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Abstract 

This PhD thesis describes work undertaken to effect asymmetric catalysis in 

hydroamination and hydro(acy)alkoxylation reactions of allenes.  The introductory 

Chapter provides an overview of recent advances in asymmetric 

heterofunctionalisation reactions of allenes.  This includes intra- and inter-molecular 

reactions involving C-N and C-O bond formations.   

Chapter 2 begins by comparing the preparation of a γ-allenic alcohol by two different 

synthetic routes and its subsequent use in intramolecular hydroalkoxylation reactions 

using copper(II) and silver(I) salts.  From this study, the ability of silver diphosphine 

complexes to facilitate enantioselective hydroalkoxylation reactions in a 5-exo-trig 

fashion was discovered. Extensive reaction optimisation was undertaken, however 

only moderate ee’s and conversions were observed. 

In Chapter 3, the use of other metal Lewis acids to catalyse hydroalkoxylation 

reactions of γ-allenic alcohols is presented.  DFT calculations undertaken by a 

colleague (Prof H. S. Rzepa) were used to rationalise the observed regioselectivities 

with silver(I), zinc(II), and tin(II) triflates.  From DFT calculations, the metal 

counteranion was found to be intimately involved in the C-O bond formation.   

In the following two Chapters, the possibility of asymmetric synthesis by using chiral 

anionic ligands is discussed.  In Chapter 4, additional γ-allenic alcohols and β-allenic 

acids were synthesised for intramolecular hydroalkoxylation or hydroacyalkoxylation 

reactions respectively.  In Chapter 5, the respective γ-allenic amines were prepared for 

intramolecular hydroamination.  In both cases, the outcome, scope and limitations of 

the reaction are discussed.   

In Chapter 6, an overall conclusion and future work is discussed.   

The last Chapter contains experimental procedures and characterisation data of all the 

compounds synthesised during the course of this project.   
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Chapter 1: Introduction 

 

Oxygen and nitrogen-containing heterocycles are important sub-units in the majority 

of natural and biologically active compounds, e.g polyether antibiotics,
1,2

 

mycotoxins,
3,4

 antifungal compounds,
5,6

 and enzyme inhibitors.
7,8

  The ability to 

synthesise these heterocyclic sub-units by direct and atom-economical processes is 

therefore highly desirable,
9
  and the development of chiral variants of these reactions 

remains a highly topical subject in organic chemistry. 

 

By far, 1,3-dipolar cycloadditions
10

 and hetero-Diels-Alder reactions
11,12

 are the most 

common reactions used in the enantioselective synthesis of these heterocycles.  

However, the intramolecular addition of an N-H, O-H or CO2H functionality across 

an unsaturated carbon-carbon bond is also a very attractive methodology.  Known as 

hydroamination, hydroalkoxylation or hydroacyalkoxylation reactions, respectively, 

they are particularly attractive as they proceed with 100% atom efficiency, often from 

readily available and inexpensive precursors.  

 

To date, a variety of chiral metal catalysts have been successfully applied for 

asymmetric intramolecular heterofunctionalisation reactions of olefins and alkynes.
13-

34
 In contrast, there are only a few chiral catalysts that have been reported for 

asymmetric heterofunctionalisation additions of O-H and N-H to allenes (Scheme 

1.1).
17,33,35-53

   

 

Scheme 1.1: General scheme for intramolecular hydroamination and 

hydroalkoxylation reactions of allenes. 

 

Heterofunctionalisation reactions of allenes have a number of advantages over 

additions to alkenes and alkynes.  Allenes consist of a strained cumulated double bond 

rendering them roughly 10 kcal mol
-1

 less stable than an alkene,
54

 and therefore more 

reactive towards π-activation.
54-58

  Also, the inherent axial chirality of allenes offers 
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the potential for enantioselective and diastereoselective reactions to take place, with 

the added bonus of one of the double bonds remaining in the product for further 

transformations. 

 

The interest in heterofunctionalisation reactions of allenes has intensified over recent 

years.  However, there is still relatively little literature precedence for asymmetric 

examples; reports on C-N bond formation far outweighing those of C-O bond 

formation.  The last comprehensive review on the cyclisation of allenes by 

nucleophilic metal catalysts was published by Bates in 2002.
50

 In the following 

sections, asymmetric hydroamination, hydroalkoxylation and hydroacyalkoxylation 

reactions of allenes will be presented, based on literature reports dated from this 

review.  Reactions will be classified by the type of metal catalysts, arranged by their 

positions in the Periodic Table.   

 

1.1 Early Transition Metals 

 

The most prominent early transition metal catalysts for asymmetric intramolecular 

hydroamination reactions have been titanium from group IV and tantalum from group 

V.  To date, there are no publications on the corresponding asymmetric 

hydroalkoxylation reaction using these metals.   

 

1.1.1 Titanium 

 

In 2004, the first catalytic asymmetric intramolecular hydroamination of γ-allenic 

amines was reported using a range of dimeric titanium amino-alcohol complexes 1.1a 

to 1.1f.
59

  Complexes 1.1a to 1.1f were prepared from equimolar quantities of 

Ti(NMe2)4 and ligand (L*), where L* = S-valinol (1.1a-1.1b), S-phenylalaninol (1.1c-

1.1d), or R-phenylglycinol (1.1e-1.1f) (Figure 1.1).   

 

Figure 1.1: Proposed structure of dimeric complexes with ligands 1.1a to 1.1f. 

1.1a:R
1 

= R
2 

=  i-Pr 1.1d:  R
1
 = 2-Ad,  R

2 
= Bn 

1.1b: R
1
 = 2-Ad,  R

2 
=   i-Pr 1.1e:  R

1 
= i-Pr

 
,  R

2 
= Ph 

1.1c:  R
1 

= i-Pr,   R
2 

= Bn 1.1f:  R
1
 = 2-Ad,  R

2 
= Ph 
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Using γ-allenic amine 1.2 as a model substrate, the cyclisation reaction was conducted 

in the presence of 5 mol% of [Ti(NMe2)2(L*)]2 to furnish tetrahydropyridine 1.3 at an 

elevated temperature of 135 
o
C (Scheme 1.2, Table 1.1). 

 

 

Scheme 1.2: Cyclisation of 1.2 to tetrahydropyridine 1.3. 

 

 

Valine-derived ligands and those of phenylalanine and phenylglycine with small R
1
 

substituents produced very low ees, but with fast conversion rates (entries 1-3 and 5).  

The best ee of 15% was achieved with the bulky ligand 1.1d (entry 4).  However, to 

reach full conversion with this catalyst a longer reaction time of 20 hours was 

required.  Overall, the bulkier the ligand, the longer the reaction time and the higher 

the ee achieved (entries 2, 4 and 6).   In the absence of ligands, Ti(NMe2)4 catalysed 

the formation of the 5-exo-trig product 1.3, but required a longer reaction time and 

only reached 95% conversion (entry 10).  The absolute configuration of 1.3 was not 

reported.   

 

Table 1.1: Hydroamination of 1.2 with dimeric titanium catalysts.
[a] 

[a]
Reaction conditions: 1.2 (0.17 mmol., 1.6 M), Ti(NMe2)4 (5 mol%), Ligand (5 mol%), benzene-d6, 

135 
o
C.  

[b]
 Determined by 

1
H NMR integration. 

[c] 
Determined by chiral GC. 

 

 

Entry L* t (h)
 % Conversion

[b]
 % ee

[c] 

1 S-1.1a 18 100 4 

2 S-1.1b 17 100 5 

3 S-1.1c 16 100 3 

4 S-1.1d 20 100 15 

5 R-1.1e 17 100 3
 

6 R-1.1f 15 100 10 

7 none 67 95 0 



4 

 

Using γ-allenic amine 1.4, a mixture of 5- and 6- membered rings (1.5, Z-1.6 and E-

1.6) were produced (Scheme 1.3, Table 1.2).   

 

 

Scheme 1.3: Cyclisation of 1.4 to 1.5 and isomers Z-1.6 and E-1.6. 

 

The formation of both 1.5 and 1.6 is possibly due to using a less hindered γ-allenic 

amine, where both C=C bonds are available for N-nucleophilic attack.  In all cases, 

the 5-exo product was preferred over the 6-endo product, where the ratio of exo to 

endo products ranged from 1.7:1 (i.e entry 3) to 4.5:1 (i.e entry 6).  This observation 

suggests the reaction is sensitive to the presence of the methyl group.  The trend 

previously observed for the cyclisation of 1.2 appears to also operate in the cyclisation 

of 1.4, where the bulkier adamantyl substituted ligands produced the highest ee’s 

(entries 4 and 6).  However, the highest enantioselectivity achieved was only 16% ee 

(entry 4).  Again, valine derived ligands produced very low ee’s of 4% to 5% (entries 

1 and 2).  In these cases, they were also very slow, requiring 48 to 94 hours, to reach 

full conversions.  

 

Table 1.2: Hydroamination of 1.4 with dimeric titanium catalysts.
[a] 

 

Entry L* t (h) 
% Yield[b,c]

  

1.5 Z-1.6 E-1.6 

1 S-1.1a 48 20 41 (1) 39 (4) 

2 S-1.1b 91 19 41 (0) 41 (5) 

3 S-1.1c 22 33 24 (6) 33 (4) 

4 S-1.1d 43 22 42 (7) 36 (16) 

5 R-1.1e 24 20 50 (2)  30 (4) 

6 R-1.1f 22 18 51 (11) 31 (15) 

[a]
Reaction conditions: 1.4 (0.12 mmol., 1.2 M), Ti(NMe2)4,  Ligand (5.0 mol%), benzene-d6,  

110 
o
C.  

[b]
 Determined by 

1
H NMR integration. 

[c]
 ee values given in parenthesis. 
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It transpired that both the Z and E 5-exo pyrrolidine products Z-1.6 and E-1.6 were 

formed and could be isolated separately. The Z/E ratio of isomers ranged between 

1:0.7 to 1.6:1, where the lower ratio was observed with valine and phenylalanine 

derived ligands (entries 1 to 4) and the larger ratio with the bulkier ligands (entries 5 

to 6).  The enantioselectivity of the E isomer was found to be larger than that of the Z 

isomer, except when using ligand S-1.1c.  Both observations are associated with the 

steric bulk associated with the terminal methyl group and the ligands of the titanium 

complex.   For the formation of E-1.6 via the intermediate Z-1.7a, the methyl group 

will be closer to the metal centre where it will experience the steric bulk of the ligands 

(Figure 1.2). Due to the methyl group’s proximity to the chiral ligands, it should also 

cyclise with a higher ee.  So overall Z-1.6 will form preferentially, but have lower ee. 

 

 

Figure 1.2: Intermediates in the titanium hydroamination mechanism. 

 

These results were rationalised by a proposed mechanism where the catalytic cycle 

initiates with a reaction of the catalyst precursor [Ti(NMe2)2(L*)]2 with the γ-allenic 

amine 1.4 to form an imido complex 1.8, with loss of two molecules of HNMe2 

(Scheme 1.4).
59

  Subsequent [2+2] cycloaddition can then occur resulting in the 6-

endo or 5-exo ring structures 1.7b or 1.7a, respectively, depending on which double 

bond of the allene is involved.  Upon addition of another molecule of starting 

material, protonolysis of 1.9a to 1.10 or 1.9b to 1.6 occurs with regeneration of the 

imido complex 1.8.  Enamine 1.10 will then rearrange to the more stable imine 

structure 1.5. 
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Scheme 1.4: Hydroamination mechanism for group IV complexes.
59

 

 

In 2009, the same research group reported their work on further modification of 

ligands 1.1c and 1.1d, by changing the nitrogen protecting group R
1
 and introducing 

further R
3 

substituent α to the hydroxyl moiety (Figure 1.3).  These ligands (1.11a-

1.11e) were used in the cyclisation of γ-allenic amine 1.2. 
35,43

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Modified ligands. 

 

Unfortunately, these ligand modifications did not lead to any improvements in 

enantioselectivity. 

 

1.11a: R
1
 = i-Pr, R

3
 = Ph 

1.11b: R
1
 = c-C6H11, R

3
 = n-Bu  

1.11c: R
1
 = 2-Ad, R

3
 = H 

1.11d: R
1
 = 2-Ad, R

3
 = CH3 

1.11e: R
1
 = 2-Ad, R

3
 = n-Bu 
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1.1.2 Tantalum 

 

In 2009, Hickmann et al. investigated the ability of tantalum complexes containing 

bidentate sulfonamide alcohol ligands (1.12a-1.12d) to mediate intramolecular 

hydroamination reactions (Scheme 1.5, Table 1.3).
35

 

 

 
 

 

Scheme 1.5: Tantalum-catalysed intramolecular hydroamination reactions. 

 

Generally, the reactions catalysed by the Ta(V) complexes afforded higher 

enantioselectivities than Ti(IV) catalysts. The reaction also take places at the slightly 

lower temperature of 125 
o
C (entries 1 to 4) and in some cases, full conversions can 

be achieved (entries 2 and 4).   

 

Table 1.3: Hydroamination of 1.2 with tantalum catalysts.
[a] 

 

Entry L* t (h) % Conversion 
[b] 

% ee
[c] 

1 S-1.12a 115 85 28 

2 S-1.12b 71 100 34 

3 S-1.12c 17 88 24 

4 S-1.12d 15 100 23 

[a]
Reaction conditions: 1.2 (0.15 mmol., 1.5 M), Ta(NMe2)5 (5 mol%), ligand (5 mol%), benzene-d6. 

[b]
 

Determined by 
1
H NMR integration. 

[c]
 Determined by chiral GC.  

 

 

 

1.12a: R
1
 = 4-CF3-C6H4, R

2
 = H 1.12c: R

1
 = 4-Me-C6H4, R

2
 = Me 

1.12b: R
1
 = 3,5-(CF3)2-C6H4, R

2
 = H 1.12d: R

1
 = 4-Me-C6H4, R

2
 = Me 
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1.1.3 Summary of Early Transition Metals in Heterofunctionalisation 

Reactions 

 

Overall, the use of early transition metals in enantioselective heterofunctionalisation 

of allenes is limited. The two examples reported so far employ Ti(IV) or Ta(V) 

catalyses and low levels of enantioselectivities were attained. The Ti(IV) catalytic 

system is sensitive to substituents on the terminal allenic carbon atom and only 16% 

ee can be achieved using aminoalcohol derivatives.  Higher enantioselectivities of 

34% can be obtained using Ta(V) catalysts, but the same limiting factors are 

observed.  Both catalysts are relatively air- and moisture-sensitive and reactions need 

to be performed in a glove box. As such, none of these reactions have been 

demonstrated on a preparative scale. 

 

1.2 Group 9 and 10 Transition Metals 

 

A few palladium and rhodium complexes have been used in the asymmetric 

heterofunctionalisation reactions of allenes. Alkyne examples will also be included in 

this discussion, as the addition to this particular π-system is believed to proceed via 

allenic intermediates.
14,60

   

 

1.2.1 Rhodium  

 

In 2009, the first asymmetric intermolecular hydroalkoxylation reaction mediated by 

Rh(I) catalysts was published.
42

 In the paper, the addition of phenols (1.14) to 

diphenylphosphinylallenes (1.13) furnished chiral vinyl ethers (1.15) in high yields 

and enantioselectivities. Using methyl-substituted diphenylphosphinylallene 1.13a 

and p-methoxyphenol 1.14a as model substrates several chiral bis-phosphine ligands 

were examined (Table 1.4).  Utilising 2.5 mol% of the pre-formed complex 

[Rh(OH)(R-BINAP)]2, the relative stoichiometry of the starting materials was found 

to influence the enantioselectivity; changing the 1.13a:1.14a ratio from 1:2 to 2:1 

increased the ee of the product R-1.15a from 23% to 55% after 12 hours at 80 
o
C, but 

with concomitant reduction in conversion (entry 1 vs 2).  An ee enhancement of 11% 

and decrease in conversion (40%) were observed by switching the catalyst to one that 
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was formed in situ, from a 1:1.2 ratio of [Rh(OH)(cod)]2 and R-SEGPHOS (entry 2 vs 

3).  Modifying the ligand to R-DTBM-SEGPHOS increased both conversion and ee 

(entry 4).  Finally, t-BuOH was identified as the optimum solvent as it afforded 99% 

conversion to R-1.15a with 82% ee after 12 hours at 80
 o
C (entry 5).   

 

Table 1.4: Addition of p-methoxyphenol 1.14a to diphenylphosphinylallene 1.13a.
[a]

 

Entry 

Ratio of  

1.13a:1.14a  

(mmol.) 

Catalyst (mol%) 

% 

Conversion

[b] 

% ee
 

(R/S)
[c]

 

1 0.2:0.4 [Rh(OH)(R-BINAP)]2 (2.5 mol%) 85 23 (R) 

2 0.4:0.2 [Rh(OH)(R-BINAP)]2 (2.5 mol%) 72 55 (R) 

3 0.4:0.2 

[Rh(OH)(cod)]2 (2.5 mol%) 

 

R-SEGPHOS
 
(6 mol%)

 

32 64 (R) 

4 0.4:0.2 

[Rh(OH)(cod)]2 (2.5 mol%) 

 

R-DTBM-SEGPHOS (6 mol%) 

69 80 (R) 

5
[d] 

0.4:0.2 

[Rh(OH)(cod)]2 (2.5 mol%) 

R-DTBM-SEGPHOS (6 mol%) 
99 82 (R) 

[a]
Reaction conditions: 1.13a and 1.14a, Rh Cat., toluene (0.4 mL), 80 

o
C, 12 h.

 [b]
 Determined with 

CH3NO2 as an internal standard. 
[c] 

Determined by chiral HPLC analysis. 
[d] 

t-BuOH (0.4 mL). 

 

Under the optimised reaction conditions, this protocol can be applied to substrates 

containing aryl phenols with electron withdrawing substituents (Table 1.5).   
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The addition of 1.14b to 1.13a produced R-1.15b in 96% yield and 80% ee (entry 1).  

Using the more electron-deficient 1.14c produced R-1.15c with a higher ee, but lower 

yield (entry 2).  1-Naphthol was also tolerated well and produced R-1.15d with the 

highest enantioselectivity of 97% (entry 3).  Increasing the steric bulk of the R 

substituent on the allene hindered the reaction, but did not increase the ee of the 

product (entries 4 and 5).  Introducing a butyl group on the allene decreased the yield 

to 51% (entry 4), whilst the introduction of a phenyl group required a higher 

temperature and an extended reaction time of 48 hours (entry 5). Overall, increasing 

the steric bulk of the R substituent on the allenic moiety decreased the yield and the 

enantioselectivity. 

 

Table 1.5: Asymmetric addition of phenols to diphenylphosphinylallene.
[a] 

 

 
 
 

Entry  R (Ar) Product % Yield
[b]

  % ee (R/S)
 [c]

 

1 Me (1.13a)  4-Me-C6H4 (1.14b) 1.15b 96 80 (R) 

2 Me (1.13a) 4-Cl-C6H4 (1.14c) 1.15c 92 93 (R) 

3 Me (1.13a) 1-Np (1.14d) 1.15d 99 97 (R) 

4  Bu (1.13b) 4-Me-C6H4 (1.14b)  1.15e 51 88 (R) 

5 Ph (1.13c) 4-Me-C6H4 (1.14b) 1.15f 78
[d]

 74 (R) 

[a]
 Reaction conditions conditions: 1.13 (0.40 mmol.), 1.14 (0.20 mmol.), [Rh(OH)(cod)]2 (2.5 mol%),  

R-DTBM-SEGPHOS (6 mol%), t-BuOH (0.4 mL), 80 
o
C, 24 h. 

[b]
 Isolated yield.  

[c] 
Determined by 

HPLC analysis. 
[d]

 sec-BuOH (0.4 mL), 100 
o
C, 48 h. 

 

The proposed mechanism involved the formation of an aryl rhodium species, 1.17 by 

the reaction of the rhodium dimer 1.16 with the phenol (1.14) (Scheme 1.6).  On the 

addition of the diphenylphosphineallene (1.13), a-allylrhodium intermediate 1.18, is 

formed. Subsequent protonolysis of 1.18 is promoted by an additional molecule of 

1.14, furnishing the hydroalkoxylation product R-1.15 and regenerates the 

intermediate 1.17.  
31

P and 
1
H NMR studies carried out during the reaction suggested 

the formation of intermediates 1.16, 1.17 and 1.18.  The absolute configuration of 
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1.15 was determined to be R by X-ray analysis, which implies that the allyl 

protonation of 1.18 occurs on the Si face of the molecule.   

 

 

Scheme 1.6: Proposed catalytic cycle. 

 

1.2.2 Palladium 

 

In 2006, the first asymmetric palladium-catalysed intramolecular hydroalkoxylation 

of alkynols 1.19 (n = 1) and 1.20 (n = 2) was reported, using a catalyst generated in 

situ from a mixture of Pd2(dba)3·CHCl3, benzoic acid and R,R-RENORPHOS 

(Scheme 1.7).
61

   

 

 

Scheme 1.7: Pd-catalysed cyclisation of alkynols. 

 

Using 10 mol% of Pd(0), in a 1:2:6 ratio of Pd(0): PhCO2H: R,R-RENORPHOS, 

furans and pyrans could be synthesised in moderate yields and enantioselectivities 

within 72 hours (Table 1.6). This system was capable of cyclising alkynols with 

terminal alkyne aryl groups; phenyl and 4-(trifluoromethyl)phenyl substituted 
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aminoalkynes (1.19a and 1.19b) produced the respective tetrahydrofurans (1.21a and 

1.21b) in 52-60% yield and 80-82% ee (entries 1 and 2), whereas the introduction of 

4-methoxyphenyl (1.19c) at the alkyne terminus decreased both yield and 

enantioselectivity (entry 3).  Pyrans (S-1.22a and S-1.22b) were also obtained from 

the corresponding alkynols in 57-61% yield and 78-86% ee (entries 4 and 5). 

 

Table 1.6: Hydroalkoxylation of alkynols.
[a] 

 

Entry Substrate Product % Yield
[b]

 
% ee 

(R/S)
[c] 

1 

1.19a 

1.21a 
52 80 (S) 

2
 

1.19b 

1.21b 
60 82 (S) 

3 

1.19c 

1.21c 
48 40 (S) 

4 

1.20a 

1.22a 
61 78 (S) 

5 

1.20b 

1.22b 

57 86 (S) 

[a]
Reaction conditions: Substrate (0.13 mmol., 500 mM), Pd2(dba)3·CHCl3 (10 mol%), PhCO2H (20 

mol%), R,R-RENORPHOS (60 mol%), benzene, 100 
o
C, 72 h.  

[b]
 Isolated yield.  

[c]
 Determined by 

chiral HPLC analysis. 

 

This protocol was also applied in the cyclisation of aminoalkynes 1.23 to their 

corresponding pyrrolidines S-1.24 by altering the ratio of Pd(0):PhC2OH: R,R-

RENORPHOS to 1:2:5 (Scheme 1.8, Table 1.7).
14,22

  

 

 

 

 

 

 

 

Scheme 1.8: Pd-catalysed cyclisation of alkyne amines. 
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Under these reactions conditions, the substrate scope is somewhat limited to 

aminoalkynes containing bulky electron-withdrawing sulfonyl protecting groups; 65% 

yield and 82% ee were achieved using trifluoromethanesulfonyl (Tf) as the N-

protecting group (entry 1), which increased to 68% yield and 88% ee by using 

nonafluorobutanesufonyl (Nf) (entry 2).  On the other hand, the use of tosyl and 

carbamate protecting groups produced pyrrolidines S-1.24c and S-1.24e in 25% and 

0% yield respectively (entries 3 and 5), whereas benzyl protected pyrrolidine S-1.24d 

was obtained in the highest yield (95%), but only 8% ee (entry 4).    

 

Table 1.7: Hydroamination reaction of aminoalkynes.
[a] 

 

Entry Substrate Product % Yield
[b]

 
% ee 

(R/S)
[c]

 

1 

1.23a 1.24a 

65 82 (S) 

2 

1.23b 1.24b 
68 88 (S) 

3 

1.23c 1.24c 
25 47 (S) 

4 

1.23d 1.24d 
95 8 (S) 

5 

1.23e 1.24e 

0 - 

[a]
Reaction conditions: Substrate (0.13 mmol., 500 mM), Pd2(dba)3·CHCl3 (5 mol%), PhCO2H (10 

mol%), R,R-RENORPHOS (25 mol%), benzene, 100 
o
C.  

[b]
 Isolated yield.  

[c]
 Determined by chiral 

HPLC analysis. 

 

Using Nf protected 1.23b, the catalytic reaction was optimised (Table 1.8).  

Ultimately, an improvement to 95% yield and 90% ee was achieved by switching to 

the bulkier tolyl-RENORPHOS, increasing the catalytic loading to 20 mol%, 

decreasing the temperature to 80 
o
C and using a solvent mixture comprising of a 1:1 

ratio of benzene to hexane (entry 1 vs 2).
22
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Under these reactions conditions, aminoalkynes (n = 1) with terminal aryl groups  

such as 4-methoxyphenyl (1.23f) and 4-(trifluoromethyl)phenyl (1.23g)  proceeded to 

give yields and enantioselectivities of 90-93% and 88-90% respectively within 72 

hours (entries 3 and 4).  This protocol also allowed the cyclisation of an aminoalkyne 

1.25 (n = 2), with a terminal aryl substituent, to produce the respective piperidine S-

1.26 in 88% yield and 86% ee (entry 5).   

 

Table 1.8: Hydroamination of Nf protected aminoalkynes.
[a] 

 

 

 
 

Entry 
Substrate 

t (h) % Yield
[b] 

% ee (R/S)
 [c] 

R n 

1 Ph (1.23b) 1 72 68 83 (S) 

2
[d] 

Ph (1.23b) 1 72 95 90 (S) 

3
[d]

 4-MeO-C6H4 (1.23f) 1 72 93 88 (S) 

4
[d]

 4-CF3-C6H4 (1.23g) 1 72 90 90 (S)  

5
[d]

 Ph (1.25) 2 72 88 86 (S) 

[a]
Reaction conditions: Substrate (0.13 mmol., 500 mM), Pd2(dba)3·CHCl3 (5 mol%), PhCO2H (10 

mol%), R,R-RENORPHOS (25 mol%), benzene, 100 
o
C.  

[b]
 Isolated yield.  

[c]
 Determined by chiral 

HPLC analysis.
  [d] 

 Pd2(dba)3·CHCl3 (20 mol%), PhCO2H (40 mol%), R,R-tolyl-RENORPHOS (20 

mol%), benzene:hexane (2:1), 80 
o
C. 

 

Yamamoto et al.
61

 proposed a mechanism whereby the reaction initiated with the 

hydropalladation of alkyne 1.19a (Z = O) or 1.23b (Z = NNf) by a H-Pd
+
L

 
species, 

formed by Pd(0) and benzoic acid (Scheme 1.9).  β-Hydride elimination from 

vinylpalladium species 1.27 formed allene intermediate 1.28 and the H-Pd
+
L

 
species, 

which recombine to give π-allyl-Pd species 1.29.  Subsequent intramolecular 

nucleophilic attack results in the formation of the 5-membered product S-1.21a (Z = 

O) or S-1.24b (Z = NNf) and regeneration of H-Pd
+
L. 
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Scheme 1.9: Palladium mediated hydroamination and hydroalkoxylation of alkyne  

1.19b (Z = O) or 1.23b (Z = NNf). 

 

A DFT study was performed to investigate possible intermediates formed during the 

reaction.   From these studies, intermediates 1.29a and 1.29b, where nucleophilic 

attack can occur to the Si or the Re face of the ayllpalladium intermediate 1.29 were 

identified (Figure 1.4).   

 

 

 

 

Figure 1.4: Intermediates 1.29a and 1.29b. 

 

From these, transition states for the C-Z bond formation were calculated (Table 1.9).  

Comparing the relative energies of 1.29a and 1.29b, intermediate 1.29a was found to 

have a slightly lower energy (0.8 for Z=NNf and 0.0 for Z=O) than 1.29b.   
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Table 1.9: Relative energies (B3LYP/SDD) calculated for transitions states of 1.29a 

and 1.29b  

Entry Z Intermediate Resulting Enantiomer Relative Energy (kcal mol
-1

) 

1 NNf 1.29a S 0.8 

2 NNf 1.29b R 1.4 

3 O 1.29a S 0.0 

4 O 1.29b R 0.7 

 

 

1.2.3 Summary of Late Transition Metals in Heterofunctionalisation 

Reactions 

 

Overall, the use of late transition metals (exclude the coinage metals) for 

hydroalkoxylation and hydroamination reactions of allenes is limited.  Generally, high 

temperatures and long reactions times are required. The use of Rh(I) is constrained to 

intermolecular hydroalkoxylation reactions of phenols to diphenylphosphinylallenes.   

Nonetheless, high yields and enantioselectivities could be obtained.  The cyclisation 

of alkynols and aminoalkynes by Pd(0) via allenic intermediates has been achieved 

asymmetrically; furans and pyrans could be furnished in low to moderate yields (48-

61%) and enantioselectivities (40-86%), while aminoalkynes proceeded to the 

corresponding pyrrolidines and piperidines in moderate to high yields (68-95%) and 

enantioselectivities (83-91%).  However, these high yields and ee’s are limited to 

aminoalkynes with bulky electron withdrawing sulfonyl protecting groups.   

 

1.3 Group 11 Metals 

 

In this section, the ability of silver and gold to catalyse hydroamination and 

hydro(acy)alkoxylation reactions will be discussed. 

 

1.3.1 Silver  

 

The use of silver in asymmetric heterofunctionalisation reactions of allenes is limited 

to the transfer of chirality from the precursor to afford an optically active product. 
62-65
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For example, in a reported synthesis of R-(-)-Coniine, the chiral δ-allenic substrate R-

1.30, was cyclised in the presence of AgBF4 (50 mol%) to the 6-exo product S-1.31 in 

86% yield (Scheme 1.10, reaction times were not reported),
62

 A small amount of 

racemisation was observed (10%) and the reaction was thought to proceed via a silver 

allene intermediate 1.32.  

 

 

Scheme 1.10: Hydroamination of chiral -allenic amine R-1.30 with retention of 

chirality. 

 

Retention of chirality was also observed in the cyclisation of substrate R,S-1.32 

(Scheme 1.11).
64

  It was established that the secondary alcohol was cyclised in 

preference to the primary alcohol to form R,R-1.33 in 60% yield with complete 

stereocontrol.
64

   

 

  
Scheme 1.11: Preferential cyclisation of secondary alcohols. 

 

 

1.3.2 Gold  

 

Up until 2006, chirality transfer from an optically active starting material to product 

(as was described for silver) was the only approach available to furnish chiral 

heterofunctionalisation products using gold catalysis.
49,54,66-73

  For example, Krause et 

al. was able to show for the first time that α-allenic alcohols (1.34) and α-allenic 

amines (1.35) could be converted into 2,5-dihydrofurans (1.36) and 3-pyrrolines 

(1.37) respectively, in the presence of gold(III) chloride (AuCl3), with complete 

chirality transfer  (Scheme 1.12).
 49,66-73

 The cyclisation of S,S-1.34 could be achieved 
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in 94% within 3 hours,
66

 while the cyclisation of α-allenic amine S,R-1.35 required a 

longer reaction time of 120 hours, but afforded 3-pyrroline S,R-1.37 in 74% yield 

(99:1 anti:syn ratio).
49,67

 

 

 

Scheme 1.12: Cyclisation of α-allenic alcohols (S,S-1.34) and amine (S,R-1.35) using 

AuCl3. 

 
Chirality could also be transferred in the cyclisation of γ-allenic carbamate S-1.38 and 

alcohol S-1.39 using a catalytic system generated from a mixture of [(1.40)AuCl] and 

AgOTf in a 1:1 ratio (Scheme 1.13).
58

  Cyclisation of γ-allenic carbamate S-1.38 

(84% ee) furnished (R,E)-1.41 in 96% yield and 74% ee with ≥50:1 selective 

formation of the E-alkene, whereas cyclisation of γ-allenic alcohol S-1.40 (84% ee) 

resulted in the formation of R,E-1.42a (81% ee) and S,Z-1.42b (84% ee) in a 5.5:1 

ratio.   

 

 

Scheme 1.13: Hydroamination and hydroalkoxylation reactions using [1.40AuCl] as a 

catalyst. 
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Enantioselective catalysis was achieved a year later by Widenhoefer et al. using a 

dimeric Au(I) complex, [Au2(P–P)Cl2] (where P–P = S-3,5-DTBM-MeOBIPHEP, 

1.43), activated by Ag salts (Figure 1.5).
37,45

  Using this catalyst, enantioselectivities 

of up to 96% can be achieved in heterofunctionalisation reactions involving allenes. 

 

 

 

 

 

Figure 1.5: Structure of S-3,5-DTBM-MeOBIPHEP, 1.43.
 

 

While optimising the cyclisation reaction of γ-allenic alcohol 1.44 to tetrahydrofuran 

R-1.45, the reaction was found to have a strong dependence on the counteranion and 

solvent used (Table 1.10).
45

  

 

Table 1.10: Optimisation study using allenic alcohol 1.44.
[a]

 

 

 
 

Entry Solvent X T (
o
C) 

Concentration 

(mM)  
t (h) %Yield

[b] 
% ee 

(R/S)
[c] 

1 Dioxane ClO4 r.t 125 2 75 28 (R) 

2 Dioxane OTs r.t 125 1 38 86 (R) 

3 Dioxane OAc r.t 125 17 0 - 

4 Toluene OTs r.t 125 <0.1 73 86 (R) 

5 MeOH OTs r.t 125 47 91 22 (R) 

6 Toluene OTs -20 125 4.5 59 94 (R) 

7 Toluene OTs -20 63 18 76 93 (R) 

[a]
 Reaction  conditions: 1.44 (31.3 mg , 0.13 mmol.), (S-1.43)Au2Cl2 (2.5 mol%), AgX (5 mol%), 

Solvent (1.0-2.0 mL).  
[b]

 Isolated yield.  
[c]

 Determined by chiral HPLC/GC analysis. 
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Cyclisation of γ-allenic alcohol 1.44 with AgClO4, in dioxane, produced R-1.45 in 2 

hours with 75% yield and 28% ee (entry 1).  Changing the counteranion from ClO4 to 

OTs increased the enantioselectivity from 28% to 86% (entry 2), whereas no reaction 

was observed using OAc (entry 3).  Switching the solvent from dioxane to toluene 

was found to decrease the conversion time to less than 10 minutes without affecting 

the ee or yield (entry 2 vs 4).  On the other hand, the use of MeOH diminished both 

enantioselectivity and rate, requiring 47 hours to obtain R-1.45 in 22% ee (entry 5).  

Lowering the temperature to -20 
o
C, increased the enantioselectivity to 94%, but with 

only 59% yield within 4.5 hours (entry 6).  Overall, by carrying out the reaction at -20 

o
C with a two-fold dilution, R-1.45 was obtained in 76% yield and 93% ee in 18 hours 

(entry 7).   

 

Using the optimised conditions, -allenic alcohols possessing aryl substituents along 

the allene backbone (Table 1.11, entries 1, 2 and 4) and alkyl substituents on the 

terminal allenic carbon atom (entries 1 to 4) could be cyclised to the corresponding 

tetrahydrofurans in high yields and enantioselectivities; the reaction of γ-allenic 

alcohol 1.46a furnished 1.47a in a 1:1 ratio of E:Z isomers with 94% yield and >95% 

ee (entry 1).  Switching the n-pentyl for a methyl group (1.46b) also afforded 1.47b in 

high yield and ee (entry 2).  However, diminished enantioselectivity was observed 

when the β-allenic substituents were removed (entry 3), thus suggesting this reaction 

outcome is substrate dependant.  Cyclisation of chiral R-1.46d proceeded to 

tetrahydrofuran R-1.46d exclusively in >95% ee with a >20:1 selectivity for the E 

isomer (entry 4).   δ-Allenic alcohols possessing mono or diaryl substitution along the 

allene chain could also be cyclised using this protocol; subjecting 1.48a to the 

catalytic conditions furnished R-1.49a in 96% yield with an enantioselectivity of 88% 

(entry 5), whereas a 1:3.3 ratio of anti to syn isomers were formed using substrate 

1.48b (entry 6).   
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Table 1.11: Intramolecular hydroalkoxylation of - and -allenic alcohols.
[a] 

 

Entry Substrate Product 

Isomer  

ratio 

(E/Z)
[b] 

% 

Yield
[c] 

% ee  

(R/S)
[d] 

1 
 

1.46a 

 

1.47a 

1:1 94 

>95/>9

5 

(R) 

2 
 

1.46b 

 

1.47b 

1:1 95 
93/95  

(R) 

3 
 

1.46c 

 

1.47c 

1.5:1 94 
28/39  

(R) 

4
 

 

R-1.46d 

 

1.47d 

>20:1 86 
>95 

(R) 

5 
 

1.48a 

 

1.49a 

- 96 
88 

(R) 

6 

 

1.48b 

 

1.49b 

1:3.3
[e] 

95 
88/45 

 (R) 

 [a]
Reaction conditions: Substrate (0.13 mmol., 125 mM), (S-1.43)Au2Cl2 (2.5 mol%), AgOTs (5 

mol%), toluene (1.0 mL), r.t, 12-24 h. 
 [b]

 Determined by 
1
H NMR integration.  

[c]
 Isolated yield.   

[d] 
Determined by chiral HPLC/GC analysis. 

[e]
 anti/syn ratio. 

 

Interesting match-mismatch effects were observed between the catalyst and substrates 

containing alkyl substituents on the terminal allenic carbon atom.  For example, using 

(S-1.43)Au2Cl2 and substrate R-1.46d, preference for the Z isomer was observed, 
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whereas preference for the E isomer was observed using (S-1.43)Au2Cl2 with 

substrate S-1.46d (Scheme 1.14).  This led the authors to propose a mechanism 

involving an outer-sphere cyclisation of 1.46d, and subsequent protonolysis of 1.50b.  

Complexion of the Au(I) catalyst E to the terminal allenic moiety would form the 

preferred product R,Z-1.47d via Si,R-1.50a and R,E-1.50b, whereas for the formation 

of R,E-1.47d complexion of the gold complex would have to occur Z to the terminal 

allenic moiety (Si,S-1.49).  This indicated that a stereochemical relationship between 

the catalyst and substrate combined to determine the relative configuration about the 

C=C bond.   

Scheme 1.14: Cyclisation of S-1.46d and R-1.46d where R = n-pentyl. 

 

For subsequent hydroamination reactions, the conditions used in the respective 

hydroalkoxylation reactions were re-optimised using the same catalyst.
37

  This led to 

the use of AgClO4, reduction of temperature to -40 
o
C and by using a m-xylene 

solution.  Interestingly, in contrast to hydroalkoxylation reactions the opposite 

stereochemistry was observed using the same catalyst; pyrrolidine 1.52 could be 

isolated in 97% yield with 81% ee from γ-allenic carbamate 1.51 (Scheme 1.15).   

 

 

Scheme 1.15: Hydroamination of N-allenyl carbamates by (S-1.43)Au2Cl2. 
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This gold catalyst has a relatively wide scope, incorporating a number of protecting 

groups including acetyl and fluorenylmethyloxycarbonyl (Fmoc) to produce the 

corresponding pyrrolidines 1.54a and 1.54b in high yields (83-84%) and 

enantioselectivities of 97% and 61%, respectively (Table 1.12, entries 1 and 2).  In 

contrast, the cyclisation of γ-allenic sulfonamide 1.53c proceeded in only 8% ee (entry 

3).  Overall, the enantioselectivity was found to be sensitive to the nature of the 

functional groups present at the β-position of the alkyl chain.  For example, the 

cyclohexyl-substituted γ-allenic carbamate 1.53d furnished pyrrolidine 1.54d in 98% 

yield, but with only 50% ee (entry 4).  This was further demonstrated by the 

cyclisation of 1.53e, where removal of all substituents saw a decrease in the ee to 34% 

(entry 5).  This protocol was also tolerant of alkyl substituents on the terminal allenic 

carbon (entries 6 and 7), where the presence of methyl and cyclohexyl groups 

required a higher temperature, but still gave modest ee values of 80% and 76% 

respectively.  On the other hand, cyclisation of racemic 1.53h afforded E-1.54h 

exclusively with 6% ee (entry 8).  This suggested that interconversion between the 

enantiomers of the starting material had occurred.   

 

To investigate this further, cyclisation of racemic trisubsituted allenic carbamate 1.53i 

was found to afford a 3.1:1 ratio of R,Z-1.54i and R,E-1.54i isomers, where the major 

diastereoisomer (Z-1.54i) exhibited a higher degree of enantiomeric enrichment 

(Scheme 1.16).
38

  This observation of stereoselective control was explained by a 

similar mechanism to the one proposed for hydroalkoxylation reactions, except that   

(S-1.43)Au2Cl2/AgClO4 is able to reversibly convert S-1.53i to R-1.53i.
38

 

 

 

Scheme 1.16: Cyclisation of racemic 1.53i to diastereoisomers R,Z-1.54i and R,E-

1.54i. 
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Table 1.12: Intramolecular hydroamination of γ-allenic carbamates.
[a] 

 

Entry Substrate Product 

T 

(
o
C) 

t (h) 
% 

Yield
[b]

 

% ee 

(R/S)
 [c]

 

1  

1.53a 

 
1.54a 

-20 48 61 83(S) 

2  

1.53b 
 

1.54b 

-20 

then  

r.t 

72 97 84 (S) 

3  

1.53c 

 
1.54c 

-20 48 66
 

8 (S) 

4 

 

 1.53d 

    
1.54d 

-20 48 98 50 (S) 

5   

 1.53e 
 

1.54e 

-20 24 99 34 (S) 

6  

1.53f 
 

1.54f 

-20 48 80 80 (S) 

7 
 

1.53g 

 
1.54g 

0 24 91 76 (S) 

8   

rac-1.53h 
 

E-1.54h 

-20 24 86
[b] 

6 (S) 

[a]
Reaction conditions: Substrate (0.3 mmol., 300 mM), (S-1.43)Au2Cl2 (2.5 mol%), AgClO4 (5 mol%), 

m-Xylene (1.0 mL). 
[b] 

Isolated yield.  
[c] 

Determined by chiral HPLC/GC analysis. 

 

This protocol was recently extended to include the cyclisation of the less nucleophilic 

N-allenyl ureas (1.57a to 1.57e) by switching the solvent to Et2O and silver salt to 

AgBF4 (Table 1.13).
41
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Table 1.13: Au-catalysed cyclisation of N-allenyl ureas.
[a] 

 

 

Entry 
Starting material 

T (
o
C) % Yield

[b]
 % ee 

[c]
 

R n 

1 1.57a R
1
 = Ph, R

2
 = R

3
 = H 1 r.t 90 93 

2 1.57b, R
1
 = Ph  R

2
 = R

3
 = Me 1 r.t 82 53 

3 1.57c R
1
 = R

2
 = R

3
 = H 1 r.t 89 7 

4 1.57d R
1
 = Ph, R

2
 = R

3
 = H 2 r.t 91 56 

5
[d]

 1.57e R
1
 = Ph, R

2
 = Et, R

3
 = n-hexyl 1 0 89 91/90

[e] 

[a]
 Reaction  conditions: Substrate (0.05 mmol., 101 mM), (S-1.43)Au2Cl2 (5 mol%), AgBF4 (10 

mol%), Et2O (0.5 mL),  r.t, 48 h 
[b]

 Isolated yield.  
[c]

 Determined by chiral HPLC analysis.
  

[d]
 Et2O: CHCl3 3:1 ratio (0.5 mL) 

[e]
 1:1 ratio of Z:E isomer. 

 

Moderate to high enantioselectivities could be attained for N-allenyl ureas within 48 

hours (entries 1, 2, 4 and 5), but the reaction was sensitive to substitution along the 

alkyl chain (entry 3); N-allenyl urea 1.57a with β-phenyl substituents, furnished the 

respective tetrahydrofuran in 93% ee (entry 1), whereas the introduction of methyl 

substituents on the terminal carbon atom (1.57b) decreased the selectivity to 53% 

(entry 2).  As an extreme, removal of all substituents resulted in an almost racemic 

product (entry 3), which suggested the reaction for N-allenyl ureas is also substrate- 

dependant.  Cyclisation of 1.57d, the δ-allenic equivalent to 1.57a, decreased the ee 

from 93 to 56% (entry 1 vs 4), while cyclisation of chiral 1.57e afforded a 1:1 ratio of 

Z:E diastereoisomers at 0 
o
C, using a 3:1 mixture of Et2O to CHCl3.  This suggested 

racemisation of chiral 1.57e is slower in comparison to the respective hydroamination 

reactions of γ-allenic amines described in Table 1.12. 

 

Concurrently, Toste et al. reported on similar reactions using chiral dinuclear Au(I)-

phosphine complexes to cyclise γ- and δ-allenic sulfonamides to the respective 

pyrrolidines and  piperidines.
40

  Optimisation reactions involving γ-allenic amine 1.58 

also identified a pronounced effect of the counteranion (Scheme 1.17, Table 1.14). 
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Scheme 1.17: Hydroamination using [Au2(P-P)Cl2] as a catalyst.
 

 

Table 1.14: Cyclisation of γ-allenic amine 1.58 by isolated and pre-catalysts.
[a] 

  

Entry Catalyst t (h) % Yield
[b]

  
% ee 

(R/S)[c] 

1 

 

3 mol% R-xylyl-BINAP(AuCl)2/6 mol% AgBF4 

 

 

 

 

0.5 82 1 

2 
 

3 mol% R-xylyl-BINAP(AuCl)2/6 mol% AgOPNB 24 27 98 (S) 

3 
 

3 mol% R-xylyl-BINAP(AuOPNB)2 
17 88 98 (S) 

[a]
Reaction conditions: DCE, r.t. 

[b]
 Isolated yield.  

[c]
 Determined by chiral HPLC analysis.

 [d]
 CH2Cl2. 

 

An amplification in enantiomeric excess was observed when benzoate counterions 

were employed. The cyclisation of γ-allenic amine 1.58, with a catalyst generated 

from a mixture of R-xylyl-BINAP(AuCl)2 and AgBF4 furnished the respective 

pyrrolidine product, S-1.59 in an excellent yield, but with only 1% ee (entry 1).
  
When 

the silver counterion was exchanged for AgOPNB, where PNB = p-nitrobenzoate, the 

yield diminished from 82% to only 27%, but the enantiomeric excess of the product 

rose dramatically to 98% (entry 2).  When the isolated catalyst, R-xylyl-

BINAP(AuOPNB)2 generated from a mixture of R-xylyl-BINAP(AuCl)2 and 

AgOPNB was utilised, the yield rose to a respective 88% (entry 3).   

 

This protocol was able to cyclise cyclic and linear γ-allenic substrates 1.60a to 1.60c 

to the corresponding pyrrolidines (S-1.61a to S-1.61c) in high yields and 

enantioselectivities (Table 1.15, entries 1 to 3).
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Table 1.15: Intramolecular hydroamination of - and -allenic substrates.
[a]

  
 

Entry Substrate Product % Yield
[b] 

 % ee (R/S)[c]  

1  

1.60a 
1.61a 

98 99 (S) 

2 

1.60b  1.61b 

99 87 (S) 

3 
 

1.60c 1.61c 

80 98 (S) 

4
[e] 

 

1.60d 
1.61d 

70 98 (S) 

5
[e]

  

1.60e 
1.61e 

70 88 (S) 

[a]
Reaction conditions: R-xylyl-BINAP(AuOPNB)2 (3 mol%), DCE, rt., 15 h. 

[b]
 Isolated yield.  

[c]
 

Determined by chiral HPLC analysis. 
[d]

Reaction took 25 h.
[e]  

R-Cl-MeO-BIPHEP(AuOPNB)2 (5 

mol%), MeNO2, 50 
o
C, 24 h.   

 

All these examples contained substituents on the terminal allenic carbon atom and 

tosyl as the N-protecting group.  Overall, increasing the steric bulk of the terminal 

allenic substituent(s) was observed to decrease the yield (entries 1 and 2 vs 3).  For 

the formation of chiral piperidines S-1.61d and S-1.61e, high yields (70%) and 

enantioselectivities of 88% to 98% were achieved by using R-Cl-MeO-BIPHEP 

(Figure 1.6) at 50 
o
C in nitromethane (entries 4 and 5).   

  

 

Figure 1.6: Structure of R-Cl-MeO-BIPHEP 
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This protocol was extended to include the formation of cyclic structures with two 

heteroatoms  (Table 1.16).
44

   

 

Table 1.16: Intramolecular hydroamination of β-allenic hydrazine, β- and γ-allenic 

hydroxylamines.
[a] 

 

Entry Substrate Product % Yield
[b]

  
% ee 

(R/S)
 [c] 

1 
 

1.62a 1.63a 

93 93 (S) 

2
[d] 

1.62b 
1.63b 

93 93 (S) 

3
[e]  

1.64 

Mts = 2-mesitylenesulfonyl 
1.65 

78 97 (S) 

[a] 
1.62a (100 mM), R-xylyl-BINAP(AuOPNB)2 (3 mol%), DCM, r.t, 24 h.

 [b]
 Isolated yield.  

