, the 

database holds more than 70,000 of biomolecular structures determined using X-ray 

crystallography, NMR spectroscopy and cryo-electron microscopy. Then together with the 

sequence data of the protein to be determined, many programs can be used to construct the 

model, be it stand-alone or web-based. Among the stand-alone modelling programs are 

MODELLER (http://www.salilab.org/modeller/), DeepView (Swiss Pdb-Viewer) 

(http://spdbv.vital-it.ch/) and YASARA (http://www.yasara.org/) while web-based programs 

are like 3D-JIGSAW (http://bmm.cancerresearchuk.org/~3djigsaw/), SWISS-MODEL 

(http://swissmodel.expasy.org/) and ESyPred3D 

http://www.pdb.org/
http://www.salilab.org/modeller/
http://spdbv.vital-it.ch/
http://www.yasara.org/
http://bmm.cancerresearchuk.org/%7E3djigsaw/
http://swissmodel.expasy.org/
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(http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/). DeepView and SWISS-

MODEL both use the same server at Expert Protein Analysis System (ExPASy) of the Swiss 

Institute of Bioinformatics (http://expasy.org/). 3D-JIGSAW has recently been used to model 

mutant HSP47 protein that has contributed to osteogenesis imperfecta (OI) in Dachshunds 

(Drögemüller et al., 2009). The mutation was found to be at Leu326 and from nucleotide 

sequence of the affected individuals, it is substituted with Pro. This could significantly affect 

the wild-type peptide backbone, thus leading to disruption in the local secondary structural 

conformation (Drögemüller et al., 2009). The effect of the mutation on the collagen binding 

and release function of HSP47 however was not discussed in the report.        

Due to the nature of HSP47, from our observations, crystallisation has been found to 

be difficult as it tends to aggregate in the concentration range usually required for 

crystallisation. Generally, in order to obtain a reliable homology model, an identity between 

the target protein and the template must first be determined. If the percentage identity falls 

below 30%, model quality estimation on the basis of sequence identity becomes unreliable 

(Bordoli et al., 2009). But as HSP47 belongs to the serpin superfamily that have highly 

conserved secondary structures, this makes molecular modelling an acceptable approach with 

about 30% identity with its closest serpin relatives. The first attempt to model HSP47 was 

made in 1995 using mature recombinant mouse (mrm) protein (Davids et al., 1995) using the 

known structure of hPCI. It was initially predicted to exist in the latent state at physiological 

pH, as HSP47 failed to inhibit a series of proteases.  It is unlikely that latent conformation is 

adopted as latency is known to increase the thermostability of serpins (Munch et al., 1991), 

and HSP47 is later shown to be metastable (Dafforn et al., 2001). The work paved the way 

towards finding a better model to suit HSP47 behaviour. Later, HSP47 was modelled as 

RCL-exposed, five-stranded β-sheet A, similar to that of α1-AT (Dafforn et al., 2001) despite 

the exact position of RCL region relative to overall structure is still being debated. A similar 

model was also presented to explain the effect of mutation on HSP47 structure found in OI 

individuals (Drögemüller et al., 2009).  

http://www.fundp.ac.be/sciences/biologie/urbm/bioinfo/esypred/
http://expasy.org/
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Residues for HSP47 pH-switch Function 



 

 

63

CHAPTER 2: INVESTIGATION ON THE IMPORTANT HISTIDINE RESIDUES 

FOR HSP47 pH-SWITCH FUNCTION 

2.1 Introduction 

This chapter presents thorough investigation on a series of His-to-Ala (HA) mutants. This 

first involved computational prediction of all surface residues in order to examine the 

contributions of histidine residues to HSP47 pH-change behaviour in vitro. The prediction of 

surface His residues was performed on a mouse HSP47 homology model using PropKa 

program, and the positions were mapped to predict their locations. Each of the residues was 

subjected to site-directed mutagenesis. A few adjacent residues were mutated simultaneously. 

Expression and solubility of the mutants were first assessed and the general binding 

behaviour to gelatin was assayed. Gelatin is the denatured form of collagen, containing both 

triple helical and single stranded molecules. Soluble and gelatin-binding mutants were then 

subjected to gelatin column purification in order to investigate their pH release behaviour. It 

was necessary that the properties of HSP47 WT were established first so comparison with 

those of HA mutants can be made in order to probe for possible perturbations. Using circular 

dichroism (CD), the secondary structural content of HSP47 was investigated prior to studying 

the effects of pH on HSP47 secondary structure. Furthermore, collagen mimetic peptides 

(CMP) were employed to demonstrate how changes in pH affect the change in HSP47 

structure, which in turn triggers the release from collagen.  

 Similarly, the effects of mutation on HSP47 structure were also investigated by CD. 

Then the ability of the mutants to arrest collagen fibrillisation was examined. This provided 

information on the effects of mutation on HSP47-collagen binding interface. Finally, the 

effects on HSP47 structural transition from alkali to acid state were probed by comparing the 

change in structure of the constructed mutants to that of WT. Data obtained from these 

experiments would provide the insights of how His residues participate actively in HSP47 

pH-switch mechanism, how mutations perturbs normal pH transition as well as information 

on collagen binding and release behaviour.   
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2.2 Homology Model Construction of Mouse HSP47 

Section 1.4.2 has described the advantages of homology modelling for proteins in cases 

where X-ray or NMR structures are absent, mostly due to the protein itself resisting 

crystallisation. Although there are certain limitations to when working with homology 

models, templates of known protein structures closely-related to the protein being studied can 

be used to get a homology model of a considerable accuracy. The main depository is the 

RCSB Protein Data Bank, where more than 70,000 protein structures have been deposited. A 

30% sequence similarity is generally taken as a bench mark in getting a good homology 

model (Schwede et al., 2008). 

Molecular modelling of mouse HSP47 has been reported previously (Davids et al., 

1995). It involves alignment of the HSP47 sequence with the one of a known crystal structure 

of a serpin family member, human protein C inhibitor (hPCI). The study also confirmed the 

non-protease inhibitory activity of HSP47 despite having high homology to serpin members 

(around 30% identity). The model also seems slightly inaccurate due to the fact that HSP47 

was predicted to exist in latent state at physiological pH values, while a latent serpin is 

hyperthermostable (with a melting temperature of around 70°C). This behaviour is not 

observed in mouse HSP47 (Dafforn et al., 2001; Dafforn et al., 2004). HSP47 is then 

proposed to adopt a conformation similar to the native structure of serpins. 

 Hence, construction of a more reliable model is needed to guide the mutagenesis 

experiments. As with most homology modelling, a native serpin scaffold is needed. There 

have been quite a number of serpin crystal structures reported, such as the inhibitory serpins 

α1-antitrypsin (Elliott et al., 1998), antithrombin (Schreuder et al., 1994) and a variant of 

antichymotrypsin (Wei et al., 1994); as well as the non-inhibitory serpins such as ovalbumin,  

the first serpin structure found in the native form (Stein et al., 1990) and pigment epithelium-

derived factor (PEDF) (Simonovic et al., 2001). Figure 2.1 presents the alignment of the 

sequence of a mature recombinant mouse HSP47 with some closely-related serpins. The 

alignment scores are all in the small range of 23-27%.  

The first serpin structure to be solved was that of a cleaved α1-AT (Loebermann et al., 

1984). The cleaved structure was reported before the native structure was solved. Research 

interest on this serpin has been growing dramatically since. It was even selected as a 
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structural archetype from which other serpins can be modelled. The nomenclature of serpin 

secondary structures now follows that of α1-AT (Huber and Carrell, 1989) making this serpin 

a suitable template for HSP47 homology model construction, with a good sequence similarity 

(25% pairwise alignment score with mrmHSP47) compared to the other serpins aligned. 

 The mouse HSP47 homology model was provided by the Nagata group at Kyoto 

University on a collaboratory basis (Figure 2.1), constructed using Deepview v4.0.1 

modelling software (Guex and Peitsch, 1997). α1-AT was selected as template structure. The 

model was then used to guide the mutagenesis experiments and all HSP47 figures shown in 

this chapter and the following chapters are made using this model.    
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1BY7            ----------------------MEDLCVANTLFALNLFKHLAKASPTQNLFLSPWSISST 38 
1OVA            ----------------------XGSIGAASMEFCFDVFKELKVHHANENIFYCPIAIMSA 38 
1QLP            MDPQGDAAQKTDTSHHDQDHPTFNKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATA 60 
2CEO            --------------------GSLYKMSSINADFAFNLYRRFTVETPDKNIFFSPVSISAA 40 
mrmHSP47        MAEVKKPLEAAAPGTAEKLSSKATTLAERSTGLAFSLYQAMAKDQAVENILLSPLVVASS 60 
                                         :      :.:.::: :       *:: .*  : :: 
 
1BY7            MAMVYMGSRGSTEDQMAKVLQFNEVGAAAD----------KIHSSFRSLSSAINASTG-N 87 
1OVA            LAMVYLGAKDSTRTQINKVVRFDKLPGFGDSIEAQCGTSVNVHSSLRDILNQITKPND-V 97 
1QLP            FAMLSLGTKADTHDEILEGLNFNLTEIPEA----------QIHEGFQELLRTLNQPDS-Q 109 
2CEO            LVMLSFGACCSTQTEIVETLGFNLTDTPMV----------EIQHGFQHLICSLNFPKK-E 89 
mrmHSP47        LGLVSLGGKATTASQAKAVLSAEKLRDEEV------------HTGLGELLRSLSNSTARN 108 
                : :: :*    *  :    :  :                   : .:  :   :. .     
 
1BY7            YLLESVNKLFGEKSASFREEYIRLCQKYYSSEPQAVDFLECAEEARKKINSWVKTQTKGK 147 
1OVA            YSFSLASRLYAEERYPILPEYLQCVKELYRGGLEPINFQTAADQARELINSWVESQTNGI 157 
1QLP            LQLTTGNGLFLSEGLKLVDKFLEDVKKLYHSEAFTVNFGD-TEEAKKQINDYVEKGTQGK 168 
2CEO            LELQIGNALFIGKHLKPLAKFLNDVKTLYETEVFSTDFSN-ISAAKQEINSHVEMQTKGK 148 
mrmHSP47        VTWKLGSRLYGPSSVSFADDFVRSSKQHYNCEHSKINFRD-KRSALQSINEWASQTTDGK 167 
                      . *:  .      .::.  :  *       :*      * : **. ..  *.*  
 
1BY7            IPNLLPEGSVDGDTRMVLVNAVYFKGKWKTPFEKKLNGLYP-FRVNSAQRTPVQMMYLRE 206 
1OVA            IRNVLQPSSVDSQTAMVLVNAIVFKGLWEKAFKDEDTQAMP-FRVTEQESKPVQMMYQIG 216 
1QLP            IVDLVK--ELDRDTVFALVNYIFFKGKWERPFEVKDTEEED-FHVDQVTTVKVPMMKRLG 225 
2CEO            VVGLIQ--DLKPNTIMVLVNYIHFKAQWANPFDPSKTEDSSSFLIDKTTTVQVPMMHQME 206 
mrmHSP47        LPEVTK--DVERTDGALLVNAMFFKPHWDEKFHHKMVDNRG-FMVTRSYTVGVTMMHRTG 224 
                :  :    .:.      *** : **  *   *. .       * :       * **     
 
1BY7            KLNIGYIEDLKAQILELPYA-GDVSMFLLLPDEIADVSTGLELLESEITYDKLNKWTSKD 265 
1OVA            LFRVASMASEKMKILELPFASGTMSMLVLLPDEVS----GLEQLESIINFEKLTEWTSSN 272 
1QLP            MFNIQHCKKLSSWVLLMKYL-GNATAIFFLPDEGK-----LQHLENELTHDIITKFLE-- 277 
2CEO            QYYHLVDMELNCTVLQMDYS-KNALALFVLPKEGQ-----MESVEAAMSSKTLKKWNR-- 258 
mrmHSP47        LYNYYDDEKEKLQMVEMPLAHKLSSLIILMPHHVEP----LERLEKLLTKEQLKAWMG-- 278 
                        . .  :: :         :..:*..       :: :*  :. . :. :     
 
1BY7            KMAEDEVEVYIPQFKLEEHYELRSILRSMGMEDAFNKGRANFSGMSERNDLFLSEVFHQA 325 
1OVA            VMEERKIKVYLPRMKMEEKYNLTSVLMAMGITDVFSSS-ANLSGISSAESLKISQAVHAA 331 
1QLP            NEDRRSASLHLPKLSITGTYDLKSVLGQLGITKVFSNG-ADLSGVTEEAPLKLSKAVHKA 336 
2CEO            LLQKGWVDLFVPKFSISATYDLGATLLKMGIQHAYSEN-ADFSGLTEDNGLKLSNAAHKA 317 
mrmHSP47        KMQKKAVAISLPKGVVEVTHDLQKHLAGLGLTEAIDKNKADLSRMSGKKDLYLASVFHAT 338 
                   .    : :*:  :   ::*   *  :*: .. ... *::* ::    * ::.. * : 
 
1BY7            MVDVNEEGTEAAAGTGGVMTGRTGH--GGPQFVADHPFLFLIMHKITNCILFFGRFSSP- 382 
1OVA            HAEINEAGREVVGSAEAGVDAAS----VSEEFRADHPFLFCIKHIATNAVLFFGRCVSP- 386 
1QLP            VLTIDEKGTEAAGAMFLEAIPMS----IPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPT 392 
2CEO            VLHIGEKGTEAAAVPEVELSDQPENTFLHPIIQIDRSFMLLILERSTRSILFLGKVVNPT 377 
mrmHSP47        AFEWDTEGNPFDQDIYGREELRS-----PKLFYADHPFIFLVRDNQSGSLLFIGRLVRPK 393 
                    .  *              .        .  ::.*:: : .  : . **:*:   *  
 
1BY7            -------- 
1OVA            -------- 
1QLP            QK------ 394 
2CEO            EA------ 379 
mrmHSP47        GDKMRDEL 401 

 
Figure 2.1: Multiple sequence alignment of mature recombinant mouse HSP47 
(mrmHSP47) with several closely-related serpins. 
Among the serpins selected for alignment is human PAI-1 (PDB ID: 1BY7), ovalbumin 
(1OVA), α1-AT (1QLP) and a non-inhibitory serpin thyroxine-binding globulin (2CEO). All 
amino acid sequences are obtained from Protein Data Bank (http://www.rcsb.org/pdb). "*" 
means that the residues are identical in all sequences in the alignment; ":" means that 
conserved substitutions are observed; "." means that semi-conserved substitutions are 
observed, according to common amino acid side chain grouping (Thompson et al., 1994). The 
alignment score between mrmHSP47 and PAI-1 is 27%, 26% (ovalbumin), 25% (α1-AT) and 
23% (TBG). 

http://www.rcsb.org/pdb
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Figure 2.2: Ribbon structure representations of a homology model of HSP47, using α1-
antitrypin structure (see Figure 1.7) as reference.  
A. The three main β-sheets are labelled sheet A-C and the α-helices are labelled hA-hI. B. 
‘Back’ view of the homology model. These figures and all subsequent molecular figures were 
produced using PyMol v0.99 (DeLano, 2004) (unless stated otherwise).  
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2.3 Predicting the Solvent Accessibility and Locations of all Histidine (His, H) 

Residues 

Mouse HSP47 has fourteen His residues altogether (Figure 2.3). Mutating all these fourteen 

could possibly affect the conformational integrity in case of buried residues. Hence we 

searched for a good criterion for mutagenesis by covering as much important sites as 

possible. For this purpose, the location and solvent accessibility of the residues were mapped 

on the homology model that was constructed earlier. Figure 2.4 shows their predicted 

locations on the model. To obtain a better prediction on accessibility and ionisation pH values 

of the residues, we used PropKa software available at http://propka.ki.ku.dk (Li et al., 2005). 

It is a FORTRAN-based tool that allows calculation of the pKa values of ionisable groups in 

proteins based on specific empirical rules.  

It has been reported that the predicted pKa generally falls within 1 pH value to 

experimentally-determined pKa in 44 proteins (Li et al., 2005). The values for His residues 

however must be used with caution, as based on calculations, the relative mean standard 

deviation (RMSD) of experimental/predicted pKa for His residues are relatively high 

compared to other residues (Li et al., 2005). 

http://propka.ki.ku.dk/


 

 

AEVKKPLEAAAPGTAEKLSSKATTLAERSTGLAFSLYQAMAKDQ 
1 

AVENILLSPLVVASSLGLVSLGGKATTASQAKAVLSAEKLRDEE 

VHTGLGELLRSLSNSTARNVTWKLGSRLYGPSSVSFADDFVRSS 
90 110 

KQHYNCEHSKINFRDKRSALQSINEWASQTTDGKLPEVTKDVER 
158 135 140 

TDGALLVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVTMMH 
220 191 192 197 198 

RTGLYNYYDDEKEKLQMVEMPLAHKLSSLIILMPHHVEPLERLE 
244 255 256 

KLLTKEQLKAWMGKMQKKAVAISLPKGVVEVTHDLQKHLAGLGL 
275 297 302 

TEAIDKNKADLSRMSGKKDLYLASVFHATAFEWDTEGNPFDQDI 
335 341 

YGREELRSPKLFYADHPFIFLVRDNQSGSLLFIGRLVRPKGDKM 
368 

RDEL 
400 

 

Figure 2.3: Mature mouse HSP47 amino acid sequence (Ala1 to Leu400), shown using 
one-letter amino acid codes.  
The RDEL ER-retention sequence is shown in bold. The His residues are highlighted in blue, 
and the five Trp residues are highlighted in red.   
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Figure 2.4: The predicted locations of all the His residues (blue) shown here against the 
overall structure of mouse HSP47 (grey).  
A. The ‘front’ representation of the homology model. B. The ‘back’ representation. One letter 
amino acid name is used, and the numbers that follow the residue names indicate the amino 
acid position in HSP47 primary sequence. C & D. Surface representation to show the solvent 
accessibility of all His residues in their respective environments.  
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Table 2.1 shows the predicted pKa values for all His residues, along with the modelled 

solvent accessibility and the degree of conservation in HSP47 across all reported species 

(Figure 2.4). There are eight residues altogether that are predicted to be ionised around the 

HSP47-collagen dissociation pH of 6.3 (Saga et al., 1987). The residues are H135, 191, 197, 

198, 244, 255, 256 and 302. They are also highly conserved (more than 90% identity) across 

all 12 species, excluding H255 which is only 46% identical (Figure 2.4). More detailed 

observation on the locations of these residues revealed that they can generally be grouped 

into three clusters. The first cluster, on top of β-sheet A is called the ‘breach’ cluster as it is 

close to the breach region of serpin. This region is very critical for serpin function as it is an 

insertion point for reactive centre loop (RCL) into sheet A following binding to protease 

substrate (Whisstock et al., 2000). The second cluster is called the ‘shutter’ cluster, which is 

found near the centre of sheet A centred at the start of helix B (Stein and Carrell, 1995). This 

domain is important in facilitating the opening of strands 3 of β-sheet A (s3A) and s5A to 

accept RCL insertion. The last cluster is the ‘gate’ cluster, borrowing from the nomenclature 

of a flexible loop connecting s3C and s4C, which is critical in the conversion of PAI-1 from 

native to latent structure (Stein and Carrell, 1995). His residues grouped into these clusters 

are shown in Table 2.2. The locations of these clusters in HSP47 homology model are shown 

in Figure 2.6.     

All eight surface residues were chosen as mutagenesis candidates to investigate the 

effects of mutation on HSP47 pH-switch function.     
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Table 2.1: The solvent accessibility of fourteen His residues in mouse HSP47, their 
predicted pKas and the degree of conservation across 12 species analysed. 
Solvent accessibility and pKa values were predicted using PropKa* program. His residues 
with predicted pKa values close to HSP47-collagen dissociation pH are italicised.  
 

 
Residue 
 

Solvent accessibility Predicted pKa
* Degree of conservation (%)

H90 buried 4.45 100 

H135 surface 6.35 100 

H140 buried 3.28 100 

H191 surface 6.36 100 

H197 surface 6.36 100 

H198 surface 7.23 92 

H220 buried 4.76 100 

H244 surface 6.15 92 

H255 surface 6.50 46 

H256 surface 6.44 100 

H297 buried 0.23 100 

H302 surface 6.51 92 

H335 buried 3.41 100 

H368 buried 1.08 100 

*error of about 1 pH unit to experimentally-determined proteins (Li et al., 2005).  