[c]
 

Determined by chiral HPLC analysis.
 [d] 

1.62b (300 mM), R-xylyl-BINAP(AuOPNB)2 (5 mol%), 

MeNO2, 50 
o
C, 24 h.  

[e]
 1.64 (300 mM), R-DTBM-SEGPHOS(AuOPNB)2 (5 mol%), 15 h.   

 

Under the original reaction conditions, 1.62a was cyclised with 3 mol% of R-xylyl-

BINAP(AuOPNB)2, in DCE at room temperature, to afford isoxazolidine S-1.63a in 

93% ee after 24 hours (entry 1).  Conversely, tetrahydrooxazine S-1.63b could be 

furnished in 93% yield by switching the solvent to nitromethane, and by increasing 

both the catalytic loading and temperature (entry 2), while cyclisation of β-allenic 

hydrazine 1.64 afforded pyrazolidine S-1.65 in 97% ee after 15 hours by modifying 

the diphosphine ligand to R-DTBM-SEGPHOS (entry 3).    

 

Toste and co-workers also reported the use of a catalyst produced from achiral 

dppm(AuCl)2 (where dppm = 1,1-bis(diphenylphospino)methane) and a chiral silver 

phosphate R-1.66, to facilitate hydroalkoxylation reactions of γ- (1.67) and δ-allenic 

(1.68) alcohols (Scheme 1.18).
36

  This alternative approach was established from the 
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noticeable counteranion effects in their previous work,
40

 and takes advantage of the 

interaction of an ion pair, containing a cationic Au(I) catalyst and a chiral 

counteranion, to induce asymmetry.   

Scheme 1.18: Hydroalkoxylation reactions using R-1.66 as the source of chirality. 

 

The catalytic system was used to cyclise -allenic alcohol substrates with dialkyl 

substituents at the allene terminus (Table 1.17, entries 1-5) and at the β-position (entry 

3) in excellent enantioselectivities and yields after 1-2 hours.  In comparison, methyl 

(1.67d) and especially phenyl (1.67e) substituents in the α-position required extended 

reaction times to cyclise to the corresponding tetrahydrofurans 1.69d and 1.69e 

(entries 4 and 5).  The highest enantioselectivities were obtained for allenes 

possessing a terminus cyclohexyl group (entries 2 to 5).  Only two -allenic alcohols 

1.68a and 1.68b were cyclised under this protocol (entries 6 and 7); methyl 

substituents at the allene terminus provided the corresponding tetrahydropyran 1.70a 

in a high yield and enantioselectivity of 81% and 90% respectively (entry 6).  

However, the unsubstituted -allenic alcohol 1.68b afforded 1.70b in a lower 

enantioselectivity of 80% (entry 7).  Yet again, this protocol seems to be substrate 

dependant.  The enantioselectivity achieved in the cyclisation of unsubstituted -

allenic alcohols 1.68b to 1.70b could be increased to 92% ee by using a catalytic 

mixture of chiral S,S-DIPAMP(AuCl)2 (Figure 1.7) and R-1.66 (entry 7, value in 

parenthesis).   

 

 

Figure 1.7: Structure of S,S-DIPAMP. 
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Table 1.17: Enantioselective hydroalkoxylation of γ- and δ-allenic alcohols using 

chiral counteranions.
[a] 

 

Entry Substrate Product t (h) % Yield
[b]

 
% ee 

(R/S)
[c] 

1 
 

1.67a 

1.69a 
1 91 95 (S) 

2 
 

1.67b 
1.69b 

1 90 97 (S) 

3 
 

1.67c 

  

1.69c 

13 91 95 (S) 

4 
 

1.67d 

 

1.69d 

2 79 99 (S) 

5 
 

1.67e 

 

1.69e 

30 86 92 (S) 

6  

1.68a 
1.70a 

15 81 90 (S) 

7  

1.68b 1.70b 

24 96 
80 (92)

[d] 

(S) 

[a] 
Reaction conditions: Substrate (0.2 mmol., 100 mM), dppm(AuCl)2 (5 mol%), R-1.66 (5 mol%), 

benzene (2.0 mL), r.t.  
[b]

 Isolated yield.  
[c]

 Determined by chiral HPLC analysis.
 [d]

 S,S-

DIPAMP(AuCl)2 (2.5 mol%). 

 

The same approach was applied in the enantioselective cyclisation of β-allenoic acids.  

For example, using a mixture of the pre-catalyst S-BINAP(AuCl)2 and R-1.66, 

cyclisation of β-allenoic acid 1.71 afforded lactone S-1.72 in 88% yield with 82% ee 
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(Scheme 1.19).  In contrast, the use of R-BINAP(AuCl)2 identified a mismatch 

between the chiral diphosphine ligand and chiral counteranion, producing lactone S-

1.72 in only 3% ee. 

 

Scheme 1.19: Cyclisation of β-allenoic acid 1.71. 

 

Toste and co-workers were also able to cyclise γ-allenic sulfonamides 1.73 to the 

corresponding pyrrolidines R-1.74 in high enantioselectivities by using equal 

quantities of R-1.66 and PhMe2PAuCl (Table 1.18).
36

  

 

Table 1.18: Hydroamination of γ-allenic sulfonamides.
[a] 

 

Entry Substrate Product % Yield
[b]

 
% ee 

(R/S)
 [c] 

1 
 

1.73a 

 

1.74a 

97 96 (R) 

2 
 

1.73b 

 

1.74b 

88 98 (R) 

3 
 

1.73c 
 

1.74c 

84 99 (R) 

4 

 

1.73d 

 

1.74d 

73 98 (R) 

[a]
Reaction conditions: 1.74 (0.2 mmol., 100 mM), PhMe2PAuCl (5 mol%), R-1.66 (5 mol%), benzene 

(2.0 mL), r.t, 48h.  
[b]

 Isolated yield.  
[c]

 Determined by chiral HPLC analysis. 
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This protocol was tolerant of dialkyl substituents on the allene terminus (entries 1 to 

4) and at the α- and β-positions (entries 3 and 4), affording excellent 

enantioselectivities and yields.  However, effective hydroamination reactions were 

restricted to bulky γ-allenic sulfonamides and of substrates with terminal 

disubstitution. 

 

This protocol was extended to include N-linked hydroxylamines 1.75 and 1.76 

(Scheme 1.20).
44

  Cyclisation of 1.75 furnished the respective vinyl-isoxazolidine 

1.77 in high yield (98%) and enantioselectivity (98%) in the presence of 3 mol% of 

dppm(AuCl)2 and 6 mol% of S-1.66, whereas the use of 3 mol% of S,S-

DIPAMP(AuCl)2 (Figure 1.7) proved superior for the cyclisation of 1.76 to the 

corresponding tetrahydrooxazine R-1.78 in 94% yield and 87% ee. 

 

 

Scheme 1.20: Cyclisation of N-linked hydroxylamines 1.75 and 1.76. 

 

 

The research group of Mikami were able to utilise the combination of a chiral 

diphosphine ligand and a chiral counteranion synergistically for hydroalkoxylation 

reactions.
68

  Interesting match-mismatch effects were observed between the chiral 

diphosphine ligand, R-DM-BIPHEP and chiral counteranion 1.79; R-diphosphine with 

S-1.79 produced the tetrahydrofuran R-1.45 in 42% ee with a 33% yield, whereas R-

diphosphine with R-1.79 produced the tetrahydrofuran R-1.45 in a 94% yield with 

87% ee (Scheme 1.21).  
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Scheme 1.21: Hydroalkoxylation of 1.44 using an ion pair containing DM-

BIPHEP(AuCl)2 and R-1.79. 

 

This protocol tolerated substrates with β-aryl substituents and dialkyl substitution of 

the terminal allenic carbon atom (Table 1.19).  Higher enantioselectivities were 

observed for substrates containing terminal allenic substituents (entries 1 and 2), 

except when phenyl groups were also present in the β-position (entry 3).  The reaction 

could also be carried out at sub-zero temperatures, to produce high yields and 

enantioselectivities of up to 95% (entries 1 and 2).   

 

Table 1.19: Hydroalkoxylation of γ-allenic alcohols.
[a] 

 

Entry Substrate Product T (
o
C) % Yield

[b]
 % ee (R/S)

[c] 

1 

 
 

-20 97 93 (R) 

2 

  

-20 98 95 (R) 

3 

  

10 92 75 (R) 

[a]
Reaction conditions: substrate (0.16 mmol., 161 mM), R-DM-BIPHEP(AuCl)2  (2.5 mol%), S-1.79 (5 

mol%), toluene (1.3 mL), 24 h.  
[b]

 Isolated yield.  
[c]

 Determined by chiral HPLC analysis. 
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In recent years, much attention has also been devoted to the intermolecular 

hydrofunctionalisation reactions of allenes. However, the ability of gold to furnish 

chiral heterofunctionalisation products from allenes is limited to axis-to-centre 

chirality transfer from an optically active starting material to product.
69,70

  For 

example, hydroamination of chiral 1,3-disubstitued allene R-1.80 (94%) with aniline 

in the presence of AuBr3, produced the respective allylamine S-1.81 (88%) ( 

Scheme 1.22).
70

  Although, rapid racemisation of R-1.80 was observed in the absence 

of a nucleophile. 

 

  

 

Scheme 1.22: Axis-to-centre chirality transfer of R-1.80 to S-1.81. 

 

Following this work, Widenhoefer reported the intermolecular hydroalkoxylation of 

allene S-1.82 with benzyl alcohol, using an Au(I)NHC complex generated from 

(1.83)AuCl with AgOTf,
39

 where 1.83 = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-

ylidine). R-1.84 could be formed regioselectivity in a high yield of 83% with 64% ee 

(Scheme 1.23).  Chirality could be enhanced by using a higher benzyl alcohol 

concentration of 1.76 M.  Conversely, treatment of S-1.82 without the addition of 

benzyl alcohol led to complete racemisation after 30 minutes. 

 

  

Scheme 1.23: Intermolecular hydroalkoxylation of chiral allene S-1.82. 
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1.3.3 Summary of Group 11 Metals in Heterofunctionalisation 

Reactions 

 

Overall, cationic Au complexes are able to produce high levels of enantioselectivity in 

intramolecular heterofunctionalisation reactions of allenes.  Reactions can proceed at 

sub-zero temperatures without a large reduction in rate, in the presence of 1-10% 

catalytic loading and with a wide scope of substrates.  Au(III) was mostly used in 

earlier work concerning axis-to-centre chirality transfer, whereas more recently, the 

use of Au(I) has enabled asymmetric synthesis with racemic substrates.  Two different 

strategies have been implemented; the first uses a chiral ligand with an achiral silver 

salt to form the “active” cationic species in solution, while the second takes advantage 

of an ion-pair consisting of a chiral silver salt and a chiral/non-chiral ligand.   One 

disadvantage is that Au(I) complexes have linear geometries so often require large 

substituents on the ligand/counteranion to obtain high levels of enantioselectivity.  

Au(I) and Au(III) complexes have also been used for intermolecular additions with 

variable results.  In some cases, axis-to-centre chirality transfer can be achieved, but 

in the absence of a nucleophile, complete racemisation of the optically active allene is 

observed. 

 

On the other hand, silver is also capable of mediating intramolecular hydroamination 

and hydroalkoxylation reactions of allenes.  However, cyclisation reactions mostly 

require long reaction times, high temperatures and/or stoichiometric quantities of the 

catalyst.  So far, the application of silver in heterofunctionalisation of C=C bonds is 

limited to transfer of chirality from the starting material into the cyclised product.  

Before the start of this work, asymmetric synthesis using racemic substrates with 

silver and chiral ligands/counteranions was not known. 
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1.4 Project Aims 

 

The object of this research project is to design and develop novel catalytic 

methodologies to effect intramolecular hydro(acy)alkoxylation and hydroamination 

reactions of allenes, preferably in a stereoselective manner.   

 

In the beginning of this project in 2007, only cationic Au(I) complexes were reported 

to produce high enantioselectivities in the addition of O-H, CO2H and N-H bonds to 

allenes.  However, Au(I) complexes can be quite expensive and their linear 

geometries often require large substituents on the ligand/counteranion to obtain high 

levels of enantioselectivity.  Silver and copper, the other group 11 metals, are known 

to catalyse heterofunctionalisation reactions, but enantioselective processes are 

unknown.  They are less expensive and may provide a complementary and/or cost-

effective alternative to these gold-catalysed reactions.   

 

The potential of silver and copper in enantioselective intramolecular 

hydro(acy)alkoxylation and hydroamination reactions of allenes will therefore be 

explored in the present work.  Catalysts which are active will be optimised by varying 

reaction conditions, e.g. catalytic loading, solvent, temperature, metal-to-ligand ratio.  

A range of appropriate substrates will be synthesised, screened and the absolute 

configurations of hydroalkoxylation and hydroamination reaction products will also 

be determined.   Finally, if possible, mechanistic investigations will be conducted 

using DFT calculations, through a collaboration with Prof. Henry Rzepa.   
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Chapter 2: Copper- and Silver-Catalysed Intramolecular 

Hydroalkoxylation reactions of Allenes 

 

To date there have only been a few chiral catalysts which have been successful for 

asymmetric heterofunctionalisation reactions of allenes.
50,71

  The majority of reported 

catalysts are cationic gold(I) compexes.  Often, the active catalyst is generated in situ 

from a mixture of a gold(I) halide complex (LAuX) and a silver salt (AgY).  The use 

of other group 11 catalysts is limited;  Ag(I) has been known since 1979 to catalyse 

intramolecular heterofunctionalisation reactions of allenes,
55,62,63,72-81

 alkenes
82

 and 

alkynes.
83,84

 On the other hand, previous work in our research group found that 

copper(II) triflate, [Cu(OTf)2] exhibits interesting catalytic activity in inter- and intra-

molecular additions of O-H and N-H to alkenes.
85-87

   Both Cu(II) and Ag(I) salts are 

relatively inexpensive in comparison to Au(I) catalysts and unlike Au(I), they can 

form bi-, tri- and tetra-coordinated complexes.
88

  This Chapter will set out to 

investigate the use of these cheaper coinage metals in hydroalkoxylation reactions of 

allenes; catalytically and asymmetrically.  

 

The model substrate chosen for our initial study is a terminal γ-allenic alcohol, 2,2-

diphenylhexa-4,5-dien-1-ol, 1.44  (Figure 2.1).  Previously used in similar studies, it 

would provide direct comparison of results.
45,58

 

 

 

Figure 2.1: Model substrate 1.44. 

 

2.1 Synthetic Strategy for 2,2-Diphenylhexa-4,5-dien-1-ol 

 

Two synthetic routes were envisaged for the preparation of model substrate 1.44, both 

involving the allenic ester intermediate 2.3 (Scheme 2.1).  In pathway A it can be 

obtained from the alkyne ester 2.2 by a Crabbé reaction.
89-92

 This alkyne should be 

accessible from the propargylation of methyl 2,2-diphenylacetate 2.1.  In pathway B 

the allenic ester can be obtained from the reaction of methyl 2,2-diphenylacetate 2.1 
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with bromoallene 2.6, which should in turn be accessible from but-2-yne-1,4-diol in 3 

steps via mono-chlorination and a propargylic rearrangement reaction using lithium 

aluminium hydride, LAH. 
93-95

  

 

 

Scheme 2.1: Retrosynthesis routes to model substrate 1.44. 

 

Both pathways use an acetylene-allene rearrangement to create an allenic 

functionality.  Pathway B uses a propargylic rearrangement reaction, which is 

generally categorised as an SN2 reaction.  The nucleophile is either a hydride or an 

organometallic species.
96,97 

Pathway A uses the Crabbé reaction, where a 

stoichiometric amount of cuprous bromide is used to transform the acetylenic group 

into a terminal allene by the transfer of a hydride from the amine moiety to the C≡C 

bond via the formation of a hydridocopper(I) complex (Scheme 2.2).
89-92

 The Crabbé 

reaction proceeds under mild conditions in one pot and is the most common method 

used for the synthesis of terminal allenes.  

 

 

Scheme 2.2: 1,5-sigmatropic rearrangement.  
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2.1.1 Synthesis of Model Substrate 1.44 via Pathway A 

 

The literature procedure previously described
45 

was duplicated in this work (Scheme 

2.3).
  

 

 

Scheme 2.3: Synthesis of 1.44 by pathway A. 

Firstly, methyl 2,2-diphenylacetate 2.1 was prepared by a simple esterification of the 

commercially available diphenylacetic acid.
98

  The propargylation was carried out 

with propargyl bromide using LDA, prepared in situ from freshly distilled 

diisopropylamine and n-butyllithium at -78
 o

C,
99

 to afford 2.2 in a comparable yield to 

the literature value, after purification by column chromatography.
58

 

 

Next, the Crabbé reaction was performed using stoichiometric amounts of cuprous 

bromide and (excess) paraformaldehyde.  This step was reported to proceed with 32% 

yield.
58 

However, only 15% yield was obtained on the first attempt, even after 

refluxing for 24 hours.  The crude reaction mixture containing a large amount of solid 

precipitate, which was dry-packed with silica prior to column chromatography.  By 

increasing the amount of cuprous bromide from 0.2 to 0.5 equivalents, the yield of 2.3 

can be increased to 43%.  Finally, LAH reduction of 2.3 provided reliable yields of 

1.44 (87%), replicating the literature yield.
58

 

 

The structure of the model substrate 1.44 (Figure 2.1) was confirmed by comparison 

of its characterisation data with literature values.
58 

The OH moiety could be observed 
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by its IR absorption peak at 3424 cm
-1 

and the allene by peaks at 1954 and 1020 cm
-1

.  

In the 
13

C NMR spectrum, the sp-hybridised carbon was identified by its signal at 209 

ppm, while the sp
2
-hybridised carbon atoms are identified as signals at 85.6 and 74.0 

ppm (supported by HSQC).  The positioning of a CH2 group, identified by DEPT, at 

68.1 ppm gives evidence for attachment to an OH moiety.  In the 
1
H NMR spectrum, 

the allene moiety is identified as the muliplet at 4.78 ppm and triplets at 4.55 and 4.53 

ppm (supported by COSY).  A singlet at 4.23 ppm correlating to two protons 

corresponds to a CH2OH group and the broad singlet at 1.47 correlates to the OH 

moiety.  Finally, MS in CI mode confirmed the expected mass of the compound 

([MNH4]
+
 = 251). 

 

2.1.2 Synthesis of Model Substrate 1.44 via Pathway B  

 

Pathway B (Scheme 2.4) was attempted in order to increase the overall yield.  

Although it involves more steps, it bypasses the low yielding Crabbé reaction.  

 

 

Scheme 2.4: Synthesis of 1.44 by pathway B. 

 

Formation of bromoallene 2.6 was achieved in three steps.  First mono-chlorination of 

but-2-yne-1,4-diol by thionyl chloride at 0 
o
C was carried out.  In the first attempt, the 

literature procedure
56

 was replicated.  Using benzene as the solvent, thionyl chloride 

was added slowly to a solution of but-2-yne-1,4-diol and pyridine, maintaining a low 

temperature.  Under these conditions, the reaction produced a mixture of mono- and 

di-substituted products.  In the reported procedure, distillation at 50-55 
o
C with a 
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liquid nitrogen trap at a reduced pressure of 1.0 torr was used to obtain the product in 

a relatively low yield of 40%.  In our hands, a 30-cm long Vigreux column was 

required for adequate separation of the mono-substituted product 2.4, which was 

obtained with 42% yield.  The reaction was subsequently repeated with toluene, a 

safer and less toxic solvent.  However, the reaction mixture became too viscous for 

effective stirring.  Repeating the procedure with a mechanical stirrer and at a more 

dilute concentration, the reaction mixture remained homogeneous during the reaction, 

to afford 42% of the mono-substituted product 2.4 after distillation. 

 

The second step involved a LAH propargylic rearrangement reaction to the allenic 

alcohol 2.5 at 0 
o
C.

56
  A consistent moderate product yield of between 79-81% was 

obtained after purification by distillation.  Once purified, 2.5 decomposed overnight, 

so as a consequence must be used immediately in the next step or placed in a freezer 

for no more than 2 days.  The bromination of buta-2,3-dien-ol proceeded with PBr3 to 

form bromoallene 2.6 in a high yield of 88%.
56

  The product was purified by 

distillation at 760 torr (105-110 
o
C).   

 

The reaction between bromoallene 2.6 and 2,2-diphenylacetate 2.1 using LDA as a 

base proceeded with 68% yield.  The desired product 1.44 was purified using column 

chromatography.  Finally, reduction of the ester to the alcohol moiety was achieved in 

87% yield.
58

  

 

2.1.3 Comparison of Pathways A and B 

 

Both pathways were comparable in terms of overall yields.  On one hand, pathway A, 

starting from ester 2.1, was quite efficient as a three step synthesis, but extensive 

purification methods and the low yielding Crabbé reaction can be challenging.   If a 

43% yield is obtained for the Crabbé reaction, an overall yield of 59% over the three 

steps can be realised.  On the other hand, pathway B involved a longer synthesis, 

producing an overall yield of 56% over five steps.  Then again, 2.4 was formed in a 

low yield of 42%.  This is generally not a significant problem as it was the first step in 

the synthesis, but the considerable amounts of thionyl chloride could be problematic 

upon scale up, particularly the need to maintain homogeneity of the reaction mixture. 
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2.2 Initial Screening of Copper in Hydroalkoxylation Reactions  

 

The intramolecular cyclisation of γ-allenic alcohol 1.44 can potentially afford 5- and 

6-membered O-heterocycles 1.45 and 2.7 respectively (Scheme 2.5).
50

   

 

 

Scheme 2.5: General cyclisation of 1.44 to 1.45 and 2.7. 

 

Most hydroalkoxylation catalysts, such as gold, produce the 5-membered heterocycle 

1.45 in high yields and enantioselectivities.
36,68,45

  For example, the cyclisation of 1.44 

by a dimeric gold complex, [Au2(P–P)Cl2] (where P–P = S-DTBM-MeOBIPHEP, 

1.43), activated by AgOTs, resulted in formation of  tetrahydrofuran 1.45 in 67% 

yield with 93% ee (Scheme 2.6).
45  

 

 

Scheme 2.6: Cyclisation of allenic alcohol with (S-1.43)Au2Cl2 and AgOTs. 

 

The only known catalytic example of a 6-endo/exo-dig cyclisation was achieved using 

a lanthanide amide complex (Scheme 2.7).
100

  This rarer cyclisation requires high 

temperatures of 130 
o
C to form double bond isomers 2.9 and 2.10. 

 

 

Scheme 2.7: Cyclisation of 2.8 to double bond isomers 2.9 and 2.10. 
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Guided by previous work performed in our group, copper catalysis was first explored 

by utilising 5 mol% of Cu(OTf)2, with and without triphenylphosphine as a ligand 

(Table 2.1).   

 

Table 2.1: Hydroalkoxylation of 1.44 catalysed by Cu(II) and Brønsted acid.
[a]

 

 

Entry Catalyst T (
o
C) Time (h) 

Isolated yield of 

1.45 (%)
[b] 

Isolated yield of 

2.11 (%)
[b] 

1 Cu(OTf)2 50 33 21 39 

2 Cu(OTf)2 r.t 33 9 38 

3
[c]

 
Cu(OTf)2,  

PPh3 
50 33 11

 
47 

4
[d] 

TfOH r.t 25 - 65 

[a]
 Reaction conditions: 1.44 (50 mg, 0.2 mmol., 667 mM), Cu(OTf)2 (5 mol%), DCE (0.3 mL), 33 h. 

[b] 

Isolated yield after column chromatography.
 [c] 

PPh3 (10 mol%). 
[d]

10 mol% TfOH. 

 

After 33 hours at 60 
o
C, TLC analysis showed that the starting material had been 

totally consumed.  An initial 
1
H NMR anaylsis showed a complex mixture of 

products, from which two main components can be isolated after column 

chromatography.  The expected 5-exo-trig product 1.45 was isolated in 21% yield 

(entry 1) and characterised by comparison with literature data:
58

 both IR and NMR 

spectra revealed the absence of the allene moiety.  In the 
1
H NMR spectrum, the 

observation of a double double doublet resonance at 5.93 ppm and two doublets at 

5.28 and 5.14 ppm supported the presence of an alkene moiety.  
13

C NMR signals at 

138.82 and 115.92 ppm are also in agreement with reported alkene resonances.
58

 The 

other product, isolated in 39% yield was identified by crystallography as benzopyran 

2.11.  Its formation, involving 6-exo-dig cyclisation, will be explained in Chapter 3. 

 

In an attempt to prevent catalyst decomposition, the reaction was repeated at room 

temperature.  This gave roughly the same isolated yield of 2.11, but with a decreased 
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yield of the 5-exo-trig product 1.45 (entry 2).  The addition of triphenylphosphine (to 

stabilise the catalyst) proved ineffective (entry 3).   

 

2.2.1 Brønsted Acid-Catalysed Reaction 

 

Brønsted acids have sometimes been implied as being the active catalyst in Lewis 

acid mediated processes.
101,102

    Previously, this was encountered in the cyclisation of 

γ and δ-allenic alcohols and acids by Cu(OTf)2, where the expected tetrahydrofurans 

and pyrans could also be obtained by employing 10% TfOH as the catalyst.
87

   

 

During the course of our investigations, a paper by Akiyama et al. reported the 

formation of benzopyran 2.11 catalysed by 20 mol% TfOH (Scheme 2.8), along with 

the publication of its crystal structure.
103

 The benzopyran was formed exclusively in 

80% yield after 5 hours refluxing in DCM. 

 

Scheme 2.8: Cyclisation of 1.44 to 2.11 using TfOH. 

 

To clarify the involvement of Brønsted acids, the reaction was also perfomed in the 

presence of 10 mol% of TfOH, the maximum amount of acid that could theoretically 

be formed in our reactions.  Indeed, this reaction proceeded at room temperature to 

furnish 2.11 in a lower yield of 65% after 25 hours (Scheme 2.8, Table 2.1, entry 4).  

The 
1
H NMR spectrum of the crude reaction mixture, however, showed several 

unidentifiable by-products, but the 5-exo-trig product 1.45 was not observed. 

 

The observation that Cu(OTf)2 and TfOH can both form a common product 2.11 

suggests that Brønsted acid can be generated during Cu(II)-mediated 

hydroalkoxylation of γ-allenic alcohols.  However, the metal-catalysed process cannot 

be ruled out entirely as a small amount of the 5-exo-trig product was also observed.  
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The addition of a phosphine ligand improved the formation of benzopyran (Table 2.1, 

entry 3), perhaps by binding to Cu and allowing TfOH to form more readily.   

 

2.2.2 Conclusion of Copper-Catalysed Heterofunctionalisation 

Reactions 

 

Initial results indicated that Cu(OTf)2 was not an efficient catalyst.  Low conversions 

to the 5-exo-trig product were observed and there was significant catalyst 

decomposition.  Furthermore, Brønsted acid catalysis seemed to play an important 

role in these reactions.  Given that the addition of triphenylphosphine hindered the 

formation of the 5-exo-trig product, the possibility of adding chiral diphosphine 

ligands was not investigated.  However, since we performed this work, the application 

of Cu(OTf)2 to facilitate intramolecular hydroamination reactions of allenic amines to 

the corresponding 3-pyrrolines 2.12 or 2-alkenylpyrrolidines 2.13 in 88-98% yields 

has been reported (Scheme 2.9).
104

  The system was limited to the cyclisation of α- 

(n=0) and γ- (n=2) allenic amines, while the corresponding reactions of β- (n=1) and 

δ- (n=3) allenic amines were unsuccessful; 81% of the δ-allenic amine (n=3) was 

recovered after two days and a capricious mixture was observed with the β-allenic 

amine (n=1).  The N-protecting group was also limited to benzyl only, and the additon 

of phosphine ligands was found to inhibit the reaction.   

 

Scheme 2.9: Cu(II)-catalysed intramolecular hydroamination of allenic amines 

 

2.3 Initial Screening of Silver in Hydroalkoxylation Reactions  

 

Silver tetrafluoroborate (AgBF4) and silver nitrate (AgNO3) are two of the most 

common Ag(I) salts employed for hydroalkoxylation and hydroamination reactions of 

allenes (Scheme 2.10).   AgBF4 is predominately used in non-polar, non-coordinating 

solvents due to its greater solubility.  For example, 3-5 mol% of AgBF4 in chloroform 

furnished 2,5-dihydrofurans 2.16 in 55-61% yields from the corresponding α-allenic 
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alcohols 2.14 and the respective 3-pyrrolines 2.17 from α-allenic amines 2.15 in 85-

90% yield.
72,73

    On the other hand, AgNO3 is mainly used in water/polar solvent 

mixtures with calcium carbonate as an additive.
72,78,80

 For example, cyclisation of β-

allenic alcohols 2.18 to their corresponding 5,6-dihydro-2H-pyrans 2.19 proceeded in 

63-69% yield in 48 hours.  

 

Scheme 2.10: Ag(I) mediated cyclisation of α-allenic alcohols and amines. 

 

2.3.1 Effect of Counteranion 

 

Initially, cyclisation of the model substrate 1.44 in the presence of Ag(I) salts 

containing weakly (triflate, tetrafluoroborate, hexafluoroantimonate, 

hexafluorophosphate and perchlorate) and strongly (acetate, carbonate, nitrate and 

sulfate) coordinating counteranions were investigated (Scheme 2.11, Table 2.2).  The 

corresponding pKa values of conjugate acids are included for comparison. 
 

 

Scheme 2.11: Model reaction for optimisation of Ag(I) catalyst. 

 

Concurrently, a chiral phosphine ligand was also added to explore the potential for 

enantioselectivity.  R-BINAP was chosen as it is a ‘privileged’ ligand structure widely 
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used to achieve enantioselectivity in many mechanistically different catalytic 

reactions,
41

 particularly transition metals including Ru(II), Rh(I), Pd(II) and Ir(I) in 

hydrogenation,
105,106 

isomerisation,
107

 hydroboration,
108,109

 allylic alkylation
110-112

 and 

Heck reactions.
113,114

  It has also been used with Ag(I) salts for Mukaiyama aldol 

reactions.
115-118

 

 

Table 2.2: Investigating counteranion effects.
[a] 

 

Entry X 

pKa of 

conjugate 

acid
[b]

 

Ligand 

Catalytic 

loading 

(mol%) 

t (h) 
% 

Conversion
[c]

 

% ee 

(R/S)
[d]

 

1 SO4 

-3.0
119

 
- 15 72 100 - 

2 SO4 R-BINAP 15 72 0 - 

3 CO3 
3.9

120
 

- 15 48 100 - 

4 CO3 R-BINAP 15 48 0 - 

5 OAc 4.8
121

 - 15 72 0 - 

6 NO3 

-1.3
119

 
- 15 72 27 - 

7 NO3 R-BINAP 15 72 0 - 

8 OTf 
-14

122
 

- 15 16 100 - 

9 OTf R-BINAP 15 >168 2 - 

10 PF6 

-20
123

 

- 15 48 100 - 

11 PF6 - 5 36 100 - 

12 PF6 R-BINAP 15 63 94 31 (S) 

13 SbF6 
-13

123
 

- 15 >168 40 - 

14 SbF6 R-BINAP 15 >168 5 34 (S) 

15 ClO4 

-10
124

 
- 15 48 87 - 

16 ClO4 R-BINAP 15 72 49 55 (S) 

17 BF4 

-4.9
125

 

- 15 48 85 - 

18 BF4 R-BINAP 5 36 42 47 (S) 

19 BF4 R-BINAP 15 63 52 60 (S) 

 [a]
 Reaction conditions: 1.44 (50 mg, 0.2 mmol., 667 mM), AgX (x mol%), DCE (0.3 mL), r.t.

 [b] 

Determined in H2O.  
[c]

 Determined by 
1
H NMR integration. 

[d]
 Determined by chiral HPLC and optical 

rotation values.   
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In the absence of added ligand, the outcome of the intramolecular hydroalkoxylation 

reaction is dependent on the counteranion employed.  Full conversion was observed 

using silver sulfate and carbonate within 72 hours (entries 1 to 4). However, no 

conversion was observed with acetate salt (entry 5).  For weakly coordinating 

counteranions (PF6, BF4 and ClO4), conversions of 100%, 85% and 87% were 

achieved, respectively (entries 8, 10 and 15) in 48 hours, whereas full conversion 

using OTf only required 16 hours (entry 18).  In contrast, NO3 gave 27% conversion 

after 72 hours (entry 6) and SbF6 furnished 40% conversion after 168 hours (entry 13).  

The reactivity of the Ag(I) salts seems to increase in the order: SbF6  < NO3
 
< BF4

  
<  

ClO4
 
< SO4

2
 < PF6 ≈ CO3

 
< OTf.  In some cases, the catalytic loading can be reduced.  

For example, using 5 mol% of AgPF6, the reaction proceeded to give full conversion 

after 36 hours (entry 11).  There was no observable correlation between the pKa 

values and the rate of conversion.   

 

In all cases, the addition of R-BINAP decreased the product yield dramatically 

(entries 2, 4, 7, 9, 12, 14, 16, 18 and 19), which was particularly significant for SO4, 

CO3 and NO3 (pKa -3.0, 3.9 and -1.3) where the addition of R-BINAP completely 

inhibited the reaction (entries 2, 4 and 7).  For OTf and SbF6 the reaction gave only 2 

and 5% conversions (entries 9 and 14), respectively.  This observation proved that 

Ag(I) salts can catalyse the reaction on their own, which can give rise to competitive 

racemic reactions.  Enantiomers of the 5-exo-trig product, 1.45 can be separated by 

chiral HPLC and it was encouraging to observe detectable levels of selectivity in 

these reactions; up to 60% ee can be attained when R-BINAP was used in 

combination with AgBF4 (entry 19).  By comparison of optical rotation values and 

HPLC traces with that reported, the major enantiomer was assigned S (see section 

2.4).  The enantiomeric excess increases in the order: PF6 < SbF6 < ClO4
 
< BF4 

(entries 12, 14, 16 and 19) and appears to correspond to decreasing pKa values, where 

the less acidic conjugate acid (BF4) gave the highest enantioselectivity (entry 18).  

However, when R-BINAP was introduced to Ag(I) salts of even less acidic conjugate 

acids (pKa between -3 and +4) the reaction was inhibited (entries 2, 4 and 7).  

Enantioselectivity was found to be dependent upon catalytic loading:  5 mol% AgBF4 

and R-BINAP proceeded to give an enantiomeric excess of 47% in 42 hours, which 

increased to 60% by increasing the catalytic loading from 5 to 15 mol% (entries 18 

and 19). 
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In summary, in the presence of R-BINAP, Ag(I) salts containing weakly coordinating 

counteranions were capable of chiral induction in the cyclisation of 1.44.  AgPF6 

provided the highest yield, but a low enantiomeric excess (entry 12), whereas AgBF4 

produced the highest enantioselectivity (60%) with a moderate conversion of 52% in 

63 hours (entry 18).  Therefore, AgBF4 was used in further studies. 

 

2.3.2 Solvent Screen 

 

The catalytic performance of AgBF4 was investigated in various solvents at 5 mol% 

loading, to identify the best medium for optimal rate of conversion and enantiomeric 

excess (Scheme 2.12, Table 2.3). 

 

 

Scheme 2.12: Initial reaction conditions adopted for Ag(I) screening. 

 

Table 2.3: Solvent study using AgBF4 as a catalyst.
[a] 

Entry Solvent % Conversion 
[b]

 % ee (R/S)
 [c]

 

1 DCE 41 47 (S) 

2 Toluene 31 36 (S) 

3 THF 62 12 (S) 

4 Dioxane 5 27 (S) 

5 Acetonitrile 0 0 

 
[a]

 Reaction conditions: 1.44 (50 mg, 0.2 mmol., 667 mM), AgBF4 (5 mol%), R-BINAP (5 mol%), 

solvent (0.3 mL), r.t, 36 h.
[b] 

Determined by 
1
H NMR integration.  

[c]
 Determined by chiral HPLC and 

optical rotation values.   

 

Within this preliminary study DCE proved to be the best solvent, providing the 

highest ee of 47% (entry 1).  The less polar toluene decreased the yield and ee by 9% 

(entry 2), while apotic polar solvent THF afforded the highest conversion of 62%, but 

with a poor enantioselectivity (entry 3).  Conversely, dioxane gave 5% conversion, 
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but with only 27% ee (entry 4).  Finally, acetonitrile was found to completely inhibit 

the reaction (entry 5).  The major enantiomer S was formed in all cases.   

 

During the study, the solubility of the catalyst was observed to increase in the order: 

acetonitrile < dioxane < THF < toluene < DCE, with DCE being the only solvent that 

produced a homogeneous solution.  Given that selectivity is dependent on catalyst 

concentration, the dilution of the reaction mixture was therefore increased.  These 

reactions were also replicated with a wider selection of additional solvents, employing 

an effective substrate concentration of 100 mM at 15 mol% catalytic loading (Table 

2.4). 

 

Table 2.4: Solvent study at 100 mM.
[a] 

Entry Solvent % Conversion 
[b]

 % ee (R/S)
[c]

 

Polar Protic Solvents 

1 MeOH 0 - 

2 EtOH 0 - 

Non-Polar Solvents 

3 Hexane 0 - 

4 Et2O 0 - 

5 Chloroform 26 35 (S) 

6 Toluene 49 38 (S) 

7 Benzene 59 19 (S) 

Aprotic Solvents 

8 Acetone 0 - 

9 DMF 0 - 

10 Dioxane 5 21(S) 

11 CH2Cl2 45 41 (S) 

12 DMSO 50 19 (S) 

13 DCE 52 60 (S) 

14 THF 64 36 (S) 

15 EtOAc 75 36 (S) 

[a]
 Reaction conditions: 1.44 (25 mg, 0.1 mmol., 100 mM), AgBF4 (15 mol%), R-BINAP (15 mol%), 

solvent (1.0 mL) r.t, 63 h.  
[b]

 Determined by 
1
H NMR integration. 

[c] 
Determined by chiral HPLC and 

optical rotation values. 
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Reactions carried out in protic solvents did not afford any turnover after 63 hours 

(entries 1-2).  This was attributed to strong binding of the solvent to the metal centre, 

which inhibits the activation of the substrate.  Reaction carried out in non-polar 

solvents gave a variety of results, depending on the solubility of the catalyst (entries 3 

to 7); low solubility in hexane and Et2O resulted in 0% conversion (entries 3 and 4).  

An increase in conversion to 26% was observed when the catalyst had a moderate 

solubility in chloroform (entry 5) and up to 59% conversion with benzene (entry 7).  

Unfortunately, the high conversion with benzene did not correlate to a high ee.  

Repeating with toluene at the more dilute concentration (100 mM) afforded a higher 

conversion to the initial study, but with no great increase in ee (entry 6). 

 

Polar aprotic solvents also gave a variety of results, depending on the solubility of the 

catalyst (entries 8 to 15); low solubility of the catalyst in DMF and acetone 

contributed to the 0% conversion observed (entries 8 and 9).  Repeating with dioxane 

afforded similar values (5% conversion, 21% ee) to the initial study (entry 10).  This 

suggests that solubility is still a problem and that dioxane, may itself, also coordinate 

to the metal centre.
126

  Good homogeneity of the Ag(I) catalyst in the remaining 

aprotic solvents, gave modest conversions ranging from 45 to 75% and 

enantioselectivities between 36 to 60% (entries 11 to 15).  One observation was 

CH2Cl2 and DCE produced very similar conversion and enantioselectivity values 

(entries 11 and 13), however high conversions with DMSO, THF or EtOAc as the 

solvent, did not correlate to a high ee (entries 12, 14 and 15).  Comparing both 

reactions in THF, the ee in a more dilute solution dropped from 36 to 12% ee, 

suggesting dilution has a dramatic effect on the ee (Table 2.3, entry 3 vs Table 2.4, 

entry 14).  This phenomenon was not observed with any other solvents. 

 

Overall, although DCE does not have the highest conversion, the ee of 60% is far in 

excess of that attained with any other solvent (entry 13).  Further studies were 

therefore employed to improve the conversion and ee. 

 

2.3.3 Ligand Screen 

 

Next, a variety of diphosphine ligands containing different elements of chirality  
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(axial, planar, or central) were assessed.  Reactions screened were performed at 15 

mol% catalytic loading and 100 mM (Table 2.5).  All bidentate ligands were 

employed with a M:L ratio of 1:1 and 1:2 ratio with monodentate ligands. 

 

Table 2.5: Ligand study.
[a] 

 

Entry Ligand % Conversion
[b]

 % ee
[c]

 (R/S) 

Axial Chirality  

1 R-Cl-MeO-BIPHEP 40 62 (S) 

2 R-MeO-BIPHEP 50 68 (S) 

3 R-BINAP 52 60 (S) 

4 R-SEGPHOS 50 62 (S) 

5 

R-P-Phos 

59 18 (S) 

6 

 

R-Xylyl-P-Phos 

38 44 (S) 

7 

R-Monophos 

100 14 (R) 

Planar and/or Central Chirality 

8 

R-Phanephos 

100 10 (R) 
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9 

 

S,S-DACH Naphthyl Trost Ligand 

100 0 

10 

R,R-DIOP 

100 14 (R) 

11 

 

R-Xylyl-phanephos 

0 - 

12 

R-spirophos 

81 0 

13 

S,S-Me-BPE 

2 - 

14 

 

S,S-Et-FerroTANE 

0 - 

15 

R, Sp-Josiphos 

11 5 (R) 

[a] 
Reaction conditions: 1.44 (25 mg, 0.1 mmol., 100mM), AgBF4 (15 mol%), ligand (15-30 mol%), 

DCE (1.0 mL), r.t, 63 h.  
[b]

 Determined by 
1
H NMR integration.  

[c] 
Determined by chiral HPLC and 

optical rotation values. 
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From this ligand screen, a profound effect of employing diphosphine ligands with 

axial chirality was revealed (entries 1 to 6).  The BIPHEP family afforded the highest 

enantioselectivities of >60% (entries 1 and 2).  BINAP and SEGPHOS also afforded 

moderate yields (~50%) and enantioselectivities of ~60% (entries 3 and 4), while 

results obtained with the P-Phos family showed that the introduction of bulky groups 

on the P-substituent can furnished higher enantioselectivities, albeit with a reduction 

in yield (entries 5 and 6).  All axial diphosphine ligands produced S-1.45, whereas 

attempting to cyclise 1.44 with R-Monophos furnished R-1.45 in 6% yield with an 8% 

ee (entry 7). 

 

Very clean, full conversion can be obtained using R-Phanephos, S,S-DACH Naphthyl 

Trost, R-R-DIOP and ligands, but afforded R-1.45 with low enantioselectivities 

(entries 8, 9 and 10).  Increasing the steric hindrance of the phosphine substitution on 

R-Phanephos was found to inhibit the reaction (entry 11); perhaps the bulky xylyl 

group prevented the allenic alcohol from binding to Ag.  R-spirophos was also able to 

afford R-1.45 with a high conversion (81%), but with no enantioselectivity (entry 12).  

S,S-Me-BPE and S,S-Et-FerroTANE proved inefficient ligands by inhibiting the 

reaction (entries 13 and 14), and Josiphos produced R-1.45 in low conversion with 

poor enantioselectivity (entry 15).   

 

Encouraged by the results obtained by R-MeO-BIPHEP and R-Cl-MeO-BIPHEP, a 

range of related ligands from the BIPHEP family were subsequently investigated 

(Table 2.6).  Previously, the ligand S-DTBM-MeOBIPHEP (S-1.43) was found to be 

an effective in gold intramolecular hydroamination and hydroalkoxylation reactions 

involving allenes (Scheme 2.6).
37,45  

Disappointingly, none of the BIPHEP ligand 

derivatives improved the performance of the Ag catalyst.  Increasing the steric bulk of 

the phosphine ligands inhibited the reaction (entries 1 and 2), with S-3,5-i-Pr-

MeOBIPHEP only affording 1% conversion after 336 hours (entry 3).  Only S-DM-

MeOBIPHEP produced adequate material for enantiomeric excess determination 

(entry 4), which was assigned R, the same observed in the gold-mediated reaction.    
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Table 2.6: Ligand study of the BIPHEP family.
[a]

 
 

 

Entry  Ligand % Conversion 
[b]

 % ee (R/S)
[c]

 

1 S-DTBM-MeOBIPHEP 0 - 

2 

 

S-3,5-t-Bu-MeOBIPHEP 

0 - 

3 

 

S-3,5-i-Pr-MeOBIPHEP 

1 - 

4 S-DM-MeOBIPHEP 18 64 (R) 

 
[a] 

Reaction conditions: 1.44 (25 mg, 0.1 mmol., 100 mM), AgBF4 (15 mol%), Ligand  (15 mol%), 

DCE (1.0 mL), r.t, 336 h.  
[b]

 Determined by 
1
H NMR integration.  

[c] 
Determined by chiral HPLC and 

optical rotation values.   

 

Given the little difference between R-MeO-BIPHEP and R-BINAP in conversion and 

enantiomeric excess (Table 2.5, entries 2and 3), R-BINAP was chosen for further 

studies, as it is significantly cheaper.   

 

2.3.4 Metal:Ligand Ratio 

 

Once the optimum solvent, dilution factor and chiral ligand had been established, the 

metal-to-ligand ratio (M:L) was investigated (Scheme 2.13, Table 2.7). 

 

 

Scheme 2.13: Model reaction for optimisation of Ag(I) catalyst. 
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Table 2.7: M:L study.
[a] 

 

Entry R-BINAP (mol%)  M:L % Conversion 
[b]

 % ee (R/S)
[c] 

1 2.5 2:1 100  11 (S) 

2 5 1:1 25   59(S) 

3 10 1:2 0 - 

[a] 
Reaction conditions: 1.44  (25 mg, 0.1 mmol., 100 mM), AgBF4 (5 mol%), R-BINAP (x mol%), 

DCE (1.0 mL), r.t, 27 h.
 [b]

 Determined by 
1
H NMR integration.  

[c]
 Determined by chiral HPLC and 

optical rotation values.   

 

It was found that a 1:1 ratio was required for optimum enantioselectivity (entry 2).  

Reducing the amount of ligand resulted in a fast reaction and full conversion, but only 

10% ee was obtained, probably due to a competitive racemic reaction of unligated 

AgBF4 (entry 1).  Conversely, increasing the ratio to 1:2 deactivated the catalyst 

(entry 3).   

 

Silver has two stable isotopes 
107

Ag and 
109

Ag, both have a nuclear spin of 1/2 and 

will thus display Ag-P coupling.  This gives a useful tool to determine the number of 

coordinated phosphorus atoms.  In an earlier study of an AgPF6-BINAP system by 

Yamamoto, 1:1 mixtures of S-BINAP and AgPF6 were analysed by 
31

P NMR,
117

 

where three complexes: [Ag(S-BINAP)2]PF6 2.20a (the major species, but 

catalytically inactive), [Ag(S-BINAP)]PF6 (2.20b) and [Ag2(S-BINAP)](PF6)2 (2.20c) 

were identified (Scheme 2.14).  In the 1:2 mixture, the complex 2.20a was the only 

species observed, whereas in the 1:1 mixture all three species were observed. 

 

 

Scheme 2.14: Formation of AgPF6-BINAP complexes in solution.
117
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In 2004, the same authors suggested that the various complexes have different 

reactivities and selectivities in the enantioselective O- and N-nitroso aldol reactions of 

tin enolates.
127

 The distribution of silver complexes is dependent on the silver anion 

employed.  Overall, the highest stereoselectivity is achieved by using a M:L ratio of 

1:1. 

 

Accordingly, 1:1 and 1:2 mixtures of AgBF4 and R-BINAP were generated in DCE 

and examined by 
31

P NMR spectroscopy, as well as mass spectroscopy (Figure 2.2 

and Figure 2.3) at room temperature.  Complex 2.20a was the only species observed 

in the 1:2 mixture, which displayed a characteristic 
31

P resonance at 15.3 ppm with J 

values of 242 and 241 Hz for coupling to 
109

Ag and 
107

Ag, respectively.  This was 

supported by a single [M]
+
 ion of 1353 in the MS spectrum, indicating the formation 

of a ML2 complex (Figure 2.2, structure 2.21a). This complex will be catalytically 

inactive, as there is no free coordination site.  There was also a small signal observed 

at [M]
+
 1369, due to oxidation of one of the phosphorus atoms (structure 2.21b). 

 

 

Figure 2.2: a) MS spectrum for a 1:2 ratio (M:L).  b) Ag-BINAP complexes 2.21a 

and 2.21b. 

 

For the 1:1 mixture of AgBF4 and BINAP, the formation of two silver complexes 

were observed in the 
31

P NMR spectrum, one of which corresponds to 2.21a.  The 
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other species displayed P at 10.9 ppm with J values for 
109

Ag-
31

P and 
107

Ag-
31

P at 

862 and 851 Hz respectively.  These values do not seem to correlate to any of the 

three structures previously observed by Yamamoto et al (Scheme 2.14).  The MS 

spectrum showed a capricious mixture, for which five major species with [M]
+ 

731, 

772, 1353, 1369 and 1493 were identified (Figure 2.3).  The mass ions 1353 and 1369 

had been assigned as 2.21a and 2.21b respectively (Figure 2.2).  The mass ion of 731 

was assigned to 2.21d (Figure 2.3) where one R-BINAP ligand binds to one Ag atom, 

most likely to be the catalytically active species.  The signal with a mass ion of 772 

corresponds to 2.21d, where one solvent molecule (acetonitrile used in EI analysis) is 

present.  The signal with a mass of 1493 agrees with the dimeric structure 2.21c, plus 

a MeOH solvent (also used in EI analysis).  However, the study revealed that the 

inactive species 2.21a can be generated from a M:L ratio of 1:1, which could account 

for the lengthy reaction times. 

 

 

Figure 2.3: MS spectrum for a 1:2 ratio (M:L). 

 

2.3.5 Effect of Temperature 

 

A temperature study was conducted in an attempt to improve the rate of the reaction 

(Table 2.8, entry 2).  
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Table 2.8: Temperature study.
[a] 

 

Entry Temperature 
o
C t  (h) % Conversion 

[b]
 % ee (R/S)

[c]
 

1 0 336 42 62 (S) 

2 rt 63 51 60 (S) 

3 40 28 78 36 (S) 

[a]
 Reaction conditions: 1.44  (25 mg, 0.1 mmol., 100 mM), AgBF4 (15 mol%), R-BINAP (15 mol%), 

DCE (1.0 mL), r.t 
[b]

 Determined by 
1
H NMR integration.  

[c]
 Determined by chiral HPLC and optical 

rotation values. 

  

Increasing the reaction temperature to 40 
o
C increased the rate, but the 

enantioselectivity decreased from 60 to less than 40% (entry 2 vs 3).  Conversely, 

reducing the temperature to 0 
o
C increased the enantioselectivity by only 2%, but 

dramatically lowered the reaction rate from 63 to 336 hours (entry 1 vs 2).   

 

2.3.6 Acid Addition Effects - Achiral 

 

At this juncture it was speculated that the C-O and C-H bond formation steps of the 

hydroalkoxylation reaction may occur sequentially (Scheme 2.15).
78

 Assuming 

protonolysis (2.23 to 1.45) to be the rate determining and irreversible step, the 

reaction may be facilitated by the presence of Brønsted acids.   

 

 

Scheme 2.15: Proposed key steps of the intramolecular hydroalkoxylation reaction. 

 

To test this theory, a range of achiral Brønsted acids were examined as additives 

(Table 2.9).  One equivalent of Brønsted acid was employed in all reactions: reactions 

listed in entries 1 to 9 were performed at 125 mM with 10 mol% catalytic loading, 

whilst reactions in entries 10 to 14 were performed at 100 mM with 5 or 15 mol% 
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catalytic loading.  For comparison, the pKa valves of the various protic additives are 

presented.   

 

Table 2.9: Investigating the effect of Brønsted acids.
[a] 

 

Entry Proton Source pka
[b]

 x (mol%) t (h) % 

Conversion 
[c]

 

% ee 

(R/S
 
)
[d]

 

1 - - 10 36 73 36 (S) 

2 rac-CSA  -1 10 36 40 0 

3 benzoic acid 4.2 10 36 79 27 (S) 

4 pentafluorophenol 5.2 10 36 9 2 (S) 

5 4-chlorophenol 9.43 10 36 100 35 (S) 

6 2-naphthol  9.5 10 36 100 30 (S) 

7 2-methoxyphenol  9.93 10 36 9 - 

8 phenol  9.95 10 36 50 43 (S) 

9 4-methoxyphenol  10.26 10 36 - - 

10 - - 15 48 40 44 (S) 

11
[e]

 2, 4-di-t-Bu-phenol 16.77
[f]

 15
 

48 39 38 (S) 

12
[e]

 2, 6-di-t-Bu-phenol 17.20
[f]

 15 48 11 38 (S) 

[a]
 Reaction conditions: 1.44 (25 mg , 0.1 mmol., 100 mM), AgBF4 (x mol%), R-BINAP (x mol%), 

additive (0.1 mmol.), DCE (1.0 mL), r.t.  
[b]

 In H2O.
128

  
[c]

 Determined by 
1
H NMR integration.  

[d] 

Determined by chiral HPLC and optical rotation values.
[e]

 40
o
C. 

[f]
 In MeOH. 

129
 

 

The reaction outcome does appear to be dependent on a proton source with a pKa 

value between 9.4 - 10.0; full conversions with similar enantioselectivities were 

observed using 4-chlorophenol (pKa of 9.43) and 2-naphthol (pKa of 9.5) (entry 1 vs 5 

and 6).  Phenol (with a higher pKa of 9.95) provided a slightly lower yield, but 

increased the ee to 46% (entry 8).  Lying outside the 9.4 - 10.0 pKa range, 0% 

conversion was observed with electron donating 4-methyoxyphenol (entry 9).  Also 

less acidic 2,4- and 2,6-di-t-Bu phenols decreased the rate of the reaction (entry 10 vs 

11 and 12), more so for the more sterically hindered 2,6-di-tert-butyl-phenol, where 

the conversion dropped from 40% to 11% (entry 12). 

 



61 

 

At the other end of the scale, zero to low conversions were observed using acidic 

camphor sulfonic acid (CSA), and pentafluorophenol as additives (entries 2 and 4).  2-

Methoxyphenol with a pKa of 9.93 only produced 9% conversion, so does not fit in 

the trend observed with the other differentially substituted phenols (entry 7).  This is 

possibly due to the close proximity of the methoxy to the hydroxyl group imposing 

additional steric hindrance.  Following the trend, benzoic acid with a pKa of 4.2 

should produce a low conversion and ee.  In spite of this, a high conversion of 79% 

was observed (entry 3), which suggests the trend only applies for phenols.  Overall, 4-

chlorophenol and 2-naphthol do seem to increase the rate of the reaction.   

   

2.3.7 Acid Addition Effects – Chiral 

 

Encouraged by the positive effects of 4-chlorophenol and 2-naphthol (achiral proton 

additives), match-mismatch effects between chiral diphosphine ligands with a chiral 

protic additive, BINOL (pKa 9.3),
130

 was investigated (Table 2.10). 

 

Table 2.10: Investigating the effect of BINOL.
[a] 

 

 

Entry BINOL x (mol%) T (
o
C) % Conversion 

[b]
   % ee (R/S

 
)
[c]

 

1 - 5 r.t 94 39 (R) 

2 R-BINOL 5 r.t 27 58 (R) 

3 S-BINOL 5 r.t 100 25 (R) 

4 - 5 40 68 36 (R) 

5 R-BINOL 5 40 10 37 (R) 

6 S-BINOL 5 40 100 31 (R) 

7 - 15 r.t 50 59 (R) 

8 R-BINOL 15 r.t 15 37 (R) 

9 S-BINOL 15 r.t 100 40 (R) 

 [a]
 Reaction conditions: 1.44 (25 mg , 0.1 mmol., 100 mM), AgBF4 (x mol%), R-BINAP (x mol%), 

additive (0.1 mmol.), DCE (1.0 mL), 63 h.  
[b]

 Determined by 
1
H NMR integration.  

[c] 
Determined by 

chiral HPLC and optical rotation values. 

 

Interesting match-mismatch effects were observed with R- and S-BINOL at 5 mol% 

and 15 mol%.  R-BINOL seemed to hinder the reaction, but produce a higher 
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enantioselectivity (entries 3, 6 and 8), whereas the reverse was observed with S-

BINOL (entries 2, 5 and 8), in comparison to the reaction without an additive (entries 

1, 4 and 7).  At an elevated temperature of 40 
o
C, the difference in enantioselectivity 

between R- and S-BINOL was reduced, but not the rate (entries 4 to 6).   

 

Next, the amount of S-BINOL was lowered to see if the conversion or enantiomeric 

excess are affected (Table 2.11).  

 

Table 2.11: Investigating the effect of S-BINOL.
[a] 

 

 

Entry S-BINOL (mol%) % Conversion 

[b] 

% ee (R/S
 
)
 

[c] 

1 100 55 45 (S) 

2 50 45 48 (S) 

3 25 14 40 (S) 

4 10 57 45 (S) 

5 5 5 - 

6 2.5 45 58 (S) 

[a]
 Reaction conditions: 1.44 (25 mg , 0.1 mmol., 100 mM), AgBF4 (15 mol%), S-BINOL (x %), DCE 

(1.0 mL), r.t, 36 h.  
[b]

 Determined by 
1
H NMR integration.  

[c] 
Determined by chiral HPLC and optical 

rotation values. 

 

After 36 hours at room temperature, conversion and enantioselectivity were 

maintained in the presence of 10-100 mol% of BINOL (entries 1 to 4).  The use of 5% 

of the additive appeared to hinder the reaction (entry 5) whereas 2.5% provided 

moderate conversion with a respective enantioselectivity (entry 6), indicating a 

possible switch in the nature of the catalytic active species.  Overall, there is no 

beneficial improvement in the rate of conversion. 

 

As a control, the reaction was performed in the absence of the R-BINAP ligand to 

check whether BINOL can behave as a ligand itself (Table 2.12).  As only racemic 

products were obtained, BINOL is clearly not an effective ligand for the asymmetric 

process (entries 1 to 3). 
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Table 2.12: Using R-BINOL as a ligand.
[a] 

 

Entry R-BINOL (% with respect to AgBF4) Conversion %
[b]

 ee%
[c]

 

1 - 93 0 

2 7.5 100 0 

3 15 63 0 

 [a]
 Reaction conditions: 1.44 (25 mg,  0.1 mmol., 100 mM), AgBF4 (15 mol%), additive (x mmol.), 

DCE (1.0 mL), r.t, 21 h.  
[b]

 Determined by 
1
H NMR integration.  

[c]
 Determined by chiral HPLC. 

 

2.4 Determination of Absolute Stereochemistry 

 

During this work, we have uncovered a contradiction between the reported optical 

rotation
68

 and chiral HPLC data
45,68 

for optically active tetrahydrofuran 1.45, which 

prevented an unambiguous determination of its absolute stereochemistry. 

 

The chiral HPLC chromatogram of 1.45 has been previously recorded independently 

by two research groups using very similar conditions: Chirapak AD-H column, 1% 

IPA in n-hexane with 0.5 mL/min or 1.0 mL/min flow rates, respectively.  

Widenhoefer and co-workers reported that the major isomer was the first eluting peak 

at 17.4 min (Figure 2.5a).
45  

The absolute stereochemistry was assigned tentatively as 

R by analogy with R,E-1.48d and R,Z-1.48d,
45 

 which were determined by comparison 

to an authentic sample of R-1.48d (Z/E=25:1, 84% ee) prepared by an independent 

route from a chiral precursor (Figure 2.4).  On the other hand, Mikami and co-workers 

reported that the major isomer was the second eluting peak at 7.61 min, but also 

assigned it as R (Figure 2.5b). 
68

 

 

 

Figure 2.4: Structure of tetrahydrofuran R-1.48d. 

 

For the sample 1.45 produced using AgBF4/R-BINAP, the major enantiomer can be 

observed as the second eluting peak at 16.7 min (Figure 2.5c).  
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Figure 2.5: Chiral HPLC chromatograms of 1.45 recorded by: a) Aikawa et al.
68

 b) 

Widenhoefer et al.
45

 c) this work using Chirapak AD-H column at 1.0 and 0.5 mL/min 

respectively. 

In 2009, the optical rotation and crystal structure for 2.24, was published by Fu et al. 

where its absolute stereochemistry R was correlated with an optical rotation of +54º (c 

= 0.36 in CHCl3) (Figure 2.6).
131

  

                                                                   

 

 

 

 

 

 

 

Figure 2.6:  Structure and crystal structure of R-(+)-2.24. 

 

The compound 2.24 was prepared from the reduction of the 2-vinyl tetrahydrofuran 

2.25, formed by phosphine-catalysed cyclisation of hydroxy-2-alkynoate 2.26 in 87% 

ee using S-2.27 (Scheme 2.16).
131

  The absolute configuration of 2.25 was therefore 

determined to be R with an optical rotation of +110
o
 (c 1.0, CHCl3). 
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Scheme 2.16: Phosphine mediated cyclisation of 2.26. 

 

In 2010, Mikami et al. determined the absolute stereochemistry of 1.45 by 

transforming it into ester 2.25 by a cross metathesis reaction with ethyl acrylate 

(Scheme 2.17) and comparing the optical rotation of 2.25 ([]D
25

 = -85.0
o
, c = 0.36 in 

CHCl3).
68

  

 

 

Scheme 2.17: Cross metathesis of 1.45 to 2.25. 

 

Although the optical values for 2.25 are contradictory to the literature value published 

by Fu et al.,
131

 Mikami and co-workers incorrectly assigned the absolute 

stereochemistry of 2.25 and subsequently 1.45 ([]D
25

 = -110.4
o
 (c = 0.39, CHCl3, 

87% ee) as R.
68

  Having spoken with Prof Mikami over this issue, the stereochemical 

assignments of 1.45 and 2.25 have been reviewed and corrections have been 

submitted to the relevant journal.   

 

For the sample 1.45 produced using AgBF4/R-BINAP, the optical rotation was 

measured as []D
25

  = -56
o
 for 60% ee (c = 0.4, CHCl3).  Thus, by comparing the 

HPLC traces and optical rotations, we can confidently deduce that AgBF4/R-BINAP 

favoured the formation of the S enantiomer. 
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2.5 Conclusion 

 

Two different synthetic procedures to prepare the model substrate (1.44) were 

compared.  Overall, pathway A was utilised for the preparation of 1.44 on a large 

scale since it was higher yielding and had a shorter synthesis.
36,45,58

 

 

The use of Cu(OTf)2 in hydroalkoxylation reactions proved inefficient.  At room 

temperature and 60 
o
C a range of products were observed, with 1.45 and 2.11 being 

the most predominant (Scheme 2.18).  Decomposition of the catalyst was observed 

and the possible involvement of TfOH formed during the reaction, promoted the 

formation of 2.11.   

Scheme 2.18: Cu(II) mediated intramolecular hydroalkoxylation. 

 

Ag(I) proved superior to Cu(II) by furnishing the 5-exo-trig product exclusively with 

modest rates.  The reaction was found to be dependent on the counteranion employed; 

in increasing order of reactivity: SbF6
-
  < NO3

- 
< BF4

- 
< OTf 

- 
<  ClO4

- 
< SO4

2-
 < PF6

-
 = 

CO3
-
.  On the other hand, the addition of chiral phosphine ligands hindered 

conversion of 1.44 to tetrahydrofuran 1.45 in the order: BF4
-
 < ClO4

-
 < PF6

-
 < SbF6

-
.  

For all other counteranions, the formation of 1.45 was inhibited by the presence of 

phosphine.  Moderate enantioselectivities of 68% were observed using the R-MeO-

BIPHEP/AgBF4 system, compared to 60% attained with R-BINAP/AgBF4.  

 

Conversion is also an important issue for these reactions; for the R-BINAP/AgBF4 

system 52% conversion was observed after 63 hours.  MS and 
31

P NMR studies 

implied that the major species generated from a M:L ratio of 1:1 contains the 

catalytically inactive species (2.21a). Instability/decomposition of the catalyst over 

time could also be a contributing factor.   
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Brønsted acid additives were examined and were found to be largely futile.  However, 

interesting match-mismatch effects were observed when chiral additives S- and R-

BINOL were used in the R-BINAP/AgBF4 system. 

 

Overall the best reaction conditions identified for Ag(I)-catalysed intramolecular 

hydroalkoxylation are summarised in Scheme 2.19.   

 

 

Scheme 2.19: Ag(I)-mediated intramolecular hydroalkoxylation. 
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Chapter 3: Regioselectivity in the Metal-Catalysed 

Intramolecular Cyclisation of γ-Allenic Alcohols 
 

 

Having demonstrated that Ag(I) salts are active catalysts in intramolecular 

hydroalkoxylation reactions of γ-allenic alcohols, and that Cu(OTf)2 shows some 5-

exo-trig selectivity, the catalytic activity of other Lewis acids were examined. In this 

Chapter, the origins of regioselectivity will also be examined, with the aid of DFT 

calculations. 

 

3.1 Initial Screening of Metal Lewis Acids in Hydroalkoxylation 

Reactions 

 

Initially, the model substrate, 1.44 was employed in the catalyst screening, which 

included hard (Sc
3+

 and Yb
3+

), medium (Zn
2+

, Sn
2+

 and Ni
2+

) and soft (Pd
2+

) Lewis 

acids, with and without triphenylphosphine added as a ligand (Scheme 3.1, Table 3.1).  

 

 

Table 3.1: Investigation of other metal Lewis acids for hydroalkoxylation.
[a] 

 

Entry Lewis acid 
Ligand 

(mol%) 
T (

o
C) t (h) 

Yield of  

1.45 (%)
[b]

 

Yield of  

2.11 (%)
[b] 

Yield of  

3.1 (%)
[b]

 

1 Ni(OTf)2 - 50 >168 0 0 0 

2 Ni(OTf)2 PPh3 (10) 50 >168 0 0 0 

3 Pd(OTf)2 - 50 >168 0 0 0 

4 Pd(OTf)2 PPh3 (10) 50 >168 0 0 0 

5 Yb(OTf)3 - 50 >168 0 0 0 

6 Yb(OTf)3 PPh3 (15) 50 >168 0 0 0 

7 Sc(OTf)3 - 50 >168 0 0 0 

8 Sc(OTf)3 PPh3 (15) 50 >168 0 0 0 

9 Sn(OTf)2 - r.t 72 4 63 0 

10 Sn(OTf)2 PPh3 (10) r.t 72 7 0 0 

11 Zn(OTf)2 - 50 >168 10 0 74 

12 Zn(OTf)2 PPh3 (10) 50 >168 22 0 59 

[a]
 Reaction conditions: 1.44 (100 mg, 0.4 mmol., 133 mM), Lewis acid (5 mol%), PPh3 (10-15  mol%), 

DCE (0.3 mL). 
[b]

 Isolated yield after column chromatography. 
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Scheme 3.1: Model reaction for screening other Lewis acids for hydroalkoxylation 

reactions. 

 

From this study, the lanthanide and group 10 salts Yb(OTf)3, Sc(OTf)3, Ni(OTf)2 and 

Pd(OTf)2 were found to be ineffective catalysts (entries 1 to 8). In the Sn(OTf)2 

catalysed reaction, the major compound isolated in 63% was found to be benzopyran 

2.11 (entry 9), the same product that was obtained using Cu(OTf)2 and TfOH in 

Chapter 2. When triphenylphosphine was present, conversion to 2.11 was not 

observed (entry 10).  Zn(OTf)2 on the other hand, furnished dimer 3.1 as the major 

product, in yields of 59% (entry 11) and 74%, with and without the addition of 

triphenylphosphine, respectively (entry 12).  The 5-membered ring 1.45 was also 

isolated in both Sn(OTf)2 and Zn(OTf)2 catalysed reactions as a minor product (4-

22%).  The rates of all four reactions were very slow, taking more than 168 hours to 

complete.  When 1.45 was isolated and left exposed to Zn(OTf)2 or Sn(OTf)2 it did not 

interconvert into 2.11 or 3.1.  Similarly 2.11 and 3.1 remained intact when left 

exposed to AgOTf.  This suggested that all three products were formed by 

competitive and irreversible processes. 

 

Both benzopyran 2.11 and acetal structure 3.1 were isolated and characterised by 

single crystal X-ray analysis (Figure 3.1, Appendix 1 and Appendix 2), obtained from 

slow evaporation of solutions of these compounds in hexane.  

 

                                        

Figure 3.1: Crystal structures of benzopyran 2.11 and acetal structure 3.1.  
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During the course of our work, the crystal structure of benzopyran 2.11 was also 

reported by Akiyama et al.
103

  In the 
1
H NMR spectrum, nine protons were present in 

the aromatic region, suggesting aryl substitution. This was supported by the presence 

of three quaternary 
13

C NMR signals in the aromatic region.  The presence of the 

methyl group was indicated as the singlet at 1.77 ppm and 21.8 ppm in 
1
H and 

13
C 

NMR
 
spectra respectively.

  
The 

1
H NMR spectrum also shows a diastereotopic CH2 

group, presented as a doublet and a double doublet at 4.09 and 3.90 ppm (supported 

by COSY). The 
13

C NMR spectrum, assisted by DEPT, also identified one quaternary 

centre present in the aliphatic region.  MS, in CI mode, confirmed the expected mass 

of the compound ([MNH4
+
] = 268). 

 

The crystal structure of 3.1 was also supported by NMR and IR techniques, but not by 

mass spectroscopy as the product fragmented extensively, under EI, CI and ESI 

ionisation methods, to the monomer  ([MH]
+
 = 251).  The 

1
H NMR spectrum 

indicated twice as many distinct protons present in comparison to the starting material 

(20H in the aromatic and 16H in the aliphatic region) indicating the formation of a 

dimer.  Two multiplets at 4.64 and 4.46 ppm, which correspond to one and two 

protons respectively, indicated the presence of an allene moiety.  This was supported 

by the peak at 1954 cm
-1

 in the IR spectrum and signals at 209.4, 85.7 and 73.6 ppm 

in the 
13

C NMR spectrum.  

 

From the preliminary investigation of Lewis acids in the intramolecular 

hydroalkoxylation of the γ-allenic alcohol 1.44, Sn(OTf)2 and Zn(OTf)2 were found to 

afford the unexpected products 2.11 and 3.1. Both structures result from the rarer 6-

exo-dig cyclisation, which hitherto had only been achieved catalytically using the 

lanthanide amide complex La[N(SiMe3)2]3 at 130 
o
C.

100
 

 

3.2 Optimisation of Sn(II) and Zn(II) Triflate Catalysed Reactions 

 

In the initial screen of Sn(OTf)2 and Zn(OTf)2, cyclisation proceeded to give 2.11 or 

3.1 respectively in 336 hours.  However, the 5-membered ring 1.45 was also formed 

as a minor product.  An optimisation study was conducted in an attempt to improve 

the rate of the reaction and produce the 6-membered ring exclusively (Table 3.2).  
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Table 3.2: Optimisation of Sn(OTf)2 and Zn(OTf)2 conditions.
[a] 

 

Entry Lewis acid T (
o
C) t (h) 

Yield of  

1.45 (%)
[b] 

Yield of  

2.11 (%)
[b] 

Yield of  

3.1 (%)
[b]

 

1 Sn(OTf)2 r.t 28 6 79 0 

2 Zn(OTf)2 80 36 13 0 61 

 [a]
 Reaction conditions: 1.44 (100 mg , 0.4 mmol., 133 mM), Lewis acid (15 mol%), DCE (0.3 mL).   

[b] 
Isolated yields after column chromatography. 

 

By increasing the catalytic loading from 5 to 15 mol% the reaction mediated by 

Sn(OTf)2 was completed in 28 hours (Table 3.2, entry 1 vs Table 3.1, entry 9).  For 

the reaction mediated by Zn(OTf)2, a higher temperature of 80 
o
C was also required to 

produce 3.1 in 36 hours (Table 3.2, entry 2 vs Table 3.1, entry 11).  However, a small 

quantity (6-13%) of the 5-exo-trig product 1.45 was also isolated from both reaction 

mixtures.   

 

3.3 Brønsted Acid Catalysis 

 

For benzopyran 2.11 to form, C-O and C-C bond forming at the central allenic carbon 

have to occur consecutively via hydroalkoxylation and electrophilic substitution 

reactions (Figure 3.2). 

 

Figure 3.2: Two consecutive bond formations involved for compound 2.11. 

 

Akiyama et al.
103

 described two plausible mechanisms for the formation of 

benzopyran 2.11 under Brønsted acid catalysis (Scheme 3.2 and Scheme 3.3).  The 
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first mechanism (pathway A), involved protonation of the terminal allene (3.2) 

followed by O-nucleophilic addition to the vinyl cation to form 3.3 in a 6-endo-dig 

cyclisation (Scheme 3.2). Subsequent formation of an oxonium cation (3.4) followed 

by aromatic substitution of one of the phenyl rings via TS3.4 (where the phenyl ring 

involved in C=C bond formation is shown as the double bond) to form the 

carbocation intermediate 3.5. Finally, re-aromatisation furnishes 2.11. 

 

 
 

Scheme 3.2: Plausible pathway A for the Brønsted acid formation of benzopyran 

2.11.
103

 

 

The second suggested mechanism (pathway B), also contained a 6-endo-dig 

cyclisation and Friedel Craft/aromatic substitution, but the order is reversed (3.2 to 

3.8) (Scheme 3.3). 

 
 

Scheme 3.3: Plausible pathway B for the Brønsted acid formation of benzopyran 

2.11.
103
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To differentiate between the two possible pathways, cyclisation of (1-methoxyhexa-

4,5-diene-2,2-diyl)dibenzene, 3.9, was examined by the same authors (Scheme 3.4).
103

 

The reaction proceeded to give the Friedel Craft product 3.10, but was extremely slow 

with 61% of the starting material recovered after 21 hours at reflux.  This observation 

was used to support the operation of pathway A in this reaction.  

 

 

 

 

 

Scheme 3.4: Cyclisation of (1-methoxyhexa-4,5-diene-2,2-diyl)dibenzene, 3.9.
103

 

 

3.4 DFT Calculations  

 

We turned to DFT models in order to rationalise the observed regioselectivities with 

Ag(I), Zn(II), and Sn(II) triflates. The transition states will be predicted and their free 

energies, G
‡
 calculated.   

 

The term ΔG
‡

, is defined as activation energy, for example, the difference in energy 

between the starting material (SM) and the transition state (TS), whereas G
o
 is the 

thermodynamic parameter, denoting the energy difference between SM and product 

(P) (Figure 3.3).
132

   

 

Figure 3.3: Energy diagram.132 
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From earlier investigations, the formation of 5- and 6-membered heterocyclic rings 

are formed by parallel, but irreversible processes (Scheme 3.5).   

 
 

 

Scheme 3.5: Formation of 1.45, 2.11 and 3.1 by competitive and irreversible 

processes. 

 

 

In irreversible reactions, the product formed depends only on the reaction rate k and is 

therefore said to be kinetically controlled.  The major product, at constant 

temperature, would therefore be the one with the smallest activation energy barrier 

(ΔG
‡
) and largest rate coefficient (k).  This is show mathematically in the Arrhenius 

equation, where R is the gas constant, T the temperature and A an exponential factor 

(Equation 3.1). 
133

   

    k = A exp(-ΔG‡/RT)                                 Equation 3.1 

      

 

Several factors, entropy (ΔS
‡
), enthalpy (ΔH

‡
) and temperature, will also affect the 

ease of ring closure.
134,135

 They are related to the free energy (ΔG
‡
) via Equation 3.2 

and will contribute to the size of the activation barrier, which in turn will affect the 

rate of the reaction (k).
132

   

              ΔG‡ 
 
= ΔH‡ 

 
- TΔS‡                             

Equation 3.2   

 

 

The aim of this work is to calculate the free energies (ΔG‡) associated with the 

transition states of 5- and 6-membered ring formation for Ag(I), Sn(II) and Zn(II) 

triflates. 
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3.4.1 DFT Calculations for Group 11 Metals 

 

Firstly, DFT models were constructed of the 5-exo-trig transition state TS1 (Scheme 

3.6) with triflate (OTf, X = SO) or trifluoroacetate (OCOCF3, X = C) as counteranions 

for group 11 metals (Cu, Ag and Au).  All calculations were undertaken at the 

B3LYP/cc-pVDZ level of theory and cc-pVDZ-pp for the metal by Prof. Henry S. 

Rzepa 

  

In the proposed mechanism, the metal binds to the central carbon of the allene moiety, 

and the anion is bound to the metal centre, and interacts with the proton of the OH 

group (cyclic TS1).  In TS1, the bond angle around the metal (O-M-C) was found to 

be 170, 164, and 171
o
 when M = Au, Ag and Cu respectively, thus indicating a nearly 

linear geometry.
88

  C-O bond formation occurs by O-nucleophilic attack, where the 

linear geometry of the metal defines the formation of the smaller 5-membered ring.  

Subsequent deprotonation of the oxonium by the counteranion followed by 

protonolysis of TS2, will result in the formation of tetrahydrofuran 1.45.  

 

Scheme 3.6: Mechanism of 5-exo-trig cyclisation. 

 

The activation free energies (G
‡
) for the formation of TS1, with OCOCF3 as the 

counteranion, were calculated for the group 11 metals (Cu, Ag and Au) as 26.7, 18.1 

and 12.2 kcal mol
-1

 respectively.  This decrease in free energy down group 11 is 

consistent with experimental data; where gold can facilitate heterofunctionalisation 

reactions at sub-zero temperatures,
45,58

  silver at room temperature
62,78 

and copper 

mostly at elevated temperatures.
87

    Activation free energies for the formation of the 

6-membered ring were not calculated as this product was not observed.
45
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Modelling TS1 with OTf (pKa -14)
122

 instead of OCOCF3 (pKa 0.23)
136

 was 

calculated to increase the activation barrier by 1.5 kcal mol
-1

.  Carrying out the 

intramolecular hydroalkoxylation reaction with the counteranion OCOCF3 was 

therefore predicted to increase the rate of the reaction 13-fold.   Indeed, the reaction 

with 15 mol% Ag(OCOCF3) at room temperature afforded tetrahydrofuran 1.45 in 

90% yield after only 2 hours (Scheme 3.7).  In contrast, the reaction required 16 hours 

with AgOTf for completion.   

 

 

Scheme 3.7: Cyclisation of 1.44 with Ag(OCOCF3). 

 

3.4.2 DFT Calculations for Zn(II) and Sn(II) Triflates  

 

Modelling studies for the divalent metals are more complex due to the ability of the 

counteranion to coordinate to the metal as a mono- or bi-dentate ligand.  DFT 

calculation suggested that both structures 2.11 and 3.1 can be formed by a common 

transition state TS3 (Scheme 3.8).   

 

 

Scheme 3.8: Proposed pathway for the Zn(OTf)2 and Sn(OTf)2 mediated reactions. 
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For the formation of acetal 3.1 using Zn(OTf)2, protonolysis of 3.11 to the cyclic enol 

ether 3.12 occurs and this is subsequently trapped by another molecule of 1.44.  On 

the other hand, for the formation of 2.11, internal proton transfer of 3.11 occurs to 

form the oxonium ion 3.13.  Aromatic substitution presumably proceeds via a 

nascent-Wheland intermediate where deprotonation is assisted by the sulfonyl group 

to form 2.11 and this is shown in TS5.   

 

Modelling studies of TS3 where M = Zn or Sn revealed tetrahedral and hemi-directed 

geometries, respectively, around the metal centre.  In both transition states, one of the 

oxygen atoms from the monodentate ligand acts as the base for proton removal 

(Figure 3.4).  These transition states with a crowded metal centre are vastly different 

from the linear arrangement observed for group 11 metals, which may explain the 

observed change in regioselectivity with Zn(II)- and Sn(II) catalysed reactions.      

 

 

Figure 3.4: Transition states TS3 (M = Zn or Sn).   

 

Calculating the relative free energies of TS1 and TS3, where M = Zn, TS3 was found 

to be 1.3 kcal mol
-1

 lower in free energy than TS1, accounting for the formation of the 

6-membered ring.  However, the 5-membered ring was also obtained as a minor 

product, which suggests that the small energy difference between TS1 and TS3 can be 
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overcome under the reaction conditions.  On the other hand, calculating the relative 

free energies of TS1 and TS3, where M = Sn, TS1 was found to be 4.7 kcal mol
-1 

lower in free energy than TS3, which contradicted the experimental observation, as 

this will suggest that the 5-membered ring should be the favoured product.  On the 

other hand, an alternative mechanism whereby C-C bond formation occurs first 

(Scheme 3.9) is ruled out by an even higher G‡ calculated for transition state TS4 (17 

kcal mol
-1 

higher than TS1), and further experimental evidence (vide infra). 

 

 

Scheme 3.9: Alternative pathway for Sn(OTf)2 cyclisation of 1.44. 

 

Overall, the theoretical calculations are able to the support the Zn(OTf)2 mechanism 

shown in Scheme 3.8, but the result is less convincing for Sn(OTf)2.  Also as TfOH 

has the ability to catalyse the reaction of 1.44 to 2.11, the involvement of Brønsted 

acids cannot be ruled out (Scheme 3.2 and Scheme 3.3). 

 

3.5 Investigating Regioselectivity with Other Substrates  

 

The regiodiversity of AgOTf, Sn(OTf)2 and Zn(OTf)2 catalysed reactions was 

explored with two other γ-allenic alcohols 3.17 and 3.18 (Figure 3.5).  Their 

preparation will be discussed in Chapter 4. 

 

Figure 3.5:-allenic alcohols 3.17 and 3.18. 
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5-Exo-trig cyclisation of 3.17 with 15 mol% AgOTf afforded cyclic ether 3.19 in 82% 

yield (Scheme 3.10).  

 

Scheme 3.10: Cyclisation of-allenic alcohol 3.17 using AgOTf. 

 

The corresponding reactions using Sn(OTf)2 and Zn(OTf)2 as catalysts afforded 

double bond isomers 3.20 and 3.21, via 6-exo-dig cyclisation, as the major products 

(Scheme 3.11), along with the 5-membered ring as a minor product.  Presumably, 

acetal and benzopyran formation were prohibited for steric reasons, associated with 

the presence of the cyclohexane ring.  The observation of 3.20 and 3.21 in the Sn(II)-

catalysed reaction supports the earlier proposal that the reaction proceeds via C-O 

bond formation first (thus ruling out the mechanism in Scheme 3.9). 

 

Scheme 3.11: Cyclisation of -allenic alcohol 3.17 using Sn(OTf)2 and Zn(OTf)2. 

 

These double bond isomers 3.20 and 3.21 were isolated separately and characterised 

by 
1
H NMR spectroscopy, which was supported by 2D NOESY.  The only difference 

between 3.20 and 3.21 was the positioning of the alkene moiety (Figure 3.6).  In the 

1
H NMR spectrum of 3.21,  the presence of a cyclohexyl ring was revealed by the 

observation of 5 pairs of adjacent methylene groups, whereas 3.20 contains only 4 

pairs of adjacent methylene groups.  Additionally, the NOSEY spectrum of 3.20 

revealed close proximity of the proton of the alkene moiety to the protons of the 
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cyclohexane ring, whereas the proton of the alkene moiety in 3.21 interacted more 

strongly with the CH2 group in the THP ring.   

 

Figure 3.6: Double bond isomers 3.20 and 3.21. 

 

With Zn(OTf)2 as the catalyst, increasing the temperature lead to a switch in 

selectivity in favour of the 5-membered ring (Table 3.3, entry 1 vs 2).  This suggests 

that the activation energy barriers for 5- and 6-membered ring formation are close in 

energy and at higher temperatures the selectivity is reduced.  The ratio of 3.20 and 

3.21 also changed from 1:11.5 to 1:1 at the higher temperature (entry 1 vs 2).   

Conversely, only a minor change in selectivity and ratio of 3.20 and 3.21 was 

observed in the reaction catalysed by Sn(OTf)2 at room temperature and 50 
o
C (entry 

3 vs 4).   

 

Table 3.3: Cyclisation of -allenic alcohol 3.17 using Sn(OTf)2, Zn(OTf)2 and 

TfOH.
[a] 

 

[a]
 Typical reaction conditions:   (127 mg, 0.4 mmol., 133 mM), Cat. (15 mol%), DCE (0.3 mL).  

[b]
 Isolated yields after column chromatography.  Values in parenthesis denote ratio of 

3.20:3.21(determined by 
1
H NMR). 

 

As Brønsted acid catalysis may play a role in the Sn(OTf)2 mediated system, the 

reaction was also performed in the presence of 30 mol% TfOH.  This reaction 

Entry Cat. T (
o
C) t (h) 

Yield of  

3.19 (%)
[b]

 

Yield of  

3.20 and 3.21 (%)
[b] 

1 Zn(OTf)2 r.t 28 9 75  (1 : 11.5) 

2 Zn(OTf)2 50 34 70 15  (1 : 1) 

3 Sn(OTf)2 r.t 28 6 82  (1 : 9.3) 

4 Sn(OTf)2 50 34 2 84  (1 : 8.3) 

5 TfOH r.t 23 0 67  (1 : 6) 
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proceeded to give 3.20 and 3.21 exclusively, in a lower yield of 67% and with a lower 

preference for 3.21 compared to 3.21 (1:93 vs 1:6) (entries 3 and 4 vs 5).  This 

indicates that the 6-exo-dig cyclisation of 3.17 to form isomers 3.20 and 3.21 can also 

be mediated by Brønsted acids. 

 

For γ-allenic alcohol 3.18, 5-exo-trig cyclisation with AgOTf afforded 

tetrahydrofuran 3.22 exclusively in 12 hours with 76% yield (Scheme 3.12).   

 

 
 

Scheme 3.12: Cyclisation of -allenic alcohol 3.18 using AgOTf. 

 

The corresponding reactions using Sn(OTf)2 and Zn(OTf)2 afforded 3.22 and the 

acetal structure 3.23, formed via 6-exo-dig cyclisation and entrapment with another 

molecule of 3.18 (Scheme 3.13).   

 

 

Scheme 3.13: Cyclisation of -allenic alcohol 3.18 using different Lewis acids. 

 

The Sn(OTf)2 mediated reaction of 3.18 was somewhat lower in comparison to the 

cyclisation of 1.44 and 3.17, even at an elevated temperature of 35 
o
C (Table 3.4, 

entry 1).  At this temperature the 5-membered ring formation became competitive.  

The reaction catalysed by Zn(OTf)2 was also sluggish at room temperature (entry 2).  

Even after 144 hours, 25% of the starting material was recovered.  To promote 100% 

conversion the temperature was increased to 50 
o
C.  However, this changed the 

selectivity of the reaction in favour of the 5-membered ring (entry 3).  Again, 

Brønsted acid catalysis was investigated with 30 mol% TfOH, but surprisingly, 3.18 
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remained inert over 6 days at room temperature (entry 4), thus suggesting that the 

cyclisation of this substrate is catalysed by Sn(OTf)2.  

 

Table 3.4: Cyclisation of -allenol 3.18 using different Lewis acids.
[a] 

 

[a]
 Typical reaction conditions:   (66 mg, 0.4 mmol., 133 mM), Cat. (15 mol%), DCE (0.3 mL). 

[b]
 

Isolated yields after column chromatography.  
[c] 

3.18 recovered in 25% yield. 

 

3.6 Conclusions  

 

Overall, three different metal Lewis acids have been found to direct regioselective 

cyclisation of γ-allenic alcohols, by variation in coordination number and geometry.  

AgOTf forms linear complexes and favours the 5-exo-trig cyclisation (Scheme 3.14).   

Zn(OTf)2 and Sn(OTf)2, on the other hand, have tetrahedral or hemi-directed 

geometries respectively and direct selectivity towards 6-membered ring formation.   

 

 

Scheme 3.14: Regioselectivity in the cyclisation of γ-allenic alcohols. 

 

For model substrate 1.44, Sn(OTf)2 formed the benzopyran structure 2.11 via 

sequential C-O and C-C bond formation, whereas Zn(OTf)2 formed the acetal 

structure 3.1 via two C-O bonds (Scheme 3.15).  Both structures were characterised 

and supported by crystal structures.  By experimentation, all three products (1.45, 

2.11 and 3.1) were expected to be formed by competitive and irreversible processes.  

 

Entry Cat. T (
o
C) t (h) Yield of 3.22 (%)

[b]
 Yield of 3.23 (%)

[b] 

1 Sn(OTf)2 35 144 40 29 

2 Zn(OTf)2 r.t 144 9
[c]

 45 

3 Zn(OTf)2 50 36 52 9 

4 TfOH r.t 144 0 0 
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Scheme 3.15: Formation of 2.11 and 3.1. 

For acyclic substrates 3.17and 3.18, the divalent metals formed double bond isomers 

(3.20 and 3.21) and an acetal structure 3.23, respectively, as the major products 

(Scheme 3.16).   

 

  Scheme 3.16: Formation of 3.20, 3.21 and 3.23. 

 

From DFT calculations, the counteranion was found to be intimately involved in C-O 

bond formation.  From this, TS1 for 5-exo-trig and TS3 for 6-exo-dig cyclisation 

were proposed.  TS4 (M=Sn), to form benzopyran 2.11 via aromatic substitution then 

6-exo-dig cyclisation was discarded as the free energy was higher than for TS3.  DFT 

calculations also correctly predicted that the rate of the reaction was dependent on the 

counteranion employed.   

 

In summary, while the involvement of Brønsted acids in the Ag(I)- and Zn(II)-

catalysed reactions can be ruled out, the same cannot be said for the corresponding 

reactions performed using Sn(OTf)2.   
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Chapter 4: Asymmetric Silver-Catalysed Intramolecular 

Hydroalkoxylation and Hydroacyalkoxylation Reactions 

 

Previously in Chapter 3, DFT models were employed for the intramolecular 

hydroalkoxylation reaction of γ-allenic alcohol 1.44 catalysed by group 11 metals (M 

= Au, Ag, Cu) (Scheme 4.1).  This study revealed that the counteranion (L = OCOCF3 

or OTf) is intimately involved in C-O bond formation, by remaining bound to the 

metal centre during the reaction. 

Scheme 4.1: Cyclisation of 1.44 and cyclic transition state TS1. 

 

From this observation, we were inspired to investigate the possibility of asymmetric 

catalysis by the use of chiral anionic ligands.  This concept has already been partially 

demonstrated for heterofunctionalisation reactions using Au(I) catalysis, in which a 

chiral Brønsted acid, mainly a phosphoric acid, is combined with an achiral/chiral 

Au(I) complex to afford high yields and enantioselectivities, although the precise role 

of the chiral anion was not defined.
36,44,68

  On the other hand, asymmetric reactions 

catalysed by silver are limited.  In most cases, the type of chiral ligands used in these 

reactions are P(III) donors (diphosphines or mixed-donor phosphines); but even so, 

enantioselectivities of >90% are rare.
137

   
 

4.1 Use of Anionic Ligands in Asymmetric Hydroalkoxylation 

Reactions 

 

4.1.1 Synthesis of Ag(I) Complexes 4.4-Ag to 4.7-Ag 

 

Firstly, four chiral Ag(I) complexes were prepared from commercially available 

mandelic acid (R-4.4-H), tartaric acid (R-4.5-H), camphor sulfonic acid (R-4.6-H) and 
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binaphthalene-2,2′-diyl hydrogen phosphate (R-4.7-H) (Figure 4.1).  Complexes R-

4.4-Ag and R,R-4.5-Ag were prepared by the method by Cuin et al. (method 1),
138

  

whereby the chiral acids are deprotonated by treating with a slight excess of NaOH to 

generate a water-soluble salt, to which an equal quantity of AgNO3 was added. The 

resultant Ag(I) complexes precipitated out of solution as white solids and were 

characterised by comparison with literature data.
138

  In the infrared spectra, the C=O 

moiety of the Ag(I) complexes (R-4.4-Ag and R,R-4.5-Ag) were observed at lower 

frequencies than the C=O moiety of the carboxylic acids R-4.4-H and R,R-4.5-H.   

Finally, MS in FAB mode confirmed the expected mass of R-4.4-Ag ([M]
+
 = 260), 

while the composition of R,R-4.5-Ag was determined by elemental analysis.   

 

Figure 4.1: Chiral acids 4.4-H to 4.7-H. 

 

Attempting this method (method 1) for the formation of complex R-4.6-Ag afforded a 

dark solid, which suggested some decomposition.  To overcome this, a modified 

procedure (method 2) reported by Sordo et al.
139,140

 was used, whereby a mixture of 

Ag2CO3 and chiral acid (1:2 ratio) was stirred in ethanol overnight.  This afforded a 

quantitative yield of R-4.6-Ag, which was characterised by FAB mass spectrometry 

([M]
+
 = 339) and elemental analysis. 

 

BINOL-based phosphoric acids have been successfully implemented in gold 

heterofunctionalisation reactions,
36,44,68

 and therefore a similar complex to R-4.7-Ag 

was generated by the addition of 0.5 equivalents of AgCO3 to R-4.7-H in a 1:1 

mixture of water to CH2Cl2 (method 3).
36

  This furnished the silver phosphate salt in a 

low yield of 42%.  In comparison, by using the modified method of Sordo et al.,
139,140

 

R-4.7-Ag can be obtained as a white solid in 88% yield.  The formation of R-4.7-Ag 

was indicated by a shift of the 
31

P NMR resonance from 4.5 to 9.4 ppm and the 

observation of a parent ion peak of 455 in MS (FAB mode). 
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4.1.2 Initial Screening of Ag(I) Complexes 4.4-Ag to 4.7-Ag in 

Hydroalkoxylation Reactions 

 

These four complexes were subsequently screened in the cyclisation of γ-allenic 

alcohol 1.44 (Table 4.1). All reactions were conducted in the dark.   

 

Table 4.1: Cyclisation of 1.44 with catalysts 4.4-Ag to 4.7-Ag.
 [a] 

 

 
 

[a
Reaction conditions: 1.44 (25 mg, 0.1 mmol., 200 mM), Cat. (15 mol%, 0.015 mmol.), Solvent (0.5 

mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by chiral HPLC analysis and optical rotation 

values. 

 

All four complexes were found to catalyse the cyclisation of 1.44, in a 5-exo-trig 

fashion, to tetrahydrofuran 1.45.  However, the only complex able to induce chirality 

was R-4.7-Ag (entry 8).  Although a low ee of 15% was obtained, the reaction was 

complete in just 15 minutes, thus supporting the hypothesis that a chiral counteranion 

is involved in the rate determining step.  By comparing the optical rotation of the 

product to literature values,
45,68,131 

the major enantiomer can be assigned as R. 

 

Entry Catalyst Solvent t (h) % Conversion
[b] 

% ee 

(R/S)
[c] 

1 R-4.4-Ag DCE 36 100 0 

2 R-4.4-Ag THF 36 67 0 

3 R-4.4-Ag Toluene 36 27 0 

4 R-4.4-Ag MeOH 36 100 0 

5 R,R-4.5-Ag DCE 20 46 0 

6 R,R-4.5-Ag MeOH 20 100 0 

7 R-4.6-Ag DCE 20 100 0 

8 R-4.7-Ag DCE 0.25 100 15 (R) 
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This initial study also revealed that the solvent can greatly influence the reaction time. 

Using R-4.4-Ag as the catalyst, full conversion was obtained in DCE within 36 hours, 

but this decreased to 67% in THF and further to 27% in toluene (entries 1 to 3).  We 

hypothesised that this was due to the solubility of the complex in these solvents.  

Cyclisation of 1.44 with R-4.6-Ag was faster, requiring 20 hours to reach full 

conversion in DCE (entry 7), whereas cyclisation of 1.44 using R,R-4.5-Ag in DCE 

reached only 46% conversion in 20 hours (entry 5).   Switching to MeOH resulted in a 

homogeneous mixture and full conversion within 20 hours (entry 6).   

 

The conversion time observed with R-4.4-Ag could be compared to the cyclisation of 

1.44 with 15 mol% Ag2CO3  (Chapter 2) due to the similarities in pKa  (pKa of 

mandelic acid = 3.41,
128

 pKa of Ag2CO3H = 3.9),
120

 which proceeded to give full 

conversion within 48 hours.  Cyclisation of 1.44 with the more acidic R-4.6-Ag (pKa 

of CSA = 1.2)
128

 in DCE proceeded in a faster reaction time (entry 7), whereas 

cyclisation with the less acidic R,R-4.5-Ag (pKa of tartaric acid = 3.16)
141

 in DCE was 

slower (entry 5).   However, cyclisation of 1.44 with R,R-4.5-Ag in MeOH afforded 

full conversion to 1.45 in 20 hours (entry 6).  This suggested that solubility may play 

a larger role than pKa in these reactions.  

 

In comparison to catalysts 4.4-Ag to 4.6-Ag, the short reaction time observed using R-

4.7-Ag could be attributed to the acidic nature of the ligand (pKa of diphenyl 

hydrogen phosphate is 0.26 in H2O).
142

  From Chapter 3, it was found that the 

cyclisation of 1.44 to 1.45 occurred faster when the weaker/less acidic counteranion, 

OCOCF3  (pKa of TFA = 0.23)
136

 was used in place of OTf (pKa of TfOH = -14).
122

 

The similarities in the pKa of R-4.7-H (pKa = 0.26) and TFA (pKa = 0.23) may 

influence the ability of both to enable cyclisation quickly and efficiently.  However, 

the solubility of R-4.7-Ag in the reaction medium could also be a contributing factor. 

 

Further optimisation studies were thus conducted using phosphate R-4.7-Ag as a 

catalyst.   
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4.2 Use of R-4.7-Ag in Silver-Catalysed Hydroalkoxylation Reactions 

 

4.2.1 Solvent Screen 

 

Previously, the highest enantioselectivities were achieved using AgBF4/R-BINAP in 

toluene, THF or DCE (Chapter 2). Accordingly, a solvent screen was performed with 

these three solvents (Table 4.2).  Switching the solvent from DCE to toluene had little 

effect on conversion rate (entry 1 vs 2), whereas full conversion with THF required an 

extended reaction time of three hours (entry 3). In all cases, the enantioselectivity was 

unaffected. Thus, DCE was used as the solvent of choice. 