 



 

Gallus_gallus                   --------MQIFLVLALCG------LAAAVPSEDRK-LSDKATTLADRST 35 
Taeniopygia_guttata             --------MWIIMGLALLG------LAAAVPSEDRK-LSDKATTLAERST 35 
Alligator_mississippiensis      --------MWAIQLLAMGV------LVAAVPSEDKK-LSDKANALADRSA 35 

First amino acid in mrm 

nomenclature 

Mus_musculus                    -MSLLLG-TLCLLAVALAAEVK-KPLEAAAPGTAEK-LSSKATTLAERST 46 
Rattus_norvegicus               MRSLLLG-TLCLLAVALAAEVK-KPVEAAAPGTAEK-LSSKATTLAERST 47 
Cricetulus_griseus              MRSLLLG-SFCLLAVALAAEVK-KPVEAAAPGTAEK-LSSKATTLAERST 47 
Homo_sapiens                    MRSLLLLSAFCLLEAALAAEVK-KPAAAAAPGTAEK-LSPKAATLAERSA 48 
Macaca_mulatta                  MHSLLLLSAFCLLAVALTAEVK-KPAAAAAPGTAEK-LSPKAATLAERSA 48 
Xenopus_laevis                  MWMIKLLALSILLVVDAAVNKKPIAEKKVEPPLEQK-MSQHANVLADKSA 49 
Danio_rerio                     --------MWVSSLIALCL------LAVAVSGEDKK-LSTHATSMADTSA 35 
Oncorhynchus_mykiss             --------MWVTNVVVLCL------LAVAAPGEDKKKLSSHATTMADKSA 36 
Carassius_auratus               --------MLVSSVVLLCL------LATVS---GDKALSSHASILADNSA 33 
                                                            .      * :* :*  :*: *: 
 
Gallus_gallus                   TLAFNLYHAMAKDKNMENILLSPVVVASSLGLVSLGGKATTASQAKAVLS 85 
Taeniopygia_guttata             TLAFNLYHAMAKDKDMENILLSPVVVASSLGLVSLGGKATTASQAKAVLS 85 
Alligator_mississippiensis      TLAFNLYHAMAKDKNMENILVSPVVVASSLGLVSLGGKAATASQAKAVLS 85 
Mus_musculus                    GLAFSLYQAMAKDQAVENILLSPLVVASSLGLVSLGGKATTASQAKAVLS 96 
Rattus_norvegicus               GLAFSLYQAMAKDQAVENILLSPLVVASSLGLVSLGGKATTASQAKAVLS 97 
Cricetulus_griseus              GLAFSLYQAMAKDQAVENILLSPLVVASSLGLVSLGGKATTASQAKAVLS 97 
Homo_sapiens                    GLAFSLYQAMAKDQAVENILVSPVVVASSLGLVSLGGKATTASQAKAVLS 98 
Macaca_mulatta                  GLAFSLYQAMAKDQAVENILVSPVVVASSLGLVSLGGKATTASQAKAVLS 98 
Xenopus_laevis                  GLAFNLYQIMAKDKKVENILLSPVVVASSLGLVSMGGQASTAAQAKTVLN 99 
Danio_rerio                     NLAFNLYHNVAKEKGLENILISPVVVASSLGMVAMGSKSSTASQVKSILK 85 
Oncorhynchus_mykiss             NLAFSLYHTVAKEKGLDNILISPVVVASSLGMVALGGKASTASQVKSVLS 86 
Carassius_auratus               NFAFNLYHNLAKEKDIENIVISPVVVASSLGLVALGGKSNTASQVKTVLS 83 
                                 :**.**: :**:: ::**::**:*******:*::*.:: **:*.*::*. 
 
Gallus_gallus                   ADKLNDDYVHSGLSELLNEVSNSTARNVTWKIGNRLYGPASINFADDFVK 135 
Taeniopygia_guttata             ADKLNDDYVHSGLSELLSEVSNSTARNVTWKIGNRLYGPASITFAEDFVK 135 
Alligator_mississippiensis      ADKLNDDYVHSGLSELLNEVSNSTARNVTWKIGNRLYGPSSISFADDFVK 135 
Mus_musculus                    AEKLRDEEVHTGLGELLRSLSNSTARNVTWKLGSRLYGPSSVSFADDFVR 146 
Rattus_norvegicus               AEKLRDEEVHTGLGELVRSLSNSTARNVTWKLGSRLYGPSSVSFADDFVR 147 
Cricetulus_griseus              AEKLRDEEVHKGLGELLRSLSNSTARNVTWKLGSRLYGPSSVNFVEDFVH 147 
Homo_sapiens                    AEQLRDEEVHAGLGELLRSLSNSTARNVTWKLGSRLYGPSSVSFADDFVR 148 
Macaca_mulatta                  AEQLRDEEVHTGLGELLRSLSNSTARNVTWKLGSRLYGPSSVSFADDFVR 148 
Xenopus_laevis                  AEKLSDEHIHSGLAELLNEVSNSTARNVTWKMGNRLYGPSSISFSDNFVK 149 
Danio_rerio                     ADALKDEHLHTGLSELLTEVSDPQTRNVTWKISNRLYGPSSVSFAEDFVK 135 
Oncorhynchus_mykiss             ADALNDEHLHTGLSELLTEVSDPKTRNVTWKISNRLYGPSSVTFADNFVK 136 
Carassius_auratus               ATTVKDEQLHSGLSELLTEVSNSTARNVTWKISNRLYGPSSVSFVDNFLK 133 
                                *  : *: :* **.**: .:*:. :******:..*****:*:.* ::*:: 
 
Gallus_gallus                   NSKKHYNYEHSKINFRDKRSALKSINEWAAQTTDGKLPEVTKDVEKTDGA 185 
Taeniopygia_guttata             NSKKHYNYEHSKINFRDKRSALKSINEWAAQTTDGKLPEVTKDVEKTDGA 185 
Alligator_mississippiensis      NSKKHYNYEHSKINFRDKRSALKSINEWASQTTNGKLPEVTKDVEKTDGA 185 
Mus_musculus                    SSKQHYNCEHSKINFRDKRSALQSINEWASQTTDGKLPEVTKDVERTDGA 196 
Rattus_norvegicus               SSKQHYNCEHSKINFRDKRSALQSINEWASQTTDGKLPEVTKDVERTDGA 197 
Cricetulus_griseus              SSKQHYNCEHSKINFRDKRSALQSINEWASQTTDGKLPEVTKDVERTDGA 197 
Homo_sapiens                    SSKQHYNCEHSKINFRDKRSALQSINEWAAQTTDGKLPEVTKDVERTDGA 198 
Macaca_mulatta                  SSKQHYNCEHSKINFRDKRSALQSINEWAAQTTDGKLPEVTKDVERTDGA 198 
Xenopus_laevis                  DSKKHYNYEHSKINFRDKRSTLRSINEWAAQTTDGKLPEVTSDVEKTDGA 199 
Danio_rerio                     NSKKHYNYEHSKINFRDKRSAINSINEWAAKTTDGKLPEITKDVKNTDGA 185 
Oncorhynchus_mykiss             SSKKHYNYDHSKINLRDKRSAVNSINEWAAKSTDGKLPEITKDVQNADGA 186 
Carassius_auratus               SSKKHYNCEHSKINFRDKRSAVKAINDWASKSTDGKLPEVTKDVEKTDGA 183 
                                .**:*** :*****:*****::.:**:**:::*:*****:*.**:.:*** 
 
Gallus_gallus                   LIVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVPMMHRTGLYNYYDD 235 
Taeniopygia_guttata             LIVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVPMMHRTGLYNYYDD 235 
Alligator_mississippiensis      LIVNAMFFKPHWDEKFHHTMVDNRGFMVTRSFTVGVPMMHRTGLYNYFDD 235 
Mus_musculus                    LLVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVTMMHRTGLYNYYDD 246 
Rattus_norvegicus               LLVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVTMMHRTGLYNYYDD 247 
Cricetulus_griseus              LLVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVTMMHRTGLYNYYDD 247 
Homo_sapiens                    LLVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVMMMHRTGLYNYYDD 248 
Macaca_mulatta                  LLVNAMFFKPHWDEKFHHKMVDNRGFMVTRSYTVGVMMMHRTGLYNYYDD 248 
Xenopus_laevis                  LIVNAMFFKPHWDERFHHQMVDNRGFMVTRSFTVSVPMMHRTGLYKYTDD 249 
Danio_rerio                     MIVNAMFFKPHWDEKSHHKMVDNRGFLVTRSHTVSVPMMHRTGIYGFYED 235 
Oncorhynchus_mykiss             TIANAMFFKPHWDEKFHEKMVDNRGFLVTRSFTVSVPMMHRTGLYKFHDD 236 
Carassius_auratus               MIINAMFYKPHWDEQFHHKMVDNRGFLVHRSYTVSVPMMHRTGIYGLFDD 233 
                                 : ****:******: *. *******:* **.**.* ******:*   :* 
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Gallus_gallus                   EAEKLQVVEMPLAHKLSSMIFIMPNHVEPLERVEKLLNREQLKTWASKMK 285 
Taeniopygia_guttata             EAEKLQVVEMPLAHKLSSMIFIMPNHVEPLERVEKLLNKEQLKTWTGKMK 285 
Alligator_mississippiensis      ETEKLQIVEMPLAHKLSSMIFIMPNHVEPLERVEKLLTREQLKTWISKLK 285 
Mus_musculus                    EKEKLQMVEMPLAHKLSSLIILMPHHVEPLERLEKLLTKEQLKAWMGKMQ 296 
Rattus_norvegicus               EKEKLQLVEMPLAHKLSSLIILMPHHVEPLERLEKLLTKEQLKTWMGKMQ 297 
Cricetulus_griseus              EKEKLQILEMPLAHKLSSLIILMPHHVEPLERLEKLLTKEQLKAWMGKMQ 297 
Homo_sapiens                    EKEKLQIVEMPLAHKLSSLIILMPHHVEPLERLEKLLTKEQLKIWMGKMQ 298 
Macaca_mulatta                  EKEKLQIVEMPLAHKLSSLIILMPHHVEPLERLEKLLTKEQLKIWMGKMQ 298 
Xenopus_laevis                  ETNNLQILEMPLAHKLSSMIIIMPYHVEPLERLEKLLTREQVNAWDGKMK 299 
Danio_rerio                     TENRFLIVSMPLAHKKSSMIFIMPYHVEPLDRLENLLTRQQLDTWISKLE 285 
Oncorhynchus_mykiss             TENKVFVLDMPLGQKQSSLVFIMPYHLEPLDRLEKLLTRKQLETWMGKME 286 
Carassius_auratus               TTNNLLVLDMALAHKMSSIVFIMPYHVESLERVEKLLTRQQLNTWISKME 283 
                                  :.. ::.*.*.:* **::::** *:*.*:*:*:**.::*:. * .*:: 
 
Gallus_gallus                   KRSVAISLPKVVLEVSHDLQKHLADLGLTEAIDKTKADLSKISGKKDLYL 335 
Taeniopygia_guttata             KRSVAISLPKVVLEVSHDLQKHLGGLGLTEAIDKTKADLSKISGKKDLYL 335 
Alligator_mississippiensis      KRSVAISLPKVSLEVSHDLQKHLADLGLTEAIDKNKADLSKISGKKDLYL 335 
Mus_musculus                    KKAVAISLPKGVVEVTHDLQKHLAGLGLTEAIDKNKADLSRMSGKKDLYL 346 
Rattus_norvegicus               KKAVAISLPKGVVEVTHDLQKHLAGLGLTEAIDKNKADLSRMSGKKDLYL 347 
Cricetulus_griseus              KKAVAISLPKGVVEVTHDLQKHLAGLGLTEAIDKNKADLSRMSGKKDLYL 347 
Homo_sapiens                    KKAVAISLPKGVVEVTHDLQKHLAGLGLTEAIDKNKADLSRMSGKKDLYL 348 
Macaca_mulatta                  KKAVAISLPKGVVEVTHDLQKHLAGLGLTEAIDKNKADLSRMSGKKDLYL 348 
Xenopus_laevis                  KRAVAVSLPKVSLEVSHDLQKHLGDLGLTEAIDKSKADLSKISGKKDLYL 349 
Danio_rerio                     ERAVAISLPKVSMEVSHDLQKHLGELGLTEAVDKPKADLSNISGKKDLYL 335 
Oncorhynchus_mykiss             ERAVAISLPKVSMEVSHNLQKTLGELGLTDAVDKTKADLSNISGKKDLYL 336 
Carassius_auratus               QRAVAVSLPKVSVEVSHDLQKHLTELGLTEAVDKAKADLSNISGKKDLYL 333 
                                :::**:****  :**:*:*** *  ****:*:** *****.:******** 
 
Gallus_gallus                   SNVFHAAALEWDTDGNPYDADIYGREEMRNPKLFYADHPFIFMIKDSKTN 385 
Taeniopygia_guttata             SNVFHAAALEWDTEGNPYDADIYGREEMRNPKLFYADHPFIFMIKDTKTN 385 
Alligator_mississippiensis      SNVFHAAALEWDTEGNPFDADIYGREEIRNPRLFYADHPFIFLIKDNKTN 385 
Mus_musculus                    ASVFHATAFEWDTEGNPFDQDIYGREELRSPKLFYADHPFIFLVRDNQSG 396 
Rattus_norvegicus               ASVFHATAFEWDTEGNPFDQDIYGREELRSPKLFYADHPFIFLVRDNQSG 397 
Cricetulus_griseus              ASVFHATAFEWDTDGNPFDQDIYGREELRSPKLFYADHPFIFLVRDNQSG 397 
Homo_sapiens                    ASVFHATAFELDTDGNPFDQDIYGREELRSPKLFYADHPFIFLVRDTQSG 398 
Macaca_mulatta                  ASVFHATAFELDTDGNPFDQDIYGREELRSPKLFYADHPFIFLVRDTQSG 398 
Xenopus_laevis                  ASMFHAAALEWDTEGNPFDSDLYSREELRSPKLFYADHPFVFLIKDNKTD 399 
Danio_rerio                     SNVFHASSLEWDTEGNPFDPSIFGSEKMRNPKLFYADHPFIFLVKDNKTN 385 
Oncorhynchus_mykiss             SNVFHASSMEWDIEGNPFDTSIFGSEKLRNPKLFYADHPFIFLVKDNKTN 386 
Carassius_auratus               SNVFHASAMEWDTEGNPPDTSIYGTDKLKTPKLFYADHPFIFLVKDKKTN 383 
                                :.:***:::* * :*** * .::. ::::.*:********:*:::*.::. 
 
Gallus_gallus                   SILFIGRLVRPKGDKMRDEL 405 
Taeniopygia_guttata             SILFIGRLVRPKGDKMRDEL 405 
Alligator_mississippiensis      SILFIGRLVRPKGDKMRDEL 405 
Mus_musculus                    SLLFIGRLVRPKGDKMRDEL 416 
Rattus_norvegicus               SLLFIGRLVRPKGDKMRDEL 417 
Cricetulus_griseus              SLLFIGRLVRPKGDKMRDEL 417 
Homo_sapiens                    SLLFIGRLVRPKGDKMRDEL 418 
Macaca_mulatta                  SLLFIGRLVRPKGDKMRDEL 418 
Xenopus_laevis                  SILFIGRLVRPKGDKMRDEL 419 
Danio_rerio                     SILFIGRLVRPKGDKMRDEL 405 
Oncorhynchus_mykiss             SILFIGRMVRPKGDKMRDEL 406 
Carassius_auratus               SILFMGRLVQPKGDKMRDEL 403 
                                *:**:**:*:********** 

 

Figure 2.5: Sequence conservation of His residues (highlighted in blue) across 12 species 
known to carry hsp47 gene.  
All amino acid sequences are obtained from Protein database on NCBI 
(http://www.ncbi.nlm.nih.gov/protein). "*" means that the residues are identical in all 
sequences in the alignment; ":" means that conserved substitutions are observed; "." means 
that semi-conserved substitutions are observed, according to common amino acid side chain 
grouping (Thompson et al., 1994). The species investigated are Alligator Mississippiensis 
(American alligator), Carassius auratus (goldfish), Cricetulus griseus (Chinese hamster), 
Danio rerio (zebrafish), Gallus gallus (chicken), Homo sapiens (human), Macaca mulatta 
(rhesus monkey), Mus musculus (mouse), Oncorhynchus mykiss (rainbow trout), Rattus 
norvegicus (Norway rat), Taeniopygia guttata (zebra finch), and Xenopus laevis (African 
clawed frog). 

http://www.ncbi.nlm.nih.gov/protein


Table 2.2: HSP47 surface histidine residues grouped into three main clusters. 
 

Clusters Residues 

Breach H191, H197, H198, H244 

Gate H255, H256 

Shutter H302 
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Figure 2.6: The locations of ‘breach’, ‘gate’ and ‘shutter’ cluster in HSP47 homology 
model.  
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His residues predicted to be on the surface of the molecule is highlighted in blue and shown 
in ‘spheres’ representation. Figure produced with PyMol v0.99. 
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2.4 Construction of HSP47 Wild-type (WT) Plasmid DNA 

A mature recombinant mouse hsp47 gene was amplified by PCR using a 5´ primer with an 

NdeI restriction site and a 3´ primer with a HindIII restriction site and cloned into the 

equivalent restriction sites in the expression vector pET-24b(+). This work was done 

previously in our laboratory at the Imperial College Genetic Therapies Centre by Dr Dee 

Olerenshaw and Dr Takayuki Homma. Further details of the recombinant plasmid are given 

in Chapter 6 Materials and Methods. 

 

2.5 Mutation, Expression and Collagen Binding Ability of HSP47 WT and His 

Mutants 

All His residues of interest, selected based on computational prediction, were mutated to 

alanine (Ala, A). This allows assessing the effects of mutation on pH-switch mechanism 

simultaneously with the possible structural contribution of a replaced His residue to the 

overall structure. His-to-Ala (HA) mutations were introduced by modified site-directed 

mutagenesis (Sawano and Miyawaki, 2000). Each construct was sequenced to screen the 

correct mutation and full sequencing was performed to confirm that there are no other 

mutations in the region between the T7 promoter and terminator. Most of the mutants were 

found to be equally soluble compared to HSP47 WT when expressed in E. coli host strain 

BL21(DE3)pLysS (Figure 2.6A). HSP47 is known for being a highly insoluble protein when 

expressed in high concentration under normal E. coli growth and expression conditions, from 

our experience. In order to overcome this, temperature of the main growth period was 

decreased to 20-25°C (from 37°C which was only used for pre-culture) while IPTG 

concentration was also lowered to 0.1 mM from the normal 1 mM. This succesfully ensured 

higher solubility of the expressed proteins and reduced the presence of inclusion bodies, as 

can be seen in Figure 2.7A.  
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Batch binding experiment showed that the binding behaviour of the mutants to gelatin 

beads is not significantly impaired (Figure 2.7B). This then allows the use of gelatin column 

to observe the collagen release behaviour and subsequent purification of the mutants for 

further biophysical experiments. 
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Figure 2.7: Expression, solubility and binding ability of all HA mutants constructed, 
relative to WT.  
A. Expression level of HSP47 WT and HA mutants. Separation was done on 12% Tris-
glycine SDS-PAGE. L: Cell lysate, S: Centrifuged lysate (supernatant). B. Binding ability of 
the mutants, relative to WT (100%, n=3) determined using gelatin pull down assay. 
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2.6 Purification of HSP47 WT and HA Mutants 

Gelatin-agarose was used as column packing matrix since mouse HSP47 WT and HA 

mutants were shown to be able to bind to gelatin from the batch gelatin binding assay (Figure 

2.7B). The column was connected to an FPLC system for quick, single step purification. 

Collagen/gelatin affinity techniques have been widely used for HSP47 purification (Dafforn 

et al., 2001; El-Thaher et al., 1996; Nishikawa et al., 2010) due to the aforementioned 

advantage. Purification of HSP47 WT gave a distinctive peak during pH gradient elution with 

sodium phosphate buffer from pH 8.0 to 4.1 in about 15 column volumes (Figure 2.8). 

Fractions were collected in the presence of 1 M of sodium phosphate pH 8.0 to immediately 

recover the alkaline pH at which HSP47 is in its native form. SDS-PAGE analysis with CBB 

detection indicates that the eluted protein is more than 95% pure and suitable for direct 

biophysical analysis without further purification (Figure 2.9). Typical yields are between 0.3-

0.5 mg/mL. 

Mutants H135A, H191A, H244A, H255A:H256A and H302A also had a similar peak 

to WT during elution (Figure 2.10). Although the concentration of peak fractions varies due 

to the slight difference in expression level and solubility, all the mutants are above 95% in 

purity after purification as estimated from SDS-PAGE analysis. A more thorough 

investigation also revealed that the location of H191A elution peak is shifted to slightly 

higher pH value. The measured pH value of the peak fraction is also slightly higher than that 

of WT and the other mutants (i.e. pH 5.9-6.1), instead of around 5.7. This suggests that the 

release mechanism of HSP47 from gelatin is affected when His residue at position 191 is 

replaced with Ala, even though the column binding ability seems unchanged.  
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Figure 2.8: FPLC purification trace (reproduction) of HSP47 WT using a gelatin-
agarose affinity column.  
Dotted line represents pH gradient from pH 8.0 to 4.1. Fractions at different stages of 
purification (black bars) were analysed with Coomassie Brilliant Blue (CBB) staining after 
separation on 12% Tris-glycine SDS-PAGE.  
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Figure 2.9: 12% Tris-glycine SDS-PAGE analysis of HSP47 WT.  
Lane M: Precision Plus Protein Standard (Bio-rad). L: Cell lysate, S: Soluble fraction 
(supernatant). 
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Figure 2.10: Reproduction of the FPLC traces of all HA mutants in comparison to 
HSP47 WT.  
Mutants of interest are highlighted in bold. Dotted line represents buffer pH gradient from 8.0 
to 4.1. 
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On the other hand, mutants H197A and H198A showed an interesting behaviour. A 

significantly reduced elution peak was recorded during gelatin-agarose purification (Figure 

2.11), despite good expression and solubility. In addition, during washing and elution, the 

mutants seem to be slowly eluted off the column. Replacing both residues (H197A:H198A 

double mutant) amplifies this effect. SDS-PAGE analysis of the eluted fractions (tail 

fractions) of the double mutant shows the presence of high concentration of HSP47 (Figure 

2.12), at high purity. Unlike H191A mutation that perturbs HSP47 release behaviour, 

mutations of His at positions 197 and/or 198 instead alter the column binding behaviour, 

weakening the ability of the mutants to withstand extensive washing. Further downstream, 

complete elution occurs when the elution pH value reaches the region of normal dissociation 

value. These suggest that there are other His residues that are ionised and triggers the 

complete release from gelatin column. 

These observations suggest that replacement of His residues at these positions 

perturbs the gelatin binding behaviour in such a way that the HSP47-collagen interactions 

(investigated here using gelatin) are no longer strong and specific, especially in the column 

experiment. It is possible that minor structural alteration causes disruption in the strong 

binding affinity. The effect of His to Ala mutation on other proteins has been reported before, 

for example on the receptor-associated protein (RAP) to probe its pH-sensitive binding 

behaviour toward the low density lipoprotein receptor (LDLR) family (Lee et al., 2006). RAP 

is an ER-resident protein, with a mode of action similar to that of HSP47 chaperone during 

collagen synthesis and transport to the Golgi. Another example is the substitution of His 369 

with Ala in bleomycin hydrolase (BH), which changes the hydrogen bonding network and 

causes a complete loss in catalytic activity (O'Farrell and Joshua-tor, 2007). This 

demonstrates that HA mutation could affect the binding specificity between a protein and its 

ligand. In HSP47, this is possible especially if H197 and H198 are located at the HSP47-

collagen binding interface.  
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Figure 2.11: Reproduction of the FPLC trace of H197A:H198A through gelatin-agarose 
column.  
Black bar indicates interval where fractions were collected for SDS-PAGE analysis. Dotted 
line indicates buffer B gradient. Fractions numbers given are approximate. 
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Figure 2.12: 12% Tris-glycine SDS-PAGE analysis of H197A:H198A through gelatin-
agarose column.  
Approximate fraction numbers are also given for comparison with the FPLC trace. 
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2.7 Investigation of the Biophysical Properties of HSP47 WT   

In this section, the biophysical properties of HSP47 WT are first established. 