 

Table 4.2: Cyclisation of 1.44 with 15 mol% R-4.7-Ag.
[a] 

 

 
 

Entry Solvent  T (
o
C) t (h) % ee (R/S)

 [b] 

1 DCE  r.t 0.25 15 (R) 

2 Toluene r.t 0.25 16 (R) 

3 THF r.t 3 14 (R) 

[a]
Reaction conditions: 1.44 (25 mg, 0.1 mmol., 200 mM), R-4.7-Ag (15 mol%, 0.015 mmol.), Solvent 

(0.5 mL), r.t. 
[b]

 Determined by chiral HPLC analysis and optical rotation values. 

 

4.2.2 Catalytic Loading and Dilution Screen 

 

Next, effects of catalytic loading and dilution were investigated (Table 4.3).  

Decreasing the catalytic loading from 15 to 5 mol% was found to decrease the 

enantioselectivity (entry 1 vs 2), whereas increasing the catalytic loading to 30 and 50 

mol% had no effect on either rate or enantioselectivity (entries 3 and 4).  Conversely, 

increasing the dilution of the reaction reduced the reaction time (entries 5 and 6).  In 

summary, alterations in catalytic loading and dilution had no overall positive effect on 

conversion or enantioselectivity.   
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Table 4.3: Cyclisation of 1.44 with R-4.7-Ag.
 [a] 

 

[a]
Reaction conditions: 1.44 (25 mg, 0.1 mmol.), R-4.7-Ag (x mol%, x mmol.), DCE (y mL), r.t. 

 
[b]

 Determined by chiral HPLC analysis and optical rotation values. 

 

4.2.3 Effect of Temperature 

 

Next, the performance of R-4.7-Ag at low reaction temperatures was investigated 

(Table 4.4).  Reducing the temperature to 0 ºC was found to dramatically decrease the 

rate of the reaction from 15 minutes to 5 hours, but only increase the 

enantioselectivity by 3% (entry 1 vs 2).  Further reductions in temperature did not lead 

to any enhancement in ee (entries 3 and 4).   

 

Table 4.4: Cyclisation of 1.44 with 15 mol% R-4.7-Ag.
 [a]

 

[a]
Reaction conditions: 1.44 (25 mg, 0.1 mmol., 200 mM), R-4.7-Ag (15 mol%, 0.015 mmol.), DCE 

(0.5 mL). 
[b]

 Determined by chiral HPLC analysis and optical rotation values. 

 

4.2.4 Synthesis of Ag(I) Complexes 1.66, 4.8-Ag and 4.9-Ag 

 

It has been well-documented in literature that the introduction of bulky aryl groups at 

the 3,3’-position can often improve the enantioselectivity of reactions catalysed by 

chiral phosphoric acids.
36,68,137

 By considering the DFT model (Figure 4.2), bulky aryl 

Entry x (mol%) y (mL) t (h) % ee (R/S)
 [b] 

1 5 0.5 0.25 6 (R) 

2 15 0.5 0.25 15 (R) 

3 30 1.0 0.3 12 (R) 

4 50 1.0 0.3 12 (R) 

5 5 1.0 1 9 (R) 

6 5 3.0 3 10 (R) 

Entry T (
o
C) t (h) % ee (R/S)

 [b] 

1 r.t 0.25 15 (R) 

2 0 5 18 (R) 

3 -5 6 18 (R) 

4 -20 9 17 (R) 
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groups at C-3 should also facilitate the transfer of chirality from the ligand backbone 

to the site of C-O bond formation. 

 

With this in mind, further catalysts 4.8-Ag, R-1.66 and 4.9-Ag were prepared from the 

corresponding phosphoric acids (4.8-H, 1.66-H and 4.9-H) as white solids in 94%, 

90%, and 85% yields, respectively (Figure 4.2).
36

  The phosphoric acid 4.9-H was 

kindly donated by Prof. J. Antilla from the University of South Florida, while the 

others were procured commercially.  The preparative procedure and characterisation 

data for Ag(I) complexes S-4.8-Ag and R-1.66-Ag have been published by research 

groups of Mikami
68,143

 and Toste
36

 respectively, while S-4.9-Ag is a novel Ag(I) 

complex.  The structures of R-4.8-Ag and R-1.66 were confirmed by comparison of 

their characterisation data to published literature values.
36,68,143

  For R-4.8-Ag, a 
31

P 

resonance signal at 14.1 ppm and a -63.1 ppm signal in 
19

F NMR were observed, but 

due to the extensive product fragmentation in MS, R-4.8-Ag was further characterised 

by elemental analysis.  On the other hand, a 
31

P NMR resonance at 14.8 ppm and MS 

in FAB mode confirmed the expected mass ([MH]
+
 = 861).  The structure of S-4.9-Ag 

was confirmed by a signal shift in 
31

P NMR from 0.9 to 1.1 ppm and a [M]
+
 mass 

peak at 707 in MS (FAB mode). 

 

 

 

 

Figure 4.2: Ag(I) complexes R-4.8-Ag, R-1.66 and S-4.9-Ag. 
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4.2.5 Screening of Ag(I) Complexes R-4.8-Ag, R-1.66 and S-4.9-Ag in 

Hydroalkoxylation Reactions 

 

These three complexes were subsequently used in the cyclisation of 1.44 (Table 4.5). 

The introduction of aryl groups at the 3,3’-position improved the enantioselectivity, 

but by only a modest amount (up to 23% ee).  The fastest reaction time was observed 

using R-4.8-Ag; cyclisation of 1.44 was complete in 15 minutes at room temperature 

to afford R-1.45 with 22% ee (entry 1).  Carrying out the reaction at -10 
o
C failed to 

enhance the selectivity (entry 2).  Using the sterically bulky R-1.66 afforded 1.45 in 

23% ee, but with a decrease in rate from 15 minutes to 5.5 hours (entry 3), while S-

4.9-Ag afforded S-1.45 in 12 hours with just 7% ee (entry 4). 

 

Table 4.5: Cyclisation of 1.44 with catalysts R-4.8-Ag, R-1.66 and S-4.9-Ag.
 [a] 

 

 
 

[a]
Reaction conditions: 1.44 (25 mg, 0.1 mmol., 200 mM), Cat. (15 mol%, 0.015 mmol.), DCE  

(0.5 mL). 
[b]

 Determined by chiral HPLC analysis and optical rotation values. 

 

4.2.6 Control Experiments Conducted with Ag(I) Salts 

 

In light of the observed enantioselectivities achieved using BINOL-derived phosphate 

Ag(I) complexes  we decided to examine control experiments conducted with Ag(I) 

salts reported in previous reports where chiral Ag(I) salts were used in the generation 

of the cationic gold complexes for catalysis.
36,68

  In the paper published by Toste and 

co-workers,
36

 it was reported that 5 mol% of R-1.66 was unable to produce an 

appreciable background reaction at room temperature in the cyclisation of γ-allenic 

alcohols.  The timescale of these control reactions was not discussed, although 

Entry Catalyst  T (
o
C) t (h) % ee (R/S)

 [b] 

1 R-4.8-Ag r.t 0.25 22 (R) 

2 R-4.8-Ag -10 24 22 (R) 

3 R-1.66-Ag r.t 5.5 23 (R) 

4 S-4.9-Ag r.t 12 7 (S) 
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hydroalkoxylation of γ-allenic alcohols (1.67 and 1.68) using dppm(AuCl)2 and R-

1.66 produced the corresponding 1.69 and 1.70 in 1-30 hours depending on their 

substitution pattern (Scheme 4.2).
36

  

 

Scheme 4.2: Hydroalkoxylation reactions using dppm(AuCl)2 and R-1.66.
 

 

Conversely, Mikami et al.
68

 did not describe any control reactions with Ag-BINOL 

complexes.  However, the reaction performed using the chiral diphosphine ligand, 

DM-BIPHEP and achiral AgOTf was found to have a lower enantioselectivity than 

the corresponding reaction using S-1.79 as the counteranion (Scheme 4.3).  It is 

interesting to note that the opposite stereoinduction is observed in this system 

compared to Toste’s (Scheme 4.2).   

 

 

Scheme 4.3: Cyclisation of 1.44 using DM-BIPHEP(AuCl)2 and S-1.79. 

In comparison, we have shown that the cyclisation of 1.44 to R-1.45 occurred in the 

presence of 15 mol% of R-1.66 to full conversion within 5.5 hours at room 

temperature.  Even at 2.5-5 mol% of catalyst there should theoretically be a moderate 

background reaction in the above systems after 24 hours.   
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4.3 Use of TADDOL Derived Ligands in Asymmetric Silver- 

Catalysed Hydroalkoxylation Reactions 

 

Next, we turned our attention towards chiral anionic ligands with better chiral 

discriminating reagents, particularly those with similar pKa values to TFA and R-4.7-

H. On this basis, the chiral phosphoric acid derived from TADDOL looked 

particularly promising (Figure 4.3).   Previously, this class of chiral Brønsted acids are 

known to be effective in enantioselective Mannich-type
144

 and Simmons–Smith 

cyclopropanation reactions.
145

 

 

Figure 4.3: Chiral phosphoric acid R,R-4.10-H. 

 

Comparing the reported crystal structures of R-4.7-H and R,R-4.10-H it can be 

observed that bond lengths around the phosphorus atom are very similar (Figure 

4.5).
145,146

  However, the positioning of the Ph groups in R,R-4.10-H, are closer to the 

reaction centre and may exhibit a stronger directing effect on the outcome of the 

reaction. 

 

 

 

 

 

Figure 4.4: Crystal structures of R-4.7-H and R,R-4.10-H.
145,146
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4.3.1 Synthesis of R,R-4.10-Ag 

 

Following a literature procedure, the synthesis of phosphate R,R-4.10-Ag was 

achieved in four steps from the TADDOL-derived diol precursor R,R-4.11 (Scheme 

4.4).  Firstly, R,R-4.11 was treated with PCl3 in the presence of NEt3, followed by the 

addition of 3-hydroxypropionitrile to form phosphonite intermediate R,R-4.12. This 

was immediately oxidised to phosphonate R,R-4.13 using 30% aq. H2O2 and was 

isolated in 74% yield after purification by column chromatography.  Deprotection of 

the phosphorus atom was carried out by the addition of DBU, and this was followed 

by an acidic work-up to afford R,R-4.10-H in 97% yield.  The structure of R,R-4.10-H 

was confirmed by comparison of its characterisation data to published literature 

values.
145

  Finally, the desired product R,R-4.10-Ag was formed by stirring the 

phosphoric acid R,R-4.10-H with 0.5 equivalents of Ag2CO3 in a 1:1 mixture of 

CH2Cl2 and H2O for 2 hours (Method 3).
36

   This afforded R,R-4.10-Ag as a white 

solid in 87% yield.  The formation of R,R-4.10-Ag was indicated by a shift of the 
31

P 

NMR resonance from -8.0 to -0.15 ppm, FAB mass spectrometry ([M]
+
 = 635) and 

elemental analysis. 

 

 

Scheme 4.4: Synthesis of R,R-4.10-Ag. 
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4.3.2 Screening of Ag(I) Complex R,R-4.10-Ag in Hydroalkoxylation 

Reactions 

 

The TADDOL-based complex R,R-4.10-Ag was subsequently used in the cyclisation 

of 1.44 (Table 4.6).  The reaction with R,R-4.10-Ag required a longer reaction time of 

8 hours, compared to the 15 minutes with R-4.7-Ag.  DCE promoted full conversion 

and afforded an ee of 17% (entry 1).  Changing the solvent to THF or less polar 

toluene had little effect on the enantioselectivity, but decreased the conversion to 52 

and 65% respectively, probably due to the limited solubility of the catalyst in these 

solvents (entries 2 and 3).  Similarly, the use of dioxane led to poorer conversion and 

ee due to solubility issues (entry 4).  Notably, the use of phosphoric acid R,R-4.10-H 

was unable to catalyse the reaction. 

Table 4.6: Cyclisation of 1.44 with catalyst R,R-4.10-Ag.
[a] 

 
 

Entry Solvent % Conversion after 8 hours
[b]

 % ee (R/S)
[c] 

1 DCE 100 17 (S) 

2 Toluene 65 15 (S) 

3 THF 52 15 (S) 

4 Dioxane 15 7 (S) 

[a
Reaction conditions: Substrate 1.44 (25 mg, 0.1 mmol., 200 mM), R,R-4.10-Ag (15 mol%, 0.015 

mmol.), Solvent (0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by chiral HPLC analysis and 

optical rotation values. 

 

4.3.3 Synthesis and Screening of Ag(I) Complex S,S-4.14-Ag in 

Hydroalkoxylation Reactions 

 

In an attempt to improve the enantioselectivity of the reaction, S,S-4.14-Ag, with 

naphyl α-position groups, was also synthesised using the same procedure described 

for R,R-4.10-Ag (Figure 4.5).  The structure of S,S-4.14-H was confirmed by 

comparison of its characterisation data to published literature values,
145

 while the 
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formation of the desired product S,S-4.14-Ag was indicated by a shift of the 
31

P NMR 

resonance from -7.43 to -0.5 ppm, FAB mass spectrometry ([MH]
+
 = 835) and the 

composition was confirmed by elemental analysis. 

 

 

 

 

 

Figure 4.5: Chiral phosphate S,S-4.14-Ag. 

 

The complex S,S-4.14-Ag was subsequently used in the cyclisation of 1.44 in DCE at 

room temperature (Scheme 4.5).  Disappointingly, increasing the steric bulk of the 

aryl substituent only led to a loss in reaction rate and enantioselectivity. 

 

 

Scheme 4.5: Cyclisation of 1.44 with catalyst S,S-4.14-Ag. 

 

4.4 Use of Phosphinic acids as Ligands in Asymmetric Silver-

Catalysed Hydroalkoxylation Reactions 

 

After these disappointing results, we decided to look at other phosphorus species.  

Phosphinic acids are inherently less acidic (pKa around 3.08 in H2O for 

dimethylphosphinic acid) than phosphoric acids,
147

 but have the potential for 

introducing chiral groups α to the phosphorus atom, which could facilitate 

enantioselectivity.  A literature search identified two interesting candidates: R,R-4.15-

H and β-4.16-H (Figure 4.6).  R,R-4.15-H was kindly donated by Prof. J-C. Fiaud of 

the University of Paris-Sud 11, while β-4.16-H was obtained from Prof. P. Pringle of 

the University of Bristol. 
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Both compounds were synthesised as intermediates in the formation of phosphine 

oxide and phosphate compounds, respectively, which were applied as ligands in 

asymmetric hydrogenation reactions.
148,149

 
 

 

 

 

 

Figure 4.6: Structures of chiral phosphinic acids R,R-4.15-H and β-4.16-H. 

 

R,R-4.15-H has a 2,5-diaryl frame and appears to be a promising ligand due to phenyl 

groups adjacent to the phosphorus atom.  However, a major problem is its low 

solubility in most organic solvents. It is insoluble in toluene or THF, and only 

partially soluble in MeOH and CH2Cl2. 
150

 The phosphinic acid β-4.16-H, on the other 

hand, contains a C1-symmetric cage structure with relatively little steric/chiral 

elements.  The main asymmetry lies in the groups  to the phosphorus (O or CH2) 

which are normally regarded as isosteric (Figure 4.7).  Despite its apparently ‘weak’ 

chirality the derived phosphine ligand β-4.17-H afforded up to 90% ee in the 

ruthenium-catalysed asymmetric hydrogenation of methyl acetamidocinnamate and 

methyl acetamidoacrylate.
149

   

 

 

 

 

 

Figure 4.7: Structures of -and β-4.16-H and phosphine β-4.17-H. 

 

4.4.1 Synthesis and Screening of Ag(I) Complex R,R-4.15-Ag in 

Hydroalkoxylation Reactions 

 

R,R-1.15-Ag was formed as a white solid in 98% yield from R,R-1.15-H using method 

3.
36

  However, the Ag(I) salt is even less soluble in organic solvents than the starting 

material.  Characterisation of this compound is therefore incomplete.  The structure 

was confirmed by the [M]
+
 mass peak at 635 in MS (FAB mode) and the composition 
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was confirmed by elemental analysis.  Cyclisation of 1.44 to 1.45 was carried out in 

DCE at room temperature (Scheme 4.6). Unfortunately, due to its limited solubility, 

product formation only proceeded in 10% conversion with 10% ee after 14 days.  The 

complex is slightly more soluble in toluene, but the reaction still only reached 15% 

conversion after 7 days. 

 

Scheme 4.6: Cyclisation of 1.44 with catalyst R,R-1.15-Ag. 

 

4.4.2 Synthesis and Initial Screening of β-4.16-Ag in 

Hydroalkoxylation Reactions 

β-4.16-Ag was subsequently prepared as a white solid in 87% yield using method 

2.
139,140

 The formation of β-4.16-Ag was indicated by a shift of the 
31

P NMR 

resonance from 33.2 to 31.0 ppm and ICP-OES and elemental analysis of the solid 

sample revealed a metal-to-ligand ratio of 1:1.  In addition to the [M]
+ 

ion
 
at 355, 

additional peaks at 1527 and 1173 were also observed in the mass spectrum (Figure 

4.8).  These were assigned to [M3Ag4]
+
 and [M4Ag5]

+ 
respectively, as indicated by the 

isotope distribution pattern, which supported the presence of four and five Ag atoms.  

This suggests that β-4.16-Ag can exist in an aggregated/polymeric form.  

 

 

 

 

 

 

 

 

 

Figure 4.8: Condensed MS spectrum of β-4.16-Ag with isotopic distribution patterns. 
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The complex β-4.16-Ag was subsequently used in the cyclisation of 1.44 using DCE 

as the solvent (Scheme 4.8).  Gratifyingly, the cyclisation of 1.44 proceeded, with full 

conversion in 20 minutes to afford S-1.45 with 28% ee.  Notably, the use of 

phosphinic acid β-4.16-H was unable to catalyse the reaction. 
 

 

 

Scheme 4.7: Cyclisation of 1.44 using catalyst β-4.16-Ag. 

 

4.4.2.1 Solvent Screen 

 

Once again, DCE was found to furnish S-1.45 in the shortest reaction time (20 

minutes) and the highest ee (Table 4.7, entry 1). Reactions carried out in other aprotic 

solvents gave a variety of results, which is attributed to the limited solubility of the 

catalyst (entries 2 to 6); extended reaction times using acetone and DMF were 

required to reach full conversions (entries 3 and 4), whereas <4 hours were required 

for CH2Cl2, THF and dioxane (entries 2, 5 and 6).  Generally, using solvents DCE, 

CH2Cl2, acetone and DMF, the enantioselectivity of S-1.45 remained above 24% ee 

(entries 1 to 4), but dropped to <20% ee using THF and dioxane (entries 5 and 6).  

Reactions carried out in non-polar solvents were fast (1 hour), but the ee was reduced 

(entries 7 and 8).  The reaction in MeOH required 13 hours to complete and 

diminished the ee (entry 9).   

 

Table 4.7: Solvent screen using β-4.16-Ag.
[a] 

 

Entry Solvent t (h)
[b]

 % ee (R/S)
[c] 

Entry Solvent t (h)
[b]

 % ee (R/S)
[c] 

1 DCE 0.3 28 (S) 6 Dioxane 4 17 (S) 

2 CH2Cl2 1 26 (S) 7 Chloroform 1 17 (S) 

3 Acetone 17 25 (S) 8 Toluene 1 13 (S) 

4 DMF 24 24 (S) 9 MeOH 13 6 (S) 

5 THF 3 18 (S) 

[a]
Reaction conditions: 1.44 (25 mg, 0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 mmol.), Solvent 

(0.5 mL), r.t. 
[b]

 All conversions were 100% (determined by  
1
H NMR).  

[c]
 Determined by chiral HPLC 

analysis and optical rotation values. 
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4.4.2.2 Catalytic Loading and Dilution Screen 

 

Decreasing the catalytic loading from 15 to 2.5 mol% was found to have a negative 

effect on the conversion; 10 mol% of β-4.16-Ag required 1 hour to reach completion, 

while 5 mol% required 2 hours (Table 4.8, entries 1 to 3).  As an extreme, the reaction 

time was decreased to 7 hours when 2.5 mol% of β-4.16-Ag was used (entry 4).  

Increasing the volume of solvent from 0.5 to 1 mL was observed to reduce the 

reaction time from 2 to 3 hours (entry 3 vs 6), whereas the opposite was observed by 

decreasing the volume to 0.25 mL (entry 3 vs 5).  On a positive note, the 

enantioselectivity remained uniformly between 27-30%.  This suggests that the 

catalytic loading could easily be decreased to 5 mol% without any adverse effects on 

the enantioselectivity.  

 

Table 4.8: Cyclisation of 1.44 with β-4.16-Ag.
 [a] 

[a]
Reaction conditions: 1.44 (25 mg, 0.1 mmol., x mM), β-4.16-Ag (x mol%, x mmol.), DCE (x mL), 

r.t. 
[b]

 Determined by chiral HPLC analysis and optical rotation values. 

 

4.4.2.3 Effect of Temperature 

 

The performance of β-4.16-Ag at low temperatures was investigated (Table 4.9).  

From this study, reducing the temperature to 0 ºC was found to increase the 

enantioselectivity by only 5% and decrease the reaction time from 20 minutes to 4 

hours (entry 1 vs 2).  Further reducing the temperature to -10 
o
C decreased the 

reaction time to 17 hours, but without an increase in ee (entry 3).  Further reactions 

were therefore conducted at room temperature. 

 

Entry x (mol%) Volume (mL) t (h) % ee
[b] 

1 15 0.5 0.3 28 (S) 

2 10 0.5 1 27 (S) 

3 5 0.5 2 30 (S) 

4 2.5 0.5 7 29 (S) 

5 5 0.25 1 28 (S) 

6 5 1 3 29 (S) 
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Table 4.9: Cyclisation of 1.44 with 15 mol% β-4.16-Ag.
 [a] 

[a]
Reaction conditions: Substrate 1.44 (25 mg, 0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 

mmol.), DCE (0.5 mL). 
[b]

 Determined by chiral HPLC analysis and optical rotation values. 

 

Overall, by using β-4.16-Ag for the cyclisation of 1.44 to tetrahydrofuran S-1.45 a 

moderate enantioselectivity of 28% can be achieved.  To examine the scope of this 

catalyst a range of allenic alcohols and acids were prepared and subjected to catalysis 

by 5 mol% β-4.16-Ag in DCE at room temperature. 

 

4.5 Synthesis of Substrates 

 

4.5.1 Synthesis of Terminal γ-Allenic Alcohols 

 

Utilising pathway A, previously described in Chapter 2, three novel γ-allenic alcohols 

were prepared (Figure 4.9). 

 

 

 

 

 

Figure 4.9: Novel terminal γ-allenic alcohols. 

All three novel terminal γ-allenic alcohols (3.18, 4.18 and 4.19) were formed in a 

similar manner to γ-allenic alcohol 1.44 (Scheme 4.8).
45  

Entry Catalytic loading (mol%) T (
o
C) t (h) % ee (R/S)

 [b] 

1 15 r.t 0.3 28 (S) 

2 15 0 4 33 (S) 

3 15 -10 17 33 (S) 
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Scheme 4.8: Synthesis of terminal γ-allenic alcohols 3.18, 4.18 and 4.19. 

 

Propargylation of all three esters 4.20a to 4.20c were performed to furnish 4.21a, 

4.21b and 4.21c in yields of 73%, 86% and 85% respectively.  In the case of 4.20a, 

this was achieved using freshly prepared LDA,
58 

 whereas less basic sodium 

methoxide was able to deprotonate 4.20b and 4.20c.
151

  Next, the Crabbé reaction was 

performed to furnish 4.22a, 4.22b and 4.22c in 40%, 45% and 58% yields 

respectively, after purification by column chromatography.
58 

Finally the LAH 

reduction to 3.18, 4.18 and 4.19 proceeded in between 85-89% yields.
58 

   

 

γ-Allenic alcohol 3.18 was fully characterised:  The OH moiety could be observed by 

its IR absorption peak at 3339 cm
-1 

and the allene moiety as peaks at 1953 and 1028 

cm
-1

, further supported by 
13

C NMR signals at 209.4, 85.72 and 73.7 ppm, and 
1
H 

NMR signals as a triple triplet at 5.11 and two triplets at 4.69 and 4.67 ppm.  Finally, 

MS in CI mode confirmed the expected mass of the compound ([MNH4]
+
 = 184).  The 

structures of 4.18 and 4.19 were similarly characterised using IR, MS and NMR 

techniques. 

 

4.5.2 Synthesis of Internal γ-Allenic Alcohols 

 

Internal allenic alcohols can be formed by a propargylic rearrangement reaction 

involving mono-O-tetrahydropyran protected propargyl diols (Scheme 4.9).
152
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Scheme 4.9: Formation of internal -allenic alcohols.
152

 

 

In this work, three novel internal allenic alcohols were prepared using this method 

(Figure 4.10).
94,152-154

 
 

 

Figure 4.10: Internal γ-allenic alcohols. 

The allenol intermediates, R
1
 = -CH2(CH2)nCH2- (where n = 3, 4.25a; n = 2, 4.25b), 

or Me (4.25c), were formed in three steps from the appropriate 3-hydroxyl alkyne 

(Scheme 4.10).  

Scheme 4.10:  Reaction conditions: a) 3,4-dihydro-2H-pyran, p-TsOH, CH2Cl2, 0 
o
C, 

2h. b) n-BuLi, HMPA/or DMPU, THF, -70 to 0 
o
C; HCHO, 24 h. c) LAH, THF, 0 

o
C, 

24h. 

 

Firstly, the THP protected alcohols (4.26a, 4.26b and 4.26c) were obtained from the 

relevant 3-hydroxyl alkyne by a standard procedure. 
155

   In the case of 4.26a and 

4.26c, purification was achieved by distillation with a 30 cm long vigreux column, 

affording pure products in 90% and 62% yields respectively, while 4.26b was isolated 

in 94% after purification by column chromatography.  The next step required the 

addition of paraformaldehyde, which utilises HMPA to obtain intermediates 4.27a in 

a 63% yield after purification by column chromatography.  To avoid the use of the 

extremely toxic HMPA, it was substituted with DMPU, which resulted in 20% yield 

of 4.27a in the first attempt, following an NH4Cl work-up.  Subsequently, the workup 
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procedure was modified to incorporate a phosphate buffer, followed by neutralisation 

of the aqueous layer. This resulted in an improvement in product yield to 67%, 

showing that DMPU can be a viable alternative for future reactions.  This optimised 

and safer procedure was subsequently utilised in the formation of 4.27b and 4.27c to 

afford pure products in 94% and 83% yields respectively.  Finally, the LAH 

propargylic rearrangement reaction proceeded to give 4.25a, 4.25b and 4.25c in 73%, 

80% and 93% yields respectively.  α-Allenic alcohol 4.25a was characterised by 
13

C 

signals 197.2, 105.9 and 89.7 corresponding to the allene moiety.  IR spectrum of the 

compound contained characteristic C=C allenic stretches at 1964 and 1053 cm
-1 

and 

O-H stretch at 3304 cm
-1

.  Finally, MS in EI mode confirmed the expected mass of the 

compound ([M]
+
 = 138).  α-Allenic alcohols 4.25b and 4.25c were also characterised 

by NMR and MS in CI mode, which confirmed the expected mass of the 4.25b 

([MNH4]
+
 = 142) and 4.25c ([MNH4] 

+
 = 116). 

 

These α-allenic alcohols (4.25a, 4.25b and 4.25c) were used to form allenic ester 

4.28a, 4.28b and 4.28c.  This could be achieved in two different ways (Scheme 4.11).   

 

 

Scheme 4.11: Synthesis of allenic esters 4.28a, 4.28b and 4.28c.  

 

In the first route, the α-allenic alcohols 4.25 are converted into benzoyl ester 4.29 and 

are used in a modified Pd-catalysed coupling reaction with 2,2-diphenylacetate 

2.1.
45,58

 In the second route, the α-allenic alcohols 4.25 are converted into mesylate 

esters (4.30) and used to form the corresponding allenic ester (4.28) in a direct 

nucleophilic substitution reaction with 2.1.
26,34
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Both synthetic routes were employed in the preparation of 4.28a.  First, 4.25a was 

converted to the benzoyl ester 4.31a in 98% yield, which has limited stability (partial 

decomposition was observed during purification by column chromatography) so was 

used immediately, or kept in the freezer until required.  This was coupled to 2,2-

diphenylacetate 2.1 to afford the desired product 4.28a in 58% yield after purification 

by column chromatography.  Alternatively, 4.25a was converted to the mesylate 

4.30a to furnish 4.28a in 94% yield after purification by column chromatography.  

This second pathway is clearly more efficient, and can also be employed to synthesise 

the corresponding γ-allenic amines (Chapter 5). 

 

Subsequently, the second route was used for the synthesis of 4.28b and 4.28c.  Allenic 

ester 4.28b was formed in 89% yield after purification by column chromatography.  

However, the reaction to provide 4.28c proved to be capricious.  Analysis by LC-MS 

revealed the presence of the desired product (4.28c), starting material (2.1) and the 

corresponding carboxylic acid (4.33) (Scheme 4.12).  Attempts to separate the 

mixture by column chromatography proved futile as all three products co-eluted.  

Thus, the first pathway was implemented: the benzoyl ester 4.29c was prepared from 

4.25c in 59% yield and coupled to 2,2-diphenylacetate 2.1 under Pd catalysis to 

provide the 4.28c in 47% yield after column chromatography.   

 

 

 

Scheme 4.12: Side product 4.31 formed in the coupling of 4.30c to 2.1. 
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Finally, reduction to the alcohol was achieved using lithium aluminium hydride 

(Scheme 4.13).  3.17, 4.23 and 4.24 were furnished in 86%, 78% and 50% yield 

respectively after purification by column chromatography.  γ-Allenic alcohol 3.17 was 

fully characterised; the allenic moiety was observed as 
13

C signals 200.2, 101.7 and 

84.2 ppm, 
1
H signal 4.65 ppm and IR absorption bands at 1964 and 1044 cm

-1
.  The 

OH moiety gave rise to an IR absorption band at 3558 cm
-1 

and resonated at 4.21 ppm 

in the 
1
H NMR spectrum.  MS provided the correct mass of the compounds ([MH]

+
 = 

318) and the composition was confirmed by elemental analysis.   γ-Allenic alcohols 

4.23 and 4.24 were also characterised by NMR and IR spectra, while MS in CI mode 

confirmed the expected mass of 4.23 ([MNH4]
+
 =332) and 4.24 ([MNH4] 

+
 = 296) and 

the composition determined by elemental analysis.   

 

 

Scheme 4.13: LAH reduction of 4.28a, 4.28b and 4.28c. 

 

4.5.3 Synthesis of -Allenoic Acids 

 

Four novel -allenoic acids (4.31 to 4.34) were also prepared from the corresponding 

allenic ester using KOH as the base in refluxing ethanol (Scheme 4.14). 

 

 

 

Scheme 4.14: Synthesis of -allenoic acids from the corresponding γ-allenic ester. 
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All four -allenoic acids (4.31 to 4.34) were formed in high yields (71-97%) after 

purification by column chromatography.  These compounds were fully characterised 

by IR, NMR, MS and their composition confirmed by elemental analysis. 

 

4.5.4 Allenic Alcohols Synthesised by Other Members of the Group 

 

Concurrently, δ-allenic alcohol 4.35
45,58 

and γ-allenic alcohol 4.36
156

 were also 

prepared and provided by two colleagues (Figure 4.11) by procedures described in 

literature. 
 

 

 

 

Figure 4.11: δ-allenic alcohol 4.35 and γ-allenic alcohol 4.36. 

 

4.6 Cyclisation of Substrates 

 

4.6.1 Cyclisation of Substrates Using Ag(OCOCF3) 

 

To provide racemic samples for the development of chiral HPLC methods, the twelve 

substrates were first subjected to racemic reactions, using 15 mol% Ag(OCOCF3) in 

0.5 mL DCE at room temperature (Table 4.10).  In all cases, the γ-allenic alcohols 

cyclised to the respective tetrahydrofurans products exclusively (entries 1 to 7). The 

terminal γ-allenic alcohol 3.18 cyclised to the spirocyclic structure 3.22 in one hour 

(entry 1), whereas 24 hours was required to cyclise fluorenol-derived 4.18 to 4.37 

(entry 2).  Cyclisation of diol 4.19 afforded a mixture of diastereoisomers in a 2:1 

ratio after 1 hour (entry 3).  The reaction of internal γ-allenic alcohols (3.17, 4.23 and 

4.24) with phenyl substituents at the β position on the allenic chain, furnished 3.19, 

4.39 and 4.40 in 93% to 96% yields after 2 hours (entries 4 to 6).   No difference in 

conversion was observed by changing the methyl groups for cyclohexane or 

cyclopentane.  Moving the phenyl substituents closer to the oxygen atom (4.36) 

lengthened the reaction time to 16 hours (entry 7).  δ-Allenic alcohol 4.35 could also 

be tolerated; tetrahydropyran 4.42 was isolated in 86% yield after 6 hours (entry 8).   
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Novel -allenoic acids 4.31 to 4.34 cyclised to the respective lactones (4.43 to 4.46) 

in high yields of 92% to 96% within 2 hours (entry 9 to 12).   

 

Table 4.10: Hydroalkoxylation and hydroacyalkoxylation reactions using 

Ag(OCOCF3)
 [a] 

 

Entry Substrate Product t (h) % Yield
[b] 

1  

 

 

3.18 

3.22 
1 76 

2 

4.18 
    4.37 

24 92 

3  

 

4.19 
4.38 

1 87
[c] 

4 

3.17 
3.19 

2 96 

5 

4.24 

4.39 

2 93 

6 

4.23 

4.40 

2 95 
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[a]
Reaction conditions: Substrate (0.1 mmol., 200 mM), Ag(OCOCF3) (15 mol%, 0.015 mmol.), DCE 

(0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR. 

[c]
 2:1 ratio of diastereoisomers. 

 

The structures of 4.38, 3.19, 4.39, 4.41 and 4.42 were confirmed by comparison of 

their characterisation data to published literature values.
58,68,157

 The structures of novel 

tetrahydrofurans 3.22, 4.37 and 4.40 were fully characterised.  In the 
1
H NMR 

spectrum of 3.22 and 4.37, the observation of a double double doublet resonance at 

5.88 - 6.17 ppm and two double triplets at 5.24 - 5.47 and 5.09 ppm supported the 

presence of an alkene moiety, supported by further signals at 138.4 - 139.5 and 115.1 

- 116.0 ppm in 
13

C NMR spectrum.  For 4.40, the observation of a multiplet at 5.45 - 

5.36 ppm in the 
1
H NMR spectrum and the signal 147.9 ppm in the 

13
C NMR 

7 

4.36 
4.41 

16 89 

8 

4.35 

 

 

 

4.42 

6 86 

9  

 

 

4.32 

 

 

 

4.43 

1 94 

10 

4.33 
4.44 

2 98 

11 

4.31 4.45 

2 92 

12 

4.34 4.46 

2 96 
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supported the presence of an alkene. Finally, MS in CI mode furnished the expected 

mass ions of 3.22, 4.37 and 4.40 and the composition was further determined by 

elemental analysis. 

 

Novel lactones 4.43 to 4.46 were also fully characterised; for lactone4.43, the 

presence of an alkene moiety was observed as a double double doublet resonance at 

5.96 ppm and two doublets at 5.45 and 5.34 ppm in the 
1
H NMR spectrum.  

13
C NMR 

signals at 135.0 and 118.9 ppm also supported the presents of an alkene moiety.  For 

lactones 4.44, 4.45 and 4.46, the presence of the alkene moiety was supported by a 

multiplet at 5.50 - 5.23 ppm in the 
1
H NMR.  From 

13
C NMR the sp-hybridised 

carbon of the alkene was identified (supported by HSQC and HMBC) as the signal 

140.8-152.5 ppm while the sp
2
-hybridised carbon atom was identified as the signal 

117.3-122.1 ppm.   The structures of all four lactones were also established by MS in 

CI mode and the composition confirmed by elemental analysis.    

 

With the racemic material in hand, chiral HPLC methods were developed to separate 

enantiomers of all products, except 3.22 and 4.37.   In the former case, the lack of a 

chromophore prevented analysis by chiral HPLC (UV detection), whereas 4.37 failed 

to resolve on available columns (Daicel Chiralcel OJ-H, OD-H, AS-H, AD-H or OC 

columns).  Hence, 3.22 and 4.37 were omitted in further investigations.   

 

4.6.2 Cyclisation of Substrates Using β-4.16-Ag 

 

The remaining 10 substrates were subsequently cyclised in the presence of β-4.16-Ag 

(Table 4.11).  

 

Table 4.11: Hydro(acy)alkoxylation reactions using 5 mol% β-4.16-Ag.
[a] 
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Entry Substrate Product t (h) 
% 

Yield
[b] 

% ee 

(R/S)
 [c] 

1 
3.17 R

1
 = -CH2(CH2)3CH2-, R

2
 = 

Ph, R
3
 = H, n = 1  

3.19 2 96 57 (S)
 

2 
4.24 R

1
 = CH3, R

2
 = Ph, R

3
 = H,  

n = 1 
4.39 2 97 36 (S) 

3 
4.23 R

1
 = -CH2(CH2)2CH2-,R

2
 = 

Ph, R
3
 = H, n = 1 

4.40 2 99 16 (S) 

4 4.35 R
1
 = R

3
 = H, R

2
 = Ph, n = 2 4.42 5 98 19 (S) 

5 
4.36 R

1
 = CH3, R

2
 = H, R

3
 = Ph,  

n = 1 
4.41 15 95 43 (S) 

6 
4.19 R

1
 = R

3
 = H, R

2
 = CH2OH,  

n = 1 
4.38 2 96 4/4

[d]
 

7 4.32 R
1
 = R

3
 = H, R

2
 = Ph 4.43 2 99 8

[e] 

8 
4.33 R

1
 = -CH2(CH2)3CH2-, R

2
 = 

Ph, R
3
 = H 

4.44 2 98 24
[e]

 

9 4.31 R
1
 = CH3, R

2
 = H, R

3
 = Ph 4.45 2 96 18

[e]
 

10 
4.34 R

1
 = -CH2(CH2)2CH2-, R

2
 = 

Ph, R
3
 = H 

4.46 2 98 15
[e]

 

11 1.44 R
1
 = R

3
 = H,R

2
 = Ph, n = 1 1.45 2 95 30 (S) 

[a]
Reaction conditions: Substrate (0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 mmol.), DCE (0.5 

mL), r.t. 
[b]

 Determined by 
1
H NMR. 

[c]
 Determined by chiral HPLC analysis and optical rotation 

values. 
[d]

 2:1 ratio of diastereoisomers.
 [e]

The absolute stereochemistry is not determined. 

 

This study showed that selectivity is dependent on the structure of the substrate.  

Hydroalkoxylation of internal - allenic alcohol 3.17, containing a cyclohexane group 

at the terminal position of the allene, afforded tetrahydrofuran 3.19 in two hours with 

57% ee (entry 1). The introduction of methyl groups at the terminus reduced the ee to 

36% (entry 2) and cyclopentane even further to 16% ee (entry 3). The cyclisation of 

4.35 was slower and much less selective, taking 5 hours to furnish 4.42 in 19% ee 

(entry 4), while the cyclisation of the sterically demanding 2,2-diphenyl-substituted 

allenol 4.36 required 15 hours (entry 5). Unfortunately, only a moderate amplification 

of enantioselectivity (7%) was observed by moving the phenyl substituents closer to 

the oxygen atom (entry 2 vs 5).  Desymmetrisation of diol 4.19 proceeded to give 
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diastereoisomers in a 2:1 ratio, but with extremely low enantioselectivies (entry 6).  

Hydroacyalkoxylation of all four β-allenoic acids to their requisite lactones proceeded 

in 2 hours, but with low enantioselectivities (entries 7 to 10).  The highest 

enantioselectivity was observed for the cyclisation of internal β-allenoic acid 4.33 to 

4.44 (24% ee) and the lowest with terminal β-allenoic acid 4.32 to 4.43 (8% ee) 

(entries 7 and 8).   

 

4.6.3 Cyclisation of Substrates Using R,R-4.10-Ag 

 

Next, as the reaction of β-4.16-Ag appears to be substrate dependant, the cyclisation 

of all substrates were repeated using the TADDOL derived catalyst R,R-4.10-Ag 

(Table 4.12).  Due to its lower activity (Section 4.4), a higher catalytic loading of 15 

mol% was used.  The same trend was observed using R,R-4.10-Ag.  The introduction 

of a cyclohexane group at the allenic terminus afford the highest ee of 73% in 8 hours 

(entry 1).  Lower ees of 36% and 15% were observed with the remaining internal - 

allenic alcohols 4.23 and 4.24 respectively (entry 2 and 3).  The cyclisation of the 

sterically demanding 2,2-diphenyl-substituted allenol 4.36 was much slower, taking 

168 hours to reach 33% conversion (entry 4).  The formation of tetrahydropyran 4.42 

was also slower, requiring 12 hours to be formed in 13% ee (entry 5).  Cyclisation of 

the diol 4.19 proceeded to give diastereoisomers in a 2:1 ratio, but with only 3% ee 

for each isomer (entry 6).  In comparison, the intramolecular hydroacylalkoxylation of 

β-allenoic acids were much faster than with the corresponding alcohols; conversions 

to -lactones were complete within two hours (entries 7 to 10).  Very surprisingly, 

cyclisation of terminal β-allenoic acid 4.32 furnished the respective -lactone in a 

higher ee (23%) than the internal β-allenoic acid 4.33 (entries 7 and 8).   

 

Table 4.12: Hydro(acy)alkoxylation reactions using 15 mol% R,R-4.10-Ag.
[a] 
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Entry Substrate Product t (h) 
% 

Yield
[b] 

% ee 

(R/S)
 [c] 

1 
3.17 R

1
 = -CH2(CH2)3CH2-, R

2
 = 

Ph, R
3
 = H, n = 1  

3.19 8 99 73 (S) 

2 
4.24 R

1
 = CH3, R

2
 = Ph, R

3
 = H,  

n = 1 
4.39 8 98 15 (S) 

3 
4.23 R

1
 = -CH2(CH2)2CH2-,R

2
 = 

Ph, R
3
 = H, n = 1 

4.40 8 98 36 (S) 

4 4.35 R
1
 = R

3
 = H, R

2
 = Ph, n = 2 4.41 168 33

[d] 
34 (S) 

5 
4.36 R

1
 = CH3, R

2
 = H, R

3
 = Ph,  

n = 1 
4.42 12 91 13 (S) 

6 
4.19 R

1
 = R

3
 = H, R

2
 = CH2OH,  

n = 1 
4.38 8 94 3/3

[e]
 

7 4.32 R
1
 = R

3
 = H, R

2
 = Ph 4.43 2 99 23

[f]
 

8 
4.33 R

1
 = -CH2(CH2)3CH2-, R

2
 = 

Ph, R
3
 = H 

4.44 2 96 15
[f]

 

9 4.31 R
1
 = CH3, R

2
 = H, R

3
 = Ph 4.45 2 98 7

[f]
 

10 
4.34 R

1
 = -CH2(CH2)2CH2-, R

2
 = 

Ph, R
3
 = H 

4.46 2 98 5
[f]

 

11 1.44 R
1
 = R

3
 = H,R

2
 = Ph, n = 1 1.45 8 96 17 (S) 

[a]
Reaction conditions: Substrate (0.1 mmol., 200 mM), R,R-4.10-Ag (15 mol%, 0.015 mmol.), DCE 

(0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR. 

[c]
 Determined by chiral HPLC analysis and optical rotation 

values. 
[d] 

% conversion.
[e]

 2:1 ratio of diastereoisomers.
[f] 

The absolute stereochemistry is not 

determined.
 

 

Overall, there is a clear dependence of selectivity on the substrate structure and the 

catalyst. The highest selectivity of 73% ee can be achieved with substrate 3.17, 

containing a cyclohexane on the allenic terminus (entry 1).   This suggested that 

substituents on the terminal allenic carbon is important.  This is in accordance with 

the asymmetric hydroalkoxylation reaction paper published by Toste et al.,
36

 where 

the majority of substrates contain a cyclohexane group and no substrates containing 

cyclopentane substituents or terminal -allenic alcohols were reported.  A higher level 

of enantioselectivity in the cyclisation of β-allenoic acids was also observed using β-

4.16-Ag (entries 7 to 10).  However, the level of selectivity was modest.  For the 
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cyclisation of δ- and γ-allenic alcohols, neither catalyst β-4.16-Ag or R,R-4.10-Ag 

was superior.  Tetrahydrofurans 1.45 (Table 4.6, entry 1 vs Table 4.8, entry 3), 4.38, 

4.39, 4.41 and tetrahydropyran 4.42 were formed in higher enantioselectivities using 

β-4.16-Ag, whereas R,R-4.10-Ag produced 3.19 and 4.40 with higher ee’s.   

 

4.7 Determination of absolute stereochemistry 

 

The optical rotation values of tetrahydrofurans 3.19 and 4.39 have been published by 

Mikami et al.
68

  Optical rotation values of -82.7
o
 (c = 0.25 in CHCl3, 75% ee) and -

74.9
o
 (c = 0.36 in CHCl3, 70% ee) were reported respectively, but were wrongly 

assigned (Chapter 2).  Following clarification, we can assign the major enantiomer 

obtained with β-4.16-Ag and R,R-4.10-Ag as S.  Tetrahydrofurans 4.40 and 4.41 were 

tentatively assigned S by analogy. Tetrahydropyran 4.42 was assigned S by 

comparison of HPLC data to that reported by Widenhoefer et al.
45 

 However, we were 

unable to determine the absolute configurations of γ-lactones 4.43 to 4.46, as no 

optical rotation data or HPLC traces have been published. 

 

4.8 Conclusion 

 

The use of DFT models in Chapter 3 proposed that the Ag(I) counteranion (L = 

OCOCF3 or OTf) is intimately involved in C-O bond formation.  From this 

observation, the potential of chiral anionic ligands in Ag asymmetric 

hydroalkoxylation and hydroacyalkoxylation reactions was explored. Several Ag(I) 

complexes containing chiral anionic ligands were subsequently prepared. Screening of 

their catalytic activity with model substrate 1.44 identified BINOL-derived catalysts 

R-4.7-Ag, R-1.66 and S-4.9-Ag, TADDOL-derived catalysts R,R-4.10-Ag and S,S-

4.14-Ag and phosphinate β-4.16-Ag as promising candidates, which afforded 1.45 

with up to 73% ee (Scheme 4.15).   
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Scheme 4.15:  Cyclisation of 1.44 to 1.45 using phosphate and phophinate Ag(I) 

complexes. 

 

Both catalysts, -4.16-Ag and R,R-4.10-Ag showed that there was a clear dependence 

of selectivity on the substrate structure and the highest ee of 73% can be obtained.  

The absolute stereochemistry of the tetrahydrofurans and tetrahydropyran compound 

were assigned S.  A higher level of enantioselectivity was observed using -4.16-Ag 

in the cyclisation of β-allenoic acids, but overall the ee remained <24% ee.  For the 

cyclisation of δ- and γ-allenic alcohols neither catalyst -4.16-Ag or R,R-4.10-Ag was 

superior. Although, reactions took place quicker with -4.16-Ag and a lower catalytic 

loading could be used.  On the other hand, the structure of R,R-4.10-Ag could be 

easily modified to allow for a greater flexibility in catalyst design. 

 

Overall, the discovery of silver asymmetric heterofunctionalisation reactions of 

allenes with up to 73% enantioselectivities is highly significant. Prior to this, only 

cationic Au(I) complexes have been reported to afford high enantioselectivities in O-

H and CO2H addition to allenes. Ag(I) salts are often used to generate cationic Au(I) 

complexes in situ and therefore the ability of Ag complexes to generate chiral 

products will have an important impact on the interpretation of some of the results 

catalysed by gold. 
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Chapter 5: Asymmetric Silver-Catalysed Intramolecular 

Hydroamination Reactions 

 

This Chapter will describe the work performed on the intramolecular hydroamination 

reactions of γ-allenic amine 5.1 catalysed by silver (Scheme 5.1).   
 

 

Scheme 5.1: Intramolecular cyclisation of -allenic amine 5.1. 

 

To date, only Au(I) complexes are reported to furnish 2-vinyl substituted pyrrolidine 

5.2 in high yields and enantioselectivities.
36,37,40

  To the best of our knowledge the 

cyclisation of γ-allenic amine 5.1 to piperidine 5.3 has not been reported.  The 

majority of NH substrates utilised in Au(I)-catalysed hydroamination reactions are 

protected as carbamates
37

 and sulfonamides.
36,40

  For example, cyclisation of 1.51, 

where R = Cbz, using the dimeric Au(I) complex (S-1.43)Au2Cl2 furnished 

pyrrolidine S-1.52 in 97% yield with 81% ee after 24 hours at -40 
o
C, whereas the 

cyclisation of 1.51, where R = Fmoc, afford pyrrolidine S-1.52 in a lower yield and 

enantioselectivity after an extended reaction time (Scheme 5.2).
37 

 

 

Scheme 5.2: Cyclisation of allenic amine with (S-1.43)Au2Cl2 and AgClO4. 

 

On the other hand, benzyl-protected allenic amines are reported to undergo 

intramolecular hydroamination reactions in the presence of Cu(II), Ag(I) and Au(III) 

salts, but only racemically.
104

 

 



117 

 

This Chapter will set out to investigate if β-4.16-Ag and R,R-4.10-Ag as viable 

catalysts for asymmetric intramolecular hydroamination reactions. In particular, the 

role of the N-protecting group will be examined. 

 

5.1 Synthesis of Terminal γ-Allenic Amine 5.4 

 

The model NH substrate chosen for our initial study was differently N-protected γ-

allenic substrate 5.4 (Figure 5.1), which would provide a comparison to the 

hydroalkoxylation work conducted with the γ-allenic alcohol 1.44 (Chapter 4). 

Different protecting groups, including tosyl 5.4a (Ts), carbamate 5.4b (Cbz) and 

benzyl 5.4c (Bn), were chosen as these have been previously used in Au(I)- and 

Cu(II)-catalysed hydroamination reactions.
37,40,104

 Amides 5.4d and 5.4e were also 

prepared, to see if they too could be effective protecting groups. 

 

 

Figure 5.1: γ-allenic substrates 5.4a to 5.4e. 

 

Initially, it was anticipated that some of these substrates may be prepared by 

subjecting the γ-allenic alcohol 1.44 to Mitsunobu conditions; converting directly into 

the unprotected amine 5.6 via the formation of 5.5 (Scheme 5.3).
158

  This would allow 

for a quick preparation of NH substrates from the available allenic alcohols.   

 

 

Scheme 5.3:  Attempted conversion of alcohol 1.44 to amine 5.6. 
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To prepare phthalimide 5.6, a solution of triphenylphosphine in THF was added 

dropwise to a stirred solution of γ-allenic alcohol 1.44 at 0 °C.  After 30 minutes, 

phthalimide was added to the reaction mixture and the reaction stirred at room 

temperature overnight.  However, only the starting material was recovered from the 

reaction mixture after column chromatography.  Hence, it was decided to adopt a 

published procedure for the preparation of 5.5, 
37,58

 performed in three steps from the 

commercially available 2,2-diphenylacetonitrile (Scheme 5.4).   

Scheme 5.4: Preparation of amine 5.5 from 2,2-diphenylacetonitrile. 

 

Propargylation of 2,2-diphenylacetonitrile afforded 5.7 in comparable yield to the 

literature value.
58 

  A good yield (73%) was obtained for the Crabbé reaction to afford 

5.8.
58 

 The structure of which was confirmed by comparison of its characterisation 

data with literature values;
58  

the presence of the C≡N moiety could be observed by its 

IR absorption peak at 2236 cm
-1 

and by its unique 
13

C signal at 139.5 ppm. The allene 

moiety was identified by IR absorption peaks at 1953 and 1018 cm
-1

 and in the NMR 

spectra, the presence of a 
1
H

 
multiplet at 5.06 ppm, and triplets at 4.70 and 4.69 ppm, 

and 
13

C signals at 210.5, 84.5 and 75.4 ppm.  MS in CI mode also confirmed the 

expected mass of the compound ([MNH4]
+
 = 263).  The reduction of the nitrile group 

was performed in two steps; firstly using DIBAL-H to reduce the nitrile to the imine, 

which was then reduced by NaBH4 to the amine affording 5.5 in 66% yield.
37

  This 

two-step reduction procedure was necessary to prevent over reduction of the allene 

moiety.  The formation of 5.5 was confirmed by the observation of two new 

resonance signals at 3.41 and 2.8 ppm in the 
1
H NMR spectrum, which correlate to 

the N-CH2 group and NH2 moiety.   
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Figure 5.2:  γ-Allenic substrates 5.4a to 5.4e and the yields for the N-protection step. 

 

Protection of 5.5 with the relevant protecting group was then performed using the 

standard procedures (Figure 5.2).   Sulfonamide 5.4a was obtained in 98% yield by 

the slow addition of toluenesulfonyl chloride to a solution of 5.5 and triethylamine in 

CH2Cl2.
159

  Benzyl carbamate 5.4b was obtained in 90% yield by added benzyl 

chloroformate slowly to a mixture of NaHCO3 in aqueous EtOH.
160

 Benzylamine 5.4c 

was obtained in 72% yield by stirring benzaldehyde and 5.4c at room temperature 

overnight followed by NaBH4 reduction in ethanol.
161

 Trifluoroacetamide 5.4d  was 

obtained in 77% yield by the dropwise addition of trifluoroacetic anhydride to a 

vigorously stirred solution of 5.4c in CH2Cl2.
162

  Finally, benzamide 5.4e was 

obtained in 79% yield by adding benzoyl chloride slowly to a solution of 5.5c in 

CH2Cl2.
163

   The structures of 5.4b and 5.4c were confirmed by comparison of their 

characterisation data to literature values,
37,104

  whereas the novel structures of 5.4a, 

5.4d and 5.4e were fully characterised by NMR, MS and elemental analysis.   

 

5.2 Initial Screening of Silver in Hydroamination Reactions  

 

Firstly, racemic pyrrolidines were obtained from all five substrates using 15 mol% 

AgOTf in DCE at room temperature (Table 5.1).   

 

Table 5.1: Cyclisation of NH substrates using AgOTf.
[a] 
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Entry R AgX t (h) % Conversion
[b]

 

1 Ts (5.4a) OTf 3 100 

2 Cbz (5.4b) OTf 6 100 

3 Bn (5.4c) OTf 0.75 100 

4 trifluoroacetamide (5.4d) OTf 24 0 

5 benzamide (5.4e) OTf 24 0 

6 Ts (5.4a) OCOCF3 48 100 

[a]
Reaction conditions: Substrate (0.1 mmol., 200 mM), AgOTf (15 mol%, 0.015 mmol.), DCE (0.5 

mL), r.t. 
[b]

 Determined by 
1
H NMR. 

 

As expected, changing the protecting group on the amine had an important effect on 

the conversion (entries 1 to 5).  Full conversions were observed with N-tosyl protected 

5.4a, N-carbamate substrate 5.4b and N-benzyl substrate 5.4c, (entries 1 to 3);   N-

benzyl substrate 5.4c was cyclised to the respective pyrrolidine 5.9c in 45 minutes 

(0.75 h), whereas 5.4a and 5.4b took 3 and 6 hours respectively to reach full 

conversion.  In contrast, there was no conversion even after 24 hours for amides 5.4d 

and 5.4e (entries 4 and 5).  Changing the counteranion of the silver salt also had an 

effect on the rate; by switching to Ag(OCOCF3) the cyclisation of 5.4a to 5.9a 

required an extended reaction time of 48 hours to reach completion (entry 6) 

compared to 3 hours required with AgOTf (entry 2).  The structures of 5.9b and 5.9c 

were confirmed by comparison of their characterisation data to literature values,
37,104

 

whereas the novel structure of 5.9a was fully characterised by NMR, MS and 

elemental analysis.  Enantiomers of the 5-exo-trig products, 5.9a, 5.9b and 5.9c can 

be separated by chiral HPLC.   

 

5.3 Use of β-4.16-Ag in Asymmetric Silver-Catalysed 

Hydroamination Reactions 

 

The cyclisation of five NH substrates (5.4a to 5.4e) were examined in the presence of 

15 mol% of β-4.16-Ag (Table 5.2).  
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Table 5.2: Cyclisation of NH substrates using β-4.16-Ag. 
[a]

  

 

Entry R t (days) 
% 

Conversion
[b]

 
% ee (R/S)

[c]
 

1 Ts  (5.4a) 2.5 100 65 (S) 

2 Cbz (5.4b) 2.5 76 49 (S) 

3 Bn (5.4c) 2.5 100 5 

4 trifluoroacetamide (5.4d) 2.5 0 - 

5 benzamide (5.4e) 2.5 0 - 

[a
Reaction conditions: Substrate (0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 mmol.), DCE (0.5 

mL), r.t. 
[b]

 Determined by 
1
H NMR. 

[c] 
Determined by chiral HPLC analysis and optical rotation 

values. 

 

To our delight, the N-tosyl substrate 5.4a proceeded with full conversion to furnish 

the pyrrolidine 5.9a in 65% ee.  Although, the reaction required 2.5 days to reach 

completion (entry 1). The N-carbamate substrate 5.4b was slower and less selective, 

producing 5.9b in 49% ee with 76% conversion after 2.5 days (entry 2), whereas the 

N-benzyl substrate 5.4c was practically unselective (entry 3).  Conversely, no 

conversion was observed for 5.4d and 5.4e even after 2.5 days (entries 4 and 5). A 

control experiment was also conducted to examine if the substrates 5.4a, 5.4b and 

5.4c were capable of uncatalysed reactions.  It was found that N-benzyl 5.4c cyclised 

to the pyrrolidine 5.9c just by stirring in DCE for 2.5 days.  This would explain the 

low selectivity observed.  Based on this observation, 5.4c was discarded from further 

investigations.  By comparison of HPLC traces published by Widenhoefer et al., the 

major enantiomer of 5.9b was assigned as S, which correlates with an optical rotation 

of -2.5
o
 (c = 0.5).

45
  5.9a has an optical rotation of -2.7

o
 (c = 3.0), and was also 

assumed to produce S-enantiomer as the major isomer, in analogy to that obtained 

with 5.9b.  In summary, cyclisation of N-tosyl protected 5.4a providing the highest ee 

of 65% after 2.5 days.  Thus, further studies were conducted employing N-tosyl 

substrate 5.4a. 
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5.3.1 Solvent Screen 

 

The performance of β-4.16-Ag, in the cyclisation of N-tosyl 5.4a, was investigated in 

various solvents at 15 mol% loading to identify the best medium for optimal rate and 

enantiomeric excess (Table 5.3).  

 

Table 5.3: Solvent studies using β-4.16-Ag as the catalyst.
[a]

  

 

Entry Solvent t (days) % Conversion
[b]

 %ee (R/S)
 [c]

 

1 DCE 2.5 100 65 (S) 

2 CH2Cl2 2.5 90 62 (S) 

3 Acetone 2.5 54 74 (S) 

4 DMF 2.5 19 40 (S) 

5 THF 2.5 76 62 (S) 

6 Dioxane 2.5 26 71 (S) 

7 Chloroform 2.5 100 66 (S) 

8 Toluene 2.5 50 65 (S) 

9 Methanol 2.5 0 - 

[a
Reaction conditions: Substrate 5.4a (40.3 mg, 0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 

mmol.), Solvent (0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR. 

[c] 
Determined by chiral HPLC analysis and 

optical rotation values. 

 

Within this study, improvements to the reaction rate were not observed by changing 

the solvent.  Reactions carried out in other aprotic solvents gave a variety of results, 

which was attributed to the solubility of the catalyst (entries 1 to 6); conversions of 

100%, 90% and 76% were observed using DCE, CH2Cl2, and THF respectively 

(entries 1, 2 and 5), while conversions of only 54% and 26% were observed using 

acetone and dioxane (entries 3 and 6).  Conversely, even though the reaction mixture 

was homogeneous in DMF, only 19% conversion was observed (entry 4). Reactions 

carried out in non-polar solvents gave very different conversions with full conversion 

observed using chloroform (entry 7), but only 50% conversion using toluene (entry 8).  
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Finally, carried out the reaction in protic solvent MeOH did not afford any product 

after 2.5 days (entry 9). On the other hand, the enantioselectivity was found to remain 

constant between 62-74% ee for all the solvent tested, the only exception being DMF, 

which afforded 40% ee (entry 4).  

  

Overall, the highest enantioselectivities were observed using polar aprotic solvents 

acetone (74% ee) and dioxane (71% ee), but low conversions were observed due to 

solubility issues (entries 3 and 6). Full conversions were only observed with DCE and 

chloroform and as the enantioselectivities of each are more or less the same, it was 

decided to continue using the less volatile DCE as the solvent.  

 

5.3.2 Base Addition Effects 

 

At this juncture it was speculated that slow proton transfer from the substrate to the 

anionic ligand (stereodefining step, TS1) and/or the subsequent protonolysis (TS2) 

may be responsible for the reduced reactivity observed in hydroamination reactions 

(Scheme 5.6). 
 

 

Scheme 5.5: Proposed mechanism and transition states for the intramolecular 

hydroamination reaction. 

 

To test this theory, a range of inorganic and organic bases were used as additives 

(Table 5.4).  15 mol% of additive was employed in each reaction.  For comparison, 

the pKa values (of the conjugate acids) are presented.  

 

Table 5.4: Investigating the effect of inorganic and organic bases.
[a] 
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Entry Additive pKa t (h) % 

Conversion
[b]

 

% ee 

(R/S)
[c]

 

1 - - 24 31 65 (S) 

2 Cs2CO3 ~10.33 (H2O)
164

  24 100 0 

3 K2CO3 10.33(H2O)
164

  24 65 9 (S) 

4 2-phenylpyridine 4.55 (H2O)
165

 24 57 60 (S) 

5 2,6-di-t-Bu-pyridine 4.95 (H2O)
166

 24 67 62 (S) 

6 2-picoline 5.95 (H2O)
167

 24 88 61 (S) 

7 pyridine 5.37 (H2O)
168

 24 100 68 (S) 

8 2,3-lutidine 6.57 (H2O)
169

 24 100 57 (S) 

9 2,6-lutidine 6.77 (H2O)
170

 24 54 41 (S) 

10 DMAP 9.87 (H2O)
171

 24 82 45 (S) 

11 NEt3 10.65(H2O)
172

 24 95 29 (S) 

12 Ni-Pr2Et 11.44 (H2O)
173

 24 44 33 (S) 

13 Proton sponge 12.1 (H2O)
174

 24 0 - 

[a]
Reaction conditions: Substrate 5.4a (40.3 mg, 0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 

mmol.), Additive (15 mol%, 0.015 mmol.), DCE (0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 

Determined by chiral HPLC analysis and optical rotation values. 

 

This study revealed that the addition of a base with a pKa value between 4.5 and 11.5, 

does appear to have an accelerating effect on the rate; by using Cs2CO3, pyridine or 

2,3-lutidine, full conversion to 5.9a can be achieved in 24 hours, rather than 2.5 days 

(entries 2, 7 and 8).  However, the inorganic bases, Cs2CO3 and K2CO3, destroy the 

selectivity (entries 2 and 3).  We postulate that this may be due to the chiral anion 

being replaced by carbonate, which would form a more active yet unselective catalyst. 

On the other hand, a definite trend was observed using pyridine and pyridine 

derivatives (entries 4 to 9).  An increase in pKa from 4.55 (2-phenylpyridine) to 6.57 

(2,3-lutidine) showed an amplification in conversion from 57% to 100%, but a 

decrease in enantioselectivity (entries 4 to 8), while further increasing the pKa to 6.77 

(2,6-lutidine) proved detrimental for both conversion and enantioselectivity (entry 9).  

Only pyridine was able to accelerate the reaction without decreasing the 

enantioselectivity (entry 1 vs 7). The addition of more basic DMAP (pKa = 9.87) and 
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triethylamine (pKa = 10.65) increased conversion, but reduced product 

enantioselectivity (entry 10 and 11).  Increasing the steric bulk and basicity by using 

diisopropylethylamine (pKa = 11.44) was observed to have an adverse effect on 

conversion and the product ee (entry 12), but produced a higher conversion than the 

reaction with no additive added (entry 1 vs 12).  No conversion of 5.4a to 5.9a was 

observed in the presence of 1,8-bis(dimethylamino)naphthalene (proton sponge), a 

bulky non N-nucleophilic base (entry 13).  This suggested that complete removal of 

the N-H proton (pKa = ~11.6) by the base (pKa = 12.1) inhibits the reaction. 

 

Overall, the addition of a base with a pKa value between 4.5 and 11.5 was found to 

increase the rate of intramolecular hydroamination reactions of γ-allenic 

sulfonamides.  From this observation, pyridine was chosen as the optimal additive for 

further investigations as it is able to accelerate the reaction without impacting on the 

enantioselectivity (entry 7).  Correspondingly, the sense of stereoinduction was not 

affected by the presence of pyridine. This suggests that the stereodefining and rate-

limiting steps operate independently of each other in the catalytic cycle (Scheme 5.5).  

Encouraged by the positive effects of pyridine, the dilution and amount of pyridine 

were investigated in an attempt to improve conversion and enantiomeric excess 

(Table 5.5).   

 

Table 5.5: Investigating the effect of dilution and amount of pyridine.
[a] 

 

Entry % β-4.16-Ag 
% 

Pyridine 
Volume (mL) t (h) 

% 

conversion
[b]

 

% ee 

(R/S)
[c]

 

1 15 15 0.5 24 100 65 (S) 

2 15 15 1 24 50 63 (S) 

3 15 15 0.25 24 67 49 (S) 

4 15 30 1 24 30 48 (S) 

5 15 75 1 24 11 42 (S) 

6 15 150 1 24 3 - 

7 0 15 1 24 0 - 

[a]
Reaction conditions: Substrate 5.4a (40.3 mg , 0.1 mmol.), β-4.16-Ag (15 mol%, 0.015 mmol.), 

pyridine (15-150 mol%), DCE (0.25-1.0 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by chiral 

HPLC analysis and optical rotation values. 
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Overall, there is no improvement in rate or enantioselectivity by altering either the 

amount of pyridine or the concentration of the reaction mixture; a higher dilution did 

not have a major impact on the enantioselectivity, but decreased the conversion from 

100% to 50% (entry 1 vs 2), whereas both enantioselectivity and rate were affected by 

decreasing the solvent volume to 0.25 mL (entry 3), probably resulting from issues 

with catalyst solubility.  On the other hand, increasing the amount of pyridine was 

found to have a negative effect on rate and enantioselectivity (entries 4 to 6).  Using a 

2:1 ratio of pyridine to catalyst, the conversion decreased from 50% to 30% with a 

20% decrease in ee (entry 2 vs 4), while a 3:1 ratio decrease the conversion to 11% 

(entry 2 vs 5).  As an extreme, the reaction was inhibited by using a 10:1 ratio of 

additive to catalyst (entry 6).  This suggested that pyridine at high concentrations may 

be binding to the catalyst.  Lastly, 15 mol% pyridine was unable to catalyse the 

reaction without the presence of β-4.16-Ag (entry 7).   

 

The optimised conditions identified for hydroamination of the N-tosyl substrate 5.4a 

was applied for the cyclisation of 5.4b, 5.4d and 5.4e (Table 5.6).   

 

Table 5.6: Screening substrates 5.4b, 5.4d and 5.4e with pyridine as an additive.
[a]

  

 

Entry Substrate (R) Additive t (h) 
% 

Conversion
[b]

 

% ee 

(R/S)
[c]

 

1 5.4b (Cbz) - 60 76 49 (S) 

2 5.4b (Cbz) pyridine 24 84 52 (S) 

4 5.4d  (trifluoroacetamide) - 60 0 - 

5 5.4d (trifluoroacetamide) pyridine 24 0 - 

6 5.4e(benzamide) - 60 0 - 

7 5.4e (benzamide) pyridine 24 0 - 

[a
Reaction conditions: Substrate  (0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 mmol.), DCE (0.5 

mL), r.t. 
[b]

 Determined by 
1
H NMR. 

[c] 
Determined by chiral HPLC analysis and optical rotation 

values. 
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Only a marginal accelerating effect was observed in the cyclisation of the N-Cbz 

substrate 5.4b using pyridine as an additive (entry 1 vs 2). Again, substrates 5.4d and 

5.4e were inert under these conditions (entries 4 to 7).    In summary, the highest 

enantioselectivity of 68% was observed in the cyclisation of N-tosyl substrate 5.4a to 

the corresponding pyrrolidine 5.9a within 24 hours using pyridine as an additive. 

 

5.4 Synthesis and Screening of Sulfonamide Derivatives with β-4.16-

Ag and AgOTf 

 

Compared to Ag(I)-catalysed intramolecular hydroalkoxylation reactions (Chapter 4), 

the corresponding hydroamination reaction of 5.4a produced higher 

enantioselectivities of >60%.  This was achieved by screening for the most suitable N-

protecting group.  With this in hand, other allenic sulfonamide substrates were 

examined. Accordingly, different sulfonamides 5.10a to 5.10d were prepared from the 

unprotected amine 5.5, in high yields of 65 to 96% (Figure 5.3) and were fully 

characterised by NMR, IR, MS and elemental analysis.
159

      

 

 

Figure 5.3: γ-Allenic substrates 5.10a to 5.10d. 

 

All four substrates (5.10a to 5.10d) were first subjected to racemic conditions by 

exposing them to AgOTf (15 mol%) in DCE at room temperature (Scheme 5.6).  In 

all cases, full conversions to the respective pyrrolidines (5.11a to 5.11d) were 

observed in 18 hours.  The enantiomers of all four products could be resolved by 

HPLC analysis. The systems were assumed to produce the S-enantiomer as the major 

isomer, in analogy to that obtained with 5.9a and 5.9b.   
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Scheme 5.6: Cyclisation of 5.10a-d using 15 mol% AgOTf. 

 

Subsequently, the reactions were repeated using 15 mol% of β-4.16-Ag as the catalyst 

(Table 5.7). Overall, only the N-tosyl substrate 5.4a reached full conversion in 24 

hours, to furnish the respective pyrrolidine with the highest ee of 65% (entry 1).  The 

introduction of a 1-naphthyl sulfonyl group (5.10a) slightly decreased the rate and 

selectivity (entry 1 vs 2), whereas conversion and ee drastically decreased to 38 and 

39% respectively by the introduction of a mesitylene sulfonyl group (5.10c) (entry 1 

vs 4).  Conversely, cyclisation of methanesulfonyl (5.10b) proceeded in a higher ee 

(53%) than either 5.10a or 5.10c (entry 3 vs entries 2 and 4), but was still slower than 

the cyclisation of N-tosyl 5.4a (entry 1 vs 3).  The introduction of an electron-

withdrawing nosyl group also had a negative impact on the enantioselectivity by 

producing 5.11d with only 14% ee (entry 5).    

 

Table 5.7: Screening substrates 5.10a to 5.10d with β-4.16-Ag and pyridine.
[a] 

 

 

Entry R % Conversion
[b]

 % ee (R/S)
[c]

 

1 Ts (5.4a) 100 65 (S) 

2 1-Np (5.10a) 84 46 (S) 

3 Ms (5.10b) 57 53 (S) 

4 Mts (5.10c) 38 39 (S) 

5 Ns (5.10d) 62 14 (S) 

[a]
Reaction  conditions: Substrate (0.1 mmol., 200 mM), β-4.16-Ag (15 mol%, 0.015 mmol.), pyridine 

(15 mol%, 0.015 mmol.), DCE (0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by chiral 

HPLC analysis and optical rotation values. 
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5.5 Synthesis of a Range of γ-Allenic Sulfonamides 

 

To examine the scope of catalyst β-4.16-Ag, four novel NHTs substrates (5.12 to 

5.15) were prepared (Figure 5.4). 

 

Figure 5.4: γ-allenic substrates 5.12 to 5.15. 

 

γ-Allenic sulfonamide 5.12 was prepared in four steps from the commercially 

available cyclohexanecarbonitrile (Scheme 5.7) by  a similar procedure employed for 

the preparation of 5.4a,
58 

except LAH reduction was used in the last step for the 

global reduction of the nitrile.  Propargylation of cyclohexanecarbonitrile was 

achieved with propargyl bromide, using LDA, to afford 5.16 in 82% yield.  Next, the 

Crabbé reaction furnished 5.17 with 50% yield.  LAH reduction to 5.18 proceeded in 

60% yield and finally, tosyl protection of 5.19 to γ-allenic sulfonamide 5.12 was 

achieved in 43% yield.
159

 

 

 

Scheme 5.7: Preparation of terminal γ-allenic sulfonamide 5.12. 
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Internal γ-allenic sulfonamides were prepared utilising the same procedure (method 

B) described for internal γ-allenic alcohols in Chapter 4.
37

 The mesylate esters 4.30a, 

4.30b and 4.30c, where R
1
 = -CH2(CH2)nCH2- (where n = 3, 4.25a; n = 2, 4.25b), or 

Me (4.25c), where used to prepare 5.19a, 5.19b and 5.19c in 85% to 93% yields 

(Scheme 5.8).  Reduction of amines 5.20a, 5.20b and 5.20c was achieved using LAH 

and finally, tosyl protection was performed to furnish the γ-allenic sulfonamides 5.13, 

5.14 and 5.15 in 69-90% yields over the two steps. 

 

  

Scheme 5.8: Preparation of 5.13, 5.14 and 5.15. 

 

Compound 5.13 was characterised fully; the characteristic allenic moiety was 

identified by the observation of 
13

C signals at 200.5, 101.9 and 83.3 ppm, 
1
H signal at 

4.55 ppm and IR absorption bands at 1970 and 1085 cm
-1

.  The presence of the tosyl 

group was confirmed by the presence of 14 protons in the aromatic region of the 
1
H 

NMR spectrum and the methyl group at 2.45 ppm.  Finally, MS in ESI mode 

confirmed the expected mass of the compound ([MH]
+
 = 472) and the composition 

was validated by elemental analysis.  Similarly, the structures of 5.14 and 5.15 were 

verified by NMR, IR, MS and elemental analysis. 

 

5.6 Cyclisation of γ-Allenic Sulfonamides Using AgOTf and β-4.16-Ag 

 

γ-Allenic sulfonamides 5.12 to 5.15 were subjected to 15 mol% of AgOTf and 15 

mol% of β-4.16-Ag/pyridine in 0.5 mL DCE at room temperature (Table 5.8).  
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Table 5.8: Screening of substrates 5.12 to 5.15 with AgOTf and β-4.16-

Ag/pyridine.
[a]

  

 

Entry Substrate Cat. Product t (h) 
% 

Conversion
[b]

 

% ee 

(R/S)
[c]

 

1 5.12 

R
1
 = H 

R
2
 = -CH2(CH2)2CH2- 

AgOTf 
5.21 

 

3 100 - 

2 β-4.16-Ag 96 100 51 (S) 

3 5.13 

R
1
 = -CH2(CH2)3CH2- 

R
2
 = Ph) 

AgOTf 
5.22 

15 100 - 

4 β-4.16-Ag 168 0 - 

5 5.14 

R
1
 =   

-CH2(CH2)2CH2-, R
2
 = 

Ph 

AgOTf 

5.23 

15 100 - 

6 β-4.16-Ag 168 0 - 

7 
5.15 

R
1
 = CH3, R

2
 = Ph R

1
  

AgOTf 
5.24 

15 100 - 

8 β-4.16-Ag 168 0 - 

[a]
Reaction  conditions: Substrate (0.1 mmol., 200 mM), Catalyst (15 mol%, 0.015 mmol.), Pyridine (15 

mol%, 0.015 mmol.), DCE (0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by chiral HPLC 

analysis and optical rotation values. 

 

Using AgOTf as the catalyst, the azospiro structure 5.21 was obtained quantitatively 

in three hours from 5.12 (entry 1).  Conversely, full conversion of γ-allenic 

sulfonamines 5.13, 5.14 and 5.15 to the respective pyrrolidines (5.22 to 5.24) required 

an extended reaction time of 15 hours (entries 3, 5 and 7).  Rather disappointingly, 

enantioselectivity was observed in only one of the four reactions when AgOTf was 

replaced by β-4.16-Ag:  cyclisation of 5.12 to 5.21 proceeded in a respectable 51% ee, 

but required 96 hours (entry 2).   The stereoselectivity of pyrrolidine 5.21 was 

tentatively assigned S in analogy to previous assignments.  No conversion of internal 

γ-allenic tosylamines (5.13 to 3.15) to the respective pyrrolidine was observed even 

with prolonged reaction times (entries 4, 6 and 8).  This was suspected to be from the 

steric effects between the terminal allenic substituents and the N-tosyl protecting 
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group.  The novel compounds 5.21 to 5.24 were fully characterised by NMR, MS and 

elemental analysis. 

 

5.4 Use of R,R-4.10-Ag in Asymmetric Silver-Catalysed 

Hydroamination Reactions 

 

The catalyst activity of phosphate R,R-4.10-Ag was also examined in the 

hydroamination reactions.  Firstly, sulfonamide 5.4a was exposed to 15 mol% of R,R-

4.10-Ag in DCE (Scheme 5.9).  

 

Scheme 5.9: Cyclisation of 5.4a using 15 mol% of R,R-4.10-Ag 

 

Pleasingly, conversion of 5.4a was completed in 24 hours to furnish pyrrolidine S-

5.9a in 57% ee.  In comparison to the reaction carried out with phosphinate β-4.16-

Ag, the reaction was faster, but less selective. 

 

5.4.1 Base Addition Effects 

 

To investigate if the reaction rate could be enhanced, a selection of inorganic and 

organic bases was used as additives (Table 5.9). 

 

Table 5.9: Investigating the effect of inorganic and organic bases.
[a]
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Entry Additive pKa  t (h) % 

Conversion
[b]

 

% ee 

(R/S)
[c]

 

1 - - 24 100 57  (S) 

2 2,6-di-t-Bu-pyridine 4.95 (H2O)
166

 24 0 - 

3 2-picoline 5.95 (H2O)
167

 24 0 - 

4 pyridine 5.37 (H2O)
168

 24 4 26 (S) 

5 Cs2CO3 ~10.33 (H2O)
164

  24 59 0 

6 DMAP 9.87 (H2O)
171

 24 21 0 

[a]
Reaction conditions: 5.4a (40.3 mg, 0.1 mmol., 200mM), R,R-4.10-Ag (15 mol%, 0.015 mmol.), 

Additive (15 mol%, 0.015 mmol.), DCE (0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by 

chiral HPLC analysis and optical rotation values. 

 

In contrast to the positive effects of pyridine observed in the reaction catalysed by β-

4.16-Ag, the addition of base appeared to have a detrimental effect on the catalytic 

activity of R,R-4.10-Ag;  Cs2CO3 and DMAP, with pKa values around 10, decreased 

conversion and destroyed the selectivity (entries 5 and 6).  With pyridine as an 

additive, S-5.9a was obtained in only 4% yield with 26% ee (entry 4); while complete 

inhibition was observed by introducing alkyl-substituents onto the pyridine ring 

(entries 2 and 3).  Therefore the use of additives in the R,R-4.10-Ag catalysed reaction 

was not continued.   

 

5.4.2 Cyclisation of γ-Allenic Sulfonamides Using R,R-4.10-Ag 

 

Lastly, the remaining sulfonamines (5.12 to 5.15) were exposed to 15 mol% of R,R-

4.10-Ag in  DCE (Table 5.10).  Once again, only the cyclisation of 5.12 to pyrrolidine 

5.21 was observed, (entry 1) with 48% ee while no conversion to 5.22, 5.23 or 5.24 

was detected (entries 2 to 4).  

 

Table 5.10: Screening substrates 5.12 to 5.15 with R,R-4.10-Ag.
[a] 
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Entry Substrate Product t (h) % Conversion
[b]

 % ee (R/S)
[c]

 

1 
5.12  R

1
 = H, 

R
2
 = -CH2(CH2)2CH2 

5.21 36 100 48 (S) 

2 
5.13 R

1
 = -CH2(CH2)3CH2-, 

R
2
 = Ph 

5.22 168 0 - 

3 
5.14  R

1
 =  -CH2(CH2)2CH2- 

R
2
 = Ph 

5.23 168 0 - 

4 
5.15   

R
1
 = CH3, R

2
 = Ph 

5.24 168 0 - 

[a]
Reaction conditions: Substrate (0.1 mmol., 200mM), R,R-4.10-Ag (15 mol%, 0.015 mmol.), DCE 

(0.5 mL), r.t. 
[b]

 Determined by 
1
H NMR.  

[c]
 Determined by chiral HPLC analysis and optical rotation 

values. 

 

5.5 Conclusion 

 

Within this chapter, a variety of NH substrates were synthesised and cyclised in the 

presence of β-4.16-Ag and R,R-4.10-Ag.  On the whole, reactions are slower than the 

corresponding O-H additions.  Optimisation studies performed using β-4.16-Ag as the 

catalyst identified tosyl as the best protecting group for high enantioselectivities.  The 

addition of an organic base with a pKa value between 4.5 and 11.5 accelerated the 

cyclisation of 5.4a, using pyridine, the level and sense of stereoinduction were not 

affected.  This suggested that the stereodefining (C-N bond formation) and rate-

limiting (protonolysis) steps operate independently of each other in the catalytic cycle.  

Investigating the use of R,R-4.10-Ag as the catalyst in the cyclisation of 5.4a afforded 

S-5.9a with a faster rate, but lower enantioselectivity of 57%.  In this case, the 

addition of pyridine had a detrimental effect on the catalytic activity.  To examine the 

scope of both catalysts, a number of novel allenic N-sulfonamides were synthesised 

and screened.  However, no conversion of internal -allenic amines 5.13, 5.14 or 5.15 

was detected.   

 

Overall, the discovery of silver asymmetric hydroamination reactions of allenes with 

up to 68% enantioselectivities is highly significant. Prior to this, only cationic Au(I) 

complexes have been reported to afford high enantioselectivities in these reactions. 

By using either β-4.16-Ag or R,R-4.10-Ag as the catalyst, the S-isomer predominated 

as the preferred enantiomer.   
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Chapter 6: Conclusion and Future Work 

 

6.1 Conclusion  

 

This thesis describes the development of Ag(I)-catalysed intramolecular 

heterofunctionisation reactions, including the preparation of a variety of γ-allenic 

alcohols, amines and β-allenoic acids. 

 

During this work, three metal Lewis acids were found to direct cyclisation of γ-allenic 

alcohols with different regioselectivities. The origin of this was examined by DFT 

calculations, and was found to be dependent on variations in coordination number and 

geometry at the metal centre.  The linear geometry observed for AgOTf, directed 

selectivity towards formation of the 5-membered ring, whereas the tetrahedral or 

hemi-directed geometries observed for Zn(OTf)2 and Sn(OTf)2 respectively, favoured 

6-exo-dig cyclisations (Scheme 6.1). 

 

 

Scheme 6.1: Regioselectivity in the cyclisation of γ-allenic alcohols. 

 

DFT calculations also discovered that the metal counteranion (L = OCOCF3 or OTf) 

is intimately involved in C-O bond formation (TS1 and TS3) (Figure 6.1). 

 

 

Figure 6.1: Transition states TS1 and TS3. 
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The first strategy for asymmetric catalysis uses an achiral silver salt (AgBF4) and a 

chiral ligand (R-BINAP or R-MeO-BIPHEP), in a 1:1 ratio, to form the active species 

in solution. With this system, up to 68% ee can be achieved for the hydroalkoxylation 

reaction of γ-allenic alcohol 1.44 to tetrahydrofuran S-1.45 (Scheme 6.2). However, 

the reaction is very slow, requiring 63 hours to reach only 50 - 52% conversion. 

 

 

Scheme 6.2: Ag(I) mediated intramolecular hydroalkoxylation of 1.44. 

 

The second strategy for asymmetric catalysis uses pre-formed Ag(I) complexes (R,R,-

4.10-Ag or β-4.16-Ag), which contain a chiral anionic ligand (Figure 6.2). 

 

 

Figure 6.2: Structures of Ag(I) phosphate and Ag(I) phosphinate complexes. 

 

By using this system, up to 73% ee in hydroalkoxylation reactions and up to 68% ee 

in hydroamination reactions of the relevant γ-allenic substrates could be achieved 

(Scheme 6.3 and Scheme 6.4).  For hydroalkoxylation reactions, the conversion times 

vary depending on the substitution pattern, with the majority of cyclisations being 

completed within 2 hours using β-4.16-Ag and 8 hours using R,R,-4.10-Ag.  The 

subsequent hydroamination reactions were found to be more sensitive to terminal 

allenic substituents and were also slower than the corresponding O-H additions, 

especially when using β-4.16-Ag.   
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Nevertheless, the addition of sub-stoichiometric amount of pyridine enhanced the 

catalytic activity of β-4.16-Ag.  The intramolecular hydroacyalkoxylation of β-

allenoic acids to the corresponding lactones can also be accomplished in 2 hours, but 

with low enantioselectivities (5% to 24%) (Scheme 6.3). 

 

 

Scheme 6.3: Ag(I) intramolecular hydro(acy)alkoxylation reactions of allenes. 

 

 

Scheme 6.4: The Ag(I) intramolecular hydroamination reaction of allene 5.4a. 

 

Prior to this discovery of asymmetric Ag(I)-catalysed heterofunctionalisation 

reactions of allenes, the only catalysts able to afford high enantioselectivities in 

intramolecular O-H, N-H and CO2H additions to allenes have been cationic Au(I) 

complexes.
37,45,36,40,44,68

  However, during the preparation of this thesis, chiral 

Brønsted acid catalysis, using dithiophosphoric acids, have also been reported to 

afford high enantioselectivities in the hydroamination reactions of allenes.  For 

example the cyclisation of N-tosyl protected 6.1 using 10 mol% R-6.2 furnished 

pyrrolidine S-6.3 in 95% ee after 48 hours at room temperature (Scheme 6.5).
175
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Scheme 6.5: Hydroamination of 6.1 using dithiophosphoric acid 6.2. 

 

6.2 Future work 

 

Future work will include the development of further generation(s) of silver catalysts, 

to achieve highly enantioselective Ag(I)-catalysed intramolecular 

hydro(acy)alkoxylation and hydroamination reactions, preferably with over 90% ee. 

 

Having shown that pre-formed Ag(I) complexes of chiral anionic oxophosphorus(V) 

ligand are able to induce significant levels of enantioselectivity, it is envisaged that 

greater stereodifferentiation can be achieved by the synthesis of phosphorodiamidate 

Ag(I) complexes.  These molecules include nitrogen atoms adjacent to the phosphorus 

and could have the potential to induce higher enantioselectivities.  A literature search 

identified phosphorodiamidic acids R,R-6.4-H
176

 and R-6.5-H
177

 as interesting 

candidates (Figure 6.3).  

 

 

Figure 6.3: Structures of R,R-6.4-H and R-6.5-H. 
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It is envisaged that both R,R-6.4-H and R-6.5-H may be similarly prepared from the 

corresponding N-tosyldiamines.
176-178

 As a precaution, control experiments should 

also be performed with the phosphorodiamidic acids, to rule out Brønsted acid 

catalysis. 

 

Intermolecular hydroamination and hydro(acy)alkoxylation reactions of allenes can 

also be investigated; catalytically and enantioselectivity.  Successful methodologies 

can then be adapted for the synthesis of interesting molecules, particularly those with 

potential biological applications. 
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Chapter 7: Experimental  

 

Unless otherwise stated, all precursors and reagents were procured commercially and 

used as received.  Solvents were dried by passing through columns of molecular 

sieves in a solvent purification system. Lithium diisopropyl amide (LDA) was 

generated in situ from the reaction of n-BuLi and diisopropylamine in THF at -78 

°C.
179

  We are grateful to Prof. J. Antilla (University of South Florida) for the gift of 

VAPOL, Roche (Switzerland) for the donation of MeOBIPHEP phosphine ligands, 

Prof. P. Pringle (University of Bristol) for the donation of β-4.16-H and Prof. J-C. 

Fiaud (University of Paris-Sud 11) for the donation of R,R-4.15-H.  The synthesis and 

resolution of β-4.16-H has been previously described.
149

  All reactions involving air-

sensitive reagents were performed using standard Schlenk techniques and oven dried 

glassware.  Column chromatography and TLC were performed on silica gel (Kieselgel 

60).  Catalytic reactions were generally performed in the dark using Radley tubes in a 

Radley’s 12-place reaction carousel, or in screw-cap vials. 

Unless otherwise started, 
1
H, 

13
C, 

31
P and 

19
F NMR spectra were recorded on Bruker 

AVANCE machines operating at 400 MHz, 100 MHz, 162 MHz and 376 MHz 

respectively.  Chemical shifts are reported in  (ppm), referenced to TMS, and J 

values are given in Hz.  Multiplicity is abbreviated to s (singlet), br s (broad singlet), 

d (doublet), t (triplet), q (quartet), p (pentet) and m (multiplet).  Where required, 2D 

NMR (COSY, DEPT, HSQC, HMBC) experiments were used to distinguish and 

assign 
1
H and 

13
C peaks.  Infrared spectra were recorded using a Perkin Elmer 100 

series FT-IR spectrometer, equipped with an ATR accessory. Optical rotations were 

recorded using a Perkin Elmer 241 polarimeter; specific rotations ([]D
t
) were 

calculated by 100/(cl), in which, c (concentration) is quoted in mg/mL; l = 1.0 dm; 

D refers to the D-line of Na (589 nm); temperature (t) is given in degrees Celsius (
o
C). 

Melting points were recorded using an Electrothermal Gallenhamp apparatus, and 

were uncorrected.  Single crystal X-ray diffraction was performed using an Oxford 

Diffraction Xcalibur PX Ultra, 1.54248 Å diffractometer.  

Chiral HPLC was performed on Gilson and Hewlett Packard HPLC systems, each 

equipped with variable wavelength UV detectors set at 254 nm and auto-injectors 
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with 20μL loops, using Daicel Chiralcel OJ-H, OD-H, AS-H or AD-H columns (250 x 

4.6 mm).  Mass spectra (MS) were recorded on either a Micromass Autospec Premier 

or a VG Platform II spectrometer using EI, CI, ESI or FAB
+
 techniques.  Elemental 

analyses were carried out by the Science Technical Support Unit at London 

Metropolitan University.  ICP-OES analyses were performed using an optima 200 DV 

optical emission spectrometer.  Nitric acid (65%, m/v) was used for the digestion of 

samples.  Silver standards (1, 10 and 20 mg/L) were prepared from a 0.01 M solution 

of AgNO3 in acetic acid (Fluka).  All solutions were prepared using deionised water.  

Single crystal X-ray diffraction was performed using an Oxford Diffraction Xcalibur 

PX Ultra, 1.54248 Å diffractometer. 

 

7.1 Compounds Used in Chapter 2 

Methyl 2,2-diphenylpent-4-ynoate 2.2.  Prepared using a 

modified propargylation procedure:
58

 A solution of methyl 2,2-

diphenylacetate 2.1
180

 (5.83 g, 22.1 mmol.) in dry THF (20 mL) 

was added dropwise to a solution of pre-formed LDA (1 M in THF, 

33.2 mmol.) at -78 °C.  After stirring for 4 h propargyl bromide (80% in toluene, 2.9 

mL, 26.5 mmol.) was added dropwise.  The reaction mixture was then left to warm 

slowly to room temperature overnight.  The resulting mixture was treated with sat. 

NH4Cl (70 mL) and extracted with Et2O (2 x 50 mL).  The combined organic extracts 

were dried (MgSO4) and concentrated under vacuum to give 2.1 as a pale yellow oil 

(3.00 g, 85%) after purification by column chromatography.  Rf = 0.38 

(hexanes:acetone, 30:1);  νmax/cm
-1

: 3317, 3288 (C≡C), 3028, (C-H), 2992 (C-H), 

1736 (C=O), 1056 (C=C);  δH (CDCl3): 7.42 - 7.25 (10H, m, Ar), 3.77 (3H, s, CH3), 

3.32 (2H, d, J 2.6, CH2), 1.95 (1H, t, J 2.6, CH);  δC (CDCl3): 173.8 (C=O), 141.3 (C-

1), 128.8 (Ar), 127.9 (Ar), 127.3 (C-2) 80.9 (≡C), 71.8 (≡CH), 59.7 (C), 52.7 (CH3), 

29.3 (CH2); m/z (EI): 264 ([M]
+

, 5%),  225 (83),  205 (100). 

 

Methyl 2,2-diphenylhexa-4,5-dienoate 2.3. Prepared using a 

modified Crabbé procedure:
58

 Propargylation product 2.2 (5.28 

g, 20.0 mmol.) was added to a suspension of paraformaldehyde 

(1.20 g, 40.0 mmol.), copper bromide (1.4 g, 10.0 mmol.) and 

diisopropylamine (2.80 mL, 40.0 mmol.) in dioxane (120 mL).  The reaction mixture 
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was refluxed for 24 h, before being cooled to room temperature and concentrated 

under vacuum to give 2.3 as a pale yellow oil (2.40 g, 43%) after purification by 

column chromatography.  Rf = 0.40 (hexanes:acetone, 40:1);  νmax/cm
-1

: 3089, 3058 

(C-H), 2950 (C-H), 2850 (C-H), 1956 (C=C=C), 1731 (C=O), 1078 (C=C=C);
  

δH 

(CDCl3):  δ 7.37 - 7.22 (10H, m, Ar), 4.95 - 4.83 (1H, m, CH), 4.48 (1H, t, J = 2.5, 

=CH2), 4.46 (1H, t, J = 2.5, =CH2), 3.73 (3H, s, CH3), 3.14 (2H, dt, J = 2.5, 7.7, CH2); 

δC (CDCl3): 210.1 (=C=), 174.4 (C=O), 142.2 (C-1), 129.0 (Ar), 127.9 (Ar), 126.9 (C-

2), 85.8 (=CH2), 73.8 (CH), 60.6 (C), 52.4 (CH3), 38.1 (CH2); m/z (CI): 296 

([MNH4]
+
, 100%), 279 ([MH]

+
, 26). 

 

2,2-diphenylhepta-5,6-dien-1-ol 1.44.  According to the 

literature procedure,
58

 a solution of allenic ester 2.3 (5.00 g, 18.0 

mmol.) in dry Et2O (70 mL) was added dropwise to cooled (0 °C) 

suspension of LiAlH4 (1.37 g, 36.0 mmol.) in dry Et2O (140 mL). 

The reaction was stirred overnight, quenched with H2O (1.2 mL), 

2N NaOH (1.2 mL) and again with H2O (3.6 mL) at 0 °C.  The resulting suspension 

was filtered and washed with Et2O (2 x 25 mL).  The combined organic extracts were 

washed with H2O (50 mL) then brine (25 mL), dried (MgSO4) and concentrated under 

vacuum to give 1.44 as a colourless oil (3.90 g, 87%) after purification by column 

chromatography.  Rf = 0.55 (hexanes:EtOAc, 3:1); νmax/cm
-1

: 3424 (O-H), 3057 (C-

H), 2932 (C-H), 2882 (C-H), 1954 (C=C=C), 1020 (C=C=C); 
 
δH (CDCl3): 7.41-7.17 

(10H, m, Ar), 4.79-4.68 (1H, m, CH), 4.55 (1H, t, J 2.4, =CH2), 4.53 (1H, t, J 2.4, 

=CH2), 4.23 (2H d, J 5.0, O-CH2), 2.96 (2H, dt, J 2.4, 7.7, CH2), 1.47 (1H, br s, OH);  

δC (CDCl3): 209.6 (=C=), 144.9 (C-1), 128.3 (Ar), 126.5 (C-2), 85.6 (=CH), 74.0 

(=CH2), 68.1 (O-CH2), 51.9 (C), 36.3 (CH2); m/z (CI): 268 ([MNH4]
+
, 100%),  251 

([MH]
+
, 3). 

 

 4-Chlorobut-2-yn-1-ol 2.4. According to literature procedures, 

94,152,154
 thionyl chloride (41.00 mL, 56.4 mmol.) was added 

dropwise at 0
o
C over 2.5 h to a solution of but-2-yne-1,4-diol (32.30 g, 37.6 mmol.) in 

benzene (38 mL) and pyridine (45.5 mL, 56.4 mmol.).  After being allowed to warm 

to room temperature overnight the reaction mixture was poured in to ice H2O (100 

mL) and extracted with Et2O (2 x 30 mL).  The combined organic extracts were 

washed with aq. NaHCO3, 1N HCl, dried over MgSO4 and concentrated.  The crude 
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product was purified by distillation.  The product, 2.4 was obtained as a colourless oil 

(16.40 g, 42%).  bp: 50-55 
o
C, 1.0 torr (lit

181
 50 

o
C, 0.5 torr);   νmax/cm

-1
: 3601 (O-H), 

3351 (C≡C), 2926 (C-H), 2868 (C-H);
  
δH (CDCl3): 4.35 (1H, t, J 1.9, O-CH2), 4.20 

(1H, t, J 1.9, CH2Cl), 1.86 (1H, bs, OH); δC (CDCl3): 84.64 (-C≡), 80.54 (≡C-), 51.05 

(CH2OH), 30.36 (CH2Cl);  m/z (CI): 122 ([
35

MNH4]
+
, 22%), 124 ([

37
MNH4]

+
, 7).  

 

Buta-2,3-dien-1-ol 2.5.  According to the literature procedures, 

94,152,154
 LiAlH4 (5.49g, 144.6 mmol., 1.1 equiv) was added slowly to a 

solution of 2.4 (14.00 g, 134.6 mmol.) and Et2O (250 mL), maintaining a gentle 

reflux.  When the addition of the solid was complete, the addition funnel was rinsed 

with Et2O and the suspension was stirred for an additional hour.  The reaction mixture 

was quenched by the addition of H2O (5.4 mL), 4N NaOH solution (5.4mL) and ice 

H2O (16.8 mL).  The grey slurry was stirred overnight and filtered, dried over 

MgSO4, evaporated and purified by distillation.  The pure material decomposed so 

should be used immediately or kept in the freezer.  The product, 2.5 was obtained as a 

colourless oil (7.58 g, 81%).  bp: 100-125 
o
C, 760 torr (lit.

182
 126-128 

o
C, 756 torr); 

δH (CDCl3): 5.38 - 5.30 (1H, m, CH), 4.87 - 4.82 (2H, m, =CH2), 4.14 (2H, dt, J 3.0, 

5.9, CH2), 2.18 (1H, bs, OH). 