Characterisations of HSP47 have been reported previously using biophysical techniques such 

as circular dichroism and fluorescence spectroscopy. So to enable comparison with the 

constructed mutants, the properties of the recombinant mouse HSP47 expressed in pET-

24b(+) vector were analysed and are initially presented. Then the results for HSP47 HA 

mutants are discussed, by comparing with the properties of that of WT.  

 

Circular Dichroism Structural Analysis  

CD was utilised to assess the conformation of the mutants expressed in comparison to that of 

WT (presented in Section 2.10). It would highlight any potential distortion in the protein 

structure due to the abolition of salt bridge between the respective residues and their 

neighbours. In human prolactin (hPRL), three His residues held together by aromatic stacking 

have been previously suggested to contribute to the biological function (Tettamanzi et al., 

2008). hPRL is a 23 kDa endocrine hormone and a member of cytokine family. It was found 

that mutation of one His residue seems to perturb the pKa of the other, as observed with 

nuclear magnetic resonance (NMR) spectroscopy (Tettamanzi et al., 2008). After NMR, CD 

is the next best option to obtain indirect information about possible interactions between the 

residues. 

CD spectrum of HSP47 WT revealed that it is a typical α/β-protein (Figure 2.13). The 

stability of the purified protein was then assessed using temperature titration by monitoring 

the change in CD signal at 222 nm (∆∆A222) as a function of temperature. That particular 

wavelength was chosen as it provides information on the status of the α-helical portions of 

the protein during the melt and also a longer wavelength that would eliminate the effect 

caused by changes in light scatter that can occur during thermal denaturation. As the 

temperature increases, there will be a loss in secondary structure of the protein (Dafforn et al., 

2004). Other than detecting stability, the melt profile can also be used in serpin studies to 

suggest potential transition from native to latent structure. Although this has never been 

reported before for HSP47, as a member of serpin family with highly conserved secondary 
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structure, this behaviour could not be ruled out completely. HSP47 WT shows a transitional 

midpoint (Tm) of around 59°C (± 0.5), estimated using the ‘tangent method’ and using the 

equation described in Section 6.15 (Persikov et al., 2004). In ‘tangent method’, the point at 

which transition starts to occur and the end-point are traced and estimated from the fully 

folded and fully unfolded state. In cases where these are difficult to trace (especially the end-

point due to poorer readings at high temperature), an assumption has to be made where an 

end-point is reached when the changes in CD signal is not more than 500 MRE unit. There is 

a possibility of introducing large errors into the midpoint determination as this is not a 

standard method, but this could be minimised with many repeat experiments, or by 

overlaying several curves together for direct comparison.  

 The presence of such transition at lower temperature are attributed to the melting of a 

typical native form of serpin family members, of which the β-sheet A is composed of only 

five strands with the sixth strand exposed, forming the serpin loop (Dafforn et al., 2001). 

Latent form melts at a much higher temperature (Dafforn et al., 2004). 
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Figure 2.13: Far-UV CD spectrum (A) and thermal denaturation profile (B) of HSP47 
WT.  
Concentration was fixed to 3 μM and measured in 50 mM sodium phosphate buffer pH 8.0 
with 100 mM NaCl. Dashed arrow in (B) represents the predicted melting point. Thermal 
denaturation is a non-reversible process as aggregation could be observed in the CD cuvette 
after titration. Dotted lines represent the estimated start and end of transition, used in the 
‘tangent’ method of melting point estimation. 
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Collagen Anti-fibrillisation Property  

Collagen triple helices are known to self-interact at optimum condition (neutral pH, 

temperature of around 30°C) to form a higher order structure called the collagen fibril. This 

process, like the self-assembly in proteins, is an entropy-driven process which involves the 

loss of solvent molecules from the surface of protein molecules (Kadler et al., 1996). It is 

regarded as involving two processes, the first of which is fibril nucleation, whereby soluble 

collagen molecules aggregate forming nuclei. Then it is followed by the growth of the nuclei 

into fibrils by accumulation of further soluble collagen particles (Wood, 1960). As a result, 

the molecules form fibrils with circular cross-section, which has minimum surface area by 

volume ratio. In vivo, cleavage of the globular propeptides at the amino- and carboxy- termini 

by aminoprotease and carboxyprotease triggers the fibrillogenesis process before being 

stabilised by intra- and intermolecular chemical cross-linking (Section 1.1.2). The most 

abundant collagen types in vertebrates (type I, II, III, V and XI) form fibrils with D-period 

(the distance between cross striations of collagen triple helical molecule in staggered 

arrangement) between 65-67 nm, which gives collagen fibrils their quintessential axial 

periodicity (Kadler et al., 1996) defined by the ‘hole’ and ‘overlap’ zones as illustrated in 

Figure 2.14.   

In vitro fibrillisation experiment is usually condicted using acid soluble collagen, as 

mild acid solution typically yields more collagen during preparation via extraction from 

collagenous tissues. The fibrillisation process involves a lag phase followed by a propagation 

phase and finally an equilibrium phase where the fibrils are in equilibrium with the 

monomers (Kadler et al., 1988; Thomson and Ananthanarayanan, 2000). Collagen type I 

fibrillisation is typically studied at 34°C because the rate of fibril propagation decreases 

above 37°C in the presence of micro-unfolding monomers. These monomers undergo 

reversible unfolding and become a larger fraction of the monomer and fibril system (Kadler 

et al., 1988). Fibril formation is observed by monitoring turbidity spectrophotometrically at 

313 nm, which is proportional to the fibrillar material formed (Williams et al., 1978).  

The turbidity plotted as a function of time for type I collagen solution shows an 

expected fibrillisation curve with three apparent phases (Figure 2.15). Fibrillisation was 

initiated by bringing the pH of the solution from acidic (pH 3) to near neutral (pH 7.4), at 
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which fibrillisation occurred immediately and monitoring was recorded at 10-minute intervals 

until equilibrium phase was reached. The lag phase observed was about 10 to 20 minutes, 

double from that reported previously (Thomson and Ananthanarayanan, 2000). This may be 

due to the collagen used in this case; pepsin treated collagen type I is known to form shorter 

fibrils over a longer period of time than untreated collagen (Gelman et al., 1979). Pepsin is 

usually used in the manufacturing process to increase collagen solubility. 

HSP47 is known to have the ability to arrest collagen fibril formation in vitro at 

neutral pH. This activity is abolished at HSP47-collagen dissociation pH, reportedly around 

pH 6.2-6.3 (Thomson and Ananthanarayanan, 2000). As the efficiency of HSP47 to arrest 

fibrillisation relates to the functional integrity of HSP47 collagen binding interface, the 

ability of HSP47 WT to arrest fibrillisation was first investigated. The finding could then be 

used to observe the effect of HA mutation of HSP47 ability to prevent fibril formation. 

When HSP47 WT was included at an equal molar ratio to collagen, fibrillisation was 

completely inhibited with no turbidity observed over the duration of the assay (Figure 2.15). 

Inhibition at 1:2 (HSP47:collagen) molar ratio was incomplete owing to insufficient capture 

of collagen by HSP47 WT and fibrillisation was observed to proceed at a slower rate, and 

hence slight turbidity was recorded near minute 110. This inhibition is specifically due to the 

prevention of the interaction between collagen triple helix molecules by HSP47. A similar 

experiment conducted using heat-inactivated HSP47 did not show complete inhibition of 

fibril formation, unlike with active chaperone molecules (data not shown).  
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Figure 2.14: Schematic representation of the staggered structure of a collagen fibril, to 
illustrate the D-spacing.  
The D-spacing is the distance between cross striations (‘hole’ and ‘overlap’), with each 
collagen molecule is about 300 nm long (4.4 D-units). The ‘hole’ is formed at the end of one 
triple helix and the beginning of the next (Prockop et al., 1979). Figure adapted from (Voet 
and Voet, 1995). 
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Figure 2.15: The fibrillisation curve of collagen solution upon incubation at 34°C, pH 
7.3-7.4 at 2 µM concentration (■).  
Between 0-20 mins, the solution is said to be in lag phase, 20-100 mins (propagation phase) 
and 100- mins (equilibrium phase). Upon addition of HSP47 at the same molar ratio, fibril 
formation is completely inhibited (□) at 1:1 (HSP47:collagen). Incomplete inhibition is 
observed in the presence of lower HSP47 concentration ( ), at 1:2 (HSP47:collagen).   
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Investigation of Secondary Structural Changes during pH Titration 

CD spectroscopy has been used previously to demonstrate that HSP47 structurally undergoes 

a two-step conversion from high to low pH states via an intermediate state (El-Thaher et al., 

1996). This transition was suggested to involve His protonation but which His residue or His 

residue cluster responsible for this change is unclear. Substituting a particular His residue 

with Ala would eliminate the imidazole side chain ionisation. If the residues are critical for 

the structural change, the mutant constructed would exhibit aberrant collagen binding/release 

behaviour and so may follow a different structural transitional pathway from its binding to 

non-binding states. This can be obtained indirectly by examining the spectral transition upon 

gradual change in pH of the protein solution. pH was sequentially decreased by the addition 

of 1-2 µL aliquots of phosphoric acid. Phosphoric acid was used instead of hydrochloric acid 

to avoid the presence of chloride (Cl-) ions, which is known to interfere with CD signal 

(Dafforn et al., 2004).  

Figure 2.16 shows the effect of pH on the ellipticity of HSP47 WT in the far-UV 

region. It is apparent that there is a significant change in the overall structure of the protein 

during the process. Curve fitting procedure with k2D deconvolution program 

(http://dichroweb.cryst.bbk.ac.uk/html/home.shtml) (Whitmore and Wallace, 2004; 

Whitmore and Wallace, 2008) suggests that decrease in pH induces the decrease in α-helical 

character and increase in β-sheet structure of the protein (Table 2.3). Even though the use of 

curve fitting for CD spectra is debatable when discussing the dynamics of protein structural 

change, a similar observation has been reported previously (Thomson and Ananthanarayanan, 

2000) where the β-structure was shown to increase to nearly 40% at acidic pH. Hence this 

can be used to estimate of the extent of HSP47 conformational change with pH. 

http://dichroweb.cryst.bbk.ac.uk/html/home.shtml
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Figure 2.16: Effect of pH on the ellipticity of HSP47 WT.  
Protein concentration is 3 μM, in 50 mM sodium phosphate buffer pH 8.0 with 100 mM 
NaCl, at 25°C. 
 
 
 
Table 2.3: pH-induced changes in the secondary structural content of HSP47 WT.  
Structural contents were estimated with k2D software on Dichroweb server 
(http://dichroweb.cryst.bbk.ac.uk/html/home.shtml).  
 
 pH α-helix β-sheet Random coil Error 

7.1 0.32 0.17 0.51 0.085 
6.7 0.31 0.13 0.56 0.087 
6.3 0.31 0.13 0.57 0.087 
6.0 0.21 0.26 0.52 > 0.22 
5.7 0.25 0.20 0.55 > 0.22 
5.3 0.14 0.33 0.53 > 0.22 
5.0 0.15 0.30 0.55 0.182 
4.7 0.18 0.28 0.55 0.182 
4.3 0.14 0.36 0.51 > 0.22 
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By plotting the change in CD signal at 222 nm (∆∆A222) as a function of pH, the 

resulting curve would show the secondary structural rearrangement, particularly α-helical 

content, upon change in the pH of the environment. Reduction in ellipticity at 222 nm is 

generally considered as a loss in α-helical content of proteins (Hirst and Brooks, 1994). For 

HSP47 WT, the observation was done independent of the spectra recording and titration was 

automated as pH was progressively monitored using an ultraslim electrode. For HSP47 WT, 

an abrupt change in structure is seen between pH 6.7 and 5.7 in the downward titration 

(Figure 2.17). This fits well with the results reported previously in a study that used 

transformed data from individual spectral scans at different pH values (El-Thaher et al., 

1996). Analysis of the data obtained in this set of measurements revealed that the middle 

point for this transition (inflection point) is at pH 5.70 (± 0.10) (the procedure and 

assumptions are as described in the determination of melting temperature section). This value 

deviates slightly from the reported HSP47/collagen dissociation value of 6.3 (Saga et al., 

1987), that can be attributed to the different environment in which the protein is studied 

(Chen et al., 2002; Garrett et al., 1998) such as the composition of the collagen type used in 

the study and buffer components. This is still in the typical pKa range for surface histidine 

residues, as in human prolactin (hPRL) the range is reported to be between 5.8 to 6.6 

(Tettamanzi et al., 2008).  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.17: Change in CD signal upon titration of HSP47 WT, monitored at 222 nm.  
Data can be obtained either by plotting ellipticity at 222 nm from individual spectral scans at 
different pH values or automated titration measurement module at fixed wavelength available 
with the instrument. Both techniques gave comparable results. Broken arrow shows the 
transitional midpoint, calculated using the formula explained in Chapter 6 (Materials and 
Method). Dotted lines represent the start and end values of transition, estimated based on the 
‘tangent’ method. 
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2.8 Characterisation of CMPs 

In order to investigate the significance of the structural change to HSP47/collagen binding, a 

synthetic collagen mimetic peptide (CMP) was utilised as collagen substitute. CMPs have 

extensively been used in the study of HSP47-collagen interaction (Asada et al., 1999; Dafforn 

et al., 2001; Koide et al., 1999; Koide et al., 2006a; Nishikawa et al., 2010; Okano-Kosugi et 

al., 2009).  

Among the mostly-used CMPs in HSP47-related binding experiments are the 30-

amino acid long (Pro-Pro-Gly)10 (Dafforn et al., 2001) and (Pro-Hyp-Gly)10. The (POG)10 

peptide mimics collagen well as the basic collagen amino acid repeat is (X-Y-Gly)10 where X 

is usually Pro and Y is either Pro or Hyp. Hyp has been known to stabilise triple helical 

peptide via hydration effect (Bella et al., 1995) or direct intermolecular hydrogen bonding 

interactions (Kramer et al., 2001). Therefore, it creates a stable triple helical peptide, which is 

suitable for various physicochemical studies (X-ray crystallography, NMR) and has been 

shown to assemble into higher order structures under defined conditions (neutral pH, 

temperature higher than 35°C, 1 mM) (Kar et al., 2006). (POG)10 would be the control 

peptide in the identification of HSP47 binding partner candidate. Additionally, incorporation 

of Arg at Y position is known to enhance HSP47 binding affinity, compared to other amino 

acids. This is probably due the formation of a hydrophobic interface by the Arg side chain 

that directly interacts with HSP47 hydrophobic cleft (Koide et al., 2002; Nishikawa et al., 

2010). For this reason, a CMP with one Arg residue was also included. The sequences of the 

two peptides are shown below: 

 

(POG)10, POG  : POG POG POG POG POG POG POG POG POG POG 

(POG)4PRG(POG)5, PRG : POG POG POG POG PRG POG POG POG POG POG 

  

 



The ability of the peptides to form triple helices was investigated by CD. CMPs tend 

to form polyproline type II (PII) conformation upon folding due to the rigidity of the imino 

acid backbone. This conformation gives rise to a distinctive positive peak at around 215-220 

nm and a negative peak at around 195-197 nm (Goodman and Kwak, 1999; Tifany and 

Krimm, 1972). This was observed here with POG and PRG peptides after incubation at 4°C 

overnight (Figure 2.18). The extent of triple helical formation can be estimated from the ratio 

of positive over negative peak, Rpn. The calculated Rpn values for POG and PRG are 0.09 and 

0.07, respectively, compared to a previously reported Rpn value for the native collagen of 

approximately 0.13 (Feng et al., 1996). The Rpn value shows that POG and PRG peptides 

have the propensity to form triple helical molecules.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.18: CD spectra of POG and PRG peptides.   
Measurements were done at 20 µM in sodium phosphate buffer pH 8.0 with 100 mM NaCl, 
at 25°C. Ellipticity is expressed in ΔA instead of MRE. The appearance of maximum at 225 
nm and minimum at 200 nm indicates that the peptides adopt triple helical conformation. 
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To investigate the binding affinity of HSP47 to the peptides, a pull-down assay was 

designed with the peptides immobilised onto cyanogen bromide (CNBr)-activated Sepharose 

beads. CNBr reacts with hydroxyl (–OH) groups on Sepharose to form reactive cyanate ester 

groups. The peptides can be coupled to CNBr-activated Sepharose, under mild conditions, via 

primary amino (–NH2) groups. The activated groups on the beads react with primary –NH2 

groups on the peptide to form isourea linkages as shown in Figure 2.19 (Kohn and Wilchek, 

1982). Monitoring of the coupling efficiency was performed using HPLC system coupled to 

particle detector unit. Figure 2.20 shows the chromatogram of the peptides before and after 

coupling, in which more than 99% of the peptides were successfully coupled to the Sepharose 

beads. The unreacted active groups were also blocked with ethanolamine to prevent 

unspecific binding in the next experiments. 
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Figure 2.19: Sepharose beads activation by CNBr and peptide coupling to the activated 
matrix.  
Figure adapted from Affinity Chromatography Handbook (GE Healthcare). 
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Figure 2.20: Chromatograms of POG and PRG peptide (0.75 mg/mL) before and after 
coupling.  
Peptide samples were in 50 mM sodium phosphate pH 8.0 with 100 mM NaCl.  
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HSP47 binding assays were then performed on the beads with the immobilised 

peptides, using the same protocol as in the pull down assay with gelatin agarose beads. The 

obtained gel image revealed that PRG beads retain much more HSP47 than POG (Figure 

2.21) suggesting a significantly stronger binding of HSP47 to PRG than to POG. Though 

understandably HSP47 shows lower binding affinity than it does to the much larger 

molecules of gelatin (lane labelled ‘GA’), HSP47 binding to PRG beads is evidence of 

successful coupling and confirm previous observations (Koide et al., 2002). This suggests 

that PRG peptide synthesised could be a suitable HSP47 binding partner. 
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Figure 2.21: Affinity of HSP47 to immobilised peptides, visualised with CBB staining 
after separation on 12% SDS-PAGE under reducing condition.  
M: Precision Plus Protein Standard (Bio-rad). S: cell supernatant (total soluble protein 
content). GA: Gelatin-agarose beads. Mock: uncoupled Sepharose beads.  
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2.9 Binding Affinity of HSP47 WT to PRG Peptide 

CD was used to probe the binding of HSP47 to PRG peptide in response to pH change. The 

binding was investigated by monitoring the changes in CD signal upon addition of the 

peptide, with a blank titration for background subtraction. The change in signal at 216 nm 

(ΔA216) was then plotted as a function of PRG concentration giving a saturation binding 

isotherm that can be fitted to a single site binding model (Figure 2.22). The wavelength at 

216 nm was chosen instead of at 225 nm due to the change in CD signal is larger at that 

wavelength, giving a higher quality titration data (Dafforn et al., 2001).  

 It was found that HSP47 still binds PRG peptide at pH 6.5. Then as the pH reaches 

5.5, complete dissociation occurs based on the non-converging curve fit. This suggest that 

structural transition that occurs at around that pH is accompanied by the release of HSP47 

binding to peptide, which can be related to full length collagen as well. An attempt to narrow 

down the pH range of HSP47-peptide dissociation by observing CD spectral patterns of 

smaller pH intervals was unsuccessful due to the detection limit of the CD spectropolarimeter 

and the noise that accompanies every titration. Despite this, the information obtained is useful 

in explaining the nature of HSP47 pH-triggerable release. Combined with HSP47 WT gelatin 

column release behaviour, it is now established that the dissociation from collagen is 

accompanied (or triggered) by a large change in its secondary structure. As Arg residue forms 

an important part of the binding interface, it is possible that the structural change triggers the 

change in the hydrophobic interface of HSP47, which in turn results in dissociation.    



 

 
 

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n 

of
 B

ou
nd

 L
ig

an
d

-6 

pH 7.4 (kd = 4.26±1.43) 
 
 
 
 pH 6.8 (kd = 0.94±0.51) 
 
 
 pH 6.5 (kd = 0.65±0.28)  
 
 
 
 
 pH 5.5  
 
 
 
 
 [PRG] (M x 10 )
 
Figure 2.22: Binding isotherms showing the effect of pH on the binding of HSP47 WT 
(0.8 µM) to PRG peptide. 
Isotherms were determined at pH 7.4, 6.8, 6.5, and 5.5. All isotherms were plotted as 
percentage of saturation for comparison, except for at pH 5.5 where data was fitted to linear 
function for easier visualisation. Curve fitting and dissociation constant (kd) determination 
was performed using OriginPro v8.5.  
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To discuss this process further, it is important to gather all the information from 

previous studies that involve HSP47-collagen binding interface. To date, there has been no 

specific collagen binding site proposed for HSP47 at atomic resolution due to the absence of 

the three-dimensional structure of the chaperone. An interesting suggestion was made based 

on work with synthetic peptides on the orientation of HSP47 binding interface (Koide et al., 

2006a), that revolves around the crucial Arg residue. Using peptides that incorporate 

photoreactive p-benzoyl-L-phenylalanine (Bpa) residue at various positions along the peptide 

chain, a binding pattern of HSP47 to peptide upon UV-cross linking was obtained. It was 

found that Bpa residues located at positions from -10 to 8 to the central Pro-Arg-Gly (known 

as the HSP47 recognition sequence, with Arg at position 0) are recognised by HSP47 (Koide 

et al., 2002). The length of this recognition region is about 5.3 nm, leading to suggestion that 

HSP47 binds collagen in such a way that the longer axis is parallel to the common axis of the 

collagen triple helix (Figure 2.23A).       