 

4-Bromobuta-1,2-diene 2.6. According to literature procedures, 

94,152,154
 a mixture of 2.5 (7.50 g, 107.1 mmol.) and pyridine (4.33 mL, 

53.5 mmol.) was added slowly to a solution of PBr3 (4.03 mL, 42.84 mmol.) in Et2O 

(10 mL) at 0 
o
C.  The reaction mixture was left to stir overnight, while warming to 

room temperature.  Excess reagent was quenched by the addition of H2O (10 mL).  

The aqueous layer was extracted with n-pentane (3 x 10 mL), and the combined 

organic extracts washed with brine and dried over MgSO4.  The solvent was removed 

by distillation at atmospheric pressure.  The product, 2.6 was obtained as a colourless 

oil (5.0 g, 88%).  bp: 105-110 
o
C, 760 torr (lit.

182
 109-111

 o
C, 760 torr);   νmax/cm

-1
: 

1945 (C=C=C),
 
1205 (C=C=C);

 
δH (CDCl3): 5.38 (1H, dt, J 4.0, 8.0 CH), 4.89 (2H, dt, 

J 3.0, 6.2, CH2=), 4.20-4.18 (2H, m, CH2); δC (CDCl3): 209.11 (=C=), 86.45 (CH), 

75.32 (=CH2), 31.38 (CH2);  m/z (EI) = 131 ([
79

M]
+

, 100%), 133 ([
81

M]
+

, 97).  

 

Methyl 2,2-diphenylhexa-4,5-dienoate 2.3 was prepared using a modified 

propargylation procedure:
94,152,154

 A solution of LDA was prepared from 
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diisopropylamine (4.82 mL, 34.4 mmol.) and butyllithium (1.6M in hexanes, 21.48 

mL, 34.4 mmol.) in dry THF (20 mL) under a nitrogen atmosphere at -78
o
C.  This 

was allowed to warm to 0
o
C for 1 h before being cooled again to -78

o
C.   A solution 

of methyl 2,2-diphenylacetate 2.1 (7.78 g, 34.4 mmol., 1.2 equiv) in dry THF (30 mL) 

was then added dropwise to the stirring solution, keeping the temperature below -60 

o
C. The mixture was stirred for an hour before 2.6 (2.92 g, 28.6 mmol.) was added, 

and the reaction mixture was left to stir overnight, warming to room temperature.  The 

mixture was treated with sat. NH4Cl (2 x 15 mL).  The aqueous layer was extracted 

with Et2O (2 x 15 mL), the combined organic extracts dried over MgSO4 and 

concentrated under vacuum to give 2.3 as a pale yellow oil (5.40 g, 68%) after 

purification by column chromatography  Rf = 0.40 (hexanes:acetone, 40:1). 

 

Typical procedure for catalytic reactions described in Chapter 2: 

A Radley’s reaction tube was charged with a magnetic stir bar, metal salt (5-15%), 

ligand (5-15%, if used) and additive (if used).  Solvent was added and, if required, the 

reaction temperature was adjusted and controlled via a thermostat.  This was stirred in 

the dark for 1 h to generate the catalytically active species before 1.44 was added and 

conversion monitored by TLC and/or NMR integration. Upon completion, the solvent 

was evaporated, or, if Brønsted acids were used, 1N NaOH (1 mL) was added, the 

aqueous layer extracted with Et2O and the combined organic extracts dried (MgSO4).  

The product was purified by column chromatography. 

 

4,4-Diphenyl-2- vinyltetrahydrofuran 1.45:
45,68,131

 

Isolated from 1.44 (0.4 mmol.) as colourless oil using 

AgBF4/R-BINAP the catalyst (52.0 mg, 52%).  Rf = 0.39 

(hexanes:EtOAc, 20:1); νmax/cm
-1

:  2866 (C-H), 1493, 

1445; δH (CDCl3): 7.40 - 7.17 (10 H, m, Ar), 5.93 (1H, 

ddd, J 17.2, 10.0, 7.2, =CH), 5.28 (1H, d, J 17.2, H-1
a
), 5.14 (1H, d, J 10.0, H-1

b
), 

4.71 (1H, d, J 8.8, O-CH2), 4.52 - 4.42 (1H, m, CH), 4.19 (1H, d, J 8.8, O-CH2), 2.69 

(1H, dd, J 12.0, 6.0, CH2), 2.48 (1H, dd, J 12.0, 9.6, CH2);  δC (CDCl3): 146.0 (C-1), 

145.6 (C-1), 138.8 (=CH), 128.5 (Ar), 128.4 (Ar), 127.3 (Ar), 127.2 (Ar), 126.5 (C-2), 

126.3 (C-2), 115.9 (=C), 79.72 (CH), 76.7 (O-CH2), 56.2 (C), 45.2 (CH2); (CI): 268 

([MNH4]
+
, 100%),  251 ([MH]

+
, 4%),  269 (33).  Lit.

68
 [α]D

28
 = -110.4 (c = 0.39 in 

CHCl3, 87% ee, S-isomer).  HPLC conditions: Chirapak OJ-H column, 5 % IPA in n-
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hexane, 1.0 mL/min, tR(major) = 16.6 min, tR(minor) = 21.2 min;  [α]D
25

 = -56.0 
o
 (c = 

0.4, CHCl3, 60% ee obtained with AgBF4/R-BINAP).  Lit.
68

 [α]D
28

 = -110.4 (c = 0.39 

in CHCl3, 87% ee, S-isomer). 

 

2.11:
103

  Isolated from 1.44 as a crystalline solid (recrystallised 

from hexane) using Cu(OTf)2 as the catalyst (19.5 mg, 39%).  

mp: 83-86 
o
C;  Rf = 0.23 (hexanes:EtOAc, 20:1); νmax/cm

-1
: 

2950 (C-H), 2932 (C-H), 2858 (C-H); δH (CDCl3) 7.49-7.15 

(8H, m, Ar), 6.76 (1H, d, J 7.6, H-6), 4.07 (1H, d, J 7.6, H-1
b
), 3.88 (1H, dd, J 3.6, 

7.6, H-1
a
), 2.34-2.18 (2H, m, H-2 and H-3), 2.09-1.94 (1H, m, H-2), 1.75 (3H, s, 

CH3), 1.69-1.59 (1H, m, H-3);  δC (CDCl3): 143.24 (C-5, 7 or 9), 142.57 (C-5, 7 or 9), 

140.25 (C-5, 7 or 9), 128.54 (Ar), 127.44 (Ar), 127.18 (Ar), 127.14 (Ar), 126.24 (Ar), 

123.32 (C-6), 120.30 (Ar), 72.23 (C-1), 71.35 (C-4), 42.83 (C-8), 33.69 (C-3), 29.27 

(C-2), 21.87 (CH3);  m/z (CI): 268 ([MNH4]
+
, 100%),  251 ([MH]

+
, 33), 220 (11), 52 

(57);  HRMS (ESI) 251.1431 ([MH]
+
, C18H19O  requires 251.1436);  Anal. Calcd for 

C18H18O: C, 86.36%; H, 7.25%.  Found: C, 86.46%, H, 7.17%. 

 

7.2 Compounds Used in Chapter 3 

 

Typical procedure for catalytic reactions in Chapter 3: 

A Radley’s reaction tube was charged with a magnetic stir bar, the catalyst AgOTf, 

Sn(OTf)2 or Zn(OTf)2 (15 mol%) and the corresponding γ-allenic alcohol (0.4 

mmol.). A PTFE screwcap was fitted, and DCE (0.3 mL) was added to the contents of 

the tube via the rubber septum.  The tube was positioned in a reaction carousel, and 

left to stir at room temperature. Conversions were monitored by TLC and/or NMR 

integration. Upon completion, the solvent was evaporated and the residue purified by 

column chromatography.  

 

4,4-Diphenyl-2-vinyltetrahydrofuran 1.45 was obtained from 1.44 as colourless oil 

using AgOTf as the catalyst (92%);  

 

2.11:
103

  Isolated from 1.44 as a crystalline solid using Sn(OTf)2 as the catalyst (79 

mg, 79%); 
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3.1:  Isolated from 1.44 as a crystalline solid 

(recrystallised from hexane) using Zn(OTf)2 as the 

catalyst (78 mg, 61%).  Rf = 0.27 (hexanes:EtOAc, 20:1); 

mp: 102-108 
o
C;  νmax/cm

-1
: 2924 (C-H), 2853 (C-H), 

1954 (C=C=C), 1055 (C=C=C);  δH (CDCl3): 7.37 - 7.09 

(17 H, m, Ar), 7.00-6.95 (1H, m, Ar), 6.89 - 6.82 (2H, m, Ar), 4.70 - 4.56 (1H, m, 

=CH), 4.54 - 4.36 (2H, m, =CH2), 4.15 (1H, d, J = 8.4, H-3), 3.94 (1H, dd, J = 11.6, 

2.8, H-7), 3.89 (1H, d, J 8.4, H-3), 3.20 - 3.08 (1H, m, =CHCH2), 2.95 - 2.87 (1H, m, 

=CHCH2), 2.85 (1H, d, J 11.6, H-7), 2.38 (1H, td, J 13.2, 3.6, H-5),  1.97 (1H, m, J 

9.2, 3.6, H-5),1.63 (1H, dt, J 13.2, 3.6, H-4), 1.32 -1.26 (1H, m, H-4), 1.22 (3H, s, 

CH3);  δC (CDCl3): 209.7 (=C=), 146.5 (C-1), 146.2 (C-1), 146.1 (C-1), 145.6 (C-1), 

128.5 (Ar), 128.2 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.2 (Ar), 

126.0 (Ar), 125.9 (Ar), 125.6 (Ar), 97.0 (C), 85.9 (CH), 73.6 (=CH2), 67.5 (C-7), 64.9 

(C-3), 50.3 (C-2), 45.0 (C-6), 36.3 (=CHCH2), 32.3 (C-4), 29.3 (C-5), 23.9 (CH3);  

Product fragmentised using MS; m/z (CI): 268 ([MNH4]
+
, 20%), 251 ([MH]

+
,
 
100);  

Anal. Calcd for C36H36O2: C, 86.36%; H, 7.25%.  Found: C, 86.27%, H, 7.08%. 

 

2-(Cyclohexylidenemethyl)-4,4-diphenyltetrahydrofuran 

3.19:
68

 isolated from 3.18 as a colourless oil using AgOTf as 

the catalyst (104 mg, 82%). Rf = 0.31 (hexanes:EtOAc, 

10:1);  νmax/cm
-1

: 2924 (C-H), 2863 (C-H);  δH (CDCl3): 

7.40 - 7.18 (10H, m, Ar), 5.26 (1H, d, J 8.8, =CH), 4.80 

(1H, td, J 9.0, 5.6, H-1), 4.66 (1H, d, J 9.0, O-CH2), 4.18 

(1H, d, J 9.0, O-CH2), 2.64 (1H, dd, J 12.0, 5.6, CH2), 2.42 (1H, dd, J 12.0, 9.6, CH2), 

2.26 - 2.03 (4 H, m, H-2), 1.66 - 1.39 (6H, H-3 and H-4);  δC (CDCl3): 146.3 (C-5), 

146.1 (C-6),  144.1 (=C), 128.4 (Ar), 128.3 (Ar), 127.2 (Ar),  126.4 (C-6), 126.2 (C-

6), 122.5 (=CH2),  76.9 (O-CH2),  74.3 (C-1), 56.4 (C), 45.8 (CH2), 37.1 (CH), 29.2 

(CH), 28.31 (CH), 27.8 (CH), 26.7 (CH);  m/z (EI): 318 ([M]
+
, 100%), 288 (54), 241 

(48), 205 (60), 81 (68);  HRMS (EI) 318.1985 (M
+
, C23H26O  requires 318.1984);  

Anal. Calcd for C23H26O: C, 86.75%; H, 8.23%.  Found: C, 86.89%, H, 8.17%. 
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2-Cyclohexenyl-5,5-

diphenyltetrahydro-

2H-pyran, 3.20: 

isolated from 3.17 as a 

colourless oil using 

Sn(OTf)2 (94 mg, 74%) 

or Zn(OTf)2 (87.8 mg, 69%) as the catalyst.  Rf = 0.26 (hexanes:EtOAc, 10:1);  

νmax/cm
-1

: 3023 (C-H), 2924 (C-H), 2862 (C-H);  δH (CDCl3): 7.53 - 6.99 (10H, m, 

Ar), 5.50 - 5.61 (1H, m, =CH), 4.61 (1H, d, J 8.8, O-CH2), 4.26 - 4.19 (1H, m, H-3), 

4.18 (1H, d, J 8.8, O-CH2), 2.62 (1H, dd, J 12.4, 6.0, H-1), 2.40 - 2.28 (2H, m, H-1 

and H-2), 2.14 (1H, dd, J 14.0, 6.0, H-2), 2.03 - 1.93 (4H, m, H-4 and H-7), 1.67 - 

1.52 (4H, m, H-5 and H-6);  δC (CDCl3): 146.4 (C-8), 146.2 (C-8), 134.8 (Ar), 128.4 

(Ar), 128.3 (Ar), 127.2 (Ar), 127.1 (Ar), 126.3 (C-9), 126.1 (C-9), 123.2 (=CH), 76.8 

(C), 76.8 (C-3), 55.9 (O-CH2), 44.9 (C-1 or C-2), 44.7 (C-1 or C-2), 28.8 (C-4 or C-

7), 25.3 (C-4 or C-7), 22.9 (C-5 or C-6), 22.3 (C-5 or C-6).  m/z (CI): 336 ([MNH4]
+
, 

100%),  319 ([MH]
+
, 38),  240 (78),  223 (33);  HRMS (ESI) 319.2053 ([MH]

+
, 

C23H27O  requires 319.2062);  Anal. Calcd for C23H26O: C, 86.75%; H, 8.23%.  

Found: C, 86.70%, H, 8.19%. 

 

6-Cyclohexyl-3,3-diphenyl-3,4-dihydro-2H-pyran, 3.21: 

isolated from 3.17 as a white solid using Sn(OTf)2 (10 mg, 

8%) or Zn(OTf)2 (8 mg, 6%) as the catalyst.  mp: 82-84 

o
C;  Rf = 0.28 (hexanes:EtOAc, 10:1);  νmax /cm

-1
: 2922 (C-

H), 2856 (C-H); δH (CDCl3) 7.52 - 7.11 (10H, m, Ar), 

5.75-5.71 (1H, m, =CH), 4.69 (1H, d, J 12.0, O-CH2), 3.80 

(1H, d, J 10.8, H-1), 3.59 (1H, d, J 12.0, O-CH2), 2.53 - 2.46 (2H, m, CH2), 2.09 - 

2.00 (3H, m, H-2), 2.09 - 2.00 (1H, m, CH, H-2), 1.90 (6H, m, CH, H-3 and H-4);  δC 

(CDCl3): 146.7 (C-5), 146.0 (C-5), 138.5 (Ar), 129.1 (Ar), 128.2 (Ar), 127.9 (Ar), 

127.0 (Ar), 126.3 (C-6), 125.6 (C-6), 123.4 (=CH), 82.4 (C-1), 75.1 (O-CH2), 45.9 

(C), 34.9 (CH2), 26.5 (CH), 25.0 (CH), 24.3 (CH), 22.6 (CH), 22.5 (CH);  m/z (CI): 

336 ([MNH4]
+
, 100%), 319 ([MH]

+
, 51),  301 (49); HRMS (ESI) 319.2054 ([MH]

+
, 

C23H27O  requires 319.2062);  Anal. Calcd for C23H26O: C, 86.75%; H, 8.23%.  

Found: C, 86.67%, H, 8.16%. 
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3-Vinyl-2-oxaspiro[4.5]decane, 3.22:  isolated from 3.18 as a 

colourless oil using AgOTf as the catalyst (51 mg, 76%).  Rf = 

0.28 (hexanes:EtOAc, 10:1);  νmax/cm
-1

: 2922 (C-H), 2880 (C-

H); δH (CDCl3): 5.88 (1H, ddd, J 17.1, 10.3, 6.7, =CH), 5.24 

(1H, dt, J  17.1, 1.6, H-1
a
), 5.09 (1H, dt, J 10.3, 1.6, H-1

b
), 4.37 

(1H, dd, J 15.5, 6.7, O-CH2), 3.62 (2H, close AB, O-CH2), 1.95 (1H, dd, J 12.5, 6.8, 

CH2), 1.58 - 1.35 (11H, m, CH2 and H-2 to H-4);  δC (CDCl3): 139.5 (=CH), 115.1 

(=C), 79.7 (C-3), 78.6 (O-CH), 44.8 (C), 44.1 (CH2), 36.8 (CH), 35.5 (CH), 26.0 

(CH), 24.1 (CH), 23.6 (CH);   m/z (CI): 350 ([MNH4]
+
, 4%),  333 ([MH]

+
, 2),  184 

(23), 167 (100), 153 (18);  HRMS (CI) 167.1430 ([MH]
+
, C11H19O  requires 

167.1436);  Anal. Calcd for C11H18O: C, 79.46%; H, 10.91%.  Found: C, 79.58%, H, 

10.87% 

 

3.23:  Isolated as a colourless oil from 3.18 using 

Sn(OTf)2 (47 mg, 35%) or Zn(OTf)2 (60 mg, 45%) as 

the catalyst.  Rf = 0.56 (hexanes:EtOAc, 20:1);  

νmax/cm
-1

: 2921 (C-H), 2850 (C-H), 1954 (C=C=C), 

1044 (C=C=C);  Two conformational isomers can be identified in solution (ratio = 1 : 

1.26);  δH (C7D8, 373K), 5.05 (minor, 1H, tt, J 6.7, 8.0, H-3), 4.92 (major, 1 H, tt, J 

6.7, 8.1, H-3), 4.47 (minor, 2 H, dt, J 2.6, 6.7, H-1), 4.43 (major, 2 H, dt, J 2.5, 6.7, H-

1), 3.46 - 3.44 (minor, 2 H, m), 3.38 - 3.26 (major, 2 H, m), 3.22 - 3.14 (major, 2 H, 

m), 3.16 - 3.15 (minor, 2 H, m), 2.14 - 2.07 (minor, 2 H, m), 1.93 (major, 2 H, dt, J 

2.5, 8.1), 1.63 - 1.59 (3 H, m), 1.52 - 1.49 (2 H, m), 1.40 - 1.10 (48 H, m), 1.04 - 0.97 

(1 H, m);  Due to the existence of two conformational isomers the carbon spectra was 

too complicated to be assigned.  m/z (CI): 350 ([MNH4]
+
, 2%),  333 ([MH]

+
, 4),  184 

(24),  167 (100), 153 (17);  HRMS (CI) 333.2798 ([MH]
+
, C22H37O2  requires 

333.2794);  Anal. Calcd for C22H36O2: C, 79.46%; H, 10.91%.  Found: C, 79.36%, H, 

10.59%. 
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7.3 Compounds Used in Chapter 4 

 

General method for propargylation:
58

  

A solution of ester (1 equiv) in dry THF (30 mL) was added dropwise to a solution of 

freshly prepared LDA (1.5 equiv) at -78 °C.  After stirring for 4 h, propargyl bromide 

(80% in toluene, 1.2 equiv) was added dropwise.  The reaction mixture was then left 

to warm slowly to room temperature overnight.  The resulting mixture was treated 

with sat. aq. NH4Cl (90 mL) and extracted with Et2O (2 x 60 mL).  The combined 

organic extracts were dried (MgSO4), filtered and concentrated under vacuum. 

 

General method for the Crabbè reaction:
58

 

Propargylation product (1 equiv) was added to a suspension of paraformaldehyde (2 

equiv), copper bromide (0.5 equiv) and diisopropylamine (2 equiv) in dioxane (180 

mL).  The reaction mixture was refluxed for 24 h, before being cooled to room 

temperature and concentrated under vacuum. 

 

General method for LAH reduction:
58

 

A solution of allenic ester (1 equiv) in dry Et2O (40 mL) was added dropwise to 

cooled (0 °C) suspension of LiAlH4 (2 equiv) in dry Et2O (80 mL). The reaction was 

stirred overnight, quenched successively by the addition of H2O (0.9 mL), 2N NaOH 

(0.9 mL) and H2O (2.7 mL) at 0 °C.  The resulting suspension was filtered and 

extracted with Et2O (2 x 15 mL).  The combined organic extracts were washed with 

H2O (25 mL) then brine (15 mL), dried (MgSO4) and concentrated under vacuum. 

 

Methyl-1-(prop-2-ynyl)cyclohexanecarboxylate 4.21a.  Prepared 

on a 39.0 mmol. scale using the general method for propargylation 

and was isolated as a pale yellow oil (5.12 g, 73%) after purification 

by column chromatography.  Rf = 0.07 (hexanes:acetone, 20:1);  νmax/cm
-1

: 3419 (C-

H), 2923 (C-H), 2851 (C-H), 1718 (C=O); δH (CDCl3): 3.73 (3H, s, CH3), 2.43 (2H, 

close AB, CH2), 2.03 (1H, t, J 2.7, ≡CH), 1.64-1.51 (3H, m, H-1 and H-2), 1.50-1.36 

(4H, m, H-2 and H-3), 1.28-1.25 (1H, m, H-3);  δC (CDCl3): 176.0 (C=O), 80.3 (≡C), 

70.8 (≡CH), 51.8 (CH3), 46.7 (CH2), 33.1 (C-1), 29.0 (C), 25.5 (C-3), 22.9 (C-2);  m/z 

(CI): 198 ([MNH4]
+
, 100%), 181 ([MH]

+
, 18), 52 (11); HRMS (ESI) 181.1228 (MH

+
, 
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C11H17O2  requires 181.1229); Anal. Calcd for C11H16O2: C, 73.30%; H, 8.95%; 

Found: C, 72.97%, H, 8.80%. 

 

Methyl-1-(buta-2,3-dienyl)cyclohexanecarboxylate 4.22a.  

Prepared on a 29.4 mmol. scale using the general method for the 

Crabbè reaction and was isolated as a yellow oil (2.30 g, 40%) 

after purification by column chromatography.  Rf = 0.33 (hexanes:EtOAc, 20:1);  

νmax/cm
-1

: 2956 (C-H), 2945 (C-H), 2854 (C-H),1962 (C=C=C), 1714 (C=O), 1052 

(C=C=C); δH (CDCl3): 4.98 (1H, tt, J 6.7, 8.1, =CH), 4.65 (1H, t, J 2.5, =CH2), 4.63 

(1H, t, J 2.5, =CH2) 3.70 (3H, s, CH3), 2.23 (2H, dt, J 2.4, 8.0, CH2), 2.14 - 2.01 (2H, 

m, H-1), 1.65 - 1.50 (3H, m, H-1 and H-2), 1.43- 1.23 (5H, m, H-2 and H-3);  δC 

(CDCl3): 209.53(=C=), 176.7 (C=O), 85.1 (=CH), 73.9 (=CH2), 51.5 (CH3), 47.5 (C), 

39.2 (CH2), 33.6 (C-1), 25.8 (C-2), 23.1 (C-3); m/z (CI): 212 ([MNH3]
+

, 100%), 195 

([MH]
+

,
 
49);  HRMS (EI) 195.1388 ([MH]

+
, C12H19O2  requires 195.1385);  Anal. 

Calcd for C12H18O2: C, 74.19%; H, 9.34%; Found: C, 74.1%, H, 9.27%.  

 

(1-(Buta-2,3-dienyl)cyclohexyl)methanol 3.18.  Prepared on a 

11.4 mmol. scale using the general method for LAH reduction and 

was isolated as a colourless oil (1.60 g, 85%) after purification by 

column chromatography.  Rf = 0.54 (hexanes:EtOAc, 3:1);  νmax/cm
-1

: 3339 (O-H), 

2922 (C-H), 2851 (C-H), 1953 (C=C=C), 1452, 1042 (C=C=C);
  

δH (CDCl3): 5.11 

(1H, tt, J 6.7, 8.3, =CH), 4.69 (1H, t, J  2.4, =CH2), 4.67 (1H, t, J 2.4, =CH2),  3.48 

(2H, close AB, O-CH2), 2.11 (2H, dt, J 2.4, 8.3, CH2) 1.47 (6H, m, H-1 and H-3), 

1.36 (4H, m, H-2);  δC (CDCl3): 209.4 (=C=), 85.72 (=CH), 73.7 (=CH2), 68.6 (O-

CH2), 38.0 (C), 34.5 (CH2), 32.2 (C-1), 26.3 (C-2), 21.5 (C-3);  m/z (CI): 184 

([MNH4]
+

, 100%), 167 ([MH]
+

,
 
9), 95 (19), 52 (20); HRMS (CI) 184.1704 ([MH]

+
 

C11H19O requires 184.1701); Anal. Calcd for C11H18O: C, 79.46%; H, 10.91%; 

Found: C, 79.39%, H, 10.98%. 

 

Methyl-9-(prop-2-yn-1-yl)-9H-fluorene-9-carboxylate 4.21b.  

According to literature procedure,
45

 In small quantities Na metal 

(1.00 g, 89.2 mmol.) was added to MeOH (150 mL).  Once 

dissolved, the ester 4.20b
180

 (10.00 g, 44.6 mmol.) was added and 

the mixture left to stir for 30 minutes.  Propargyl bromide (80% in toluene, 3.70 mL, 
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66.9 mmol.) was then added and the mixture left stirring for one h.  The resulting 

mixture was diluted with H2O (50 mL) followed by extraction into CH2Cl2 (3 x 25 

mL).  The combined organic extracts were washed with brine (25 mL), dried 

(MgSO4) and concentrated under vacuum to give 4.21b as a pale yellow solid (5.40 g, 

86%). mp 115-118 
o
C (lit.

151
 117-119 

o
C); νmax/cm

-1
:  3486 (C-H), 3311 (C-H), 3058 

(C-H), 3019 (C-H), 2955 (C-H), 1726 (C=O);  δH (CDCl3):  7.78 (1H, d, J 7.5, H-6), 

7.74 (1H, d, J 7.5, H-3), 7.47 (1H, dt, J 1.0, 7.5, H-5), 7.38 (1H, dt, J 1.1, 7.5, H-4), 

3.68 (4H, s, CH3), 3.09 (2H, d, J 2.6, CH2), 1.97 (1H, t, J 2.6, ≡CH); δC (CDCl3): 

172.66 (C=O), 144.5 (C-2), 140.8 (C-7), 128.6 (C-3), 127.6 (C-4), 123.6 (C-5),120.1 

(C-6), 80.3 (≡C), 70.5 (≡CH), 59.5 (C-1), 52.8 (CH3), 28.1 (CH2); m/z (EI): 262 

([M]
+
, 88%), 223 (100), 181 (90).   

 

Methyl-9-(buta-2,3-dien-1-yl)-9H-fluorene-9-carboxylate  

4.22b. Prepared on a 24.0 mmol. scale using the general method 

for the Crabbè reaction and was isolated as a colourless oil (3.00 

g, 45%) after purification by column chromatography. Rf = 0.42 

(hexanes:EtOAc, 10:1);  νmax/cm
-1

: 3068 (C-H), 2951 (C-H), 1955 

(C=C=C), 1724 (C=O), 1065 (C=C=C);
  

δH (CDCl3): 7.76 (2H, d, J 7.5, H-6), 7.61 

(2H, d, J 7.5, H-7), 7.44 (1H, td, J 1.0, 7.5, H-5), 7.36 (1H, td, J 1.1, 7.7, H-4), 4.72 - 

4.59 (1H, m, =CH), 4.45 (1H, t, J 2.4, =CH2), 4.43 (1H, t, J 2.4, =CH2), 3.64 (3H, s, 

CH3), 3.00 (2H, dt, J 7.7, 2.4, CH2); δC (CDCl3): 210.1 (=C=), 173.4 (C=O), 144.8 (C-

2), 141.0 (C-7), 128.2 (C-3), 127.4 (C-4), 124.9 (C-5), 120.0 (C-6), 84.5 (=CH), 74.2 

(=CH2), 61.2 (C), 52.6 (CH3), 37.1 (CH2); m/z (CI): 294 ([MNH4]
+
, 100%), 277 

([MH]
+
, 13);  HRMS (CI) 277.1223 ([MH]

+
, C19H17O2 requires 277.1229); Anal. 

Calcd for C19+H16O2: C, 82.58%; H, 5.84%; Found: C, 82.64%, H, 5.94%. 

 

(9-(Buta-2,3-dien-1-yl)-9H-fluoren-9-yl)methanol 4.18.   

Prepared on a 9.6 mmol. scale using the general method for LAH 

reduction and was isolated as a colourless oil (2.10 g, 89%) after 

purification by column chromatography.  Rf = 0.55 

(hexanes:EtOAc, 3:1);  νmax/cm
-1

: 3379 (O-H), 3065 (C-H), 2917 

(C-H), 2866 (C-H), 1953 (C=C=C), 1447, 1043 (C=C=C); δH (CDCl3): 7.78 (2H, d, J 

7.5, H-6), 7.54 (2H, d, J 7.4, H-3), 7.42 (2H, td, J 7.4, 1.1, H-5), 7.36 (2H, td, J 7.4, 

1.1, H-4), 4.69 - 4.55 (1H, m, =CH), 4.46 (1H, t, J 2.5, =CH2), 4.44 (1H, t, J 2.5, 
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=CH2), 3.90 (2H, close AB, O-CH2), 2.81 (2H, dt, J 7.8, 2.5, CH2) 1.48 (1H, t, J 6.5, 

OH);  δC (CDCl3): 209.6 (=C=), 147.3 (C-2), 141.2 (C-7), 127.8 (C-3), 127.2 (C-4), 

123.9 (C-5), 120.2 (C-6), 85.0 (=CH), 74.0 (=CH2), 68.8 (O=CH2), 56.7 (C-1), 34.1 

(CH2);  m/z (CI): 266 ([MNH4]
+

, 100%), 249 ([MH]
+

,
 
3), 217 (10); HRMS (CI) 

266.1558 ([MNH4]
+

, C18H20O requires 266.1545); Anal. Calcd for C18H20O: C, 

87.06%; H, 6.49%; Found: C, 86.95%, H, 6.34%. 

 

Diethyl-2-methyl-2-(prop-2-yn-1-yl)malonate 4.21c.  

Prepared on a 28.7 mmol. scale by the same method used to 

form 4.21b and was isolated as a colourless oil (4.30 g, 85%) 

after purification by column chromatography.  Rf = 0.29 

(hexanes:EtOAc, 20:1);  νmax/cm
-1

: 3285 (C≡C), 2986 (C-H), 2940 (C-H), 2906 (C-

H), 2123 (C≡C), 1736 (C=O), 1152 (OEt); 
 
δH (CDCl3): 4.20 - 4.13 (4H, m, O-CH2), 

2.75 - 2.73 (2H, m, CH2), 2.01 - 1.98 (1H, m, ≡CH), 1.50 (3H, d, J 2.4, CH3), 1.22 

(3H, t, J 7.1, CH2CH3), 1.21 (3H, t, J 7.1, CH2CH3);  δC (CDCl3): 170.7 (C=O), 79.1 

(≡C), 71.2 (≡CH), 61.6 (-CH2), 53.0 (C), 25.7 (CH2), 19.6 (CH3), 13.93 (CH2CH3); 

m/z (CI): 230 ([MNH4]
+
, 100%), 213 ([MH]

+
, 26). 

 

Diethyl-2-(buta-2,3-dienyl)-2-methylmalonate 4.22c.   

Prepared on a 19.8 mmol. scale using the general method for 

the Crabbè reaction and was isolated as a yellow oil (2.60 g, 

58%) after purification by column chromatography.  Rf = 0.32 (hexanes:EtOAc, 

10:1);  νmax/cm
-1

: 2984 (C-H), 2876 (C-H), 1957 (C=C=C), 1733 (C=O), 1024 

(C=C=C);
  

δH (CDCl3): 5.03 - 4.92 (1H, m, =CH), 4.64 - 4.61 (2H, m, =CH2), 4.15 

(4H, q, J 7.1, O-CH2), 2.59 - 2.47 (2H, m, CH2), 1.39 (3H, d, J 1.4, CH3), 1.22 (3H, t, 

J 7.2, CH2CH3), 1.22 (3H, t, J 7.2, CH2CH3);  δC (CDCl3): 210.1 (=C=) 171.7 (C=O), 

84.6 (=CH), 74.4 (=CH2), 61.2 (O-CH2), 53.8 (C), 35.1 (CH2), 19.6 (CH3), 14.0 

(CH2CH3);  m/z (CI): 244 ([MNH4]
+
, 88%), 227 ([MH]

+
, 100). HRMS (CI) 227.1293 

([MH]
+

, C12H19O4 requires 227.1293); Anal. Calcd for C12H18O4: C, 63.7%; H, 8.0%; 

Found: C, 60.2%, H, 8.2%.  

 

2-(Buta-2,3-dienyl)-2-methylpropane-1,3-diol 4.19.  Prepared 

on a 8.8 mmol. scale using the general method for LAH reduction 
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and was isolated as a pale yellow oil (1.10 g, 88%) after purification by column 

chromatography.  Rf = 0.58 (EtOAc);  νmax/cm
-1

: 3349 (O-H), 2929 (C-H), 2876 (C-

H), 1954 (C=C=C), 1041 (C=C=C);  δH (CDCl3): 5.14 – 5.07 (1H, m, =CH), 4.69 

(1H, t, J 2.4, =CH2), 4.68 (1H, t, J 2.4, CH2),  3.67 - 3.52 (4H, close AB, O-CH2), 

2.24 (2H, bs, OH), 2.13 (2H, dt, J 8.0, 2.4, CH2), 0.86 (3H, s, CH3);  δC (CDCl3) 209.8 

(=C=), 85.2 (=CH), 74.0 (=CH2), 69.8 (O-CH2), 39.8 (CH2), 33.4 (C), 18.3 (CH3);  

m/z (CI):  160 ([MNH4]
+
, 100%), 143 ([MH]

+
, 60);  HRMS (CI) 143.1075 ([MH]

+
, 

C8H14O2 requires 143.1072); Anal. Calcd for C8H14O2: C, 67.57%; H, 9.92%; Found: 

C, 67.41%, H, 9.81%.  

 

2-((1-Ethynylcyclohexyl)oxy)tetrahydro-2H-pyran 4.26a.  

 According to the literature procedures,
155,183

 3,4-dihydro-2H-pyran 

(11.0 mL, 120 mmol.) was added to to a cooled solution of 1-

ethynylcyclohexanol (10.16 mL, 80.0 mmol.) in CHCl3 (60 mL)  at 0 

°C, p-TsOH.H2O (30.4 mg, 0.0016 mmol.) was added and the mixture was stirred for 

2 h.  The resulting solution was washed with sat. aq. NaHCO3 (2 x 50 mL), brine (25 

mL), dried (MgSO4), filtered and concentrated under vacuum to give 4.26a as a 

colourless oil (15.00 g, 90%) after purification by distillation.  bp: 115-120 °C, 6 torr 

(lit
183

 101-103 
o
C, 3.6 torr); νmax/cm

-1
: 3307 (C=C), 2937 (C-H), 2860 (C-H), 2258 

(C=C);  δH (CDCl3): 5.15 - 5.13 (1H, m, H-1), 4.01 - 3.94 (1H, m, H-2), 3.56 - 3.49 

(1H, m, H-2), 2.50 (1H, s, ≡CH), 2.13 - 2.00 (1H, m, CH), 1.97 - 1.81 (2H, m, CH), 

1.78 - 1.62 (6H, m, CH) 1.61 - 1.45 (6H, m, CH), 1.33 - 1.18 (1H, m, CH);  δC 

(CDCl3): 95.7 (C-1), 85.3 (≡C), 74.8 (≡CH), 73.8 (C), 63.4 (C-2), 38.6, (CH) 38.4 

(CH), 32.1 (CH), 25.4 (CH), 25.3 (CH), 23.1 (CH), 22.9 (CH), 20.4 (CH);  MS (CI): 

226 ([MNH4]
+

, 15%), 209 ([MH]
+

,
 
5), 102 (100), 85 (36). 

 

3-(1-((Tetrahydro-2H-pyran-2-yl)oxy)cyclohexyl)prop-2-yn-1-ol 

4.27a.  According to the literature procedure,
153

 n-BuLi (2.5 M in 

hexanes, 36.2 mL, 90.6 mmol.) was added slowly to a stirring 

solution of THP-protected alcohol 4.26a (14.50 g, 69.7 mmol.) in 

dry THF (100 mL) at -78 °C, keeping the internal temperature 

below -65 
o
C. After stirring for 2 h at -78 

o
C, the solution was warmed to 0 °C, 

whereupon DMPU (20 mL) was added.  This was stirred for a further 30 minutes 

before paraformaldehyde (4.18 g, 139.4 mmol.) was added in one portion. The 
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reaction mixture was allowed to warm to room temperature and stirred overnight, 

before quenching with sat. NH4Cl (30 mL). The solution was extracted with Et2O (2 x 

25 mL) and the combined organic extracts washed with brine, dried (MgSO4), filtered 

and concentrated under vacuum to give 4.27a as  a colourless oil (12.80 g, 77%) after 

purification by column chromatography.  Rf = 0.37 (hexanes:EtOAc, 3:1);  νmax/cm
-1

: 

3399 (O-H), 2934 (C-H), 2857 (C-H);  δH (CDCl3): 5.15 - 5.13 (1H, m, H-1), 4.34 

(2H, close AB, O-CH2), 4.02 - 3.93 (1H, m, H-2), 3.56 - 3.49 (1H, m, H-2), 2.00 - 

1.97 (2H, m, CH), 1.87 - 1.85 (2H, m, CH), 1.75 - 1.65 (5H, m, CH), 1.60 - 1.47 (7H, 

m, CH), 1.32-1.21 (1H, m, CH);  δC (CDCl3): 95.4 (C-1), 87.2 (≡C), 84.3 (≡C-CH2), 

74.7 (C), 63.3 (C-2), 51.2 (O-CH2), 38.8 (CH), 32.1 (CH), 25.4 (CH), 23.3 (CH), 20.2 

(CH);  m/z (CI): 256 ([MNH4]
+
, 100%), 239 ([MH]

+
,
 
5), 221 (78), 203 (60), 102 (93). 

 

3-Cyclohexylideneprop-2-en-1-ol 4.25a. Prepared on a 22.2 

mmol. scale using the general method for LAH reduction and 

was isolated as a colourless oil (2.55 g, 83%) after purification 

by column chromatography.  Rf = 0.4 (hexanes:EtOAc, 3:1);  νmax/cm
-1

: 3304 (O-H), 

2923 (C-H), 2852 (C-H), 1964 (C=C=C), 1053 (C=C=C);  δH (CDCl3): 5.23 (1H, 

m,=CH), 4.09 (2H, close AB, O-CH2), 2.22 - 2.09 (4H, m, H-1), 1.65 - 1.52 (6H, m, 

H-2 and H-3), 1.48 (1H, t, J  5.6, OH);  δC (CDCl3): 197.2 (=C=), 105.9 (=C), 89.7 (O-

CH2), 61.1 (=CH), 32.8 (C-1), 27.4 (C-2), 26.0 (C-3);  m/z (EI): 138 (M
+
, 8%), 84 

(72), 55 (78), 49 (100). 

3-Cyclohexylideneallyl benzoate 4.29a. According 

to the literature procedure,
58

 benzoyl chloride (3.20 

mL, 27.8 mmol.) was added dropwise to a stirred 

solution of 4.25a (2.50 g, 18.5 mmol.), DMAP (226.0 

mg, 1.85 mmol.) and pyridine (1.79 mL, 22.2 mmol.) 

in CH2Cl2 (20 mL) at 0 °C,. After stirring overnight at room temperature, the resulting 

suspension was diluted with CH2Cl2 (100 mL), washed with 1N HCl solution (2 x 50 

mL), H2O (50 mL) and aq. 2N NaHCO3 (50 mL). The combined organic extracts 

were washed with brine (25 mL), dried (MgSO4) and concentrated under vacuum to 

give 4.29a as a pale yellow oil (4.40 g, 98%) after purification by column 

chromatography.  Rf = 0.38 (hexanes:EtOAc, 20:1); νmax/cm
-1

: 2928 (CH), 2855 (C-

H), 1968 (C=C=C), 1717 (C=O), 1069 (C=C=C); δH (CDCl3): 8.11 - 8.08, (2H, m, H-

5), 7.69-7.56 (1H, m, H-7), 7.56-7.44 (2H, m, H-6) 5.26 (1H, m, =CH), 4.81 (2H,  



155 

 

close AB, O-CH2), 2.19 - 2.10 (4H, m, H-3), 1.61 - 1.50 (6H, m, H-1 and H-2); δC 

(CDCl3): 199.9 (=C=), 166.4(C=O), 132.8 (C-4), 130.4 (C-11), 129.6 (C-5) 128.3 (C-

6), 104.7 (=C), 84.7 (=CH), 63.8 (O-CH2), 31.1 (C-3), 27. 2 (C-2), 26.0 (C-1); m/z 

(CI): 260 ([MNH4]
+
,61%), 243 ([MH]

+
,
 
100), 225 (42), 105 (80). 

 

3-Cyclohexylideneallyl methanesulfonate 4.30a.  According 

to the literature procedure,
58 

methanesulfonylchloride (1.44 mL, 

18.2 mmol.) was added dropwise to a solution of 4.25a (15.2 

mmol.), DMAP (186 mg, 1.52 mmol.), and Et3N (3.17 mL, 22.8 mmol.) in CH2Cl2 

(80 mL) at 0 °C. The resulting suspension was stirred for 1 h, treated with H2O (40 

mL), and extracted with CH2Cl2 (3 × 30 mL). The combined organic extracts were 

washed with 1 M HCl (40 mL), sat. aq.  NaHCO3 (40 mL), and brine (30 mL), dried 

(MgSO4), and concentrated.  4.30a was used immediately in the subsequent coupling 

step without further purification. 

 

Method A: Coupling using the benzoyl ester (a modified procedure).
4
 

At -78 °C, LiHMDS (1 M in THF, 50.70 mL, 50.7 mmol.) was added dropwise over 1 

h, to a solution of methyl 2,2-diphenylacetate, 2.1 (2.73 g, 12.1 mmol.) in dry THF 

(100 mL). Stirring was continued for 2 h at -78 °C. Meanwhile, a mixture of 

Pd2(dba)3
184,185

 (583 mg, 10 mol%) and PPh3 (798 mg, 30 mol%) was stirred in dry 

THF (30 mL) for 1 h at room temperature. Compound 4.29 (2.50 g, 10.1 mmol.) was 

added to this catalytic mixture and stirred for a further 2 h, before the mixture was 

transferred by syringe into the first solution at -78 °C. The combined mixture was 

warmed to room temperature stirred overnight. The reaction was quenched with sat. 

aq. NH4Cl (50 mL) and extracted with Et2O (3 x 25 mL). The combined organic 

extracts were washed with brine (25 mL), dried (MgSO4) and concentrated under 

vacuum.  

 

Method B: Coupling using the mesylate ester
37,58 

 

A solution of methyl 2,2-diphenylacetate, 2.1 (1.84 g, 6.9 mmol.) in DMF (15 mL) 

was added dropwise to a suspension of NaH (60% suspension in hexanes, 331 mg, 8.2 

mmol.) in THF (40 mL) at 0 °C. The resulting mixture was stirred vigorously for 1 h, 

treated sequentially with half the solution of crude 4.30  in DMF (10 mL) and a single 
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portion of NaI (1.23 g, 8.2 mmol.), and warmed to room temperature overnight with 

stirring. The resulting mixture was treated with H2O (40 mL) and extracted with Et2O 

(3 × 20 mL).  The combined organic extracts were washed with brine (25 mL), dried 

(MgSO4) and concentrated under vacuum. 

 

Methyl-5-cyclohexylidene-2,2-diphenylpent-4-enoate 

4.28a was formed by coupling methods A and B.  By 

Method A, 4.28a was obtained as a colourless oil (2.00 

g, 58%) after purification by column chromatography.  

By Method B, 4.28a was obtained as a colourless oil 

(2.50 g, 94%) after column chromatography; Rf = 0.26 (hexanes:CH2Cl2, 5:2).  

νmax/cm
-1

: 2926 (C-H), 2852 (C-H), 1965 (C=C=C), 1728 (C=O), 1058 (C=C=C); δH 

(CDCl3): 7.37 - 7.18 (10H, m, Ar), 4.73 (1H, s, =CH), 3.72 (3H, s, CH3),  3.12 (2H, 

close AB, CH2), 1.96 - 1.84 (4H, m, H-3), 1.56 - 1.41 (6 H, m, H-2 an H-1);  δC 

(CDCl3): 200.5 (=C=), 174.6 (C=O), 142.5 (C-4), 129.1 (Ar), 127.8 (Ar), 126.7 (C-5), 

101.8 (=C), 84.4 (=CH), 60.5 (C), 52.4 (CH3), 39.5 (CH2), 31.1 (C-3), 27.3 (C-2), 

26.1 (C-1);  m/z (CI):  364 ([MNH4]
+

, 100%), 347 ([MH]
+
, 17), 287 (21), 268 (34); 

HRMS (EI) 347.2015 ([MH]
+

, C24H27O2  requires 347.2011);  Anal. Calcd for 

C24H26O2: C, 83.20%; H, 7.56%.  Found: C, 83.26%, H, 7.43%. 

 

5-Cyclohexylidene-2,2-diphenylpent-4-en-1-ol 3.17.
68

 

Prepared on a 7.0 mmol. scale using the general method 

for LAH reduction and was isolated as a white solid 

(1.90 g, 86%) after purification by column 

chromatography.  Rf = 0.13 (hexanes:EtOAc, 20:1);  mp 49 - 55 °C;  νmax/cm
-1

: 3558 

(O-H), 3058 (C-H), 2921 (C-H), 2851 (C-H), 1964 (C=C=C), 1069 (C=C=C);  δH 

(CDCl3): 7.36 - 7.16 (10 H, m, Ar), 4.70 - 4.60 (1H, m, =CH), 4.21 (2H, close AB, O-

CH2), 2.90 (2H, close AB, CH2), 1.98 (4H, d, J 4.9, H-3), 1.54-1.46 (6H, m, H-2 and 

H-1);  δC (CDCl3): 200.2 (=C=), 145.2 (C-4), 128.4 (Ar), 128.2 (Ar), 122.9 (C-5), 

101.7 (=C), 84.2 (=CH), 68.4 (O-CH2), 52.2 (C), 37.8 (CH2), 31.3 (C-3), 27.4 (C-2), 

26.1 (C-1);  m/z (EI): 318 (M
+
,5%), 287 (64), 227 (40), 197 (100), 105 (91), 91 (82);  

HRMS (EI) 318.1983 ([M]
+
, C23H26O  requires 318.1984);  Anal. Calcd for C23H26O: 

C, 86.75%; H, 8.23%.  Found: C, 86.69%, H, 8.18%. 
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2-((1-Ethynylcyclopentyl)oxy)tetrahydro-2H-pyran 4.26b. 

Prepared from 1-ethynylcyclopentanol on a 45.4 mmol. scale, by the 

same method used to form 4.26a and was isolated as a colourless oil 

(8.30 g, 94%) after purification by column chromatography.  Rf = 0.34 

(hexanes:EtOAc, 20:1);  νmax/cm
-1

: 3293 (C=C), 2943 (C-H), 2874 (C-H);  δH (CDCl3) 

5.10-5.08 (1H, m, H-1), 4.00 - 3.89 (1H, m, H-2), 3.58 - 3.52 (1H, m, H-2), 2.49 (1H, 

s, ≡CH), 2.27 - 2.23 (1H, m, CH), 2.10 - 1.96 (2H, m, CH), 1.95 - 1.67 (7H, m, CH), 

1.64 - 1.47 (4H, m, CH);  δC (CDCl3): 96.5 (C-1), 85.7 (≡C), 80.5 (C), 72.5 (≡CH), 

63.4 (C-2), 41.2 (CH), 40.0 (CH), 31.9 (CH), 25.4 (CH), 23.3 (CH), 22.8 (CH), 20.2 

(CH):  MS (CI): 212 ([MNH4]
+

, 21%), 195 ([MH]
+

,
 
65), 169 (100), 102 (51), 85 (72). 

 

3-(1-((Tetrahydro-2H-pyran-2-yl)oxy)cyclopentyl)prop-2-yn-1-

ol 4.27b.  Prepared on a 42.0 mmol. scale, by the same method used 

to form 4.27a and was isolated as a colourless oil (7.70 g, 82%) 

after purification by column chromatography.  Rf = 0.30 

(hexanes:EtOAc, 3:1); νmax/cm
-1

:  3412 (O-H), 2942 (C-H), 2870 

(C-H);  
 
δH (CDCl3): 5.05 (1H, t, J 3.9, H-1), 4.24 (2H, close AB, O-CH2), 3.92 - 3.87 

(1H, m, H-2), 3.61 - 3.43 (1H, m, H-2), 2.23 - 2.08 (1H, m, CH), 2.01 - 1.60 (9H, m, 

CH), 1.58 - 1.42 (4H, m, CH);  δC (CDCl3): 96.0 (C-1), 86.6 (≡C), 83.3 (≡C-CH2), 

80.6 (C), 63.0 (C-2), 50.6 (O-CH2), 41.0 (CH), 40.2 (CH), 31.8 (CH), 25.4 (CH), 23.3 

(CH), 22.8 (CH), 19.8 (CH);  m/z (CI): 242 ([MNH4]
+
, 49%), 225 ([MH]

+
,
 
4), 207 

(50), 102 (100). 

 

3-Cyclopentylideneprop-2-en-1-ol 4.25b.  Prepared on a 22.3 

mmol. scale using the general method for LAH reduction and 

was isolated as a colourless oil (2.10 g, 80%) after purification 

by column chromatography.  Rf = 0.38 (hexanes:EtOAc, 3:1);  νmax/cm
-1

: 3342 (O-H), 

2953 (C-H), 2868 (C-H), 1962 (C=C=C), 1056 (C=C=C);  δH (CDCl3): 5.41 - 5.26 

(1H, m, =CH), 4.12 (2H, close AB, O-CH2), 2.49 - 2.34 (4H, m, H-2), 1.76 - 1.66 

(4H, m, H-1), 1.53 (1H, t, J 5.6, OH);  δC (CDCl3): 195.8 (=C=), 107.2 (=C), 92.4 

(=CH), 61.1 (O-CH2), 31.4 (C-2), 27.0 (C-1);  m/z (CI): 142 ([MNH4]
+
,48%), 124 

([MH]
+

,
 
63), 102 (100), 52 (47).  
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3-Cyclopentylideneallyl methanesulfonate 4.30b.   Prepared 

on a 2.9 mmol. scale, by the same method used to form 4.30a.  

4.30b was used immediately in the subsequent coupling step without further 

purification. 

 

Methyl-5-cyclopentylidene-2,2-diphenylpent-4-

enoate, 4.28b was formed by Method B on a 7.4 mmol. 

as a colourless oil (2.19 g, 89%) after purification by 

column chromatography.  Rf = 0.27 (hexanes:EtOAc, 

3:1); νmax /cm
-1

: 2951 (C-H), 2867 (C-H), 1967 (C=C=C), 1730 (C=O), 1059 

(C=C=C);  δH (CDCl3): 7.40 - 7.19 (10H, m, Ar), 4.90 - 4.82 (1H, m, =CH), 3.73 (3H, 

s, CH3), 3.13 (2H, close AB, CH2), 2.18 - 2.14 (4H, m, H-2), 1.68 - 1.53 (4H, m, H-

1): δC (CDCl3): 199.30 (=C=), 174.57 (C=O), 142.48 (C-3), 129.07 (Ar), 127.75 (Ar), 

126.71 (C-4), 103.11 (=C), 87.02 (=CH), 60.49 (C), 52.33 (CH3), 39.16 (CH2), 30.77 

(C-2), 26.90 (C-1).  m/z (CI):  350 ([MNH4]
+

, 100), 333 ([MH]
+
, 43), 187 (71), 122 

(86); Anal. Calcd for C23H24O2: C, 83.10%; H, 7.28%.  Found: C, 83.05%, H, 7.31%. 

 

6- Cyclopentylidene-2,2-diphenylocta-4,5-dien-1-ol 

4.23.  Prepared on a 3.0 mmol. scale using the general 

method for LAH reduction and was isolated as a white 

solid (711.3 mg, 78%) after purification by column 

chromatography.  Rf = 0.29 (hexanes:EtOAc, 10:1);  mp: 56 - 61 °C;  νmax /cm
-1

: 3325 

(O-H), 3058 (C-H), 2953 (C-H), 2867 (C-H), 1967 (C=C=C), 1045 (C=C=C);  δH 

(CDCl3): 7.41 - 7.18 (12H, m, Ar), 4.81 - 4.72 (1H, m, CH), 4.24 (2H, close AB, O-

CH2), 2.92 (2H, d, J 7.6, CH2), 2.39 - 2.18 (4H, m, H-2), 1.76 - 1.61 (4H, m, H-1), 

1.33 - 1.27 (1H, m, OH);  δC (CDCl3): 198.9 (=C=), 145.2 (C=3), 128.3 (Ar), 128.2 

(Ar), 126.4 (C-4), 103.1 (=C), 86.9 (=CH), 68.4 (O-CH2), 52.2 (C), 37.4 (CH2), 30.99 

(C-2), 27.0 (C-1);  m/z (CI):  322 ([MNH4]
+

, 75%),  305 ([MH]
+
, 36),  287 (100), 240 

(45); HRMS (CI) 305.1909 ([MH]
+

, C22H25O  requires 305.1905);  Anal. Calcd for 

C22H24O: C, 86.8%; H, 7.95%.  Found: C, 86.63%, H, 8.14%. 

 

2-((2-Methylbut-3-yn-2-yl)oxy)tetrahydro-2H-pyran 4.26c. 

Prepared from 2-methylbut-3-yn-2-ol, on a 119.0 mmol. scale, by 
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the same method used to form 4.26a and was isolated as a colourless oil (12.40 g, 

62%) after purification by distillation.  bp: 70-78 °C, 6 torr (lit
155

 65-66
o
C, 8 torr);  

νmax/cm
-1

: 3426 (C=C), 2941 (C-H), 2870 (C-H);  δH (CDCl3): 5.10 - 5.08 (1H, m, H-

1), 4.02 - 3.95 (1H, m, H-2), 3.56 - 3.51 (1H, m, H-2), 2.46 (1H, s, ≡CH), 1.92 - 1.86 

(1H, m, CH), 1.78 - 1.70 (1H, m, CH), 1.58 (3H, s, CH3), 1.61 - 1.55 (4H, m, CH), 

1.54 (3H, s, CH3);  δC (CDCl3): 96.0 (C-1), 86.2 (≡C), 71.9 (≡CH), 70.8 (C), 63.2 (C-

2), 31.8 (CH), 30.5 (CH3), 29.7 (CH3), 25.3 (CH), 20.3 (CH);  MS (CI): 186 

([MNH4]
+

, 8%), 169 ([MH]
+

,
 
5), 102 (100), 85 (20). 

 

4-Methyl-4-((tetrahydro-2H-pyran-2-yl)oxy)pent-2-yn-1-ol 

4.27c. Prepared on a 60.0 mmol. scale, by the same method used to 

form 4.27a and was isolated as a colourless oil (9.86 g, 83%) after 

purification by column chromatography.  Rf = 0.23 (hexanes:EtOAc, 

3:1);  νmax/cm
-1

: 3427 (C=O), 2983 (C-H), 2940 (C-H), 2866 (C-H): δH (CDCl3): 5.13 

- 5.04 (1H, m, H-1), 4.32 (2H, close AB, O-CH2), 4.05 - 3.92 (1H, m, H-2), 3.56 - 

3.51 (1H, m, H-2), 2.06 (1H, s, OH), 1.91 - 187 (1H, m, CH), 1.76 - 172 (1H, m, CH), 

1.61 - 1.53 (4H, m, CH), 1.56 (3H, s, CH3), 1.51 (3H, s, CH3);  δC (CDCl3): 95.8 (C-

1), 86.2 (≡C), 82.3 (≡C-CH2), 70.9 (C), 63.1 (C-2), 51.1 (O-CH2), 31.9 (CH), 30.5 

(CH3), 29.9 (CH3), 25.4 (CH), 20.3 (CH);  m/z (CI): 216 ([MNH4]
+
, 23%), 199 

([MH]
+

,
 
2), 181 (20), 102 (100).  

 

4-Methylpenta-2,3-dien-1-ol 4.25c.  Prepared on a 30.3 mmol. scale 

using the general method for LAH reduction and was isolated as a 

colourless oil (2.76 g, 93%) after purification by column chromatography.  Rf = 0.41 

(hexanes:EtOAc, 3:1);   νmax/cm
-1

: 3336 (O-H), 2982 (C-H), 2910 (C-H), 2870 (C-H), 

1968 (C=C=C), 1075 (C=C=C);  δH (CDCl3: 5.23 (1H, m, =CH), 4.10 (2H, close AB, 

O-CH2), 1.75 (3H, s, CH3), 1.75 (3H, s, CH3), 1.51 (1H, t, J 5.7, OH);  δC (CDCl3): 

200.5 (=C=), 98.6 (=C), 90.0 (=CH), 61.0 (O=CH2), 20.6 (CH3);  m/z (CI): 116 

([MNH4]
+
, 41%), 102 (100), 99 ([MH]

+
,
 
20), 85 (68).  

 

4-Methylpenta-2,3-dien-1-yl benzoate 4.29c. Prepared 

on a 27.6 mmol. scale, by the same method used to form 

4.29c and was isolated as a pale yellow oil (3.29 g, 59%) 
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after column chromatography.  Rf = 0.32 (hexanes:EtOAc, 10:1);  νmax/cm
-1

: 2930 

(CH), 2857 (C-H), 1965 (C=C=C), 1718 (C=O), 1054 (C=C=C);  δH (CDCl3): 8.10 - 

8.07, (2H, m, H-2), 7.69 - 7.56 (1H, m, H-4), 7.55-7.43 (2H, m, H-3) 5.27 (1H, m, 

=CH), 4.8 (2H, close AB, O-CH2), 1.70 (3H, d, J 2.7, CH3) 1.69 (3H, d, J 2.7, CH3);  

δC (CDCl3): 203.5 (=C=), 166.6 (C=O), 130.7 (C-4), 130.1 (C-1), 129.8 (C-2), 128.5 

(C-3), 97.7 (C-=C), 85.1 (=CH), 63.9 (O-CH2), 20.5 (CH3);  m/z (CI): 220 ([MNH4]
+
, 

100%), 203 ([MH]
+

,
 
57).   

 

4-Methylpenta-2,3-dien-1-yl methanesulfonate 4.30c.  Prepared 

on a 2.9 mmol. scale, by the same method used to form 4.30c.  

4.30c was used immediately in the subsequent coupling step without further 

purification. 

 

Methyl-6-methyl-2,2-diphenylhepta-4,5-dienoate 4.28c  

was formed by method A on a 15.8 mmol. scale and was 

isolated as a colourless oil (1.50 g, 47%) after purification by 

column chromatography.  Rf = 0.25 (hexanes:EtOAc, 3:1);  

νmax /cm
-1

: 3030 (C-H), 2944 (C-H),  2982 (C-H), 1962 (C=C=C), 1728 (C=O), 1023 

(C=C=C);  δH (CDCl3) 7.47 - 7.19 (10H, m, Ar), 4.79 - 4.72 (1H, m, =CH), 3.74 (3H, 

s, O-CH3), 3.13 (2H, close AB, CH2), 1.53 (3H, s, CH3), 1.52 (3H, s, CH3);  δC 

(CDCl3): 203.6 (=C=), 172.5 (C=O), 136.2 (C-1), 128.3 (Ar), 128.0 (Ar), 126.7 (C-2), 

94.7 (=C), 83.5 (=CH), 63.9 (C), 57.1 (O-CH3), 38.1 (CH2), 20.3 (CH3);  m/z (ESI):  

308 ([MH]
+
, 100%), 251 (19), 191 (12);  Anal. Calcd for C21H22O: C, 82.32%; H, 

7.24%.  Found: C, 2.12%, H, 7.32%. 

 

6-Methyl-2,2-diphenylocta-4,5-dien-1-ol 4.24.  Prepared on 

a 3.26 mmol. scale using the general method for LAH 

reduction and was isolated as a white solid (453.1 mg, 50%) 

after purification by column chromatography.  Rf = 0.22 

(hexanes:EtOAc, 10:1);  mp: 40-44 °C;  νmax /cm
-1

: 3581 (O-H), 3463 (O-H), 2974 (C-

H), 2928 (C-H), 2845 (C-H), 1971 (C=C=C), 1017 (C=C=C);  δH (CDCl3): 7.46 – 

7.15 (10H, m, Ar), 4.74 - 4.54 (1H, m, =CH), 4.24 (2H, close AB, CH2OH), 2.90 (2H, 

close AB, CH2), 1.59 (3H, s, CH3), 1.59 (3H, s, CH3), 1.26 (1H, t, J 7.0, OH);  δC 

(CDCl3): 203.6 (=C=), 145.2 (C-1), 128.3 (Ar), 128.2 (Ar), 126.4 (C-2), 94.5 (=C), 
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84.4 (=CH), 68.4 (O-CH2), 52.2 (C), 37.3 (CH2), 20.4 (CH3);  m/z (CI):  296 

([MNH4]
+

, 100%),  279 ([MH]
+
, 5),  261 (58), 240 (30); HRMS (CI) 296.2014 

([MNH4]
+

, C20H26NO  requires 296.2014);  Anal. Calcd for C20H22O: C, 86.29%; H, 

7.97%.  Found: C, 86.21%, H, 7.84%. 

 

Compounds prepared by other members of the group 

 

2,2-Diphenylhepta-5,6-dien-1-ol 4.35 was synthesed by the 

literature procedures of Widenhoefer.
45,58 

νmax /cm
-1

: 3087 (O-

H), 3055 (C-H), 2923 (C-H), 2879 (C-H), 1966 (C=C=C), 

1087 (C=C=C); δH (CDCl3): 7.48 - 7.02 (10H, m, Ar), 5.13 

(1H, apparent p, J 6.8, =CH), 4.75 (1H, t, J 6.8, =CH2), 4.74 (1H, t, J 6.8, =CH2), 4.18 

(2H, close AB, O-CH2), 2.40 - 2.28 (2H, m, H-1), 1.89 - 1.71 (2H, m, H-2), 1.44 (1H, 

s, OH);  δC (CDCl3): 208.3 (=C=), 145.4 (C-3), 128.5 (Ar), 126.4 (C-4), 90.2 (=CH), 

75.5 (=CH2), 68.2 (O-CH2), 51.9 (C), 35.5 (C-1), 23.1 (C-2);  m/z (CI):  282 

([MNH4]
+

, 100%),  265 ([MH]
+
, 25). 

 

7-Methyl-1,1-diphenylocta-5,6-dien-1-ol 4.36 was synthesised 

by the literature procedure of Kolakowski.
156

 Colourless oil; νmax 

/cm
-1

: 3473 (O-H), 2932 (C-H), 1965 (C=C=C), 1057 (C=C=C); 

δH (CDCl3): 7.50 - 7.40 (4H, m, Ar), 7.37-7.31 (4H, m, Ar), 7.28 

- 7.22 (2H, m, Ar), 5.02 (1H, ddd, J 9.2, 6.1, 3.0, CH), 2.46 - 

2.35 (2H, m, H-2), 2.28 (1H, s, OH), 2.04 - 1.95 (2H, m, H-3), 1.71 (3H, s, CH3), 1.70 

(3H, s, CH3); δC (CDCl3): 201.5 (=C=), 147.0 (C-1), 128.1 (Ar), 126.8 (Ar), 126.1 

(Ar), 88.6 (=C), 78.4 (=CH), 60.4 (C), 41.0 (C-2), 24.0 (C-3), 20.8 (CH3);  m/z (EI):  

278 ([MH]
+

, 20%),  222 (32), 180 (100). 

 

General method for Hydrolysis
185

 

 

A mixture of the ester (10 mmol., 1 equiv) and KOH (100 mmol., 10 equiv) and EtOH 

(20 mL) was refluxed for 24 h.  The reaction mixture was cooled, poured onto ice and 

acidified to pH 2 by the addition of 1 N HCl. The aqueous layer was washed with 

EtOAc (3 x 60 mL). The combined organic layers were washed with brine (until pH 

6-7), dried (MgSO4) and concentrated under vacuum. 
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6-Methyl-2,2-diphenylocta-4,5-dienoic acid 4.31 was 

obtained as a white solid (2.80 g, 96%) after purification by 

column chromatography.  Rf = 0.35 (hexanes:EtOAc, 3:1);  

mp: 98-101 
o
C;  νmax  (thin film)/cm

-1
: 3061 (C-H), 2972 (C-

H), 2901 (C-H), 2849 (C-H), 1969 (C=C=C), 1694 (C=O), 1019 (C=C=C); δH 

(CDCl3) 7.43 - 7.18 (10H, m, Ar), 4.82 - 4.61 (1H, m, =CH), 3.11 (2H, close AB, 

CH2), 1.49 (3H, s, CH3), 1.48 (3H, s, CH3);  δC (CDCl3): 203.9 (=C=), 178.8 (C=O), 

141.9 (C-1), 129.2 (Ar), 127.9 (Ar), 127.0 (C-2), 94.7 (=C), 84.4 (=CH), 60.3 (C), 

38.9 (CH2), 20.1 (CH3);  m/z (CI):  310 ([MNH4]
+

, 100%),  293 ([MH]
+
, 4),  254 (40), 

230 (17); HRMS (CI) 310.1812 (MNH4
+

, C20H24NO2 requires 310.1807);  Anal. Calcd 

for C20H20O2: C, 82.16%; H, 6.69%.  Found: C, 82.02%, H, 6.75%. 

 

2,2-Diphenylhexa-4,5-dienoic acid 4.32 was obtained as a 

pale yellow solid (1.87 g, 71%) after purification by column 

chromatography.  Rf = 0.15 (hexanes:EtOAc, 3:1);  mp: 65 - 

68 
o
C;  νmax  (thin film)/cm

-1
: 2889 (C-H), 1960 (C=C=C), 

1694 (C=O), 1053 (C=C=C);  δH (CDCl3): 7.39 - 7.22 (10H, m, Ar), 4.89 (1H, 

apparent p, J 7.3, =CH), 4.52 - 4.36 (2H, m, =CH2), 3.15 - 3.12 (2H, m, CH2); δC 

(CDCl3): 210.2 (=C=), 170.2 (C=O), 141.6 (C-1), 129.2 (Ar), 127.9 (Ar), 127.2 (C-2), 

85.6 (=CH), 74.0 (=CH2), 60.7 (C), 37.8 (CH2);  m/z (CI):  282 ([MNH4]
+

, 62%),  265 

([MH]
+
, 2),  230 (100), 167 (13); HRMS (CI) 282.1493 ([MNH4]

+
, C18H22NO2 

requires 282.1494);  Anal. Calcd for C18H16O2: C, 81.79%; H, 6.10%.  Found: C, 

82.09%, H, 5.62%. 

 

5-Cyclohexylidene-2,2-diphenylpent-4-enoic acid 4.33 

was obtained as a pale yellow solid (3.22 g, 97%) after 

purification by column chromatography.  Rf = 0.42 

(hexanes:EtOAc, 3:1);  mp: 156-160 
o
C; νmax  (thin 

film)/cm
-1

: 2932 (C-H),  2855 (C-H), 1966 (C=C=C), 

1697 (C=O), 1062 (C=C=C); δH (CDCl3): 7.50 - 7.21 (10H, m, Ar), 4.84 - 4.66 (1H, 

m, =CH), 3.12 (2H, close AB, CH2), 1.92 - 1.87 (4H, m, H-3), 1.50 - 1.42 (6H, m, H-

2 and H-1);  δC (CDCl3): 200.6 (=C=), 179.6 (C=O), 142.0 (C-4), 129.2 (Ar), 127.8 

(Ar), 127.0 (C-5), 102.0 (=C), 84.1 (=CH), 60.4 (C), 39.3 (CH2), 31.0 (C-3), 27.3 (C-

2), 26.1 (C-1);  m/z (CI):  350 ([MNH4]
+

, 18%),  333 ([MH]
+
, 3),  230 (100), 167 (14); 
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HRMS (CI) 333.1853 ([MH]
+

, C23H25O2 requires 333.1855);  Anal. Calcd for 

C23H24O2: C, 83.10%; H, 7.28%.  Found: C, 82.92%, H, 7.37%. 

 

5-Cyclopentylidene-2,2-diphenylpent-4-enoic acid 

4.34 was obtained as a white solid (3.02 g, 95%) after 

purification by column chromatography.  Rf = 0.22 

(hexanes:EtOAc, 3:1);  mp: 129-132 
o
C;  νmax  (thin 

film)/cm
-1

: 3057 (C-H), 2954 (C-H), 2920 (C-H), 2866 (C-H), 1962 (C=C=C), 1696 

(C=O), 1034 (C=C=C);  δH (CDCl3): 7.44 - 7.21 (10H, m, Ar), 4.88 (1H, tt, J 7.4, 3.9, 

=CH), 3.14 (2H, close AB, CH2), 2.18 - 2.12 (4H, m, H-2), 1.62 - 1.56 (4H, m, H-1);  

δC (CDCl3): 199.6 (=C=), 178.1 (C=O), 141.9 (C-3), 129.2 (Ar), 127.9 (Ar), 127.0 (C-

5), 103.4 (=C), 86.8 (=CH), 60.3 (C), 39.0 (CH2), 30.7 (C-2), 26.9 (C-1);  m/z (CI):  

336 ([MNH4]
+

, 90%),  319 ([MH]
+
, 31),  317 (100), 300 (91), 291 (78), 230 (57); 

HRMS (CI) 336.1964 (MNH4
+

, C22H26NO2 requires 336.1964);  Anal. Calcd for 

C22H22O2: C, 82.99%; H, 6.96%.  Found: C, 82.81%, H, 6.83%. 

 

Typical procedure for catalytic reactions involving Ag Complexes: 

A screw-cap vial was charged with a magnetic stir bar, Ag complex or salt (5-15 

mol%) and the requisite substrate (0.1 mmol.).  DCE (0.5 mL) was added and the 

reaction was stirred in the dark at room temperature.  Conversions were monitored by 

TLC and/or NMR integration. Upon completion, the solvent was evaporated and the 

product purified by column chromatography. 

 

4,4-Diphenyl-2- vinyltetrahydrofuran 1.45:
45,68,131

 from 1.44 as colourless oil using 

5 mol% β-4.16-Ag as the catalyst (24 mg, 95%).  Rf = 0.39 (hexanes:EtOAc, 20:1); 

HPLC conditions: Chirapak OJ-H column, 5 % IPA in n-hexane, 1.0 mL/min, 

tR(major) = 16.6 min, tR(minor) = 21.2 min;  [α]D
25

 = -30.6 
o
 (c = 0.15, CHCl3, 28% ee 

obtained with β-4.16-Ag).  Lit.
68

 [α]D
28

 = -110.4 (c = 0.39 in CHCl3, 87% ee, S-

isomer). 

 

2-(Cyclohexylidenemethyl)-4,4-diphenyltetrahydrofuran 3.19:
68

 Isolated from 

3.17 as colourless oil using 15 mol% R,R-4.11-Ag as the catalyst (32 mg, 99%). Rf = 

0.31;  HPLC conditions: Chirapak AD-H column, 0.5% IPA in n-hexane, 1.0 mL/min, 
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tR(minor) = 14.6 min, tR(major) = 21.2 min,;  [α]D
25

 = -67.5
o
 (c = 0.24, CHCl3, 73% ee 

with R,R-4.11-Ag). Lit.
68

 [α]D
28

 = -82.7 (c = 0.25 in CHCl3, 75% ee, S isomer). 

 

5'-Vinyl-4',5'-dihydro-2'H-spiro[fluorene-9,3'-furan] 

4.37: Isolated from 4.18 as a white solid using 15 mol% 

AgTFA as the catalyst (23, 92%).  mp: 40-42 
o
C;   Rf = 

0.7 (hexanes:EtOAc, 3:1);    νmax/cm
-1

:  2972 (C-H), 2855 

(C-H); δH (CDCl3): 7.77 - 7.73 (2H, m, H-3), 7.63 - 7.59 

(1H, m, H-4), 7.57 - 7.55 (1H, m, H-4), 7.44 -7.33 (4H, m, H-5 and H-6), 6.17 (1H, 

ddd, J 17.0, 10.3, 6.2, =CH), 5.47 (1H, dt, J 17.0, 1.2, H-1
a
), 5.29 (1H, dt, J 10.3, 1.2, 

H-1
b
), 5.01 - 4.90 (1H, m, CH), 4.23 (1H, d, J 8.6, O-CH2), 4.05 (1H, d, J 8.6, O-

CH2), 2.54 (1H, dd, J 13.2, 7.2, CH2), 2.35 (1H, dd, J 13.2, 8.8, CH2);  δC (CDCl3): 

150.2 (C-2), 149.4 (C-2), 134.0 (C-7), 139.8 (C-7), 138.4 (=CH), 127.8 (C-5 and C-

6), 127.8 (C-5 and C-6), 127.5 (C-5 and C-6), 123.3 (C-4), 123.1 (C-4), 119.9 (C-3), 

119.8 (C-3), 116.0 (=CH2), 81.3 (CH), 77.7 (O-CH2), 58.3 (C), 45.4 (CH2);  m/z (CI): 

266 ([MNH4]
+
, 100%),  248 ([MH]

+
, 34),  231 (29), 218 (35);  HRMS (CI) 266.1545 

([MH]
+
, C18H20NO  requires 266.1545);  Anal. Calcd for C18H16O: C, 87.06%; H, 

6.49%.  Found: C, 87.12%, H, 6.53%. Enantiomers could not be resolved by HPLC or 

GC analysis. 

 

2-(2-Methylprop-1-en-1-yl)-4,4-diphenyltetrahydrofuran 

4.39: Isolated from 4.24 as colourless oil using 5 mol% β-

4.16-Ag as the catalyst (28 mg, 96%).   Rf = 0.68 

(hexanes:EtOAc, 3:1); νmax/cm
-1

:  3060 (C-H), 3025 (C-H), 

2919 (C-H), 2860 (C-H);  δH (CDCl3) 7.54 - 7.11 (10H, m, Ar), 5.36 - 5.27 (1H, m, 

=CH), 4.76 (1H, td, J 9.2, 6.0, CH), 4.65 (1H, dd, J 8.6, O-CH2), 4.20 (1H, d, J 8.6, 

O-CH2), 2.67 (1H, ddd, J 12.4, 6.0, 1.0, CH2), 2.41 (1H, dd, J 12.4, 9.2, CH2), 1.76 

(3H, d, J 1.0, CH3), 1.67 (3H, d, J 1.0, CH3);  δC (CDCl3): 146.3 (C-1), 146.2 (C-1), 

136.4 (=C), 128.4 (Ar), 128.4 (Ar), 127.2 (Ar), 126.4 (C-2), 126.3 (C-2), 125.8 

(=CH), 76.9 (O-CH2) 75.2 (CH), 56.3 (C), 45.5 (CH2), 25.9 (CH3), 18.2 (CH3);  m/z 

(CI): 296 ([MNH4]
+
, 100%),  279 ([MH]

+
, 22),  261 (61), 240 (72);  HRMS (CI) 

296.2010 ([MH]
+
, C20H23O  requires 296.2014);  Anal. Calcd for C20H22O: C, 

86.29%; H, 7.97%.  Found: C, 86.20, H, 7.86%; HPLC conditions: Chirapak AD-H 

column, 2% IPA in n-hexane, 1.0 mL/min, tR(minor) = 7.4 min, tR(major) = 8.9 min; 
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[α]D
25

 = -25.0
o
 (c = 0.22 in CHCl3, 36% ee obtained with β-4.16-Ag). Lit.

68
 [α]D

28
 = -

74.9 (c = 0.36 in CHCl3, 70% ee, S-isomer). 

 

2-(Cyclopentylidenemethyl)-4,4-

diphenyltetrahydrofuran 4.40: Isolated from 4.23 as 

white solid using 15 mol% R,R-4.11-Ag as the catalyst 

(30 mg, 98%).  mp: 52-55 
o
C;  Rf = 0.79 

(hexanes:EtOAc, 3:1);  νmax/cm
-1

:  3024 (C-H), 2949 (C-H), 2850 (C-H); δH (CDCl3): 

7.38 - 7.18 (10H, m, Ar), 5.45 - 5.36 (1H, m, =CH), 4.71 - 4.60 (2H, m, CH and O-

CH2), 4.20 (1H, d, J 8.8, O-CH2), 2.69 (1H, dd, J 12.0, 6.0, CH2), 2.42 (1H, dd, J 

12.0, 9.6, CH2), 2.36 - 2.12 (4H, m, H-2), 1.72 - 1.57 (4H, m, H-1);  δC (CDCl3): 

147.9 (=C), 146.3 (C-3), 146.2 (C-3), 128.39 (Ar), 128.34 (Ar), 127.2 (Ar), 126.4 (C-

4), 126.2 (C-4), 120.9 (=CH), 76.8 (O-CH2), 56.3 (CH), 45.2 (C), 33.8 (CH2), 28.8 

(C-2), 26.3 (C-2), 25.9 (C-1);  m/z (CI): 322 ([MNH4]
+
, 100%),  305 ([MH]

+
, 82),  

287 (74), 240 (49);  HRMS (CI) 305.1903 ([MH]
+
, C22H25O  requires 305.1905);  

Anal. Calcd for C22H24O: C, 86.80%; H, 7.95%.  Found: C, 86.40%, H, 8.13%;  

HPLC conditions: Chirapak AD-H column, 2% IPA in n-hexane, 1.0 mL/min, 

tR(minor) = 8.1 min, tR(major) = 9.6 min; [α]D
25

 = –45.5
o
 (c = 0.56, CHCl3, 41% ee 

with R,R-4.11-Ag), tentatively assigned S by analogy. 

 

3-Vinyl-2-oxaspiro[4.5]decane, 3.22:  Isolated from 3.18 as colourless oil using 15 

mol% AgTFA as the catalyst (13 mg, 76%).  Rf = 0.28 (hexanes:EtOAc, 3:1); 

Enantiomers could not be resolved by HPLC or GC analysis. 

 

(3 -Methyl-5-vinyltetrahydrofuran-3-yl)methanol 4.38:
186   

Isolated from 4.19 as colourless oil ia a 2:1 ratio of cis to 

trans isomers using 5 mol% β-4.16-Ag as the catalyst (14 

mg, 96%).Rf = 0.6 (petrolum ether:Et2O, 1:1); νmax/cm
-1

: 

3325 (O-H), 1678, 1427, 1382;  δH (CDCl3): Cis isomer 5.89 (1H, ddd, J 17.1, 10.3, 

6.6, =CH), 5.23 (1H, dt, J 17.1, 1.4, H-1
a
), 5.09 (1H, dt, J 10.3, 1.4, H-1

b
), 4.47 - 4.36 

(1H, m, CH), 3.87 (1H, d, J 8.7, O-CH2), 3.55 - 3.48 (2H, m, CH2OH), 3.44 (1H, d, J 

8.7, O-CH2), 1.80 (1H, dd, J 12.8, 7.2, CH2), 1.62 (1H, dd, J 12.8, 8.7, CH2), 1.15 

(3H, s, CH3);  δC (CDCl3): 138.5 (=CH), 113.6 (=CH2), 79.9 (O-CH2), 76.1 (CH), 69.7 

(CH2OH), 45.6 (CH2), 42.1 (C), 21.8 (CH3).  Trans isomer 5.89 (1H, ddd, J 17.1, 



166 

 

10.3, 6.6, =CH), 5.21 (1H, dt, J 17.1, 1.4, H-1
a
), 5.07 (1H, dt, J 10.3, 1.4, H-1

b
), 4.47 

– 4.36 (1H, m, CH), 3.74 (1H, d, J 8.7, O-CH2), 3.57 (1H, d, J 8.7, O-CH2), 3.55 - 

3.48 (2H, m, CH2OH), 2.11 (1H, dd, J 12.8, 7.2, CH2), 1.45 (1H, dd, J 12.8, 8.7, 

CH2), 1.14 (3H, s, CH3); δC (CDCl3): 139.0 (=CH), 144.4 (=CH2), 80.3 (O-CH2), 74.2 

(CH), 68.8 (CH2OH), 45.2 (CH2), 42.4 (C), 21.8 (CH3);  m/z (EI): 142 ([M]
+
, 22%), 

129 (49), 91 (37), 47 (28);  HPLC conditions: Chirapak OJ-H column, 10% IPA in n-

hexane, 1.0 mL/min, tR(major) = 16.3 and 17.6 min, tR(minor) = 27.5 and 34.4 min; 

Optical purity was too low (4,4%) for accurate determination of [α]D. 

2-(2-Methylprop-1-en-1-yl)-4,4-diphenyltetrahydrofuran 

4.41:  Isolated from 4.36 as a white solid using 5 mol% β-

4.16-Ag as the catalyst (26 mg, 95%).  mp: 51-52 
o
C;  Rf = 

0.83 (hexanes:EtOAc, 3:1);  νmax/cm
-1

:  3062 (C-H), 3028 (C-H), 2921 (C-H), 2865 

(C-H);  δH (CDCl3): 7.57 - 7.44 (4H, m, Ar), 7.32 (4H, m, Ar), 7.27 - 7.15 (2 H, m, 

Ar), 5.41 (1H, dq, J 8.4, 1.2, =CH), 4.85 (1H, dd, J 14.9, 8.4, CH), 2.81 - 2.55 (2H, m, 

H-1), 2.17 - 2.01 (1H, m, H-2), 1.80 (3H, s, CH3), 1.78 (3H, s, CH3),  1.73 (4H, m, 

CH3 and H-2); δC (CDCl3): 147.3 (C-3), 146.9 (C-3), 135.5 (=C), 128.2 (Ar), 128.0 

(Ar), 126.6 (Ar), 126.5 (Ar), 126.4 (Ar), 126.01 (=CH), 125.95 (Ar), 87.9 (C), 75.9 

(CH), 39.4 (C-1), 32.7 (C-2), 25.9 (CH3), 18.3 (CH3);  m/z (EI):  278 ([MH]
+
, 15%),  

222 (41), 180 (100);  HRMS (EI) 278.3852 ([M]
+
, C20H22O  requires 278.3856);  

Anal. Calcd for C20H22O: C, 86.29%; H, 5.75%.  Found: C, 86.34%, H, 5.82%.  

HPLC conditions: Chirapak OJ-H column, 1% IPA in n-hexane, 0.5 mL/min, 

tR(major) = 40.3 min, tR(minor) = 46.5 min; [α]D
25

 = +15.0
o
 (c = 0.1, CHCl3, 43% ee 

with β-4.16-Ag), tentatively assigned S by analogy. 

5,5-Diphenyl-2-vinyltetrahydro-2H-pyran 4.42:  Isolated 

from 4.35 as a colourless oil using 5 mol% β-4.16-Ag as the 

catalyst (26 mg, 98%).   Rf = 0.82 (hexanes:EtOAc, 3:1); 

νmax/cm
-1

:  2952 (C-H), 1732, 1486, 1251;  δH (CDCl3): 7.51-

7.18 (10H, m, Ar), 5.88 (1H, ddd, J  17.0, 10.4, 5.6, =CH), 

5.19 (1H, dd, J 17.0, 1.5, H-1
a
), 5.10 (1H, dd, J 10.4, 1.5, H-

1
b
), 4.69 (1H, dd, J  12.1, 2.4, CH),  4.04 - 3.93 (1H, m, O-CH2), 3.64 (1H, d, J 12.1, 

O-CH2), 2.64 - 2.39 (2H, m, H-3), 1.63 (1H, m, H-2), 1.46-1.31 (1H, m, H-2); δC 

(CDCl3): 146.0 (C-4), 145.7 (C-4), 138.9 (=CH), 128.9 (Ar), 128.3 (Ar), 128.0 (Ar), 
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127.0 (Ar), 126.3 (C-5), 125.7 (C-5), 115.3 (=C), 78.4 (CH), 74.7 (O-CH2), 45.8 (C), 

34.5 (C-3), 28.0 (C-2); m/z (CI): 283 ([MNH4]
+
, 100%), 265 ([MH]

+
, 35); HPLC 

conditions: Chirapak AD-H column, 2% IPA in n-hexane, 1.0 mL/min, tR(minor) = 

5.2 min, tR(major) = 6.1 min; [α]D
25

 = +24.0
o
 (c =1.0, CHCl3, 19% with β-4.16-Ag). 

Assigned S by comparison of HPLC data reported.
45

 

 

3,3-Diphenyl-5-vinyldihydrofuran-2(3H)-one 4.43: 

Isolated from 4.32 as a colourless oil using 5 mol% β-4.16-

Ag as the catalyst (25 mg, 96%).  Rf = 0.46 

(hexanes:EtOAc, 3:1); νmax/cm
-1

:  3060 (C-H), 3024 (C-H), 

2939 (C-H), 1767 (C=O);  δH (CDCl3): 7.49 - 7.21 (10H, m, Ar), 5.96 (1H, ddd, J 

17.2, 10.4, 6.4, =CH), 5.45 (1H, d, J 17.2, H-1
a
), 5.34 (1H, d, J 10.4, H-1

b
), 4.88 - 

4.74 (1 H, m, CH, 3.14 (1 H, dd, J 13.0, 5.0, CH2), 2.79 (1 H, dd, J 13.0, 10.4, CH2);  

δC (CDCl3): 176.9 (C=O), 141.7 (C-2), 139.7 (C-2), 135.0 (=C), 129.0 (Ar) 128.4 

(Ar), 127.8 (Ar), 127.7 (Ar), 127.4 (C-3), 127.3 (C-3), 118.9 (=CH), 77.5 (CH), 58.1 

(C), 43.8 (CH2);  m/z (CI): 282 ([MNH4]
+
, 100%),  265 ([MH]

+
, 10),  220 (14);  

HRMS (CI) 265.1222 ([MH]
+
, C18H17O2  requires 265.1229);  Anal. Calcd for 

C18H16O2: C, 81.79%; H, 6.10%.  Found: C, 82.00%, H, 5.64%.  HPLC conditions: 

Chirapak OD-H column, 5% IPA in n-hexane, 1.0 mL/min, tR(major) = 8.1 min, 

tR(minor) = 9.7 min;  [α]D
25

 =  -10.0
o
 (c = 0.45, CHCl3, 23% ee with β-4.16-Ag). 

 

5-(Cyclohexylidenemethyl)-3,3-diphenyldihydrofuran-

2(3H)-one 4.44:  Isolated from 4.33 as a white solid using 

5 mol% β-4.16-Ag as the catalyst (32 mg, 96%).  mp: 94-

97 
o
C;  Rf = 0.65 (hexanes:EtOAc, 3:1); νmax/cm

-1
:  3067 

(C-H), 2924 (C-H), 2853 (C-H), 1754 (C=O);  δH (CDCl3): 7.51 - 7.21 (10H, m, Ar), 

5.26 - 5.23 (1H, m, =CH), 5.13 (1H, ddd, J 10.5, 8.6, 4.8, CH), 3.07 (1H, dd, J 13.2, 

4.8, CH2), 2.73 (1H, dd, J 13.2, 10.5, CH2), 2.30 - 2.04 (4H, m, H-3), 1.69 - 1.47 (6H, 

m, H-1 and H-2);  δC (CDCl3): 177.3 (C=O), 148.6 (=C), 142.2 (C-4), 139.8 (C-4), 

129.0 (Ar), 128.4 (Ar), 127.8 (Ar), 127.7 (Ar), 127.4 (C-5), 127.2 (C-5), 118.9 (=CH), 

73.3 (CH), 58.3 (CH2), 44.6 (C-3), 37.0 (C-3), 29.6 (C-2), 28.2 (C-2), 27.8 (C-1), 26.5 

(C-1);  m/z (CI): 350 ([MNH4]
+
, 59%),  333 ([MH]

+
, 9),  269 (30), 102 (100);  HRMS 

(CI) 333.1852 ([MH]
+
, C23H25O2  requires 333.1855);  Anal. Calcd for C23H24O2: C, 

83.10%; H, 7.28%.  Found: C, 82.88%, H, 7.34%. HPLC conditions: Chirapak OD-H 
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column, 5% IPA in n-hexane, 1.0 mL/min, tR(major) = 6.5 min, tR(minor) = 13.6 min; 

[α]D
25

 = -44.4
o
 (c = 0.4, CHCl3, 24% ee with β-4.16-Ag). 

 

5-(2-Methylprop-1-en-1-yl)-3,3-diphenyldihydrofuran-

2(3H)-one 4.45:  Isolated from 4.31 as a colourless oil using 

5 mol% β-4.16-Ag as the catalyst (27 mg, 98%).  Rf = 0.5 

(hexanes:EtOAc, 3:1);  νmax/cm
-1

:  3060 (C-H), 3024 (C-H), 

2917 (C-H), 1762 (C=O);  δH (CDCl3): 7.77 - 6.92 (10H, m, Ar), 5.49 - 5.22 (1H, m, 

=CH), 5.08 (1H, ddd, J 10.6, 8.4, 4.8, CH), 3.09 (1H, dd, J 13.2, 4.8, CH3), 2.72 (1H, 

dd, J 13.2, 10.6, CH2), 1.81 (3H, d, J 1.2, CH3), 1.72 (3H, d, J 1.2, CH3);  δC (CDCl3): 

177.2 (C=O), 142.2 (C-1), 140.8 (=C), 139.7 (C-1), 128.9 (Ar), 128.3 (Ar), 127.7 

(Ar), 127.4 (C-2), 127.1 (C-2), 122.1 (=CH), 74.0 (CH), 58.2 (C), 44.2 (CH2), 25.8 

(CH3), 18.6 (CH3);  m/z (CI): 310 ([MNH4]
+
, 100%),  293 ([MH]

+
, 22),  248 (19);  

HRMS (CI) 293.1550 ([MH]
+
, C20H21O2  requires 293.1542);  Anal. Calcd for 

C20H20O2: C, 82.16%; H, 6.89%.  Found: C, 82.01, H, 6.73%; HPLC conditions: 

HPLC conditions: Chirapak 5% IPA in n-hexane, OD-H, 1.0 mL/min, tR(major) = 7.1 

min, tR(minor) = 13.1 min;  [α]D
25

 = -17.4
o
 (c = 0.27, CHCl3, 18% ee with β-4.16-Ag). 

 

5-(Cyclopentylidenemethyl)-3,3-diphenyldihydrofuran-

2(3H)-one 4.46:  Isolated from 4.34 as a white solid using 

5 mol% β-4.16-Ag as the catalyst (31 mg, 98%).  mp: 93-

95 
o
C;  Rf = 0.57 (hexanes:EtOAc, 3:1); νmax/cm

-1
:  3060 

(C-H), 2964 (C-H), 2858 (C-H), 1752 (C=O);  δH (CDCl3): 7.49 - 7.22 (10 H, m, Ar), 

5.48 - 5.34 (1H, m, =CH), 4.98 (1H, ddd, J 10.4, 8.8, 4.8, CH), 3.10 (1H, dd, J 13.2, 

4.8, CH2), 2.73 (1H, dd, J 13.2, 10.4, CH2), 2.49 - 2.13 (4H, m, H-2), 1.83 - 1.55 (4H, 

m, H-1);  δC (CDCl3): 177.2 (C=O), 152.5 (=C), 142.26 (C-3), 139.8 (C-3), 129.0 

(Ar), 128.4 (Ar), 127.74 (Ar), 127.69 (Ar), 127.4 (C-4), 127.2 (C-4), 117.3 (=CH), 

75.6 (CH), 58.2 (C), 44.1 (CH2), 34.0 (C-2), 29.2 (C-2), 26.2 (C-1), 25.9 (C-1);  m/z 

(CI): 336 ([MNH4]
+
, 100%),  319 ([MH]

+
, 13),  274 (8), 102 (29);  HRMS (CI) 

319.1693 ([MH]
+
, C22H23O2  requires 319.1698);  Anal. Calcd for C22H22O2: C, 

82.99%; H, 6.96%.  Found: C, 82.82%, H, 6.82%.  HPLC conditions: Chirapak OD-H 

column, 5% IPA in n-hexane, OD-H, 1.0 mL/min, tR(major) = 7.7 min, tR(minor) = 

13.7 min;  [α]D
25

 = -12.7
o
 (c = 0.3, CHCl3, 15% ee with β-4.16-Ag). 
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7.4 Compounds Used in Chapter 5 

 

2,2-Diphenylpent-4-ynenitrile 5.7.  Prepared on a 51.8 mmol. 

scale using the general method for propargylation and was isolated 

as a yellow oil (11.08 g, 93%) after purification by column 

chromatography.  Rf = 0.30 (hexanes:EtOAc, 10:1); νmax/cm
-1

: 3055 

(C-H), 3023 (C-H), 2929 (C-H), 2235 (C≡N);  δH (CDCl3): 7.60 - 7.24 (10H, m, Ar), 

3.29 (2 H, d, J 2.6, CH2), 2.17 (1 H, t, J 2.6, ≡CH);  δC (CDCl3): 138.9 (C-1), 128.9 

(Ar), 128.4 (Ar), 127,1 (C-2), 121.6 (C≡N), 78.3 (≡C), 73.3 (≡CH), 51.2 (C), 30.9 

(CH2);  m/z (EI): 231 ([M]
+
, 12), 192 (100), 165 (72). 

 

2,2-Diphenylhexa-4,5-dienenitrile 5.8.  Prepared on a 38.7 

mmol. scale using the general method for the Crabbè reaction 

and was isolated as a yellow oil (8.58 g, 73%).  Rf = 0.26 

(hexanes:EtOAc, 1:20); νmax/cm
-1

: 3059 (C-H), 2987 (C-H), 

2236 (C≡N), 1953 (C=C=C), 1018 (C=C=C);  δH (CDCl3): 7.45 - 7.31 (10H, m, Ar), 

5.12 -  5.01 (1H, m, =CH), 4.70 (1H, t, J  2.5, =CH2), 4.69 (1H, t, J  2.5, =CH2), 3.14 

(2H, dt, J  7.5, 2.5, CH2); δC (CDCl3): 210.5 (=C=), 139.5 (≡C), 128.9 (C-1), 128.0 

(Ar), 127.1 (Ar), 121.9 (C-2), 84.5 (=CH), 75.4 (=CH2), 52.0 (C), 39.4 (CH2);  m/z 

(CI) : 263 ([MNH4]
+
, 100%), 245 ([MH]

+
, 8). 

 

2,2-Diphenylhexa-4,5-dien-1-amine 5.5.
37 

of DIBAL-H (1 M in 

toluene, 20.00 mL, 20.0 mmol.) was added to a solution of  5.8 

(3.26 g, 13.3 mmol.) in Et2O (100 mL) at -42 °C over 30 min and 

stirred for 3 h. NaBH4 (1.52 g, 40.2 mmol.) was then added in 

one portion, followed by slow addition of EtOH (100 mL) over 30 min. Vigorous 

stirring of the mixture was maintained for 3 h at 0 °C, before it was diluted with Et2O 

(75 mL), and washed with sat. aq. K2CO3 (2 x 75 mL). The layers were separated and 

the organic layer was extracted with further portions of 1 M HCl (3 x 75 mL). The 

combined acidic extracts were rendered basic (pH ≥ 13) by the addition of 15% aq. 

NaOH (75 mL) and extracted with CH2Cl2 (3 x 75 mL). The combined organic 

extracts were dried (MgSO4) and concentrated to give 5.5 as a pale yellow oil (5.4 g, 

66%). This was used in subsequent reactions without further purification. 
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Typical procedure for the preparation of the sulfonamide derivatives 5.4a and 

5.10a-d:
159

 The requisite sulfonyl chloride (2.0 mmol., 1.0 equiv) was added slowly to 

a solution of 5.5 (2.0 mmol., 1.0 equiv) and triethylamine (0.79 mL, 2.0 mmol., 1.0 

equiv) in CH2Cl2 (25 mL) at 0 
o
C.  The mixture was allowed to stir for 4 h, before the 

reaction was quenched by the addition of H2O (15 mL).  The resulting suspension was 

diluted with CH2Cl2 (30 mL), washed with 1N HCl (3 x 15 mL) and H2O (15 mL).  

The combined organic extracts were then washed with brine (15 mL), dried (MgSO4) 

and concentrated under vacuum. The residue was then purified by column 

chromatography. 

N-(2,2-diphenylhexa-4,5-dien-1-yl)-4-methylbenzene 

Sulfonamide 5.4a
103

  was obtained as a white solid (790 mg, 

98%).  Rf = 0.23 (hexanes:EtOAc, 5:1);  mp: 89-92 
o
C;  

νmax/cm
-1

: 3251 (N-H), 2969 (C-H), 2882 (C-H), 1958 

(C=C=C), 1325 (S=O), 1159 (S=O), 1023 (C=C=C);  δH 

(CDCl3): 7.64 - 7.61 (2H, m, H-3), 7.36 - 7.19 (10H, m, Ar), 

7.09 (2H, m, H-4), 4.72 - 4.59 (1H, m, =CH), 4.51 (1H, t, J 2.4, =CH2), 4.50 (1H, t, J 

2.4, = CH2), 3.88 (1H, t, J 6.5, NH), 3.61 (2H, d, J 6.5, N-CH2), 2.90 (2H, dt, J 7.8, 

2.4, CH2), 2.46 (3H, s, CH3);  δC (CDCl3): 209.9 (=C=), 144.2 (C-1), 143.5 (C-2), 

136.3 (C-5), 129.7 (C-4), 128.4 (Ar), 127.9 (Ar), 127.1 (Ar), 126.8 (Ar), 84.6 (=CH), 

74.1 (=CH2), 50.1 (N-CH2), 49.6 (C), 36.9 (CH2), 21.6 (CH3);  m/z (ESI) : 404 

([MH]
+
, 100%);  HRMS (ESI) 404.5410 ([MH]

+
,
 
C25H25N2O2S requires 404.5417);  

Anal. Calcd for C25H25N2O2S: C, 74.41%; H, 6.24%; N, 3.47%.  Found: C, 74.56%, 

H, 6.28%, N, 3.46%. 