Alternatively, the hydrophobic region outlined by sheet B, helix A (hA), helix G (hG) 

and helix H (hH) in the HSP47 homology model has also been speculated to be a collagen 

binding site (Dafforn et al., 2001; Davids et al., 1995) (Figure 2.23B). This was suggested 

based on the possibility of the modelled groove to accommodate a collagen triple helical 

peptide via hydrophobic interactions. Deletion of hA and strands 4 of sheet B (s4B) and s5B 

has been shown to abolish the binding (Davids et al., 1995), which suggests an affected 

structural conformation. Upon detailed observation of the homology model that we 

constructed in this study, it was found that many residues located in sheet B, hA, hG and hH 

may contribute to the hydrophobicity of the groove (e.g. Lys, Pro, Ile). This makes the 

proposal worthy of further investigation.   

In both proposals, hydrophobic interaction seems to play a major part. For this reason, 

it is very possible that release of HSP47 from collagen is triggered by structural 

rearrangement that abolishes hydrophobic interface in contact with a collagen chain. This 

rearrangement could be a consequence of the ionisation of His imidazole side chain. 

Subsequent study with HA mutants should elucidate this even further. 
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Figure 2.23: Two proposals for HSP47-collagen binding interface.   
A. HSP47-collagen complex based on UV cross-linking of photoreactive residues to HSP47, 
with the critical Arg residue as position ‘0’. Residue highlighted in red could not be replaced 
with Bpa due to the detrimental effect of substitution to HSP47 binding. In the model HSP47 
is proposed to bind collagen parallel to the common axis of the triple helix. From (Koide et 
al., 2006a). B. Hydrophobic collagen binding groove suggested from earlier HSP47 
homology modelling work. β-sheet B serves as the ‘base’ of the groove, with helices A, H 
and G help to create a closed hydrophobic environment. From (Dafforn et al., 2001; Davids et 
al., 1995) shown on current homology model of HSP47. C. ‘Surface’ representation of B to 
show the hydrophobic regions, especially near the proposed collagen binding groove. 
Hydrophobicity classifications of amino acid residues are adapted from 
http://www.sigmaaldrich.com/life-science/metabolomics/learning-center/amino-acid-
reference-chart.html based on (Monera et al., 1995).   
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2.10 Characterisations of HSP47 HA Mutants 

CD Structural Analysis 

CD spectra of the mutants were first examined to assess conformational changes of the 

expressed proteins and probe any distortion in the protein structure due to the substitution of 

hydrophobic environment of the respective residues and the neighbouring residues. 

Overlaying spectra of WT, H135A, H191A, H244A, H255A:H256A and H302A 

(H197A:H198A could not be analysed as this mutant does not bind well to gelatin-agarose 

column) suggests that the mutants have secondary structural content similar to that of WT as 

all of the mutants give almost identical spectra (Figure 2.24A). This means that the content of 

β-sheets and α-helices and consequently the secondary structure are not significantly altered 

upon mutation of these His residues, at alkaline pH. 

As shown in Figure 2.24B, the melting temperatures (Tm) of these mutants narrowly 

varies between 57-58°C (WT 59.0 ± 0.5; H135A 57.0 ± 0.5; H191A 57.0 ± 0.5; H244A 57.5 

± 0.5; H255A:H256A 58.0 ± 0.5; H302A 58.0 ± 0.5°C) which is not markedly different to 

WT (59°C). Again, this suggests that the respective mutations do not induce HSP47 to adopt 

a different conformation, e.g. the typical hyperthermostable latent form of serpins, as the 

latent form normally has a very high melting temperature, more than 70°C (Dafforn et al., 

2004). 

Combination of spectral and melting data presented here suggests that mutations of 

His residues at positions 135, 191, 244, 255, 256 and 302 present no noticeable alterations in 

the secondary structure of HSP47. This is also consistent with their predicted locations at the 

surface of the protein. 
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Figure 2.24: Far-UV CD spectra (A) and thermal denaturation profiles (B) of HSP47 
WT and HA mutants.  
Concentrations were between 2.8-3.0 μM and measured in 50 mM sodium phosphate buffer 
pH 8.0 with 100 mM NaCl. 
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Collagen Anti-fibrillisation Property  

It has been demonstrated that mouse HSP47 WT has the ability to prevent collagen 

fibrillisation at equal molar ratio of HSP47 to collagen and so do all of these HA mutants as 

shown in Figure 2.25. This means that the collagen fibrillisation property is not lost upon 

mutations suggesting the HA mutations do not substantially alter the collagen binding region 

nor the binding interface. This is also in agreement with the CD data that the native folding of 

HSP47 is not altered upon introduction of the mutation. Consequently all HA mutants in the 

‘gate’ and ‘shutter’ cluster are able to prevent fibrillisation effectively in the same way and to 

the same extent as HSP47 WT.  In addition, the mutant carrying ‘breach’ cluster mutation 

(using H191A as model), is also able to fully arrest fibrillisation. This confirms our 

observations from gelatin-agarose pull-down binding assay (Figure 2.7B).  It also underlines 

that the differences between ‘breach’ HA mutants (His residues at positions 197 and 198) and 

HSP47 WT in terms of gelatin column elution behaviour (Figure 2.10), are probably not 

associated with concomitant functional defects in the initial collagen recognition of the 

mutants. Whether or not there is another mechanism involves after the initial docking is 

unknown, but it is now getting clearer that the His residues actively participating in the pH-

switch behaviour localises in the ‘breach’ cluster of the chaperone. It is also tempting to 

investigate further the effect of mutations on the structural transitions of HSP47 induced by 

pH-change. 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.25: The fibrillisation curve of collagen solution in the presence of HSP47 WT 
and HA mutants upon incubation at 34°C.  
pH of the reaction mix is between 7.3-7.4, with 2 µM concentration of collagen and HSP47. 
Assays were performed in triplicate. 
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Secondary Structural Changes during pH Titration 

Towards Predicting the Structural States of Mutants HSP47 during Titration 

As the HA mutants were constructed to probe the critical residues participating in the HSP47 

pH-switch mechanism that triggers its release to collagen, pH titration would be a useful 

approach to probe the structural changes occurring during this transition. The overall 

structural change is first investigated by observing CD spectra at certain pH values. As seen 

in Figure 2.26, the transitions of the mutants showed similar behaviour to WT. From the 

spectra (representing the secondary structures possessed), it can be concluded that all mutants 

(apart of those at positions 197 and 198, in which the effect is unknown as they could not be 

purified using gelatin-agarose column) undergo a similar secondary structural transitional 

pathway from alkaline to acid states. It can also be concluded that the initial and final states 

are not significantly changed from the common shape of the CD spectra. These suggest 

similar secondary structural content. This information is useful in determining that the 

introduced mutations alter the pH transition of the mutants but not their initial alkali and final 

acid states. 
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Figure 2.26: Effect of pH on the ellipticity of HSP47 HA mutants.  
Protein concentrations were between 2.8-3.0 μM measured in 50 mM sodium phosphate 
buffer pH 8.0 with 100 mM NaCl, at 25°C. 
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Towards Finding the Collagen-release pH of the HSP47 Mutants 

A more specific structural transition can be observed by looking at the change in ellipticity at 

222 nm (ΔΔA222), which mostly corresponds to the change in α-helical character of the 

protein. As shown in Figure 2.27, mutants H135A, H244A, H255A:H256A and H302A have 

similar transitional midpoints to that of WT (WT at pH 5.70 ± 0.10 (mean ± SEM); H135A at 

pH 5.75 ± 0.05; H244A at pH 5.65 ± 0.05; H255:H256A at pH 5.75 ± 0.10; H302 at pH 5.75 

± 0.05). These values correspond to the dissociation pH of the mutants from the gelatin 

column (as demonstrated for WT), and thus can aptly be regarded as the collagen dissociation 

pH for each mutant. On the other hand, H191A was found to have a significantly higher 

midpoint compared to WT, i.e. pH 5.90 (± 0.05) against pH 5.70 for WT. These agree well 

with earlier FPLC chromatogram showing that this particular mutant elutes at a slightly 

higher pH value, and therefore at higher collagen dissociation pH. It can be concluded that 

the absence of H191 residue from HSP47 causes the chaperone to release its binding from 

collagen prematurely. It is very likely that this residue acts as key residue, locking the 

binding of HSP47 to collagen and only allows its release once the correct pH is reached. Data 

obtained from HA mutant experiments are summarised in Table 2.4.  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.27: Change in CD signal upon titration of HSP47 WT and HA mutants, 
monitored at 222 nm.  
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Table 2.4: Summary of data on biophysical properties of HSP47 WT and mutants.  
Data shown includes thermal stability, inflection points observed under pH titration study, 
degree of conservation in HSP47 family and the secondary structural locations of the 
mutations introduced based on HSP47 homology model.  
 

Mutations 

Locations 
(Huber & 

Carrell 
nomenclature) 

(Huber and 
Carrell, 1989) 

Conserved 
in HSP47 
family? 

Tm (oC) ± 
0.5 

Collagen 
anti-

fibrillisation 
property 

pH titration 
inflection 

points 

WT - - 59.0 - 5.70 ± 0.10 

H135A hE 100% 57.0 Yes 5.75 ± 0.05 

H191A 
s3A-s4C, 

breach 
100% 57.0 Yes 5.90 ± 0.05 

H197A: 

H198A 

s3A-s4C, 

breach 
100% 

92% 
* * * 

H244A 
s2B-s3B, 

breach 
92% 57.5 Yes 5.65 ± 0.05 

H255A: 

H256A 

s3B-hG, 
gate 

 
46% 

100% 
58.0 Yes 5.75 ± 0.10 

H302A hI, shutter 92% 58.0 Yes 5.75 ± 0.05 

*The properties of H197A:H198A could not be determined as it could not be eluted normally from gelatin-
agarose column.  



 

 

114

Determination of H191A Collagen-release pH using Fluorescence Anisotropy 

Results presented in this chapter suggest that one mutant, H191A, exhibits notable behaviour 

especially its release from gelatin/collagen. This is based on several observations: First, the 

pH of the peak fraction of H191A in gelatin column elution experiment was found to be 

slightly higher than that of HSP47 WT; second, using CD, its pH induced trans-

conformational change from alkali to acid state was also found have a midpoint at higher pH 

value compared to WT. This section is aimed at further investigating the active participation 

of H191A in the ‘breach’ cluster in triggering HSP47 release from collagen. Other than 

native collagen and gelatin, HSP47 is known to be able to bind CMP, as described in Section 

2.9. Gelatin was used in the column elution experiment (Section 2.6), while collagen was 

used in the fibrillisation assay (Section 2.10). Native collagen has been used to demonstrate 

the different release of HSP47 WT and H191A mutant via fibrillisation assays at different pH 

conditions. Unfortunately, collagen fibril formation does not occur at acidic condition, even 

just below pH 7 (data not shown). For the same purpose, gelatin-agarose beads have also 

been used via modified pull down assay by washing the bound HSP47 with buffers at 

different pH values. This was also unsuccessful probably due to aggregation of gelatin-bound 

HSP47 when washed with low pH buffer, as observed on Western blot membrane probed 

with HSP47-specific antibody (data not shown). Hence, CMP is the next best candidate, used 

as substrate in fluorescence anisotropy experiment.  Compared to the other two techniques 

described above, anisotropy spectroscopy measurement does not require high concentration 

of HSP47 and substrate due to its high sensitivity. This should eliminate aggregation problem 

at low pH. Data obtained from this technique should also come only from HSP47/CMP direct 

binding and release effect.   

Anisotropy (r) is defined as the extent of polarisation of fluorescence emission when a 

sample is excited with polarised light. Anisotropy arises from the presence of transition 

moments for absorption and emission that lie along specific directions within the fluorophore 

structure (Lakowicz, 2006). The instrumental setup is similar to the normal fluorescence 

spectroscopy measurement, except that excitation and emission polarisers are positioned in 

the light-path for polarisation (Figure 2.28).   

 



 

 

 

 

 

 

 

 
Figure 2.28: Measurement of fluorescence anisotropies shown in schematic diagram.  
Adapted from (Lakowicz, 2006).  

 

 

The sample is usually excited with vertically polarised light, with the electric vector 

parallel to the z-axis. The emission intensity is then measured through a polariser, where 

when the emission polariser is oriented parallel to excitation polarisation the intensity is 

named I║. And when the polariser is perpendicular to the excitation polarisation the 

fluorescence intensity is called I┴. Anisotropy is then calculated according to the following 

equation: 

⊥

⊥

+
−

=
II
IIr

2ll

 ll  (Eq. 2.1)  

Anisotropy does not have a unit and it is independent of the total intensity of the 

sample and concentration of fluorophore. Rather, it is an intensity ratiometric measurement. 

Sometimes, the term polarisation is also used to describe this phenomenon though the use of 

anisotropy is more preferable. Polarisation is defined by: 

⊥

⊥

+
−

=
II
IIP

ll

 ll   (Eq. 2.2) 
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These two terms are related by these equations (Lakowicz, 2006): 

r
rP

+
=

2
3   (Eq. 2.3) 

P
Pr

−
=

3
2   (Eq. 2.4)  

 

When small fluorophores, such as fluorescent dyes, are excited with polarised light, 

the emitted light is largely depolarised because free molecules tumble rapidly in solution 

during its fluorescence lifetime. The fluorescent lifetime (τ) is the time between excitation 

and emission. But if the fluorophore binds to a larger molecule, its effective molecular 

volume increases. The rotation is slowed so that the emitted light is in the same plane as the 

excitation light. Because of this, bound fluorophore will have high intrinsic polarisation 

value, therefore high anisotropy, while free molecules have low value (Invitrogen, 2006) 

(Figure 2.29). 

 

 

 

 

 

 

 

 

 

Figure 2.29: The origin of anisotropy difference between small, free molecule and large 
complexes.  
Adapted from (Invitrogen, 2006). 
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A pH-stable fluorophore, with relatively high fluorescence lifetime is required to be 

coupled to CMP, as it does not possess intrinsic fluorescence. Among many amine reactive 

dyes, BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionic acid) 

(Figure 2.30) was found to be suitable, particularly due to its stability across a wide pH range 

due to the absence of ionic charge, and relatively high fluorescence lifetime, τ~6 ns. This dye 

also has a high extinction coefficient and a very high quantum yield, approaching 1. Even 

though it has a small Stokes shift (10-20 nm), excitation at suboptimal wavelength can be 

used to avoid interference from light scattering during fluorescence detection (Hermanson, 

1996). As an amine-reactive dye, BODIPY was coupled to PRG peptide (Figure 2.31) and 

conjugation was found to increase the hydrophobicity of PRG peptide due to the presence of 

BODIPY molecule at the N-terminus, as observed in the HPLC chromatogram of the purified 

conjugate in Figure 2.32. Thus it can be estimated that the conjugation reaction is almost 

100% efficient due to absence of unconjugated PRG peptide.  

 

 

 

 

 

Figure 2.30: Molecular structure of BODIPY. 
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Figure 2.31: Coupling strategy for the conjugation of BODIPY to PRG peptide, adapted 
from (Hermanson, 1996).  
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Figure 2.32: Reversed-phase HPLC analysis of conjugation reaction of PRG peptide to 
BODIPY dye, detected at 214 nm (blue) for peptide backbone absorption.   
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The conjugate was then used for anisotropy measurement. It was found that the 

anisotropy of the conjugate (0.0112 ± 0.0012) does not vary significantly from that of free 

BODIPY in water (0.0123 ± 0.0005), even though conjugation was predicted to increase the 

anisotropy of BODIPY due to decrease in molecular tumbling. Titration of the conjugate with 

increasing concentration of HSP47 (up to three-fold molar excess) also does not show any 

significant change in anisotropy (Figure 2.33).  
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Figure 2.33: The plot of anisotropy change of PRG-BODIPY conjugate upon titration 
with increasing concentration of HSP47. 
The concentration of conjugate was fixed at 0.5 μM. Titration did proceed beyond 3-fold 
molar excess of HSP47 to conjugate as HSP47 at high concentration tends to form insoluble 
aggregates. The experiment was performed in 50 mM sodium phosphate pH 8.0 with 100 
mM NaCl, at 25°C.    
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To investigate this, Perrin equation and Stokes-Einstein-Debye equation were 

employed to calculate the molecular volume of the fluorescence species, so the 

hydrodynamic radius (Stokes radius, Rh) can be predicted for comparison with the values 

reported in the literatures. Perrin equation states that anisotropy depends on rotational 

diffusion of the molecule, expressed as rotational correlation time, Φ, based on Eq. 2.5 

below. Φ depends on the size and shape of the molecule (González Flecha and Levi, 2003).     

φτ /1+
= orr   (Eq. 2.5) 

Where ro is the anisotropy in the absence of diffusion, τ is the fluorescence lifetime of the 

probe.  

 Most anisotropy experiments with macromolecules assume that it is a spherical 

particle rotating with small angular velocities. With this assumption, the rotational correlation 

time can be expressed by the Stokes-Einstein-Debye equation below: 

Tk
V
.
.ηφ =                (Eq. 2.6) 

Where η is the solvent viscosity coefficient, V is the molecular volume of the particle, k is the 

Boltzmann constant and T is temperature. Equations 2.5 and 2.6 can then be combined to give 

Eq. 2.8: 

c
r

V
Tk

rr oo

+
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+
=

η
η

η
τ

.

.
..1

  (Eq. 2.7) 

From this relationship, the coefficient c and ro can be obtained by plotting the change in 

anisotropy against different solvent viscosity (η). Figure 2.34 shows the plot constructed 

using the conjugate in the presence of increasing concentration of glycerol. From the plot, ro 

was predicted as 0.0413 ± 0.0047 and c was 2.7756 ± 0.5234 mPa.s. Then using the average 

BODIPY fluorescence lifetime (τ) of 6 ns based on previous reports on BODIPY and its 

derivatives (Karolin et al., 1994; Mikhalyov et al., 2002) , k as 1.38 × 10-23 J/K, T = 293.15 

K, the molecular volume of the conjugate was then calculated as 8.74 ± 1.64 nm3. This gives 

a Stokes radius (hydrodynamic radius, Rh) of 1.27 ± 0.46 nm. The value obtained is slightly 

smaller than those reported for triple helical structure for collagen mimetic peptide which is 
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in the range of 1.6-2.5 nm (Kar et al., 2006; Kotch and Raines, 2006; Pires and Chmielewski, 

2009) for 8-10 repeats of (POG) peptide. This computed value of Rh is also prone to error due 

to the assumption that the particle being considered is spherical, which is acceptable for 

proteins but should be exercised with care for non-spherical peptide (Edward, 1970).  
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Figure 2.34: Dependence of conjugate anisotropy on the viscosity of solution. 
The line represents the best fit of the date based on Eq. 2.7.   
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Furthermore, in order to determine the presence of any helical character after 

conjugation of BODIPY to PRG peptide, CD spectra of the coupled and uncoupled peptides 

were collected at equal concentration. From Figure 2.35, it can be concluded from the spectra 

that no triple helical character is present in the conjugate solution, unlike those observed with 

free peptide. Thus these suggest that conjugation prevents the formation of triple helical 

conformation of the collagen mimetic peptide PRG, although the mechanism is still unclear. 

It is possible that the steric effect at the N-terminus of the peptide chain increases after 

conjugation with BODIPY. This could then lead to the unchanged anisotropy of PRG-

BODIPY conjugate upon titration with HSP47, as previous report suggests that HSP47 binds 

well to triple helical peptide but significantly lower to single stranded ones (Koide et al., 

2006a). Despite this, fluorescence anisotropy is a very useful technique to study the 

interaction of HSP47 with its substrate, provided that the barrier to triple helical formation 

after conjugation could be overcome.      
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Figure 2.35: CD spectra of free PRG peptide and PRG conjugated with BODIPY. 
Measurements were performed at a concentration of 20 μM in water, at 25°C. 
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2.11 Conclusion 

The investigation on HA mutants proved to be useful as the location of His residues that play 

the most important roles can now be narrowed down to the ‘breach’ cluster. Mutating H197 

and/or 198 to Ala affects the typical collagen binding specificity while mutant H191A shows 

an affected release characteristic. It is therefore very likely that ‘breach’ cluster is the most 

important cluster in the HSP47 pH-change, allowing HSP47 to bind collagen at high pH and 

triggering the release at lower pH. Hence, study on the dynamics of these structural 

transitions was recommended and in the next chapter this was tackled by employing intrinsic 

tryptophan fluorescence spectroscopy.  Overall, data presented in this chapter account for 

more than half of the His residues of HSP47. It is not at all implausible to propose that the 

residues actively involved in the pH-switch mechanism is highly localised to a certain region 

of the chaperone. It should also be highlighted that these suggestions are made based on the 

homology model of HSP47, depending on the accurate location of the residues mentioned. 

Otherwise, the high secondary structure similarity between serpin family members may 

support these proposals. The findings reported in this chapter were used in proposing the 

model for HSP47 pH-switch mechanism which would be presented in Chapter 4. 
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Chapter 3 

Results and Discussion: HSP47 pH-induced Dynamics Probed 
using Intrinsic Tryptophan Fluorescence Spectroscopy 
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CHAPTER 3: HSP47 pH-INDUCED DYNAMICS PROBED USING INTRINSIC 
TRYPTOPHAN FLUORESCENCE SPECTROSCOPY 

 

3.1 Introduction 

Fluorescence spectroscopy has been used extensively to study protein conformation and 

interaction. Aromatic amino acids, such as tyrosine (Tyr, Y) and tryptophan (Trp, W), are 

able to act as intrinsic chromophores and therefore able to produce fluorescence signals 

(Figure 3.1). The nature of this process depends on the micro-environment of these 

chromophores, making it useful in studying the behaviours of proteins. Thus, intrinsic protein 

fluorescence can be used to monitor proteins of interest in response to heat, pressure, pH 

change and denaturants. When coupled with other biophysical techniques such as CD and 

NMR, conformational changes during these processes can be monitored in even greater 

detail. As fluorescence spectroscopy is very sensitive to both chemical and physical 

interference, high purity compounds are desirable (Pain, 2004).   

The aim of this study is to locate any Trp residue(s) that may be in a 

hydrophobic/hydrophilic environment at HSP47 alkaline state and exposed to a different 

environment upon transition to acid state. Each Trp was mutated to phenylalanine (Phe, F) 

that has similar structural bulkiness compared to Trp, but do not contribute to fluorescence 

emission when excited at 295 nm. This could suggest an important dynamic region during pH 

transition if the fluorescence is quenched upon mutation. Direct monitoring of a single Trp 

residue is most desirable as this eliminates possible interference from other residues while 

multiple Trp-to-Phe (WF) mutations are not advisable as it has been shown in previous 

studies that such mutations pose additive instability effects on the protein (Hasselbacher et 

al., 1995; Meagher et al., 1998). This supports the approach to construct single WF mutant to 

observe if there is any deletion effect on WT fluorescence behaviour during pH titration. For 

this purpose, the fluorescence behaviour of HSP47 WT was initially established.  



 

 
Figure 3.1: The absorption (A) and emission (E) spectra of Phe, Tyr and Trp in aqueous 
solution pH 7 (Lakowicz, 2006). 

 

 

In the previous chapter, the ‘breach’ cluster of HSP47 has been established to contain 

the His residues participating actively in the pH-triggerable release of binding to collagen. 

There should also be a significant regional structural transition that takes place during the 

process. In the absence of a 3-dimensional structure, the extent of the structural 

rearrangement is unknown. Although it is likely that whole protein experiences this change, it 

is even more likely that there are certain regions that significantly undergo this process. This 

is in light of the localisation of the important His residues in the ‘breach’ cluster of HSP47. 
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Intrinsic fluorescence spectroscopy is among the first methods used to study the structural 

transition of HSP47 from alkaline to acidic pH (El-Thaher et al., 1996) and ever since has 

been one of the methods of choice among HSP47 molecular researchers. These include 

studies on its structure (Dafforn et al., 2001; Thomson and Ananthanarayanan, 2000) and 

interactions with collagen and collagen-related peptides (Dafforn et al., 2001; Koide et al., 

2006a; Koide et al., 2002; Macdonald and Bächinger, 2001). 

In serpins, intrinsic Trp fluorescence has extensively been used previously to study 

the interaction between serpins and their cognate proteases. In the same year as the discovery 

of the crystal structure of the RCL of α1-antitrypsin (α1-AT, α1-proteinase inhibitor) (Elliott et 

al., 1996), tryptophan fluorescence was used to distinguish between the various forms of the 

serpin (Koloczek et al., 1996). This includes the latent form, the A-sheet dimer (‘head to tail’ 

polymerisation), C-sheet dimer (‘head to head’ polymerisation) and the A-sheet dimer 

propagating from the C-sheet dimer. Wild-type α1-AT does not readily adopt these forms, but 

only after a cycle of denaturation and renaturation. α1-AT has two Trp residues, one in strand 

3 of β-sheet A (W194) and the other in strand 2 of β-sheet A (W238). In the latent form, 

which is characterised by RCL insertion into the A-sheet, W238 is more exposed to solvent 

than W194 based on the shifting of emission maximum (λem of W238 is red-shifted by 4 nm 

compared to W194). This was determined using fluorescence quenching with potassium 

iodide (KI) as the quencher. W238 is assumed as quenchable component as it is exposed to 

the environment and vice-versa for W194. With fluorescence quenched resolved spectra 

(FRQS) and red-edge excitation techniques, the two forms of polymers can be distinguished 

based on dipole relaxation of W238 and W194: A-sheet polymerisation and C-sheet 

polymerisation. The former is characterised by the insertion of RCL into β-sheet A, and the 

latter is formed by interactions in the C-sheet. W238 is at least 50% more exposed in A-sheet 

polymers compared to C-sheet polymers (Koloczek et al., 1996).  

The ‘breach’ residue W194 is then shown to be crucial in controlling the rate of 

polymerisation of antichymotrypsin (ACT) (Pearce et al., 2007). Again, the location of the 

residue at the N-terminus of RCL is probably the reason for the residue to adopt this role. In 

its native form, replacement of Trp with Phe (W194F) does not significantly alter the 

inhibitory property. The polymerisation process was found to be up to 14 times faster with 

the mutant than WT upon heating at 48°C, which induces polymerisation. Meanwhile, the 

rate of polymer intermediate species is accelerated 35 times when monitored using the 
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intensity of external reporter bis-8-anilinonaphthalene-1-sulfonate, also known as 4,4´-bis(1-

anilinonaphtalene-8-sulfonate) or bis-ANS (Pearce et al., 2007). This compound was first 

shown to bind tightly to the hydrophobic pocket of bovine serum albumin (BSA) 

accompanied by substantial enhancement in fluorescence of the reporter (Rosen and Weber, 

1969). Generally bis-ANS fluoresce brightly in hydrophobic environment and is virtually 

non-fluorescent in polar environment, i.e. water (Takashi et al., 1977). This particular 

property makes it suitable for probing hydrophobic patches on protein surfaces, protein 

unfolding process, and in the study using ACT, for monitoring of the progress of its 

polymerisation. Data obtained using WF mutant of ACT demonstrate that some Trp residues 

play an active role in structural integrity and stability in serpins. Bis-ANS has also been used 

in studying α1-AT polymerisation mechanism (James and Bottomley, 1998), which 

effectively is a continuation to another study using intrinsic Trp fluorescence reported two 

years earlier (Koloczek et al., 1996). As explained above, bis-ANS binds hydrophobic 

patches on the protein surface. The fluorescence of bis-ANS enhanced significantly upon 

binding to polymerised α1-AT, suggesting the formation of more hydrophobic regions 

compared to the native protein. The first step of polymerisation, which is the opening of β-

sheet A, is characterised by the increase in hydrophobicity in the area in vicinity to it. This 

then enhances the fluorescence of bis-ANS. In the second phase which is the addition of the 

monomer to the initiator, it is characterised by a gradual decrease in bis-ANS fluorescence 

signal. This phenomenon is related to the insertion of RCL of a donor molecule into the 

initiator, resulting in displacement of bis-ANS molecules bound to the ‘opened’ β-sheet A 

(James and Bottomley, 1998).   

In a separate study, interaction of antithrombin (AT) and its heparin substrate has also 

been probed using Trp-to-Phe mutants (Meagher et al., 1998). Compared to HSP47 which has 

five Trp residues, AT has four Trp residues instead (here called AT-W49, 189, 225 and 307). 

The locations of two of the residues are analogous to the Trp residues in HSP47 (called 

HSP47-W). They are AT-W189, located on helix F (similar to HSP47-W158), and AT-W225 

which corresponds to HSP47-W192 at the end of strand 3 of β-sheet A. The other Trp 

residues of AT are located at the beginning of helix-A (AT-W49) and finally AT-W307 is on 

helix H. The four WF mutants were used to monitor fluorescence changes upon binding to its 

substrate, heparin. The possibility of energy transfer between the residues is ruled out as one-

third of the sum of fluorescence spectra of the mutants resembles that of WT. This is 



 

 

130

consistent with calculation as distances between the residues are known to be between 15-35 

Å.  There is no significant energy transfer can be observed between residues separated more 

than 2 × Ro (Moens et al., 2004). Ro refers to Förster distance which is the distance at which 

resonance energy transfer (RET) is 50% efficient. The critical distance between Trp-Trp for 

RET is generally reported to be between 5-12 Å (Steinberg, 1971; Zhong et al., 2002). The 

mutants are then used to explain the structural rearrangement undergone by AT upon heparin 

binding in terms of fluorescence enhancement of the Trp residues. Steady-state fluorescence 

was also used to show the effect of heparin binding, most of which are experienced by two 

residues only (W225 and W307) based on the enhancement of fluorescence emission. The 

environment around W189, which resides at the furthest distance from heparin binding site 

and RCL, on the other hand, is less sensitive to the binding. Overall, Trp residues located in 

close proximity to the RCL and nearby regions involved in the stressed to relaxed transition 

experience the largest change in intensity and wavelength shift of fluorescence emission 

(Meagher et al., 1998).    

 These extensive studies on members of serpin family demonstrate the potential of 

fluorescence spectroscopy in elucidating protein folding processes, especially with respect to 

their secondary structural transition induced by different factors.   
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3.2 Mapping the Locations of Trp Residues in HSP47 Homology Model 

HSP47 has five Trp residues at positions 110, 158, 192, 275 and 341 (Figure 3.2). In the 

model, W110 is located at the end of sheet 2 of β-sheet A (s2A) close to the loop between 

s2A and helix D (hD), W158 at the hF, W192 in the loop between s3A and sheet 4 of β-sheet 

C (s4C), W275 at the hH and finally W341 is located at the loop after s5A near the ‘hinge’ 

region, the region at which the RCL turns and joins β-sheets A to become s4A in latent or 

cleaved form of serpin (Hopkins et al., 1993). These Trp residues produce a strong intrinsic 

fluorescence emission when excited at 295 nm. All residues are predicted to be solvent 

accessible, and the accessibility ranges from almost 90% (W275) to 3% (W192). W110 and 

W341 are predicted to be about 30% exposed, while W158 is about 40%. Calculations were 

done using ASA-View program on the online server at 

http://gibk21.bse.kyutech.ac.jp/netasa/asaview/ (Ahmad et al., 2004). This is one of the 

structural classification and analysis tools that can be found on the RCSB Protein Data Bank 

http://nist.rcsb.org/pdb/home/home.do.  

http://gibk21.bse.kyutech.ac.jp/netasa/asaview/
http://nist.rcsb.org/pdb/home/home.do
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Figure 3.2: HSP47 homology model showing the locations of five Trp residues.  
Trp residues are shown in red in ‘spheres’ representation.  
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3.3 Construction, Expression and Purification of Trp-to-Phe (WF) Mutants  

WF mutations were introduced as in the HA mutant construction and expressed in E. coli 

BL21(DE3). Their expression and solubility was first assessed to investigate possible 

destabilising effect of the mutation to the protein. Expression of all mutants were found to be 

comparable to WT when analysed on 12% Tris-glycine SDS-PAGE gel stained with CBB 

(Figure 3.3A). Figure 3.3B shows solubility of the mutants compared to that of WT. 

Replacement of Trp residues with Phe seems to affect HSP47 solubility greatly, in contrast to 

HA mutants. The most dramatic effect is observed with W192 mutation, when the protein 

expressed has very low solubility and not detectable on the gel. W110F has an acceptable 

solubility for purification, while W158F also has a low solubility, but detectable in the 

soluble fraction of E. coli lysate. The variations in solubility upon mutation probably relates 

to the degree of solvent exposure. W192 is the least exposed, which explains the very low 

solubility of the Phe variant. W158 and W275 are probably less exposed than predicted, 

based on the adverse effect of mutations on their solubilities.  
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Figure 3.3: Expression and solubility of HSP47 WT and WF mutants.  
A. Total protein content (L) and soluble protein fraction (S) WT and mutants expressed in E. 
coli BL21(DE3) separated on 12% SDS-PAGE and stained with CBB. HSP47 bands are 
highlighted in black square. M: Precision Plus Protein Standards (Bio-rad). B. Solubility of 
mutants relative to WT (100%, n=3). W192F is hardly soluble in the same buffer conditions 
as used with the other mutants. Quantification was done using NIH ImageJ software after 
immunodetection with anti-HSP47 antibody. 
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Glycerol has widely been reported to increase protein solubility when added at a 

certain concentration, especially in protein crystallisation when a high concentration is often 

required as it reduces buffer polarity thus stabilises the hydrophobic regions (Gerlsma, 1968; 

Sedgwick et al., 2007; Simpson and Kauzmann, 1953; Tanford et al., 1962). It has been 

suggested that the presence of glycerol causes the alteration in the effective protein size 

because of a small expansion of its radius, or by the enhancement of a layer of solvent 

limiting the distance of closest approach between the protein molecules (Farnum and 

Zukoski, 1999). For this reason, glycerol was added during cell lysis to facilitate 

solubilisation of mutants W158F, W192F and W275F. Effect of glycerol addition to the 

solubility of the mutants is shown in Figure 3.4. Addition of glycerol at 15%(v/v) has 

different effects on the solubility of these mutants. W192F shows a two-fold increase to that 

of WT, while W158F only shows slight increment of its solubility.  A reverse effect is 

observed with W275F, where it was found to be less soluble. Hence, HSP47 WT, W110F, 

W275F, and W341F were purified without glycerol in the lysis buffer, while W158F and 

W192F were lysed with 15%(v/v) glycerol in the buffer. The mutants were purified using 

HisTrap Ni-NTA column as the mutation is not expected to perturb its binding and release 

property. This is supported by the gelatin-agarose binding assay (Figure 3.5) where all 

soluble mutants possess more than 50% binding ability compared to that of WT. Replacement 

of gelatin-agarose column with Ni-NTA column offers a much faster purification at higher 

flow rate with a higher protein binding capacity.  The yields of W275F and W158F after 

purifications were found to be very low, so these mutants were not investigated further. 

Otherwise, a typical yield was between 0.18 to 0.20 mg/mL after imidazole removal.  
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Figure 3.4: Effect of 15%(v/v) glycerol on HSP47 WF mutants solubility.  
Solubility is relative to WT (100%, n=3). Quantification was done using NIH ImageJ 
software after immunodetection with anti-HSP47 antibody. Glycerol does not seem to change 
W158F solubility, increases significantly the solubility of W192F, but has an adverse effect 
on the solubility of W275F. 
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Figure 3.5: The binding ability of soluble WF mutants constructed to gelatin 
immobilised on agarose beads. 
Binding ability is relative to WT (100%, n=3). Binding assay was performed in lysis buffer 
containing 15% glycerol. Quantification was done using NIH ImageJ software after 
immunodetection with anti-HSP47 antibody. 
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3.4 Structural Analysis of Purified Mutants 

Effects of WF mutation on the secondary structure of HSP47 are first investigated using far-

UV circular dichroism (CD). Comparison of the spectra of all purified mutants with that of 

WT revealed that there is no significant difference or perturbation in the shape of the 

observed spectra (Figure 3.6A), except that of W110F. There is also a slight variation in 

signal intensity of the spectra that belong to mutants W192F and W341F, which suggests that 

Trp residues in HSP47, to some extent, contribute to the overall CD signal. This has also 

been noted elsewhere, for example in the mutational work performed on Trp residues in 

barnase. It reveals the significant difference in the far-UV CD spectra of the mutants 

compared to WT (Vuilleumier et al., 1993). Similar effects are also seen when other aromatic 

amino acids are mutated, i.e. Tyr and Phe. In the case of dihydrofolate reductase (DHFR), all 

but one of Trp-to-Phe mutants constructed also show slightly different far-UV CD spectra 

compared to WT (Ohmae et al., 2001). One reason proposed for decreased CD signal 

characteristic of mutant DHFR relates to the formation of exciton coupling between two 

adjacent Trp residues that contribute to CD signal. Exciton coupling is simply defined as 

interaction between two electronic transition in different groups, or also called μ-μ coupling 

(Strickland and Beychok, 1974). Mutation of either residue in the pair diminishes the signal. 

Aromatic side chains have also been suggested to contribute to CD signal via interactions 

with other side chains such as amides, carboxylate, guanidino and even with peptide bonds of 

the main protein chain. Among the factors that determine these interactions include the dipole 

strength and electronic transition moment of the functional groups, and also the distance 

between the groups (Strickland and Beychok, 1974). The distance referred to for such 

interactions in barnase is between 6-8 Å (Vuilleumier et al., 1993). How exactly the excitonic 

pair is formed by Trp residues in HSP47 is difficult to predict based on the homology model 

alone. Oservation of the model suggests that there are plenty of possible interactions between 

aromatic side chains of HSP47 which makes the theory plausible (Figure 3.7). In case of 

W110F, there is a possibility of slight structural perturbations, but it does not affect its overall 

activity as this mutant is still capable of binding to gelatin as good, as WT (Figure 3.5).  
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Figure 3.6: Far-UV CD spectra (A) and thermal denaturation profiles (B) of HSP47 WT 
and WF mutants.  
Concentration was fixed to 2 μM and measured in 50 mM sodium phosphate buffer pH 8.0 
with 100 mM NaCl. 
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F187

W110

‘FRONT’ ‘SIDE’ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.7: ‘Front’ and ‘Side’ visualisations of HSP47 homology model showing all five 
Trp residues (red) and all Tyr and Phe residues (yellow).  
The predicted closest distance between the side chains of W110 and F187 is 8.5 Å. Aromatic 
residues are shown in ‘spheres’ representation. Atomic distance computed using Deepview 
Swiss-pdbViewer v4.0.1.  
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In order to investigate whether the slight spectral difference is accompanied by perturbed 

structure and hence HSP47 stability, CD temperature titration experiment was conducted. 

Based on the melting profile, the stability of WF mutants is not significantly perturbed by the 

mutations. Compared to HSP47 WT, which has a transitional midpoint (Tm) of 52 ± 0.5°C, 

the Tms for the mutants differ only in the range of 2°C (W110F 53 ± 0.5; W192F 52 ± 0.5; 

W341F 54 ± 0.5°C) as shown in Figure 3.6B. This indicates that there is no major 

perturbation in structure or destabilisation due to the mutation occurs.  

  

3.5 Intrinsic Fluorescence Titration of HSP47 WT 

Intrinsic protein fluorescence is observed when a chromophore-containing amino acid (such 

as Trp and Tyr) absorbs light and becomes excited from ground electronic state (S0) to higher 

electronic state vibrational level (S1). The molecules then relax rapidly to the lowest 

vibrational level of S1, a process called internal conversion (generally occurs at 10-12 s or less) 

with the energy is lost to the surroundings as thermal energy. From the lowest energy 

vibrational state of S1, the molecules then return to the higher excited vibrational ground state 

level before reaching thermal equilibrium. This process results in the emission of radiation or 

lower energy and longer wavelengths, called fluorescence. Some energy also dissipates in 

non-radiative ways (Lakowicz, 2006; Pain, 2004).  

 Tyr and Trp absorb light around 280 nm with quantum yields (Q) of 0.1 and 0.2 

respectively. Q is simply defined as the number of emitted photons relative to the number of 

absorbed photons. The Q value for Phe is very low at only 0.04, and it also has the shortest 

absorption and emission wavelengths. This is why protein fluorescence study usually 

involves only Tyr and Trp residues. Meanwhile, the fluorescence of Tyr occurs at around 303 

nm when excited at 280 nm, and it is relatively insensitive to solvent polarity. Trp, on the 

other hand, emits at around 350 nm (in water) and highly sensitive to solvent polarity and its 

local environment. Trp residues in protein can also be specifically excited at 295 nm to 

minimise absorption by Tyr residues (Lakowicz, 2006).  

Fluorescence spectra of mouse HSP47 WT at different pHs are shown in Figure 3.8. 

Spectra recorded at nearly neutral pH show an intensity maximum at 328 ± 1 nm (λem), 

indicating that the Trp residues are, on average, packed in a less polar environment, 
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compared to fully exposed residues (Pain, 2004). As pH decreases down to 6.5, the 

fluorescence intensity (If) is relatively unchanged. But as pH is lowered to 6.0 or further, a 

red-shift starts to occur accompanied by an increase in intensity. Hence, it is possible that at 

this pH, a structural rearrangement is triggered that changes the local environment around 

which the Trp residues are located. This exposes them to a more polar environment as can be 

seen from the shift of λem to higher wavelength. The trend in shifting continues as titration 

progresses to pH 5.7, when the intensity reaches its peak. At this pH the λem has shifted to 

near 335 nm. Further addition of acid decreases the intensity. As the fluorescence decay of 

tryptophan is known to be stable in the pH range of 8-4 (De Lauder and Wahl, 1970), the 

quenching is probably caused by neighbouring side chains. It is probable that the ionised His 

imidazole side chain quenches proximal Trp residues that come to close contact due to the 

structural rearrangement (Czabotar et al., 2004; Vos and Engelborghs, 1994; Willaert and 

Engelborghs, 1991). Aggregation was not observed in this case and the concentration before 

and after titration was not significantly changed. The changes in λem and If can then be plotted 

against pH to observe the behaviour more clearly (Figure 3.9).  



 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 
 
Figure 3.8: Fluorescence emission spectra of HSP47 WT recorded with an excitation 
wavelength of 295 nm.  
Arrow indicates the shift in maximum wavelength during titration. Concentration was fixed 
at 1 µM in sodium phosphate buffer pH 8.0 with 100 mM NaCl, at 25°C.  
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Figure 3.9: The plot of the change in maximum emission wavelength (λem) and 
fluorescence intensity (If, at the initial λem) against change in pH of HSP47 WT.  
Values were taken from individual spectra recorded during pH titration. Initial λem was taken 
as it gives much better data for plotting and visualisation purposes. λem values include ±0.5 
nm instrumental errors. 
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The trend of the change in λem is comparable to HSP47 structural change during pH 

titration observed with CD as described in the previous chapter, though the actual mechanism 

that gives rise to this might not be similar. But the most significant change can be seen 

between pH 6.3 and 5.5, which is also in the His imidazole ionisation range. Based on the 

change in λem value, three apparent phases can be observed: (Phase 1) Minimal changes in 

maximum emission wavelength between pH 8.0 to approximately 6.3. (2) A sudden shift in 

maximum wavelength between pH 6.3 and 5.5 to longer wavelength indicating a more 

exposed environment of the intrinsic Trp residues. (3) A constant maximum emission 

wavelength as titration progresses further. Similarly while monitoring the maximum 

fluorescence emission intensity at the initial λem, three distinctive phases can also be 

identified: (Phase 1) The gradual decrease in intensity as the pH decreases from 8.0 to 6.3. (2) 

The sudden increase in intensity as pH reaches 6.3, until about pH 5.7. (3) The gradual 

decrease as titration continues below pH 5.7 probably due to quenching as explained above. 

The relationship between the change in λem and the change in secondary structure monitored 

using CD is difficult to predict due to the complex nature of Trp fluorescent emission. But 

overall it can be suggested that the main rearrangement of HSP47 during pH transition can be 

monitored using intrinsic Trp fluorescence spectroscopy. It is from the so called alkaline 

(non-protonated) state (>pH 6.3) to the acid (protonated) state (<pH 5.5), which occurs in the 

His imidazole pKa window. This rearrangement is accompanied by the release of binding to 

collagen (as demonstrated using collagen mimetic peptide in Chapter 2).  

Reverse titration was also performed on HSP47 WT from acidic to alkaline pH with 

the addition of NaOH in small aliquots to investigate the reversibility in the change of λem and 

intensity. The change in λem is totally reversible suggesting the reversibility of HSP47 pH 

transition (Figure 3.10A). In contrast, maximum emission intensity progressively decreases 

during reverse titration probably due to irreversible quenching effect by ionising side chains 

(Figure 3.10B). Based on these observations, the construction of Trp to Phe mutants seemed 

appropriate to indirectly probe a more specific locality at which this transition occurs based 

on the change in λem. It is concluded in Chapter 3 that from alanine mutagenesis of surface 

His residues, the important residues participating in pH-switch mechanism are probably 

localised at the top of β-sheet A, the so called ‘breach’ cluster. Given this finding, it is also 

possible that the change in structure only centred on that particular cluster without affecting 

the whole protein structure. For this reason, each of the Trp residues was mutated one by one 
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and the fluorescence behaviour was observed. This eliminates the need to introduce more 

than one mutation that may be detrimental to the protein stability. The mutation will replace 

the chromophore, with the least possible effect on the structural integrity at that mutation site.  
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Figure 3.10: Reversibility of the change in (A) maximum emission wavelength (λem) and 
(B) fluorescence intensity (If) at the initial λem of HSP47 WT.  
Titration was initially done from pH 8.0 to 4.0 (Descending plot) before bringing the pH back 
to 8.0 again (Reverse plot) with concentrated NaOH. pH was raised after acid titration with 
the addition of concentrated NaOH. Values were taken from individual spectra recorded 
during pH titration. All curves are comparable after several repeat titrations. 
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3.6 Fluorescence Characterisation of HSP47 WF Mutants  

 CD spectra of the mutants do not show any significant difference from WT, apart of 

those attributed to exciton coupling between aromatic side chains, as explained in Section 

3.4. This suggests that there is no perturbations in the secondary structure of mutants W110, 

192 and 341 (Figure 3.6A). Then by scanning the fluorescence spectra of the mutants at the 

same excitation wavelength and at the same concentration, variations in the If and λem are 

apparent (Figure 3.11). Removal of W110 causes a drop in fluorescent intensity by around 

10% to that of WT while W192 and W341 probably contribute to similar effect on 

fluorescence as removal of either chromophore decreases If by nearly 20% respectively. The 

emission spectrum of W110F shows a blue shift which suggests a slight decrease in polarity 

of the environment of the other four Trp residues or either one of them as a result of W110 

mutation. The opposite of this has been observed in the mutagenesis study of E. coli DHFR 

(Ohmae et al., 2001). This also explains the slight perturbation seen in the CD spectrum of 

W110F (Figure 3.6A).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11: Fluorescence emission spectra of HSP47 WT and WF mutants recorded 
with an excitation wavelength of 295 nm at alkaline pH.  
Concentrations were fixed at 1 µM in sodium phosphate buffer pH 8.0 with 100 mM NaCl, at 
25°C.  
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Fluorescence pH-titration of HSP47 WF Mutants  

Similar to the experiment carried out on HSP47 WT, the change in maximum emission 

wavelength (λem) of the mutants were plotted as a function of pH (Figure 3.12). As 

demonstrated earlier, this parameter was chosen to probe the conformational rearrangement 

of HSP47 during pH titration. Monitoring of λem against pH for WT shows a transition in the 

collagen-dissociation pH region, and unlike fluorescent intensity, is independent of 

collisional quenching. The changes in λem against pH for the mutants were then fitted to 

single pH ionisation model, with all fits converged well (Figure 3.12). The results of the 

fitting is summarised in Table 3.1. The pKa for W110F and W192F agrees well with the pKa 

of HSP47 WT, while W341F gives a slight pKa shift which suggests perturbations in the 

fluorescence-probed structural transition. The curve for W192F is also slightly deviates from 

that of WT, though this still could not be fully verified from our current data and tools for 

analysis. 

W341 along with W192 are predicted to be located in the ‘breach’ cluster from the 

homology model. It is probably due to their vicinity to the ‘breach’ His residues that 

participate actively in triggering pH-controlled release that causes these mutants, especially 

W341F to experience slight perturbations during pH titrations.  

In addition, the fact the λem data could be fitted to single ionisation model suggest that 

there is a possibility of single Trp residue mainly responsible for the change. W110, W192 

and W341 can be ruled out as mutation of these residues does not abolish this behaviour. 

W275 is probably the residue involved due to its predicted location at helix H (hH) opposite 

of the ‘breach’ cluster. One of the two proposals for HSP47-collagen binding interface also 

involves the hydrophobic region between β-sheet B, hA and hG/hH (Dafforn et al., 2001; 

Davids et al., 1995). This means that there is a possibility that W275 experiences the largest 

change in environment as HSP47 rearranges its structure during pH change. Unfortunately, 

this currently could not be determined due to the low solubility of this mutant construct. 
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Figure 3.12:  The changes in maximum emission wavelength of HSP47 WT and WF 
mutants during pH titration.  
Values were taken from averaged individual spectra recorded during pH titration. Curve 
fitting was performed with GraFit Pro v7.0.0. All curves are comparable after several repeat 
titrations. Arrows represents the progress of titration from high to low pH, while broken 
arrows indicate the inflection points. 
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Table 3.1: Summary of data for HSP47 WT and WF mutants.  
 

Mutation Melting 
temperature ± 

0.5°C 

Degree of residue 
solvent exposure1 

Fitting data 

Inflection point 
(pH)2 

WT 52.0 - 6.02±0.18 

W110F 53.0 30% 5.91±0.16 

W158F * 40% * 

W192F 52.0 3% 6.03±0.10 

W275F * 90% * 

W341F 54.0 30% 5.73±0.11 

*Data for W158F and W275F could not be collected due to low solubility or low purification yield. 
1Solvent exposure calculated from mouse HSP47 homology model, using ASA-View program 
(http://gibk21.bse.kyutech.ac.jp/netasa/asaview/). 100% represents a completely exposed residue. 
2Inflection point was calculated by fitting the change in λem with pH to a single ionisation model, with GraFit 
Pro v7.0.0. 

 

 

It has been suggested in Section 3.5 that the change in λem upon titration with pH is 

most probably due to the change in the microenvironment of the Trp residues due to 

structural rearrangement. Given the complex nature of intrinsic Trp fluorescence emission in 

proteins, there is also a possibility of interactions between a Trp residue and the neighbouring 

His residue that are mainly responsible for this instead of the actual structural change. The 

interaction between the imidazole and indole side chains of His and Trp residues respectively 

was reported by Shinitzky and Goldman (Shinitzky and Goldman, 1967), where the 

protonated His was found to quench the fluorescence of Trp moiety. Since then, this Trp-His 

pair has been demonstrated in various mutagenesis studies. For example in the case of 

barnase, where mutations of either residue in the neighbouring Trp-His pair abolished the pH 

dependent change of the intrinsic fluorescence (Loewenthal et al., 1991). With the same 

protein, Trp was later found to increase the pKa of a neighbouring His residue (Loewenthal et 

al., 1992) thus increasing its stability. The distance between the side chains of the two 

residues are 4.0 Å. The ability of Trp-His interaction to increase protein/peptide stability was 

then shown in the study using short α-helical peptides where certain positions of Trp and His 

residues along the peptide are preferable for stabilising effect (Fernández-Recio et al., 1997). 

http://gibk21.bse.kyutech.ac.jp/netasa/asaview/
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In the case of the hexadecapeptide anantin, protonated imidazole was found to be a better 

quencher of Trp fluorescence that the non-protonated form (Vos and Engelborghs, 1994) 

while the study with T4 lysozyme showed the opposite (Van Gilst and Hudson, 1996). This 

was suggested to be due to the non-ideal stereo arrangement of the neighbouring Trp and His 

residues during pH change that causes the fluorescence emission to increase instead of 

decrease.       

 In order to investigate the possible presence of important Trp-His pair in HSP47, the 

homology model was used to compute the closest distance between them. Mutation of either 

residue in the pair is known to completely abolish the pH transition when probed using 

intrinsic Trp fluorescence (Loewenthal et al., 1991). This means that W110, W192 and W341 

probably do not form pairs with neighbouring His residues that are ionised during HSP47 pH 

transition as mutation of each of them retains this behaviour (Figure 3.12). As for W158, the 

closest distance to a surface His residue is predicted to be 21.8 Å (H135, side chain-side 

chain) while the closest His residue is H140 (10.1 Å), while for W275 the closest surface His 

residue is H244, which is also the closest predicted His residue (20.5 Å) (Figure 3.13). As the 

effective distances suggested for a His and Trp residues to form pair is less than 8.0 Å (Jas 

and Kuczera, 2004), these suggest that the pairing between Trp residue and an important His 

residue might not exist in HSP47. These further suggest that the change in fluorescence 

properties observed during titration is due to the change in the environment of the Trp 

residues.         
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Figure 3.13: HSP47 homology model showing all five Trp residues (red) and all His 
(blue).  
The predicted closest distance between the side chains of W158 and H135 is 21.8 Å while 
with that of H140 is 10.1 Å. The distance between W275 and H244 is 20.5 Å. 
Trp and His residues are shown in ‘sticks’ representation. Atomic distances computed using 
Deepview Swiss-pdbViewer v4.0.1.  
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3.7 Conclusions 

 

In the previous chapter, mutational work on surface His residues revealed that perturbations 

in biophysical property are mostly observed when residues in the ‘breach’ cluster are 

mutated. This suggests the localisation of the residues plays a crucial role in triggering and 

controlling the transition from the collagen binding state (alkali) to its non binding state 

(acid). This chapter was aimed at further observing this mechanism by means of intrinsic Trp 

fluorescence change. Trp residue is widely used in observing structural changes in proteins as 

it responds to change in its microenvironment, and can be excited independently and separate 

from that of Tyr or Phe excitation. It turns out that much information could be obtained with 

this technique, especially for HSP47 which is among the least understood members of serpin 

superfamily. Firstly, even though Trp-to-Phe mutation is considered to be the most 

conservative mutation, it has the potential to decrease significantly the stability of the 

construct when expressed in E. coli, as in the cases of W158F and W275F mutations. 

Mutation of W110 seems to affect the environment of the other Trp residues. Finally, Trp 

reporter in the ‘breach’ cluster is possibly located in or close to the dynamic region during 

HSP47 pH-switch transition. Any behaviour that would go against this proposal was also not 

observed during the investigation on WF mutants. These further support the findings 

presented in Chapter 2, which were used to construct a model on HSP47 pH-switch 

mechanism as explained in Chapter 4. The results presented here could actually be improved 

should the soluble forms of W158F and W275F are obtained. This could be done by 

employing one of the techniques available for increasing protein solubility, e.g. engineering 

of surface hydrophobic residues or addition of fusion tags. Double and triple WF mutations 

have also been attempted to obtain a better identification of Trp residues responding the most 

to pH-change. This is also restricted by the poor solubility of the mutants constructed; hence 

it is not reported in the thesis.   
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Chapter 4 

Results and Discussion: A Proposed Model for HSP47 pH-switch 
Mechanism 
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CHAPTER 4: A PROPOSED MODEL FOR HSP47 pH-SWITCH MECHANISM 

4.1 Introduction 

Results from the His-to-Ala (HA) and Trp-to-Phe (WF) mutations are being put together in 

this chapter to propose a viable model for the pH-triggered release of HSP47 from its only 

substrate collagen. Full understanding of this behaviour is particularly desirable as it is 

currently widely-accepted that this is the only mechanism governing HSP47/collagen binding 

and release. Unlike many serpin superfamily members, HSP47 does not possess any protease 

inhibitory activity, which suggests a different reactive centre loop (RCL) conformation. But 

serpins usually share a high similarity in the main structural scaffold, especially the highly 

conserved β-sheet A, B and C and the α-helices. This similarity is useful in computational 

prediction of a reliable homology model of HSP47 in which known structures of serpins can 

act as templates. This provides critical information for proposing a binding and release 

mechanism of HSP47 while the three dimensional structures in its bound and unbound states 

have not been worked out yet due to difficulties in obtaining the crystal structure. In this 

chapter, previous reports on serpin structures and functions are reviewed and compared with 

our data for HSP47 presented Chapters 2 and 3 to provide a working model on HSP47 pH-

switch mechanism. This chapter also includes discussion on other proteins carrying similar 

functions as HSP47, which could enrich our understanding on the behaviour of this molecular 

chaperone. 

 

4.2 Role of the ‘Breach’ Region in Serpin Family Members and HSP47  

In Chapter 2, results obtained from our work suggest that both single and double mutations of 

His residues in the ‘gate’ and ‘shutter’ clusters do not significantly affect HSP47 pH-

triggerable release and thus unlikely to participate actively in the process. In addition, our 

study based on intrinsic Trp fluorescence titration in Chapter 3 finds these two clusters less 

dynamic compared to the ‘breach’ cluster. The mutation introduced at the ‘breach’ cluster 

perturbs normal HSP47/collagen interaction significantly. H191, which is predicted to be 

located at the s3A-s4C loop close to the A-sheet, suggests a possibly critical role in HSP47 
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pH-shift. Trp residues located in vicinity to the cluster are predicted to experience the largest 

change in their environment during secondary structural rearrangement, implying that the 

‘breach’ area is very dynamic, compared to the other two regions of HSP47.  

It is interesting to note that the ‘breach’ area is also considered to be important for 

various serpin functions, for example α1-AT.  Mutation of glutamic acid (Glu, E) residue at 

position 342 to lysine (Lys, K) results in the protein being accumulated in the ER of 

hepatocytes, impeding its transport to Golgi for further processing (Bathurst et al., 1984). 

E342 is located at the N-terminal end of strand 5 of β-sheet A, known as the proximal ‘hinge’ 

region of serpin (Kaiserman et al., 2006). This region is the first RCL point-of-entry during 

insertion into β-sheet A for the conversion from native inhibitory to latent form. E341K 

mutation increases the propensity of α1-AT to polymerise probably due to the loss of side 

chain interactions, via insertion of RCL of one molecule into β-sheet A of another molecule 

(so called ‘head’ to ‘tail’ polymerisation) (Lomas et al., 1992).           

Another highly conserved ‘breach’ residue is tryptophan at position 175 of 

plasminogen activator inhibitor-1 (PAI-1) (Blouse et al., 2003). The residue, which is found 

in virtually all known serpins, is located at the N-terminal end of strand 3 of β-sheet A (s3A). 

W175 of PAI-1 is homologous to W192 of mature mouse HSP47 in our predicted model. As 

observed for HSP47, W175F mutation does not cause any significant perturbations in the 

folding of PAI-1 upon expression. PAI-1 is known to exhibit a spontaneous transition from 

‘stressed’ to ‘relax’ conformation (S-to-R) under certain physiological conditions (Carrell et 

al., 1991; Mottonen et al., 1992). The mutant was found to have a stabilised ‘stressed’ 

conformation, even though the association of target proteinase is unaffected. When reacted 

with several substrate proteinases, it was found that W175F/PAI-1 exhibits a significant drop 

in the limiting rate of one proteinase inhibition in particular, namely the tissue-type 

plasminogen activator (tPA). It was postulated that this is due to the disruption of amino acid 

interactions in the breach region of PAI-1, that are responsible for tight exosite interactions 

with the basic residues on tPA loop and as a result, controlling the reversible deacylation of 

P1´ amino acid of RCL and preventing its release from the substrate tPA. The disruptions 

restrict the forward reaction rates and decrease the limiting rate of tPA inhibition by mutant 

PAI-1 (Blouse et al., 2003). Even though this behaviour is not studied in HSP47, it 

demonstrates the importance of the ‘breach’ cluster to inhibitory serpins, and very likely to 

any serpin family members in general. 
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In another study on PAI-1, various mutations introduced in the ‘breach’ cluster and its 

adjacent region cause a change in activity of the protein (Sui and Wiman, 2000). Other than 

the ‘breach’ cluster, the region targeted is the β-sheet B, particularly strands 2 (s2B) and 3 

(s3B). Among the notable effects of ‘breach’ residue modifications is the increased stability 

of the resulting mutant, such as Y228S and T232F which are located on the s2B-s3B loop. 

This is probably due to restriction on RCL insertion caused by the change in the environment 

around those residues. A more significant finding is the involvement of H229 in the pH 

stability effect of PAI-1. PAI-1 was reported to have increased stability at slightly acidic pH, 

than at neutral or alkaline pH. Like HSP47, histidine imidazole group is suggested to be 

responsible for this (Kvassman et al., 1995). Mutation of H229 decreases the stability of PAI-

1 at acidic to about two-fold to that of at alkaline pH, instead of the normal ten-fold increase 

in stability (Sui and Wiman, 2000). H229 is located in the s2B-s3B loop, very close to the 

predicted location of H191 in HSP47 at the C-terminal end of s3A in our homology model. 

Although no pH-switch function has been observed with PAI-1 so far, the fact that the 

‘breach’ residue ionised to help stabilise PAI-1 at acidic pH is a notable finding. This could 

be related to our finding that the His residues in the ‘breach’ cluster in HSP47 play an 

important role in the mechanistic behaviour. The pH regulation of PAI-1 is said to be 

important in stabilising PAI-1 in the cells (pH approximately 6.8) in the event of blood flow 

obstructions to active tissues that lead to acidification via CO2 accumulation and metabolic 

shift towards fermentation (Kvassman et al., 1995).      

As also discussed in Chapter 3, in antichymotrypsin (ACT), the ‘breach’ residue 

W194 is shown to be the main residue that controls the rate of ACT polymerisation (Pearce et 

al., 2007). W194 is located at the N-terminus of RCL, which is also the C-terminal end of 

s3A. Again, this is the exact region where important residues for serpin function should be 

found. Like the residue E342 in α1-AT (Lomas et al., 1992), W194 of ACT is probably 

responsible for preventing serpin polymerisation by increasing the kinetic barrier or 

misfolding.  

It is clear from the works described above that amino acids in the ‘breach’ cluster are 

indispensable for normal serpin functions. These include preventing polymerisation in the 

case of α1-AT and ACT, controlling the formation of latent conformation and proteinase 

binding in PAI-1 and being responsible for low pH-induced stability in PAI-1. In many other 

inhibitory serpins, this region is considered to be the first point-of-contact for RCL 
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translocation before insertion into β-sheet A despite the absence of a more detailed 

mutational work. At the same time, the ‘breach’ residues are also responsible for other 

secondary functions, as proved by the work explained above. For non-inhibitory serpins, 

there are limited mutational works performed to confirm a similar role of residues in the 

‘breach’ cluster as with their inhibitory counterparts, though a few computational studies 

reported tend to support this. 

An example is in the study of pigment epithelium derived factor (PEDF), its structure 

has been discovered relatively recently compared to other serpins (Simonovic et al., 2001). It 

is found as a component of the retinal inter-photoreceptor matrix as well as in the vitreous 

and aqueous liquid in the adult eye (Simonovic et al., 2001). It is also reported to have 

neutrophic and antiangiogenic functions. Computational work done on several sequences of 

this serpin from different species revealed conserved residues in the area predicted to be 

located in the ‘breach’ region (Tombran-Tink et al., 2005). For example Glu at position 342, 

which is homologous to E342 of α1-AT, is highly conserved in PEDF from all species except 

one. It is also found to be conserved in many sequences of non-inhibitory serpins too 

(Tombran-Tink et al., 2005). Given that non-inhibitory serpins probably evolved from their 

inhibitory relatives, it is likely that some structural-related functions are preserved. 

 

4.3 A Proposed Mechanistic Hypothesis of HSP47 Release from Collagen 

The previous chapters have established the significant involvement of His residues in the 

‘breach cluster’ in HSP47 pH-switch behaviour. It is very likely that side chain protonation 

triggers re-arrangement of secondary structures, making this cluster more dynamic than 

others. This then triggers the shift in conformation of the region near collagen binding 

interface causing HSP47 release.  

Homology model predicted that three solvent-accessible His residues are located in 

the ‘breach cluster, namely H191, H197 and H198. A fourth residue, H244 may also be 

located in this cluster and participate in the active mechanism. Analyses on the H244A 

mutant (as presented in Chapter 2) though suggest otherwise. No significant physical 

perturbation can be seen in the structural stability or the pH-induced structural transition. For 
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this reason, all or one of the His residues mentioned above is very likely to be the active 

residue(s) involved.    

H191 is suggested to influence the release of HSP47 from collagen, as its absence 

triggers dissociation at higher pH, based on the gelatin column and CD experiments as 

reported in Chapter 2. This does not abolish dissociation altogether, implying that there are 

some other residues responsible for triggering the release. In the process of identifying these 

‘auxiliary’ residues, mutations were performed on other surface-predicted His residues 

covering various locations of HSP47. In the ‘gate’ cluster, mutations of H255 and H256 do 

not significantly alter the properties of the mutant. This includes its secondary structural 

content and gelatin/collagen binding and release property. This cluster is located in vicinity to 

the flexible loop connecting s3C and s4C critical in the conversion of PAI-1 from native to 

latent structure (Stein and Carrell, 1995). Its opposite location to the ‘breach’ cluster suggests 

that it may play an important part, but experimental result reveals otherwise. Finally the 

‘shutter’ cluster, which is found near the centre of sheet A centred at the start of helix B 

(Stein and Carrell, 1995) accommodating H302 and H135 was found to have little influence 

on collagen binding/release behaviour of HSP47. 

These suggest that only His residues in the ‘breach’ cluster are responsible for the pH-

triggered conformational rearrangement of HSP47 that leads to dissociation from collagen. 

Other than H191, it is likely that H197 and H198 also participate actively in this process on 

two bases: first, the vicinity of these two residues to H191 in HSP47 homology model; and 

second, the effect of mutation of these residues on HSP47 collagen-specific recognition to 

withstand thorough washing in column experiment. However, the direct involvement of these 

residues in the release mechanism could not currently be confirmed as the mutants are not 

available for further analysis. 

The proposed mechanism for HSP47 pH-switch action that triggers dissociation from 

collagen is depicted in Figure 4.1. The simplified diagram only shows the residues pertinent 

for the proposed mechanism, namely H191, in its non-ionised and ionised states. It is also 

based on the prediction of surface His residues according to the constructed homology model 

described earlier in the thesis. At alkaline pH, HSP47 is in its binding state and binds 

collagen at the binding groove/interface. The interface is probably at a different site than the 

‘breach’ cluster, based on the results from the collagen/gelatin binding assay of the mutants 
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(Chapter 2). As proton concentration increases, certain His residues begin to be ionised at pH 

5.9-6.0. Ionisation triggers electrostatic repulsion of their neighbouring positively-charged 

residue(s) and exposure of the side chains to more hydrophobic environment. This triggers 

the formation of a partially non-binding state but is insufficient to proceed to a dissociation of 

collagen molecule. As pH decreases further to 5.7, H191 is in turn ionised and can now 

trigger a sufficient conformational rearrangement causing its release from collagen. This is 

supported by the analyses made with H191A mutant, where it is found to release collagen 

binding at a slightly higher pH value. This conformational rearrangement is complete as pH 

reaches 5.3 where full acid conformation is adopted, based on the minimal secondary 

structural changes at pH lower than 5.3 from CD experiment.  

The mechanism is suggested from the observations made from our HSP47 HA 

mutation work, in particular of H191A. There is also a possibility that full acid state is not 

adopted in the cis-Golgi before HSP47 is recycled back to the ER in vivo. This is because the 

cycle demands rapid structural rearrangement back to alkali, collagen-binding state for 

HSP47 to continue its chaperone function in the ER. The ER-Golgi transport cycle is 

illustrated in Figure 4.2.  
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Figure 4.1: Schematic representation for the proposed mechanism of the concerted 
action of His residues in the breach cluster in controlling HSP47 pH-switch mechanism. 
The mechanism is based on the mutanegesis work performed on all surface His residues 
predicted from homology model. pH values might differ in different experimental conditions 
though the magnitude is unlikely to. 1. At alkaline pH, all the ‘breach’ residues are non-
ionised and allow the cluster to stay intact. Hydrophobic interactions with neighbouring side 
chains are also possible (black). 2. Binding to collagen triple helix at alkaline condition. 3. 
Upon decrease in pH to 5.9, the side chains of other residues start to ionise and perturb the 
region around the cluster slightly but insufficient to allow dissociation. 4. As pH reaches 5.7, 
H191 subsequently ionises and allows full rearrangement to non-binding state. 5. HSP47 then 
dissociates from collagen, before adopting binding state again at suitable pH condition.
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Figure 4.2: Anterograde transport of collagen from ER to Golgi apparatus and 
retrograde transport mechanism to recycle collagen-bound HSP47 back to ER. 
Adapted from (Paroutis et al., 2004; Vitale and Denecke, 1999). 
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4.4 Possible Effects of ‘Breach’ His Residue Mutations to Cellular Processes: Case 

Study on Other Proteins  

Mutations of the His triad in the ‘breach’ cluster were found to perturb HSP47 mechanism 

significantly. H191 is one of the important residues crucial for pH release as its absence 

increases HSP47 sensitivity to pH and triggers release from collagen at a higher pH values. 

As accurate and concerted release of HSP47 from collagen triple helices is crucial during 

biosynthesis, by extrapolation, mutation of H191 can be detrimental to the process. Although 

cellular work is out of the scope of this thesis, it would be very comprehensible to summarise 

the findings up-to-date by discussing some similar studies conducted elsewhere to suggest 

effects of mutations on HSP47-expressing cells.   

It is known that HSP47 binds collagen chain in the ER and assists in the stabilisation 

of the nascent triple helix. Then the HSP47-collagen complex is transported to the Golgi 

apparatus, before HSP47 dissociates from the properly folded collagen. Although the exact 

dissociation location is not yet determined, it has been speculated that it occurs either in the 

cisternal space of cis-Golgi or in the ER-Golgi intermediate compartment (ERGIC) (Nagata, 

2003). HSP47 is then recycled back to the ER via retrograde transport pathway by receptors 

that recognise the C-terminal RDEL ER-retention signal sequence (Figure 4.3). One of the 

receptors that have been identified is erd2, a 26 kDa Golgi membrane protein that was 

initially discovered as the ERD2 gene product in yeast Saccharomyces cerevisiae. The name 

is an acronym of ER retention-defective complementary group 2  (Lewis et al., 1990). erd2 

has been demonstrated to be localised mainly in the cis-Golgi compartment (Elmendorf and 

Haldar, 1993).  

The pH of the Golgi apparatus is variably reported to be in the slightly acidic to near 

neutral region (pH 5.7 to 6.7) (Kim et al., 1996; Paroutis et al., 2004; Wu et al., 2001). The 

accurate method for the measurement of the actual pH value in the cis-Golgi, and the 

secretory pathway generally, is still being actively investigated. One report suggests that pH 

of the ER is around 7.1 demonstrated in resting HeLa cells while that in the Golgi complex is 

reported to be between pH 6.3-6.5 (Kim et al., 1996; Kim et al., 1998). The affinity of erd2, 

as an important component of the secretory pathway, is known to be also affected by pH.  Its 

binding is most optimum at pH between 5.0 and 5.5 (Wilson et al., 1993). This explains its 
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function in retrieving ER resident proteins in Golgi. Upon retrograde transport back to ER, 

the proteins are liberated from the receptor due to the neutral pH condition of ER 

compartment (Figure 4.3). This drop in pH along the secretory pathway is said to be due to 

the increase in active proton pump density (Wu et al., 2001). Also as the mechanism of 

binding-and-release action of erd2 to its partners is mediated by pH difference, it is 

interesting to note that this behaviour is completely opposite to that of HSP47 in terms of pH 

condition (Wilson et al., 1993). In addition, this complex is influenced by other factors such 

as aggregation state of the receptor in the ER and Golgi, or the regulation by ionic 

constituents in Golgi. The latter is taken into consideration as Asp residue in the hydrophilic 

KDEL-binding pocket of erd receptor has been shown to form direct pairing with positively-

charged residue at position -4 from the C-terminus of the ligand (position K in KDEL 

sequence). This position is interchangeably occupied by Arg, Lys or His in different ligands 

(Scheel and Pelham, 1998). 

The multiple function of His residue in pH-control, substrate binding and others has 

been observed before, even in non-ER/Golgi related proteins. For example in the human 

P2X4 purinoreceptor, where mutation of one His to Ala not only abolishes the pH sensitivity 

of the receptor, but also has some effect on its ligand binding. P2X channels mediate fast 

excitatory actions of ATP when it is co-released with other transmitters in the central and 

peripheral nervous systems. There are many different isoforms of the P2X receptor that have 

been found, which involve in the modulation of ATP-gated channels and therefore regulate 

synaptic transmission. Mutant P2X4 carrying H286A mutation, located on the extracellular 

side of the channel, abolishes its sensitivity of the ATP-activated current upon decrease in 

extracellular pH (Clarke et al., 2000).   

A more significant case on ER resident proteins has been reported concerning the 

receptor associated protein (RAP), which is a chaperone of the low density lipoprotein 

receptor (LDLR) family. It is a three-domain, 39-kDa chaperone and each domain carries a 

different function. Generally, it inhibits undesirable premature interaction of the LDL 

receptor family and their ligands in the ER and also facilitates the delivery of newly-

synthesised LDLRs to the cell surface (Willnow et al., 1995; Willnow et al., 1996). The latter 

function is reported to involve a single domain of RAP, namely domain 3 (D3). Very much 

like HSP47, RAP dissociates from LDLR in the Golgi apparatus prompting the suggestion of 

His-controlled mechanism as its possible mechanism of release. The structure of D3 has been 
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solved using NMR, and it revealed the highly-helical content of the chaperone. Its surface 

charge distribution is found to increase significantly at pH lower than 6.5 further supporting 

the His switch hypothesis (Lee et al., 2006). In addition, mutation of His residues in D3 

impairs the dissociation from its client at low pH. This then affects the secretion of LDLR 

outside of the cell. The reason of this probably involves cellular degradation process of the 

RAP-LDLR complex (Estrada et al., 2008). It was also found that in cells transfected with 

RAP carrying D3 mutant His, RAP and LDLR co-localise in the ER. There is a suggestion 

that mutant RAP-LDLR complex is recycled back to the ER via anterograde transport action 

of KDEL-receptors, as its export to the Golgi is shown to be unaffected (Lee et al., 2006). It 

is still not known whether the degradation of the aberrant complex involves the ER-

associated degradation (ERAD) pathway or another degradation mechanism in the cytoplasm.         

 From these studies, there could be an adverse effect on collagen biosynthetic pathway 

of HSP47 upon mutating its critical His residues. Dissociation of HSP47 from correctly 

folded collagen triple helix usually occurs in the Golgi complex or in the ER-Golgi 

intermediate compartment. These compartments definitely have specific pH values, just like 

many other cellular compartments, in order to regulate cellular functions. For that reason, 

premature release of mutant HSP47 from collagen will probably expose the folded collagen 

molecules to degradation due to lack of chaperone to help in stabilisation. This could in turn 

affect the transport of collagen in vivo leading to disrupted formation of extracellular 

matrices, which is potentially lethal.   
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4.5 Conclusion 

This chapter compiled the data obtained from the experimental work presented in the two 

previous chapters. After examining the significance of the ‘breach’ region to serpin structure 

and function, a working model on the mechanistic behaviour of HSP47 during pH-release 

from collagen was proposed. The model is built on the structural rearrangement experienced 

by the region around His residues located in the ‘breach’ cluster, based on findings described 

from Chapters 2 and 3. This chapter also presents the proposed effect of the rearrangement, 

induced by pH change, to HSP47 binding and release behaviour. This model is still at its 

infancy and is constructed based on the knowledge gained from experiments using the 

techniques available in our laboratory. Although far from being a complete model, this is the 

first to date explaining HSP47 pH-switch mechanism, which is the only mechanism known to 

govern HSP47 release from collagen. Finally, a thorough literature review was conducted to 

outline the possible effects of His mutations on cellular behaviour in order to help guiding 

future experiments and investigations on cellular mechanism of HSP47 during collagen 

biosynthesis, until a new study comes to light. 
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CHAPTER 5: FUTURE DIRECTIONS 

5.1 Construction of More His Mutants to Validate pH-switch Model 

The model presented in Chapter 4 is proposed based on the observations made on eight His-

to-Ala mutants targeting eight residues (six single and two double mutants). These are the 

residues predicted to reside at solvent accessible locations of HSP47 molecule. In order to 

validate and confirm the model, a further six mutants could be constructed targeting the other 

residues (H90, 140, 220, 297, 335 and 368). Analyses on the mutants will provide more data 

for considerations towards the pH-switch model, and confirm their predicted locations at the 

non-solvent accessible locations of HSP47 homology model. 

 

5.2 Determination of HSP47-collagen Binding Interface 

Like many non-inhibitory serpins, the binding interface of HSP47 to its partner is still 

unknown. Earlier on, Chapter 2 presented two proposals made for HSP47/collagen binding 

site and interface (Dafforn et al., 2001; Koide et al., 2006a). These two models still have 

plenty of room for improvements. Hence it is of interest to investigate this further, using 

either mutagenesis technique; or co-crystallisation of HSP47 with short collagen mimetic 

peptides with desirable binding motif. In the first approach, all hydrophobic residues 

predicted to be located near the ‘breach’ region and the putative collagen binding groove of 

sB-hA-hG-hH could be mutated. This will probably involve 10-15 mutants.  

In the second approach, the binding of HSP47 to CMPs is known to be quite weak (Kd 

in the μM to nM range). So in order to withstand crystallisation, a stronger HSP47 binding 

motif can be engineered into the CMPs. One residue, namely Arg, is now known to be the 

preferred residue for HSP47 recognition (Koide et al., 2002). The knowledge of collagen 

binding interface will be very useful to guide research on the development of small molecules 

to inhibit collagen expression by blocking the chaperoning action of HSP47. This is actually 

one of the strategies actively investigated in the treatment of fibrotic diseases, alongside 

HSP47 siRNA and oligonucleotides.  
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5.3 Crystallisation and Three-dimensional Structure Determination 

Before co-crystallisation of HSP47 with collagen peptide can be done, the crystallisation of 

HSP47 alone should be attempted. HSP47 is known to be highly resistant to crystallisation, 

mainly due to aggregation problem at high concentration, from our experience. So in order to 

overcome this problem, several strategies can be attempted. Firstly, engineering of HSP47 to 

allow expression in high concentration but retains solubility. Several surface residues can be 

targeted, without affecting the important regions such as the ‘breach’ region known to be 

important for its function. Surface hydrophobic residues can be engineered to hydrophilic 

residues, for example. Secondly, by optimising HSP47 solubility using various protein tags 

commercially available, such as the NusA tag (Novagen). Various additives, such as amino 

acids, can also be attempted during cell lysis. Once high solubility is ensured, crystallisation 

can be attempted. NMR spectroscopy can also be tested, especially on the quality of signal 

when HSP47 sample is run. With the advent of state-of-the-art NMR techniques, more 

proteins can be investigated in this way. 

 

5.3 Investigation on the Effect of Specific His-to-Ala Mutation of HSP47 Behaviour 

in the Cell and Animal Model 

As discussed at the end of Chapter 4, it is interesting to know the effect of His mutation of 

HSP47 on normal collagen synthetic pathway. This is achievable using collagen expressing 

cells, for example the mouse embryonic fibroblast (MEF) is among the most widely-used 

cells for HSP47-related cell work. Then mutant plasmids can be engineered before 

transfection into the cells. The localisation of collagen and HSP47 molecules can be detected 

using cell stains labelled with collagen/HSP47 specific antibodies. Once the behaviour in the 

cell is established, the work can be further extended to include animal model. A good starting 

point for such work is the study reported by Nagai and co-workers (Nagai et al., 2000), which 

demonstrates the requirement of HSP47 for the normal development of mice, using gene 

targeting vector delivered into mouse strain C57BL/6J. Although the study uses gene knock-

out technique targeting hsp47 gene, site-specific mutations on mouse model has been 

documented on other diseases (Bedell et al., 1997; Simmons, 2008). If successful, the finding 
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will corroborate results obtained from in vitro experiments detailed in this thesis, with various 

potential contributions to the study of collagen-related diseases and abnormalities. 
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Materials and Methods 
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CHAPTER 6: MATERIALS AND METHODS 

 

6.1 Materials 

Unless otherwise indicated, all commonly used chemicals and reagents were of analytical 

grade and obtained either from Sigma-Aldrich, VWR, Fluka or Merck.   

 

6.2 Bacterial Strains  

Three strains of E. coli were used in this study. Their genotypes are listed below, obtained 

from EcoliWiki database (http://ecoliwiki.net/colipedia/index.php/Welcome_to_EcoliWiki) 

and also from OpenWetWare 

(http://openwetware.org/wiki/E._coli_genotypes#BL21.28DE3.29): 

DH5α: huA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 

thi-1 hsdR17. Used mainly in mutagenesis for plasmid propagation and mutant screening 

works, and also for long-term plasmid maintenance. 

BL21(DE3)pLysS: F- ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3) pLysS(cmR). A high 

stringency expression host cell, contains the pLysS plasmid that encodes T7 phage lysozyme, 

which is an inhibitor for T7 polymerase which reduces and almost eliminates basal 

expression from transformed T7 promoter containing plasmids when not induced with IPTG.  

BL21(DE3): F– ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 

nin5]). Non pLysS-containing host. Less stringent than BL21(DE3)pLysS, for higher 

expression level.  

http://ecoliwiki.net/colipedia/index.php/Welcome_to_EcoliWiki
http://openwetware.org/wiki/E._coli_genotypes#BL21.28DE3.29
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6.3 Site Directed Mutagenesis of Mouse HSP47 Gene 

This study used the mouse HSP47 gene, the sequence of which has been deposited to 

GeneBank with an accession number X60676.1 (Hosokawa et al., 1993; Takechi et al., 1992). 

The mouse HSP47 cDNA was amplified by PCR using 5´ and 3´ primers with HindIII and 

NdeI restriction sites, respectively. Subsequently, the gene was cloned into the pET-24b(+) 

vector (Novagen) for HA mutants or pET-21a(+) (Novagen) for WF mutants, which 

contained the equivalent restriction sites. pET-21a vector was engineered to allow a co-

expression of a six-histidine tag (His-tag) to the N-terminal of the recombinant protein while 

pET-24b was engineered for expression of a non His-tagged protein. The former carries 

ampicillin-resistance (ampR) gene while the latter is kanamycin resistant (kanR). Both are low 

copy number vectors to avoid too high expression which can result in HSP47 aggregation. 

The presence of T7lac promoter system allows the use of IPTG to induce protein expression. 

All the cloning works have been done previously and the plasmids were kindly supplied by 

Dr Takayuki Homma (pET-21a) and Dr Dee Olerenshaw (for pET-24b) (Imperial College 

Genetic Therapies Centre, UK). In pET-24b(+), the protein is expressed with an initial 

vector-derived Met before the start of the first amino acid of the mature HSP47 sequence Ala, 

with 400 amino acids altogether from the first Ala to the final Leu. This is similar in pET-

21a(+) vector, with an additional six His tag at the N-terminus, and a linker region between 

the tag and the Met residue. 

Mutations were introduced using the method developed by Sawano and Miyawaki 

(Sawano and Miyawaki, 2000) with DH5α as the E. coli host. Table 6.1 shows the primer 

sequences to construct the mutants. Primers were initially phosphorylated at their 5′ end using 

T4 polynucleotide kinase (New England Biolabs). PCR reactions were carried out in a 50 µL 

total reaction volume using 1 µL of 40-50 ng/μL template plasmid, 7 µL of 2 pmol/ μL of 

primer, 1 µL of 2.5 mM of dNTPs, 1 µL of 2.5 U/µL of Pfu DNA polymerase (Stratagene) in 

0.5× Pfu polymerase reaction buffer, and 0.5 µL of 20 U/µL of Taq DNA ligase (New 

England Biolabs, MA, USA) in 0.5× Taq DNA ligase buffer. The thermal cycler 

(Mastercycler Gradient, Eppendorf) was programmed as follows: pre-incubation at 65°C for 

5 min allowing the ligase to repair any nicks in the template; initial denaturation at 95°C for 2 

min; then 23 amplification cycles (denaturation at 95°C for 10 sec, annealing at 55°C for 30 

sec and elongation at 65°C for 13.5 min); and finally post-incubation at 75°C for 7 min. Then 
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1 µL (10 U/µL) of DpnI (Stratagene) was added to the 50 µL reaction mixture, and incubated 

at 37°C for 1 h. For non-mutant strand synthesis, the reaction mixture was then subjected to 

denaturation at 95°C for 30 sec, followed by 2 cycles of (95°C for 30 sec, 55°C for 1 min and 

70°C for 13.5 min), then finally 75°C for 7 min for final extension (Sawano and Miyawaki, 

2000). 10 µL of the final sample was used for transformation into chemically-competent 

E.coli DH5α cells. 

Single E. coli colonies were picked from LB agar plate with appropriate antibiotics 

and 0.4%(w/v) of glucose, and inoculated into sterile 100 mL LB broth containing the same 

antibiotics. Plasmid isolation and purification were carried out using the EZNA Plasmid 

Isolation Kit Midi (Omega Biotek) according to manufacturer’s instruction. DNA 

concentration was measured using the NanoDrop ND-1000 (NanoDrop). Typical DNA yield 

is usually around 100-200 ng/µL with good purity (A260/A280 > 1.8). The plasmid samples 

were sequenced to screen for positive mutants. Each positive mutant construct was then 

sequenced again to confirm the presence of a unique mutation and no other mutations 

between the promoter and terminator regions. Sequencing service was provided by Beckman 

Coulter Genomics (UK). Mutagenesis efficiency varies, but normally between 10-50%. 

HA mutants were expressed in E. coli BL21(DE3)pLysS (Promega) and WF mutants 

were expressed in BL21(DE3) (Invitrogen) hosts . 
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Table 6.1: Primers used for mutagenesis reactions.  
Target amino acids mutated are underlined. Primers were custom synthesised by MWG 
Biotech (Germany) or Invitrogen (UK). 
 

Target mutation Primer sequence 
H135A 5΄- CAGCAGCAAGCAAGCATACAACTGCGAAC 

H191A 5΄- ATGTTCTTTAAGCCAGCATGGGATGAGAAGTTT 

H197A 5΄- CACACTGGGATGAGAAGTTTCACGCAAAGATGGTGG 

H198A 5΄- CACACTGGGATGAGAAGTTTGCACACAAGATGGTGG 

H197A:H198A 5΄- CACACTGGGATGAGAAGTTTGCAGCAAAGATGGTGG 

H244A 5΄- GATGCCCCTGGCTGCAAAGCTCTCCAGC 

H255A:H256A 5΄- GCCTCATCATCCTCATGCCCGCAGCAGTGGAGCCGC 

H302A 5΄- CATGACCTGCAGAAAGCCCTGGCAGGA 

W110F 5΄- ACTGCGCGCAACGTGACCTTTAAACTGGGCAGCCGC 

W158F 5΄- TCCATCAACGAGTTTGCCTCGCAGACCACG 

W192F 5΄- TTCTTTAAGCCACACTTTGATGAGAAGTTTCAG 

W275F 5΄- GAGCAGCTGAAGGCCTTTATGGGAAAGATGCAGAAG 

W341F 5΄- ACTGCCTTCGAGTTCGACACCGAGGGCAAC 
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6.4 Preparation of Chemically-competent E. coli Cells and Transformation 

E. coli cell stock was first cultured in 2 mL of 2×YT medium (tryptone 16 g, yeast extract 10 

g, NaCl 5 g, deionised water 1 L) or LB medium (tryptone 10 g, yeast extract 5 g, NaCl 10 g, 

deionised water 1 L) for DH5α, while supplemented with 0.2%(w/v) glucose (for 

BL21(DE3)) and 20 µg/mL chloramphenicol (for BL21(DE3)pLysS). The culture was grown 

at 37°C with shaking overnight before 1 mL of the culture being transferred into 100 mL of 

fresh medium with glucose and/or antibiotics. Cultivation was continued at 37°C until optical 

density at 600 nm (OD600) reached 0.3. The culture was then aliquoted out into 50 mL Falcon 

tubes and placed on ice for 5 min. E. coli cells were collected by centrifugation at 4000 rpm 

with ALC T534 rotor (ALC) for 10 min. The resulting pellet was resuspended in 20 mL of 

sterile TfbI solution (30 mM potassium acetate, 100 mM RbCl, 10 mM CaCl2, 50 mM 

MnCl2, 15%(v/v) glycerol, pH 5.8) by vortexing. The suspended cell solution was placed on 

ice for 5 min, before being centrifuged as above. The pellet was again resuspended in 2 mL 

of sterile TfbII solution (10 mM PIPES, 75 mM CaCl2, 10 mM RbCl, 15%(v/v) glycerol, pH 

6.5) before being placed on ice for 15 min. The cell suspension was finally dispensed into 

sterile, ice-cold 1.5 mL Eppendorf tubes in 100 µL aliquots and quick-frozen in liquid 

nitrogen before storage at -80°C. 

 Plasmid was transformed into the competent E. coli by adding 0.5-1 µL (or 10 µL 

from mutagenesis reaction) into the frozen cells and placed on ice for 30 min. The tube was 

heat shocked at 42°C for 1 min and returned to ice for another 2 min. Then 1 mL of LB broth 

was added, supplemented with 0.2%(w/v) glucose and 20 mM MgSO4 and grown at 37°C for 

1 h with shaking. The cells were finally plated out on LB agar with glucose and appropriate 

antibiotics and incubated at 37°C overnight. 
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6.5 Bacterial Cultivation and Preparation of HSP47 Crude Sample 

Recombinant E. coli containing WT and mutagenic HSP47 gene was grown on media with 

25 µg/mL kanamycin for BL21(DE3) and both kanamycin and 20 µg/mL chloramphenicol 

for BL21(DE3)pLysS. A loopful of glycerol stock, originally stored at -80°C was scraped off 

and inoculated into a pre-culture of 2×YT medium supplied with appropriate antibiotics and 

0.2%(w/v) of glucose. The culture was incubated at 37°C with shaking at 180 rpm overnight. 

The pre-culture was then inoculated into a larger culture in a volume ratio of 1:20 of a 1 L of 

the same medium with the same antibiotics but without glucose. The main culture was 

incubated at 20°C, 180 rpm until the OD600 reached 0.3 before IPTG was added (0.1 mM of 

final concentration) and continued for further 12-18 h. The cells were then harvested by 

centrifugation at 4000 rpm with GS-3 rotor (Sorvall) for 10 min. When necessary, the pellet 

was resuspended in saline solution (8.4 g/L) and centrifuged at 4,000 rpm with ALC T534 

rotor (ALC) for 15 min before storing at -80°C. For lysis, cell pellet was resuspended in lysis 

buffer (50 mM sodium phosphate pH 8.0, 500 mM NaCl, 0.02%(v/v) Triton X-100, 3 mM β-

mercaptoethanol), supplemented with Complete Mini EDTA-free protease inhibitor tablet 

(Roche, Germany). The inhibitor cocktail contains broad spectrum inhibitors of serine and 

cysteine proteases. Bacterial lysis was carried out using sonication on ice (total sonication 

time of 1.5 min per cycle and the cycle repeated twice, with 5 min of resting period between 

cycles, at 20% amplitude) with a VCX400 sonicator (Sonics and Materials, Inc). When 

needed, DNaseI (Roche) was added to 0.1 mg/mL final concentration with 2 mM MgCl2 

followed by 15 min incubation at on ice. The resulting lysate was then centrifuged at 16,000 

rpm with SS-34 rotor attached to RC-5B Plus centrifuge (both are from Sorvall) for 40 min at 

4°C. The supernatant was filtered through a 0.2 µm syringe filter and purified using the 

gelatin-agarose column, or the HisTrap HP immobilised nickel affinity column (GE 

Healthcare).   
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6.6 Gelatin-agarose Purification of HSP47 

HA mutants were purified using the gelatin-agarose affinity chromatography. Gelatin-agarose 

(Sigma-Aldrich) was packed into a 5 mL HR16/5 column (GE Healthcare) and packed 

columns were stored at 4°C until further use. Before purification, the columns were 

equilibrated with cold buffer A (50 mM sodium phosphate, 100 mM NaCl, pH 8.0) for about 

5 column volumes (CV). All buffers were degassed. The flow rate was fixed at 1 mL/min for 

this step and all the subsequent steps, using the Fast Protein Liquid Chromatography (FPLC) 

system (Pharmacia Biotech). Filtered supernatant was loaded into the column (kept on ice) 

and washed using buffer A before being eluted with a 14 CV gradient of buffer B (50 mM 

sodium phosphate, 100 mM NaCl, pH 4.1). Fractions were collected at 2 mL per fraction and 

the high pH was restored with 200 μL of 1 M sodium phosphate pH 8 before being stored at 

4°C. The columns were then washed and re-equilibrated with buffer A for about 5 CV before 

being stored at 4°C in 20%(v/v) ethanol. 

 

6.7 Immobilised Nickel Affinity Chromatography Purification of HSP47 

WF mutants were purified using the HisTrap HP nickel sepharose column (1 mL) (GE 

Healthcare) according to the manufacturer’s protocol. Before use, the column was first 

washed with 3-5 column volumes (CV) of distilled water. Then it was equilibrated with at 

least 5 CV of binding buffer 50 mM sodium phosphate, 150 mM NaCl, 20 mM imidazole, pH 

8.0) at a flow rate of 1.5 mL/min. Then the filtered supernatant was applied before being 

washed with binding buffer for at least 10-15 CV. Finally, the bound protein was eluted with 

elution buffer (50 mM sodium phosphate, 150 mM NaCl, 250 mM imidazole, pH 8.0) using a 

linear gradient of 30 CV. After 3-4 purifications, the column was stripped with stripping 

buffer (20 mM sodium phosphate, 500 mM NaCl, 50 mM EDTA, pH 7.4) and recharged with 

100 mM NiSO4. 

Imidazole was removed using HiPrep 26/10 desalting column (GE Healthcare) 

equilibrated and eluted with same buffer as the gelatin-agarose column wash buffer.  
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6.8 Determination of Protein Concentration 

Protein concentration was determined using either Bichinchoninic Acid (BCA) Assay Kit 

(Sigma-Aldrich) or calculated from the absorbance at 280 nm using the Beer-Lambert law 

with the molar extinction coefficient of 42,400 M-1cm-1 calculated using ProtParam 

(Gasteiger et al., 2005).  

 

6.9 Protein Visualisation using Denaturing SDS-PAGE 

Samples for SDS-PAGE analysis were initially mixed with the 2× Novex Tris-glycine SDS-

PAGE sample suffer (Invitrogen) and 5%(v/v) of β-mercaptoethanol (β-ME) followed by 

heating at 95°C for 5 min before loading into the wells of a pre-cast 12% SDS-PAGE gel and 

electrophoresed at 200 V for 70 min in 1× Tris-glycine SDS-PAGE tank buffer (25 mM Tris, 

192 mM glycine, 0.1% SDS, pH 8.3) (Fermentas). The gel was then stained with Coomassie 

Brilliant Blue stain for 1 h and de-stained with MilliQ water overnight.  

 

6.10 Immunoblotting Analysis 

Protein samples electrophoresed on 12% SDS-PAGE gel was first transferred to ECL 

Hybond nitrocellulose membrane (GE Healthcare). A wet transfer system was used, at a 

constant voltage of 100 V for 1 h in 5 mM sodium tetraborate buffer kept on ice. The 

membrane was blocked with 5% skimmed milk in PBS(-) buffer (10 mM Na2HPO4, 2 mM 

KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4) at 4°C overnight or at room temperature for 1 

h. Then, after discarding the blocking solution, anti-HSP47 primary antibody (Stressgen) in 

skimmed milk (1:1000 dilution) was added and incubated on a rocking platform at room 

temperature for another 1 h. After washing twice with 0.1% Tween-20 in PBS(-) for 10 min, 

the membrane was probed with goat anti-mouse secondary antibody, alkaline phosphatase 

(AP) conjugate (Biosource) (1:2000 dilution) for an additional 1 h before a 5-min washing 

with Tween-20 in PBS(-) four times and once in MilliQ water for 3 min for the final wash. 

Finally, detection was performed using the 5-bromo-4-chloro-3-indolylphosphate/nitro blue 
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tetrazolium (BCIP/NBT) tablet (Sigma-Aldrich). The substrate solution when dissolved in 10 

mL MilliQ water contains BCIP (0.15 mg/mL), NBT (0.30 mg/mL), Tris buffer (100 mM), 

and MgCl2 (5 mM), pH 9.25-9.75. BCIP is hydrolysed by AP forming an intermediate that 

undergoes dimerisation to produce an indigo dye. Then NBT is reduced to the NBT-formazan 

by two reducing equivalents generated by the dimerisation. Together, two compounds 

generated an intense black-purple precipitate. Where necessary, band quantification was 

performed using NIH ImageJ software (Rasband, 1997-2009) with a built-in gel analysis 

program. 

   

6.11 Gelatin-agarose Pull Down Assay 

This assay was used to determine the binding ability of HSP47 to gelatin. 5.4 mL lysis buffer 

(50 mM Tris-HCl, 150 mM NaCl, 15% glycerol, 0.2% Nonidet P-40, protease inhibitor 

tablet, pH 8.0) was added to a pelleted cell culture (from about 12 mL of culture) and re-

suspended. The cell suspension was then sonicated on ice and 1500 µL of lysate was 

aliquoted out and centrifuged at 13,000 rpm with Biofuge Pico (Sorvall), for 20 min at 4°C. 

400 µL of the supernatant was added to 20 µL (bed volume) of gelatin-agarose beads (Sigma-

Aldrich). The mixture was then rotated for 1 h at 4°C before being centrifuged at 6,000 rpm 

(Biofuge Pico, Sorvall) for 3 min at 4°C. The pellet was washed with 200 µL of wash buffer, 

and centrifuged again. This was repeated twice before 100 µL of MilliQ water was added, 

with 100 µL of 2× sample buffer, 10 µL of β-ME, and heated at 95°C for 5 min. The sample 

was centrifuged before loading to SDS-PAGE, followed by immunoblotting analysis for 

visualisation and quantification.  

 

6.12 Collagen Mimetic Peptide (CMP) Synthesis 

The peptide (Pro-Hyp-Gly)10 [(POG)10] and (Pro-Hyp-Gly)4-Pro-Arg-Gly-(Pro-Hyp-Gly)5 

[(POG)4-PRG-(POG)5] were synthesized using a Symphony Quartet peptide synthesiser 

(Protein Technologies Inc.) using N-(9-fluorenyl)methoxycarbonyl (Fmoc)-protected L-amino 

acids on Gly-wang resin support. The peptides were purified on a reverse-phase high pressure 
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liquid chromatography (HPLC) system with a C18 column. Purity of the peptides was 

determined by mass spectrometry using matrix-assisted laser desorption ionization time-of-

flight (MALDI-TOF) and electrospray ionisation (ESI). The service was provided by the 

Department of Chemistry Mass Spectrometry Service Unit, Imperial College London. 

 

6.13 Coupling of CMP to Cyanogen Bromide (CNBr)-activated Sepharose Beads 

The coupling of CMP to CNBr-activated sepharose was done according to manufacturer’s 

instruction. First, the required amount of freeze dried CNBr-sepharose powder (GE 

Healthcare) was weighed and resuspended in 1 mM HCl. The medium swelled immediately 

and was washed for 15 min with 1 mM HCl on a sintered glass filter, added in several 

aliquots. Then the peptide to be coupled was dissolved in coupling buffer (0.1 M NaHCO3 

pH 8.3, 0.5 M NaCl). 5 mL of coupling solution was used per gram of freeze dried powder. 

The coupling solution containing the peptide was mixed with the medium in a stoppered 

vessel, rotated end-over-end for 1 h at room temperature or overnight at 4 °C. Excess ligand 

was washed away with at least 5 medium (gel) volumes of coupling buffer. Finally any 

remaining active groups were blocked with 1 M ethanolamine, pH 8.0. Coupling efficiency 

was monitored with HPLC. 

 Analytical HPLC was performed on a Hitachi-LaChrom L-7150 equipped with a 

Polymer Laboratories PL-ELS 1000 evaporative light-scattering detector. A Vydac C18 

column was used (5 µM, 300 Å, 4.6 × 250 mm) (Grace) with a retention time of 60 min. 

Acetonitrile and water were used as solvents. 

 

6.14 HSP47-Collagen Anti-fibrillisation Assay 

The protocol used for collagen fibril formation was similar to that described previously 

(Thomson and Ananthanarayanan, 2000; Williams et al., 1978). 2 µM (final concentration) of  

pepsin-solubilised type I collagen from porcine skin (Nitta Gelatin) was brought to pH 7.3-

7.4 by the addition of phosphate buffer (50 mM sodium phosphate, 100 mM NaCl, pH 8.0). 



The formation of collagen fibrils was then monitored by measuring the turbidity of the 

sample at A313 using a Thermo Varioskan microplate reader (Thermo Fisher Scientific) in the 

presence of different amounts of HSP47 WT and mutants. The absorbance was background-

corrected and buffer-subtracted. Each experiment was monitored over a period of 120 min at 

a constant temperature of 34°C. Measurements were made in triplicates.  

 

6.15 Circular Dichroism Spectroscopy 

Spectrum and Temperature Titration 

Circular dichroism (CD) spectra were recorded on a JASCO J715 spectropolarimeter using a 

thermostatically controlled 10 mm quartz cuvette. HSP47 was studied in phosphate buffer (50 

mM sodium phosphate, 100 mM NaCl, pH 8.0). Far UV CD spectra were recorded from 300-

190 nm at 25°C. Each scan was set at 100 nm/min with a continuous scan mode and a 

standard sensitivity (100 mdeg). The response was set at 4 sec with 2 nm of band width. Each 

spectrum was an accumulation of 16 scans. For the temperature titration experiments, ΔΔA222 

was monitored while the temperature was increased at a constant rate of 1°C per minutes 

from 25 to 90°C. Melting temperatures were estimated from the temperature titration profile 

with HSP47 samples at concentrations ranging from 2.8-3.0 µM. To calculate Tm, the fraction 

unfolded was obtained using the following equation, modified from (Persikov et al., 2004): 
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−
−

=    (Eq. 6.1) 

where θ is the observed ellipticity and θD and θF are the ellipticities for the denatured and 

folded. Tm was obtained at the midpoint of transition, where F(Tm) = ½. 
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pH Titration 

CD pH titrations were carried out using an autotitrator connected to the spectropolarimeter. 

Sample was added to a stirred, thermostatically controlled 1 cm quartz cuvette. HSP47 WT 

and mutants were studied at a final protein concentration of 3 µM in phosphate buffer (50 

mM sodium phosphate buffer, 100 mM NaCl, pH 8.0) at 25oC. The pH was then 

progressively decreased by the addition of 2.5 μL aliquots of phosphoric acid using the 

autotitrator. The change in ΔA222 was then measured. The actual pH in the cuvette was 

determined using an ultraslim pH electrode (Hamilton). Equation 6.1 was used to estimate the 

inflection point of transition by replacing T, θD and θF with pH, θAc and θAl which are the 

ellipticities at the pHs of full alkaline and acid states. CD spectra for each variant were also 

measured before and after titration to identify any structural variation following the change in 

pH. 

 

HSP47-Peptide Binding Assay 

The binding of HSP47 to PRG peptide was observed by monitoring the changes in CD signal 

as a function of peptide concentration. CD spectra were recorded in the presence of different 

peptide concentration at different pH values and then subtraction was performed with 

concentration matched-peptide spectra from blank titration. Ellipticity at 216 nm was taken 

instead of at 225 nm as the change in CD signal at this wavelength is significantly larger and 

better titration data can be obtained. The ellipticity values were then plotted as a function of 

peptide concentration and the binding isotherms were fitted to a single site binding model 

using OriginPro v8.5 (OriginLab). 

 

Unit Conversion 

Conversion between CD units was performed based on the guidance notes of the DichroWeb 

spectra deconvolution server (http://dichroweb.cryst.bbk.ac.uk). Throughout this thesis, two 

CD units are used, namely ΔA and mean residue ellipticity (MRE). The relationships between 

ΔA, MRE and the machine unit, theta (θ) is explained below. 

 

http://dichroweb.cryst.bbk.ac.uk/


ΔA is directly related to θ and converted using the equation, with θ in milidegrees: 

98.32
θ

=ΔA  (Eq. 6.2) 

 while Δε, also known as molar circular dichroism (mdeg M-1 cm-1) is expressed by this 

equation: 

3298
][θε =Δ  (Eq. 6.3) 

where [θ] is the MRE (deg cm2 dmol-1 residue-1). In most cases the unit is only displayed as 

(deg cm2 dmol-1). Δε also related to θ based on the following equation: 

3298)(
)1.0(

∗∗
∗

×=Δ
CONCP

MRWθε  (Eq. 6.4) 

where MRW is the mean residue weight (protein mean weight [Dalton]/number of residues), 

P is the pathlength (cm) and CONC is protein concentration (mg/mL). 
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6.16 Fluorescence Anisotropy 

Conjugation of BODIPY to PRG Peptide 

Similar to the binding experiment with CD, PRG peptide was also used for this experiment. 

Peptide was synthesised using the standard Fmoc method on automated peptide synthesiser 

and analysed using MALDI-MS and reversed-phase HPLC. A modified, two-steps EDC/NHS 

coupling was used to avoid head-to-tail coupling of peptides, adapted from (Hermanson, 

1996). 0.5 mg of BODIPY dye (Invitrogen) was initially dissolved in 0.05 M 2-(N-

morpholino)ethane sulfonic acid (MES) buffer pH 6. Then EDC (1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide HCl) (Sigma-Aldrich, MO, USA) and sulfo-NHS (N-

hydroxysulfosuccinimide) (Sigma-Aldrich) were added to the peptide solution to obtain a 

concentration of 2 mM for EDC and 5 mM for sulfo-NHS. The reaction was mixed for 15 

min at room temperature to activate the dye molecules. 2-mercaptoethanol was then added to 

the reaction solution at a final concentration of 20 mM, before being mixed for a further 10 

min at room temperature. This quenches the unreacted EDC and sulfo-NHS in the dye 

solution. Then, 0.46 mg of peptide (10-fold less molar amount than BODIPY) was added to 

the solution, and reaction was allowed to proceed to at least 2 hr at room temperature with 

continuous mixing. Conjugate was purified using size-exclusion chromatography with PD-10 

column (GE Healthcare). PRG-BODIPY conjugate was analysed with reversed-phase HPLC 

system (Gilson) equipped with a UV-vis detector, using a Chromolith RP-18 C18 column (2 

μM, 130 Å, 4.6 × 100 mm) (Merck). Acetonitrile and water were used as solvents.  

(Beauchamp et al., 1998) 

 

Anisotropy Measurement 

Anisotropy experiment was performed on a Perkin-Elmer LS-50B fluorimeter equipped with 

a thermostat. Temperature was maintained at 25°C throughout the measurements. Samples 

were excited at 430 nm and monitored at 510 nm. The excitation slit width was set to 2.5 nm 

and the emission slit was 10 nm, with 2 s integration time. Measurements were performed in 

phosphate buffer (50 mM sodium phosphate, 100 mM NaCl, pH 8.0). HSP47 concentration 

was determined by the absorbance at 280 nm with an extinction coefficient of 42,400 M-1cm-
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1, and conjugate concentration was estimated from initial coupling reaction, taking into 

account all dilution steps assuming more than 95% conjugation efficiency. This is in good 

agreement with the value determined using the extinction coefficient of BODIPY, which is 

68,000 M-1cm-1 at 504 nm (Invitrogen). For anisotropy measurement of conjugate in the 

presence of different HSP47 concentrations, 0.5 μM was incubated with HSP47 in same 

phosphate buffer for up to 5 mins at 25°C. Measurement was performed according to the 

instrumental parameters stated above.  

 Anisotropy measurement in the presence of different concentrations of glycerol were 

performed by addition of 90% (v/v) glycerol to 0.5 μM solution of conjugate to obtain final 

glycerol concentrations ranging from 0-36% (v/v), in 50 mM sodium phosphate buffer pH 

8.0. Solution viscosities were calculated from the glycerol concentration, as the concentration 

of conjugate and buffer are very low, using the data on glycerol-water viscosity obtained 

from the Handbook of Chemistry and Physics (www.hbcpnetbase.com). This database 

supplies absolute viscosity values (η) in mPa s which is equivalent to centipoise (cP) against 

mass %. The viscosity of pure water at 20°C is given as 1.002 mPa s. Samples were 

equilibrated at 20°C for 20 min before measurement. Curve fitting was then performed using 

OriginPro v8.5 (OriginLab). 

 

6.17 Steady-state Intrinsic Tryptophan Fluorescence Spectroscopy 

Intrinsic tryptophan fluorescence emission spectra were recorded on a Shimadzu RF-5301PC 

spectrofluorophotometer (Shimadzu) using a thermostatically controlled 10 mm quartz 

cuvette. HSP47 was studied in phosphate buffer (50 mM sodium phosphate, 100 mM NaCl, 

pH 8.0) at 25oC. Samples were excited at 295 nm and emission detected from 310-410 nm. 

The excitation slit width was set at 3 nm, and the emission slit widths were varied between 

10-15 nm. The pH-titration experiments were performed by the addition of small aliquots of 

phosphoric acid (1-2 µL each) with constant stirring. Protein concentration was fixed to 1 μM 

for all analysis. Each spectrum was the average of three repetitions. All experiments were 

background corrected and performed within 12 hr after purification.  

http://www.hbcpnetbase.com/


Averaged individual spectra recorded at various pH values were then fitted to 

polynomial model second order for the purpose of data extraction using OriginPro v8.5 

software (OriginLab). Fitting ensures more accurate and smoother data for maximum 

fluorescence intensity (If) and wavelength at maximum intensity (λem). λem values against pH 

generated from the extraction were then fitted to single pH ionisation model using GraFit Pro 

v7.0.0 (Erithacus Software Ltd.) based on Equation 6.5. The y values vary from one value at 

low pH to another at high pH depending upon the ionization of a group with a certain pKa. 
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Ly   (Eq. 6.5) 

L1 represents Limit 1 or the upper limit of the y values while L2 is the lower limit of y values. 

In our case the λem values were taken as the limit values (Leatherbarrow, 2009). 
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