 

N-(2,2-diphenylhexa-4,5-dien-1-yl)naphthalene-1-

sulfonamide 5.10a was obtained as a white solid (843 

mg, 96%). Rf = 0.43 (hexanes:EtOAc, 3:1);  mp: 78 - 80 

o
C;  νmax/cm

-1
: 3271 (N-H), 3028 (C-H), 2932 (C-H), 

1955 (C=C=C), 1317 (S=O), 1155 (S=O), 1072 

(C=C=C);  δH (CDCl3) 8.31 - 8.23 (2H, m, Ar), 8.10 

(1H, d, J 8.3, Ar), 7.96 (1H, d, J 7.7, Ar), 7.68 - 7.48 (3H, m, Ar), 7.19 - 7.13 (6H, m, 

Ar), 6.99 - 6.96 (4H, m, Ar), 4.54 - 4.41 (1H, m, =CH), 4.42 - 4.35 (2H, m, =CH2), 

4.16 (1H, t, J 6.4, NH), 3.55 (2H, d, J 6.4, N-CH2), 2. 76 (2H, dt, J 7.6, 2.5, CH2);  δC 
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(CDCl3): 209.7 (=C=), 144.0 (Ar), 134.4 (Ar), 134.2 (Ar), 133.7 (Ar), 129.9 (Ar), 

129.1 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.1 (Ar), 127.7 (Ar), 126.8 (Ar), 

124.1 (Ar), 124.0 (Ar), 84.5 (=CH), 74.0 (=CH2), 50.0 (N-CH2), 49.7 (C), 36.8 (CH2);  

m/z (CI): 457 ([MNH4]
+

 100%), 440 ([MH]
+

, 32), 250 (44);  HRMS (ESI) 440.1693 

([MH]
+

,
 
C28H26NO2S requires 440.1684);  Anal. Calcd for C28H25NO2S: C, 76.51%; 

H, 5.73%; N, 3.19%.  Found: C, 76.64%, H, 5.69%, N, 3.11%. 

 

N-(2,2-diphenylhexa-4,5-dien-1-yl)methanesulfonamide 

5.10b was obtained as a white solid (621 mg, 95%).  Rf = 25 

(hexanes:EtOAc, 3:1);   mp: 58-64 
o
C;  νmax/cm

-1
: 3301 (N-H), 

3058 (C-H), 2940 (C-H), 1954 (C=C=C), 1323 (S=O), 1134 

(S=O), 1027 (C=C=C);  δH (CDCl3): 7.38 - 7.17 (10H, m, Ar), 

4.71 - 4.64 (1H, m, =CH), 4.64 - 4.59 (2 H, m, =CH2), 3.91 - 3.86 (2 H, m, N-CH2), 

2.95 (2 H, dt, J 7.7, 2.6, CH2), 2.70 (3H, s, CH3);  δC (CDCl3): 209.8 (=C=), 144.5 (C-

1), 128.5 (Ar), 127.9 (Ar), 126.9 (C-2), 84.9 (=CH2), 74.5 (=CH), 50.1 (C), 49.8 (N-

CH2), 40.1 (CH3), 36.6 (CH2);  m/z (CI): 345 ([MNH4]
+

, 100%);  HRMS (ESI): 

328.1363 ([MH]
+

,
 
C19H22NO2S requires 328.1371);  Anal. Calcd for C19H21NO2S: C, 

69.69%; H, 6.46%; N, 4.28%.  Found: C, 69.73%, H, 6.51%, N, 4.17%.  

 

N-(2,2-diphenylhexa-4,5-dien-1-yl)-2,4,6- 

trimethylbenzenesulfonamide 5.10c was obtained as a 

white solid (828 mg, 96%).  Rf = 0.57 (hexanes:EtOAc, 

3:1); mp: 95-98 
o
C;  νmax/cm

-1
: 3315 (N-H), 3025 (C-H), 

2928 (C-H), 1958 (C=C=C), 1322 (S=O), 1157 (S=O), 

1057 (C=C=C);  δH (CDCl3): 7.36 - 7.18 (8 H, m, Ar), 7.12 

- 7.05 (4 H, m, Ar), 4.62 - 4.51 (1H, m, =CH), 4.51 - 4.45 

(2H, m, =CH2), 4.00 (1H, t, J 6.5, NH), 3.51 (2H, d, J 6.5, N-CH2), 2.87 (2H, dt, J 

7.7, 2.4, CH2), 2.44 (6H, s, H-1), 2.33 (3H, s, H-2);  δC (CDCl3): 209.8 (=C=), 144.2 

(Ar), 142.2 (Ar), 139.1 (Ar), 132.6 (Ar), 131.9 (Ar), 128.4 (Ar), 127.9 (Ar), 126.9 

(Ar), 84.6 (=CH2), 74.1 (=CH), 50.0 (C), 49.1 (N-CH2), 37.1 (CH2), 22.6 (C-1), 21.0 

(C-2);  m/z (CI): 449 ([MNH4]
+

, 81), 432 ([MH]
+

, 100), 401 (68), 384 (51);  HRMS 

(ESI) 432.2001 ([MH]
+

,
 

C27H29NO2S requires 432.1997);  Anal. Calcd for 

C27H29NO2S: C, 75.14%; H, 6.77%; N, 3.25%.  Found: C, 75.19%, H, 6.85%, N, 

3.19%. 
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N-(2,2-diphenylhexa-4,5-dien-1-yl)-4-

nitrobenzenesulfonamide 5.10d was obtained as a 

yellow solid (564 mg, 65%).  Rf = 0.45 (CH2Cl2);  mp: 

48-56 
o
C;  νmax/cm

-1
: 3331 (N-H), 3055 (C-H), 3026 (C-

H), 2921 (C-H), 2857 (C-H), 1953 (C=C=C), 1508 

(N=O), 1331 (S=O), 1108 (S=O), 1079 (C=C=C); δH 

(CDCl3): 8.14 - 8.06 (2H, m, H-4), 7.42 - 7.18 (10H, m, 

Ar), 7.12 - 7.06 (2H, m, H-3), 4.70 - 4.60 (1H, m, =CH), 4.61 - 4.54 (2H, m, =CH2), 

3.72 (2H, d, J 6.4, N-CH2), 3.03 (2H, dt, J 7.7, 2.5, CH2), 2.47 (1H, t, J 6.4, NH);  δC 

(CDCl3):  209.8 (=C=), 152.9 (C-2 and C-5), 145.1 (C-1), 128.4 (Ar), 128.0 (Ar), 

126.7 (Ar), 123.9 (Ar), 121.9 (Ar), 85.3 (=CH), 74.2 (=CH2), 59.1 (N-CH2), 51.3 (C), 

36.7 (CH2);  m/z (ESI): 452 ([MNH4]
+

, 100%), 435 ([MH]
+

, 90);  HRMS (ESI) 

435.1370 ([MH]
+

,
 
C24H23N2O4S requires 435.1379);  Anal. Calcd for C24H22N2O4S: C, 

66.34%; H, 5.10%; N, 6.45%.  Found: C, 66.18%, H, 4.87%, N, 6.36%. 

 

Benzyl-(2,2-diphenylhexa-4,5-dien-1-

yl)carbamate 5.4b:
160

 Benzyl chloroformate (690 

μL, 4.8 mmol.) was added slowly to a mixture of 5.5 

(1.00 g, 4.0 mmol.) and NaHCO3 (0.60 g, 7.2 

mmol.) in EtOH:H2O (3:2, 25 mL) at room 

temperature. The resulting suspension was stirred for 1 h. H2O (40 mL) was added, 

and the resulting mixture was extracted with Et2O (2 x 50 mL). The combined ether 

extracts were washed with brine (25 mL), dried (MgSO4) and concentrated under 

vacuum. The residue was then purified by column chromatography.  5.4b was 

obtained as a colourless oil (1.38 g, 90%). Rf = 0.23 (hexanes:EtOAc, 10:1);  νmax 

(thin film)/cm
-1

: 3432 (N-H), 3095 (C-H), 3030 (C-H), 2936 (C-H), 1954 (C=C=C), 

1715 (C=O), 1005 (C=C=C; δH (CDCl3): 7.54 - 7.04 (15H, m, Ar), 5.07 (2H, s, H-2), 

4.81 - 4.67 (1H, m, =CH), 4.54 (1H, t, J 2.6, =CH2), 4.52 (1H, t, J 2.6, =CH2), 4.38 

(1H, t, J  5.8, NH), 4.01 (2H, close AB, N-CH2), 2.86 (2H, dt, J 7.9, 2.6, CH2);  δC 

(CDCl3): 210.0 (=C=), 156.3 (C=O), 144.9 (C-1), 136.5 (C-3), 128.6 (Ar), 128.4 (Ar), 

128.2 (Ar), 128.2 (Ar), 128.1 (Ar), 126.6 (Ar), 85.1 (=CH), 74.0 (=CH2), 66.7 (C-2), 

50.6 (C), 47.8 (N-CH2), 37.3 (CH2); m/z (CI): 401 ([MNH4]
+
, 100%), 384 ([MH]

+
, 

99), 219 (22). 
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N-benzyl-2,2-diphenylhexa-4,5-dien-1-amine 5.4c:
161

 

Benzaldehyde (265 μL, 2.61 mmol.) and 5.5 (690 mg, 

2.8 mmol.) in MeOH (25 mL) were stirred at room 

temperature overnight. NaBH4 (167.0 mg, 4.4 mmol.) 

was added and the reaction mixture was stirred for 30 minutes.  The reaction mixture 

was then quenched with 1N NaOH (20 mL) and the product extracted with Et2O (2 x 

25 mL).  The combined organic extracts were washed with brine (15 mL), dried 

(MgSO4) and concentrated under vacuum. The residue was then purified by column 

chromatography.  15g was obtained as a yellow oil (683 mg, 72%).  Rf = 0.15 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 3059 (C-H), 3024 (C-H), 2908 (C-H), 2813 (C-H), 

1954 (C=C=C), 1027 (C=C=C);  δH (CDCl3): 7.35 - 7.16 (15H, m, Ar), 4.70 - 4.63 

(1H, m, =CH), 4.50 (1H, t, J 2.4, =CH2), 4.47 (1H, t, J 2.4, =CH2), 3.77 (2H, close 

AB, H-2), 3.30 (2H, close AB, N-CH2), 3.04 (2H, dt, J 7.6, 2.4, CH2); δC (CDCl3): 

209.8 (=C=), 146.5 (C-1), 140.7 (C-3), 128.3 (Ar), 128.2 (Ar), 128.02 (Ar), 127.99 

(Ar), 126.8 (Ar), 126.1 (Ar), 85.9 (=CH), 73.5 (=CH2), 55.5 (N-CH2), 54.2 (C-2), 50.7 

(C), 37.0 (CH2);  m/z (EI) : 340 ([MH]
+
, 100%); HRMS (EI) 340.2059 ([MH]

+
,
 

C25H26N requires 340.2065);  Anal. Calcd for C25H25N: C, 88.45%; H, 7.42%; N, 

4.13%.  Found: C, 88.59%, H, 7.35%, N, 4.05%.   

 

N-(2,2-diphenylhexa-4,5-dien-1-yl)-2,2,2-

trifluoroacetamide 5.4d:
162

 Trifluoroacetic anhydride (0.84 

ml, 6.0 mmol.) was added dropwise to a vigorously stirred 

solution of 5.5  (1.00 g, 4.0 mmol.) in CH2Cl2 (8 mL) at 0 

o
C.   After 3 h the reaction was quenched with H2O (40 ml), 

diluted with CH2Cl2 (40 ml) and the organic layer washed 

with H2O (2 x 10 ml). The combined organic extracts were washed with brine (25 

mL), dried (MgSO4) and concentrated under vacuum.  The residue was then purified 

by column chromatography. 5.4d was obtained as a white solid (1.06 g, 77%).  Rf = 

0.59 (hexanes:EtOAc, 3:1); mp: 63 - 66 
o
C;  νmax/cm

-1
: 3284 (N-H), 3090 (C-H), 3032 

(C-H), 2942 (C-H), 1958 (C=C=C), 1701 (C=O), 1175 (C-F), 1153 (C-F), 1028 

(C=C=C); δH (CDCl3): 7.43 - 7.15 (10 H, m, Ar), 5.85 (1H, brs, NH), 4.73 - 4.64 (1H, 

m, =CH), 4.63 - 4.58 (2H, m, =CH2), 4.11 (2 H, close AB, N-CH2), 2.86 (2H, dt, J 

7.7, 2.4, CH2); δC (CDCl3): 210.0 (=C=), 156.9 (q, J 36.8, C=O), 144.0 (C-1), 128.7 
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(Ar), 127.8 (Ar), 127.1 (C-2), 115.7 (q, J 288.2, CF3), 84.5 (=CH), 74.3 (=CH2), 50..2 

(C), 46.1 (N-CH2), 37.5 (CH2);  δF (CDCl3): -76.12 (s);  m/z (ESI): 346 ([MH]
+
, 

100%), 295 (25), 233 (21); HRMS (ESI) 346.1425 ([MH]
+

,
 
C20H19NOF3 requires 

346.1419);  Anal. Calcd for C22H29NF3: C, 69.56%; H, 5.25%; N, 4.06%.  Found: C, 

69.48%, H, 5.10%, N, 3.92%.   

 

N-(2,2-diphenylhexa-4,5-dien-1-yl)benzamide 5.4e:
163

 

A solution of benzoyl chloride (0.55 ml, 4.8 mmol.) in 

CH2Cl2 (8.0 mL) was added slowly to a solution of 5.5 

(1.00 g, 4.0 mmol.) in pyridine (10.60 ml, 132.0 mmol.) 

at 0 
o
C and stirred for 3.5 h.  The reaction mixture was 

then concentrated, dissolved in CHCl3, with NaHCO3 (2 x 10 mL) and brine (10 ml), 

dried (MgSO4) and concentrated under vacuum.  The residue was then purified by 

column chromatography. 5.4e was obtained as a yellow oil (1.12 g, 79%).  Rf = 0.83 

(hexanes:EtOAc, 1:1);  νmax/cm
-1

: 3443 (N-H), 3057 (C-H), 2981 (C-H), 1958 

(C=C=C), 1665 (C=O), 1024 (C=C=C);  δH (CDCl3): 7.58 - 7.52 (2H, m, Ar), 7.51 - 

7.44 (1H, m, Ar), 7.44 - 7.35 (6H, m, Ar), 7.33 - 7.25 (6H, m, Ar), 5.72 (1H, t, J = 

5.7, NH), 4.89 - 4.72 (1 H, m, =CH), 4.55 (1 H, t, J 2.4, =CH2), 4.53 (1 H, t, J 2.4, 

=CH2), 4.23 (2 H, close AB, N-CH2), 2.93 (2H, dt, J 7.7, 2.4, CH2);  δC (CDCl3): 

210.0 (=C=), 167.2 (C=O), 144.9 (C-1), 134.7 (C-2), 131.4 (Ar), 128.6 (Ar), 128.5 

(Ar), 128.1 (Ar), 126.8 (Ar), 126.7 (Ar), 85.1 (=CH), 74.0 (=CH2), 50.9 (N-CH2), 

46.5 (C), 37.9 (CH2);  m/z (CI): 354 ([MH]
+
, 30%), 292 (100%), 263 (62%).  

  

1-(Prop-2-yn-1-yl) cyclohexanecarbonitrile 5.16.
37

 Prepared on a 

64.0 mmol. scale using the general method for propargylation and 

was isolated as a pale yellow oil (7.71 g, 82%) after purification by 

column chromatography.  Rf = 0.74 (hexanes:CH2Cl2,  1:1); νmax/cm
-

1
: 2936 (C-H), 2861 (C-H), 2224 (C≡N);  δH (CDCl3): 2.50 (2H, d, J 2.6, CH2), 2.19 

(1H, t, J 2.6, ≡CH), 2.10 - 2.04 (2H, m, H-1), 1.82 - 1.77 (3H, m, H-2 and H-3), 1.71 - 

1.60 (2 H, m, H-2), 1.41 (2 H, td, J 13.1, 3.3, H-1, 1.27 - 1.11 (1 H, m, H-3);  δC 

(CDCl3): 122.6 (C≡N), 78.2 (≡C), 72.4 (≡CH), 38.7 (C), 34.8 (C-1), 30.3 (CH2), 25.0 

(C-3), 23.0 (C-2);  m/z (CI):  165 ([MNH4]
+

, 100%),  147 ([M]
+
, 3). 
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1-(Buta-2,3-dien-1-yl)cyclohexanecarbonitrile 5.17.
37

  Prepared 

on a 52.3 mmol. scale using the general method for the Crabbè 

reaction and was isolated as a colourless oil (4.21 g, 50%).  Rf = 

0.35 (hexanes:EtOAc, 3:1); νmax/cm
-1

: 2934 (C-H), 2859 (C-H), 

2234 (C≡N), 1956 (C=C=C), 1086 (C=C=C);  δH (CDCl3): 5.25 - 5.14 (1H, m, =CH), 

4.78 (1H, t, J 2.4, =CH2), 4.76 (1H, t, J 2.4, =CH2), 2.28 (2H, dt, J 7.9, 2.4, CH2), 

2.06 - 2.00 (2H, m, H-1), 1.8 - 1.74 (3H, m, H-2 and H-3), 1.72 - 1.59 (2H, m, H-2), 

1.29 (2H, m, H-1), 1.23 - 1.13 (1H, m, H-3);  δC (CDCl3): 210.2 (=C=), 123.2 (C≡N), 

84.1 (=CH), 74.9 (=CH2), 39.8 (CH2), 39.4 (C), 35.2 (C-1), 25.3 (C-3), 23.0 (C-2); 

m/z (CI) : 179 ([MNH4]
+
, 100%), 161 ([M]

+
, 2). 

 

(1-(Buta-2,3-dien-1-yl)cyclohexyl)methanamine 5.18.
37

 Prepared 

on a 12.4 mmol. scale using the general method for LAH reduction 

and was isolated as a pale yellow oil (1.2 g, 60%) which was used 

immediately in the subsequent step without further purification. 

 

N-((1-(buta-2,3-dien-1-yl)cyclohexyl)methyl)-4-

methylbenzenesulfonamide 5.12.  Tosyl protection was 

carried out on a 3.0 mmol. scale, by the same method used 

to form 5.4a.
159

  5.12 was isolated as a white solid (4.11 g, 

43%).  Rf = 0.55 (hexanes:EtOAc, 3:1); mp: 72-74 
o
C;  

νmax/cm
-1

: 3288 (N-H), 2919 (C-H), 2847 (C-H), 1953 

(C=C=C), 1317 (S=O), 1158 (S=O), 1096 (C=C=C);  δH (CDCl3); 7.76 (2H, d, J 8.4, 

H-5), 7.35 (2H, d, J 8.4, H-6), 5.23 - 5.16 (1H, m, =CH), 4.61 (1H, t, J 2.4, =CH2), 

4.60 (1H, t, J 2.4, =CH2), 4.33 (1H, t, J 6.8, NH), 2.82 (2H, t, J 6.8, N-CH2), 2.47 

(3H, s, CH3), 2.01 (2H, dt, J 8.4, 2.4, CH2), 1.50 - 1.35 (6H, m, H-2 and H-3), 1.35 - 

1.23 (4H, m, H-1);  δC (CDCl3): 209.3 (=C=), 143.3 (C-4), 137.0 (C-7), 129.7 (C-5), 

127.1 (C-6), 85.0 (=CH), 74.1 (=CH2), 49.1 (N-CH2), 36.9 (CH2), 35.3 (C-1), 22.6 (C-

3), 21.5 (CH3), 21.3 (C-2);  m/z (CI): 337 ([MNH4]
+

, 100%), 320 ([MH]
+

, 39), 285 

(70), 262 (27);  HRMS (ESI) 320.1680 ([MH]
+

,
 
C18H26NO2S requires 320.1684);  

Anal. Calcd for C18H25NO2S: C, 67.67%; H, 7.89%; N, 4.38%.  Found: C, 67.76%, H, 

7.75%, N, 4.38%. 
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5-Cyclohexylidene-2,2-diphenylpent-4-enenitrile 

5.19a
37

  was formed by Method B on a 6.3 mmol. scale 

and was isolated as a white solid (1.67 g, 85%).  Rf = 

0.3 (hexanes:CH2Cl2, 3:1); mp: 72-74 
o
C;  νmax/cm

-1
: 

3062, (C-H), 3029 (C-H), 2890 (C-H), 2848 (C-H), 1967  (C=C=C), 1033 (C=C=C); 

δH (CDCl3): 7.50 - 7.24 (10 H, m, Ar), 5.00 - 4.94 (1H, m, =CH), 3.08 (2 H, d, J 7.0, 

CH2), 2.00 - 1.94 (4 H, m, H-3), 1.57 - 1.43 (6 H, m, H-2 and H-1); δC (CDCl3): 201.1 

(=C=), 140.0 (C-4), 128.8 (Ar), 127.8 (Ar), 127.2 (Ar), 122.1 (C≡N), 103.4 (=C), 82.9 

(=CH), 52.1 (C), 40.7 (CH2), 31.0 (C-3), 27.1 (C-2), 26.0 (C-1); m/z (ESI): 314 

([MH]
+

, 100%), 259 (23). 

 

N-(5-cyclohexylidene-2,2-diphenylpent-4-en-1-

yl)-4-methylbenzenesulfonamide 5.13.  Step1: The 

unprotected amine was prepared on a 2.9 mmol. 

scale using the general method for LAH reduction.
37 

 

Step2: Tosyl protection was carried on a 0.8 mmol. 

scale, by the same method used to form 5.4a.
159

  

5.13 was isolated as a white solid (310 mg, 69%, 

over the two steps).  Rf = 0.23 (hexanes:EtOAc, 3:1); mp: 54-60 
o
C;  νmax/cm

-1
: 3240 

(N-H), 2925 (C-H), 2849 (C-H), 2833 (C-H), 1970 (C=C=C), 1322 (S=O), 1162 

(S=O), 1085 (C=C=C):  δH (CDCl3): 7.77 - 7.53 (2 H, m, Ar), 7.53 - 7.17 (8 H, m, 

Ar), 7.17 - 6.93 (4 H, m, Ar),  4.58 - 4.52 (1H, m, =CH), 3.92 (1H, t, J 6.4, NH), 3.61 

(2H, d, J 6.4, N-CH2), 2.86 (2H, d, J 7.6, CH2), 2.45 (3H, s, CH3), 1.97 - 1.92 (4H, m, 

H-3), 1.55 - 1.44 (6H, m, H-2 and H-1);  δC (CDCl3): 200.5 (=C=), 144.5 (C-4), 143.4 

(C-5), 136.3 (C-6), 129.7 (Ar), 128.3 (Ar), 128.0 (Ar), 127.1 (Ar), 126.6 (Ar), 101.9 

(=C), 83.3 (=CH), 50.1 (C), 49.9 (N-CH2), 38.6 (CH2), 31.2 (C-3), 27.3 (C-2), 26.1 

(C-1), 21.5 (CH3);  m/z (ESI): 472 ([MH]
+

, 100%);  HRMS (ESI) 472.1309 ([MH]
+

,
 

C30H34NO2S requires 472.2310);  Anal. Calcd for C30H33NO2S: C, 76.40%; H, 7.05%; 

N, 2.97%.  Found: C, 76.41%, H, 6.89%, N, 2.85%. 

 

6-Cyclopentylidene-2,2-diphenylocta-4,5-

dienenitrile 5.19b.  Prepared by Method B on a 7.4 

mmol. scale.
37

  5.19b was isolated as a colourless oil 
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(1.88 g, 85%).  Rf = 0.23 (hexanes:CH2Cl2, 7:3);  νmax (thin film)/cm
-1

: 3063, 2951 (C-

H), 2893 (C-H), 1957 (C=C=C), 1596, 1494, 1449, 1215, 1034 (C=C=C); δH 

(CDCl3): 7.49 -  7.26 (10H, m, Ar), 5.13 - 5.02 (1H, m, =CH), 3.08 (2H, d, J 6.8, 

CH2), 2.30 - 2.08 (4H, m, H-2), 1.63 - 1.56 (4H, m, H-1);  δC (CDCl3): 199.8 (=C=), 

134.0 (C-3), 128.8 (Ar), 127.8 (Ar), 127.1 (C-4), 122.3 (C≡N), 105.3 (=C), 85.5 

(=CH), 52.0 (C), 40.4 (CH2), 30.9 (C-2), 26.9 (C-1); m/z (CI): 317 ([MNH4]
+

, 100%),  

300 ([MH]
+

, 95), 192 (39). 

 

N-(6- cyclopentylidene -2,2-diphenylocta-4,5-dien-

1-yl)-4-methylbenzenesulfonamide 5.14.  Step1: 

The unprotected amine was prepared on a 2.3 mmol. 

scale using the general method for LAH reduction.
37 

Step2: Tosyl protection was carried on a 2.0 mmol. 

scale, by the same method used to form 5.4a.
159

  5.14 

was isolated as a white solid (850 mg, 90%, over two steps).  Rf = 0.15 

(hexanes:EtOAc, 10:1); mp: 177 - 140 
o
C;  νmax/cm

-1
: 3282 (N-H), 2942 (C-H), 2865 

(C-H), 1970 (C=C=C), 1327 (S=O), 1160 (S=O), 1089 (C=C=C);   δH (CDCl3): 7.61 - 

7.57 (2 H, m, Ar), 7.38 - 7.17 (8 H, m, Ar), 7.12 - 7.08 (4 H, m, Ar), 4.63 (1 H, tt, J 

7.6, 4.0, =CH), 3.93 (1H, t, J 6.4, NH), 3.61 (2H, d, J 6.4, N-CH2), 2.86 (2 H, d, J 7.6, 

CH2), 2.45 (3 H, s, CH3), 2.21 (4 H, td, J 7.2, 4.0, H-2), 1.66 - 1.59 (4 H, m, H-1);  δC 

(CDCl3): 199.2 (=C=), 144.4 (Ar), 143.4 (Ar), 136.1 (C-3), 129.7 (Ar), 128.3 (Ar), 

128.0 (Ar), 127.1 (Ar), 126.6 (Ar), 103.3 (=C), 85.9 (=CH), 50.0 (C), 49.8 (N-CH2), 

38.1 (CH2), 30.9 (C-2), 27.0 (C-1), 21.5 (CH3);  m/z (ESI): 458 ([MH]
+

, 95%);  HRMS 

(ESI) (458.2150 [MH]
+

,
 

C29H32NO2S requires 458.2154);  Anal. Calcd for 

C29H31NO2S: C, 76.10%; H, 6.83%; N, 3.06%.  Found: C, 76.10%, H, 6.75%, N, 

2.98%. 

 

6-Methyl-2,2-diphenylocta-4,5-dienenitrile 5.19c.  Prepared 

by Method B on a 13.8 mmol. scale.
37

  5.19c was isolated as a 

colourless oil (3.50 g, 93%).  Rf = 0.36 (hexanes:CH2Cl2, 3:7);  

νmax/cm
-1

: 3062, 2982 (C-H), 2854 (C-H), 1967 (C=C=C), 

1033 (C=C=C);  δH (CDCl3): 7.48 - 7.29 (10H, m, Ar), 5.02 - 4.80 (1H, m, =CH), 

3.07 (2H, d, J 7.0, CH2), 1.55 (3H, s, CH3), 1.54 (3H, s, CH3); δC (CDCl3): 204.4 

(=C=), 139.9 (C-1), 128.8 (Ar), 127.8 (Ar), 127.1 (C-2), 122.2 (C≡N), 96.5 (=C), 83.1 
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(=CH), 52.0 (C), 40.4 (CH2), 20.1 (CH3);  m/z (CI): 291 ([MNH4]
+

, 100%),  274 

([MH]
+

, 30), 192 (21). 

 

N-(6-methyl-2,2-diphenylocta-4,5-dien-1-yl)-4- 

methylbenzenesulfonamide 5.15.  Step1: The 

unprotected amine was prepared on a 6.2 mmol. scale 

using the general method for LAH reduction.
37 

Step2: 

Tosyl protection was carried on a 2.2 mmol. scale, by the 

same method used to form 5.4.
159

  5.15 was isolated as a 

white solid (610 mg, 71%, over two steps).  Rf = 0.55 

(hexanes:EtOAc, 1:1);  mp: 177 - 140 
o
C;  νmax (thin film)/cm

-1
: 3290 (N-H), 2978 (C-

H), 2934 (C-H), 1975 (C=C=C), 1323 (S=O), 1161 (S=O), 1068 (C=C=C);  δH 

(CDCl3): 7.64 - 7.57 (2H, m, Ar), 7.33 - 7.19 (7H, m, Ar), 7.13 - 7.05 (5H, m, Ar), 

4.57 - 4.48 (1H, m, =CH), 3.90 (1H, t, J 6.4, NH), 3.60 (2H, d, J 6.4, N-CH2), 2.84 

(2H, d, J 7.5, CH2), 2.45 (3H, s, H-4), 1.54 (3H, s, CH3), 1.53 (3H, s, CH3);  δC 

(CDCl3): 203.8 (=C=), 144.4 (C-1), 143.4 (C-2), 136.2 (C-3), 129.7 (Ar), 128.3 (Ar), 

128.0 (Ar), 127.1 (Ar), 126.7 (Ar), 94.7 (=C), 83.5 (=CH), 50.0 (C), 49.8 (N- CH2), 

38.1 (CH2), 21.5 (C-4), 20.3 (CH3);  m/z (ESI): 432 ([MH]
+

, 100%).  HRMS (ESI) 

432.5945 ([MH]
+

,
 
C27H29NO2S requires 432.5944);  Anal. Calcd for C27H29NO2S: C, 

75.14%; H, 6.77%; N, 3.25%.  Found: C, 75.10%, H, 6.70%, N, 3.19%. 

 

Typical procedure for catalytic reaction in Chapter 5: 

 

A screw-cap vial was charged with a magnetic stir bar, Ag complex or salt (15 

mol%), substrate (0.1 mmol.) and additive (0.1 mmol.).  DCE (0.5 mL) was added 

and the reaction was stirred at room temperature in the dark.  Conversions were 

monitored by NMR integration. Upon completion, the solvent was evaporated, or, if a 

base was used, K2CO3 (1 mL) was added, the aqueous layer extracted with Et2O and 

the combined organic extracts dried (MgSO4). The product was purified by column 

chromatography.  
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4,4-Diphenyl-1-tosyl-2-vinylpyrrolidine 5.9a:  Isolated 

from 5.4a using 15 mol% β-4.16-Ag with 15 mol% 

pyridine (39 mg, 96%).  mp: 80-86 
o
C;  Rf = 0.38 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 3053 (C-H), 3110 (C-H), 

2880 (C-H), 1342 (S=O), 1156 (S=O); δH (CDCl3): 7.78 - 

7.63 (2H, m, Ar), 7.43 - 6.99 (12H, m, Ar), 5.80 (1H, ddd, 

J 17.2, 10.0, 7.2, =CH), 5.24 (1H, d, J 17.2, H-1
b
), 5.10 

(1H, d, J 10.0, H-1
a
), 4.33 - 4.19 (m, 2H, C and N-CH2), 

4.02 (1H, d, J 10.2, N-CH2), 2.83 (1H, dd, J 12.8, 8.0, CH2), 2.49 (1H, dd, J 12.8, 6.8, 

CH2);  δC (CDCl3): 144.9 (Ar), 144.4 (Ar), 143.5 (Ar ), 138.9 (=CH), 134.9 (C-1), 

129.7 (Ar), 128.62 (Ar), 128.59 (Ar), 127.5 (Ar), 126.72 (Ar), 126.69 (Ar)126.5 (Ar), 

126.4 (Ar), 113.1 (C-1), 61.6 (C-6), 58.3 (C-3), 52.6 (C-5), 45.4 (C-4), 21.5 (CH3);  

m/z (EI) : 404 ([MH]
+
, 100), 340 (41), 467 (42); HRMS (ESI) 404.5412 ([MH]

+
,
 

C25H25N2O2S requires 404.5417);  Anal. Calcd for C25H25N2O2S: C, 74.41%; H, 

6.24%; N, 3.47%.  Found: C, 74.43%, H, 6.25%, N, 3.42%.  HPLC conditons: 

Chirapak OD-H column: 10% IPA in n-hexane, 1.0 mL/min, tR(minor) = 14.2 min, 

tR(major) = 18.1 min; [α]D
25

 = -2.7
o
 (c = 3.0, CHCl3, 65% ee, with β-4.16-Ag), 

tentatively assigned S by analogy. 

 

Benzyl 4,4-diphenyl-2-vinylpyrrolidine-1-carboxylate 5.9b:  

Isolated from 5.4b as a colourless oil using 15 mol% β-4.16-Ag 

with 15 mol% pyridine (30 mg, 79% yield, 84% conversion).  Rf = 

0.42 (hexanes:EtOAc, 3:1); νmax/cm
-1

: 3061 (C-H), 3032 (C-H), 

2975 (C-H), 2879 (C-H), 1699 (C=O);  δH (CDCl3, 1:1 mixture of 

rotamers): 7.48-7.07 (15H, m, Ar), 5.92-5.70 (1H, m, =CH), 5.39-

5.02 (4H, m, =CH2 and O-CH2), 4.81 (0.5 H, dd, J 11.5, 1.6, CH), 4.65 (0.5 H, dd, J 

11.5, 1.6, CH), 4.24 - 4.02 (1H, m, N-CH2), 3.80 - 3.69 (1H, m, N-CH2), 2.92 - 2.76 

(1H, m, CH2), 2.57 - 2.41 (1H, m, CH2);  δC (CDCl3,1:1 mixture of rotamers): 155.5 

(C=O), 154.7 (C=O), 145.4 (Ar), 144.9 (Ar), 139.2 (=C), 138.5 (=C), 137.0 (Ar), 

136.8 (Ar), 128.7 (Ar), 128.6 (Ar), 128.3 (Ar), 128.2 (Ar), 128.1 (Ar), 127.7 (Ar), 

127.5 (Ar), 126.8 (Ar), 126.6 (Ar), 126.5 (Ar), 115.7 (=CH2), 115.2 (=CH2), 66.9 (O-

CH2), 59.5 (N-CH2), 59.2 (N-CH2), 56.2 (CH), 53.0 (C), 52.7 (C), 45.6 (CH2), 44.6 

(CH2). m/z (CI): 401 ([MNH4]
+

, 100%), 383 ([MH]
+

, 55);  HPLC conditions: Chirapak 

AD-H column, 30% IPA in n-hexane, 0.5 mL/min, tR(major) = 14.9 min, tR(minor) = 
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18.5 min;  [α]D
25

 = –2.5
o
 (c = 0.5, CHCl3, 52% ee, with β-4.16-Ag). Assigned S by 

comparison of chiral HPLC data with that reported.
45

 

 

1-Benzyl-4,4-diphenyl-2-vinylpyrrolidine 5.9c:
187

 

Isolated from 5.4c as a colourless oil using 15 mol% β-

4.16-Ag with 15 mol% pyridine (28 mg, 82%).  Rf = 0.85 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 3060 (C-H), 3027 (C-H), 

2789 (C-H);  δH (CDCl3) 7.60 - 7.05 (15H, m, Ar), 5.93 - 

5.78 (1H, m, =CH), 5.25 (1H, dd, J 16.8, 1.6, H-1
b
), 5.14 

(1H, dd, J 10.0, 1.6, H-1
a
), 4.14 (1H, d, J 13.6, H-2), 3.70 (1H, d, J 9.6, N-CH2), 3.30 

- 3.23 (2H, m, CH and H-2), 2.97 (1H, dd, J 13.2, 8.0, CH2), 2.88 (1H, d, J 9.6, N-

CH2), 2.44 (1H, dd, J 13.2, 8.0, CH2). δC (CDCl3): 150.3 (C-4), 148.4 (C-4), 140.7 

(=CH), 140.0 (C-3), 128.6 (Ar), 128.2 (Ar), 127.9 (Ar), 127.5 (Ar), 127.2 (Ar), 127.0 

(Ar), 126.8 (Ar), 125.9 (Ar), 125.6 (Ar), 116.5 (=CH2), 68.1 (CH), 65.6 (N-CH2), 57.7 

(C-2), 53.1 (C), 46.6 (CH2);  m/z (ESI) : 340 ([MH]
+
, 100%), 340 (40); HRMS (ESI) 

340.2074 ([MH]
+

,
 
C25H26N requires 340.2065);  Anal. Calcd for C25H26N: C, 75.14%; 

H, 6.77%; N, 3.25%.  Found: C, 74.77%, H, 6.60%; N, 4.15%; HPLC conditons: 

Chirapak AD-H column: 2% IPA in n-hexane, 1.0 mL/min, tR(major) = 4.2, tR(minor) 

= 5.0;   Optical purity was too low (5%) for accurate determination of [α]D. 

 

1-(Naphthalen-1-ylsulfonyl)-4,4-diphenyl-2-

vinylpyrrolidine 5.11a:  Isolated from 5.10a as a white 

solid  using 15 mol% β-4.16-Ag with 15 mol% pyridine 

(35 mg, 79% yield, 84% conversion).  mp: 62-67 
o
C; Rf = 

0.43 (hexanes:EtOAc, 3:1); νmax/cm
-1

: 3060 (C-H), 2883 

(C-H), 1333 (S=O), 1202, 1129 (S=O); δH (CDCl3): 8.81 - 

8.72 (1H, m, Ar), 8.20 (1H, dd, J 7.4, 1.0, Ar), 8.05 (1H, 

d, J 8.4, Ar), 8.00 - 7.91 (1H, m, Ar), 7.68 - 7.57 (2H, m, Ar), 7.54 - 7.45 (1H, m, Ar), 

7.37 - 7.08 (10H, m, Ar), 5.31 (1H, ddd, J 16.8, 10.0, 8.4, =CH), 5.06 (1H, d, J 16.8, 

H-1
b
), 4.83 (1H, d, J 10.0, H-1

a
), 4.65 (1H, dd, J 10.4, 1.1, N-CH2), 4.35 - 4.29 (1H, 

m, CH), 4.04 (1H, d, J 10.4, N-CH2), 2.84 (1H, ddd, J 8.4, 6.8, 1.1, CH2), 2.49 (1H, 

dd, J 12.4, 8.4, CH2);  δC (CDCl3): 145.1 (Ar), 144.1 (Ar), 137.8 (=CH), 135.5 (Ar), 

134.3 (Ar), 130.1 (Ar), 128.9 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 127.9 (Ar), 

126.72 (Ar), 126.68 (Ar), 126.6 (Ar), 126.5 (Ar), 125.1 (Ar), 124.0 (Ar), 116.4 (C-1), 
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61.9 (CH), 56.0 (N-CH2), 52.6 (C), 45.9 (CH2);  m/z (ESI) : 462 ([MNa]
+
, 23%), 440 

([MH]
+
, 100);  HRMS (ESI) 440.1678 ([MH]

+
,
 
C28H26NO2S requires 440.1684);  

Anal. Calcd for C28H25NO2S; C, 76.51%; H, 5.73%; N, 3.19%.  Found: C, 76.67%, H, 

5.69%; N, 3.07%; HPLC conditions: Chirapak AS-H column, 3% IPA in n-hexane, 

1.0 mL/min, tR(major) = 35.2 min, tR(minor) = 44.6 min;   [α]D
25

 = -2.3
o
 (c = 0.56, 

CHCl3, 46% ee, with β-4.16-Ag), tentatively assigned S by analogy. 

 

1-(Methylsulfonyl)-4,4-diphenyl-2-vinylpyrrolidine 

5.11b:  Isolated from 5.10b as a white solid using  15 

mol% β-4.16-Ag with 15 mol% pyridine (16 mg, 48% 

yield, 57% conversion).   mp: 76-82 
o
C;  Rf = 0.39 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 3056 (C-H), 3036 (C-

H), 2929 (C-H), 2883 (C-H), 1327 (S=O), 1142 (S=O);  

δH (CDCl3) 7.45 - 7.41 (2 H, m, Ar), 7.39 - 7.28 (4 H, m, Ar), 7.28 - 7.18 (4H, m, Ar), 

5.78 (1H, ddd, J 17.2, 10.0, 8.0, =CH), 5.30 (1H, d, J 17.2, H-1
b
), 5.19 (1H, d, J 10.0, 

H-1
a
), 4.55 (1 H, dd, J 10.8, 1.8, N-CH2), 4.28 - 4.22 ( H, m, CH), 3.97 (1H, d, J 10.8, 

N-CH2), 3.07 (1H, ddd, J 12.8, 6.8, 1.8, CH2), 2.65 (3H, s, CH3), 2.51 (1H, dd, J 12.8, 

9.0, CH2);  δC (CDCl3): 145.0 (C-2), 144.2 (C-2), 138.1 (=CH), 128.9 (Ar), 128.7 

(Ar), 126.9 (Ar), 126.75 (Ar), 126.73 (Ar), 126.6 (Ar), 117.8 (=CH2), 61.6 (CH), 58.3 

(N-CH2), 53.0 (C), 45.3 (CH2), 39.6 (CH3);  m/z (ESI) : 345 ([MNH4]
+
, 28%), 328 

([MH]
+
, 100), 273 (89);  HRMS (ESI) 328.1360 ([MH]

+
,
 
C19H22NO2S requires 

328.1371);  Anal. Calcd for C19H21NO2S; C, 69.69%; H, 6.46%; N, 4.28%.  Found: C, 

69.77%, H, 6.60%; N, 4.15%;  HPLC conditons: Chirapak -H column, Chirapak OD-

H column, 5% IPA in n-hexane, 1.0 mL/min, tR(minor) = 21.6 min, tR(major) = 23.4 

min;  [α]D
25

 = -3.4
o
 (c = 1.0, CHCl3, 53% ee, with β-4.16-Ag), tentatively assigned S 

by analogy. 

 

1-(Mesitylsulfonyl)-4,4-diphenyl-2-vinylpyrrolidine 5.11c: 

Isolated from 5.10c as a white solid using 15 mol% β-4.16-

Ag with 15 mol% pyridine (12 mg, 27% yield, 38% 

conversion).  mp: 87-90 
o
C;  Rf = 0.57 (hexanes:EtOAc, 3:1); 

νmax/cm
-1

: 3027 (C-H), 2920 (C-H), 1312 (S=O), 1145 

(S=O);  δH (CDCl3): 7.44 - 7.16 (10H, m, Ar), 6.91 (2H, H-
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3), 5.29 - 5.19 (1H, m, =CH), 5.00 (1H, d, J 16.8, =CH2), 4.41- 4.68 (2H, m, =CH2  

and N-CH2), 5.29 - 5.19 (1H, m, CH), 3.89 (1H, d, J 10.8, N-CH2), 2.87 (1H, ddd, J 

8.4, 6.8, 1.1, CH2), 2.66 - 2.51 (1H, m, CH2 and H-2), 2.32 (3H, s, H-4);  δC (CDCl3): 

145.4 (Ar), 144.4 (Ar), 142.2 (Ar), 139.9 (Ar), 137.5 (C-2), 135.0 (Ar), 131.6 (Ar), 

128.61 (Ar), 128.59 (Ar), 126.8 (Ar), 126.7 (Ar), 126.7 (Ar), 126.6 (Ar), 116.4 

(=CH2), 61.6 (CH), 57.6 (N-CH2), 52.6 (C), 46.2 (CH2), 23.0 (C-2), 21.0 (C-4);  m/z 

(ESI) : 454 ([MNa]
+
, 94%), 432 ([MH]

+
, 100), 250 (56);  HRMS (ESI) 432.1991 

([MH]
+

,
 
C27H30NO2S requires 432.1997);  Anal. Calcd for C27H30NO2S; C, 88.45%; 

H, 7.42%; N, 4.13%.  Found: C, 88.60%, H, 7.37%; N, 4.08%; HPLC conditons: 

Chirapak OD-H column, 10% IPA in n-hexane, 1.0 mL/min, tR(minor) = 6.6 min, 

tR(major) = 10.1 min;  [α]D
25

 = -2.1
o
 (c = 0.45, CHCl3, 39% ee, with β-4.16-Ag), 

tentatively assigned S by analogy. 

 

1-((4-Nitrophenyl)sulfonyl)-4,4-diphenyl-2-

vinylpyrrolidine 5.11d: Isolated from 5.10d as a yellow 

oil using 15 mol% β- β-4.16-Ag with 15 mol% pyridine 

(24 mg, 55% yield, 62% conversion).  Rf = 0.25 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 2922 (C-H), 2860 (C-H), 

1576, 1506 (N=O), 1331 (S=O), 1107 (S=O);  δH (CDCl3): 

8.06 (2H, d, J 8.3, H-1), 7.53 - 7.05 (12H, m, Ar), 5.74 

(1H, ddd, J 17.1, 9.8, 8.6, =CH), 5.15 (1H, d, J 17.1, H-

1
b
), 5.08 (1H, d, J 9.8, H-1

a
), 4.21 - 3.95 (3H, m, CH and N-CH2), 2.98 - 2.82 (1H, m, 

CH2), 2.58 (1H, close AB, CH2); δC (CDCl3): 154.1 (C-8), 146.1 (Ar), 145.6 (Ar), 

145.0 (Ar), 138.3 (=CH), 128.7 (Ar), 128.6  (Ar), 126.79 (Ar), 126.76 (Ar), 126.7 

(Ar), 126.6 (Ar), 123.9 (Ar), 121.5 (Ar), 118.3 (=CH2), 67.4 (N-CH2), 64.4 (CH), 54.1 

(C), 45.2 (CH2);  m/z (CI): 452 ([MNH4]
+

, 100%), 435 ([MH]
+

, 85);  HRMS (ESI) 

435.1372 ([MH]
+

,
 
C24H23N2O4S requires 435.1379);  Anal. Calcd for C24H22N2O4S: C, 

66.34%; H, 5.10%; N, 6.45%.  Found: C, 66.17%, H, 4.84%, N, 6.39%. HPLC 

conditons: Chirapak OD-H column, 2% IPA in n-hexane, 1.0 mL/min, tR(minor) = 

19.6 min, tR(major) = 25.8min;  [α]D
25

 = -0.8 
o
 (c = 0.5, CHCl3, 14% ee, with β-4.16-

Ag), tentatively assigned S by analogy. 
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2-Tosyl-3-vinyl-2-azaspiro[4.5]decane 5.21:  Isolated from 

5.12 as a white solid using 15 mol% β-4.16-Ag with 15 mol% 

pyridine (30 mg, 95%).   mp: 53 - 55 
o
C;  Rf = 0.58 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 3077 (C-H), 2916 (C-H), 

2857 (C-H), 1341 (S=O), 1163(S=O);  δH (CDCl3): 7.74 (2H, d, 

J 8.2, H-7), 7.33 (2H, d, J 8.2, H-8), 5.90 (1H, ddd, J 17.2, 

10.2, 7.4, =CH), 5.19 (1H, d, J 17.2, H-1
b
), 5.10 (1H, d, J 10.2, 

H-1
a
), 3.98 - 9.92 (1H, m, H-2), 3.25 (2H, close AB, N-CH2), 2.46 (3H, s, CH3), 1.82 

(1H, dd, J 12.8, 7.6, CH2), 1.56 (1H, dd, J 12.8, 8.4, CH2), 1.50 - 1.16 (8H, m, CH), 

1.05 - 0.83 (2H, m, H-5);  δC (CDCl3): 143.2 (C-6), 140.0 (=CH), 135.1 (C-9), 129.5 

(C-8), 127.6 (C-7), 115.0 (=CH2), 61.6 (C-2), 58.9 (N-CH2), 45.5 (CH2), 41.3 (C), 

36.4 (CH), 34.6 (C-5), 25.8 (CH), 23.6 (CH), 22.9 (CH), 21.5 (CH3); m/z (ESI) : 320 

([MH]
+
, 100%), 296 (19);  HRMS (ESI) 320.1677 ([MH]

+
,
 
C18H26NO2S requires 

320.1684);  Anal. Calcd for C18H25NO2S; C, 67.67%; H, 7.89%; N, 4.38%.  Found: C, 

69.77%, H, 6.60%; N, 4.15%. HPLC conditons: Chirapak AD-H column, 5% IPA in 

n-hexane, 1.0 mL/min, tR(major) = 12.2 , tR(minor) = 14.2;  [α]D
25

 = -3.1
o
 (c = 1.0, 

CHCl3, 51% ee, with β-4.16-Ag), tentatively assigned S by analogy. 

 

2-(Cyclohexylidenemethyl)-4,4-diphenyl-1-

tosylpyrrolidine 2-tosyl-3-vinyl-2-azaspiro[4.5]decane 

5.22:  Isolated from 5.13 as a white solid using 15 mol% 

AgOTf (43 mg, 92%).  mp: 141-143 
o
C;  Rf = 0.61 

(hexanes:EtOAc, 3:1); νmax/cm
-1

: 2928 (C-H), 2863 (C-H), 

1447, 1341 (S=O), 1161 (S=O); δH (500 MHz, CDCl3): 

7.73 - 7.43 (3H, m, Ar), 7.36 - 7.08 (11H, m, Ar), 4.75 

(1H, d, J 9.5, =CH), 4.54 - 4.38 (2H, m, CH and N-CH2), 

3.87 (1H, d, J 10.0, N-CH2), 2.72 (1H, ddd, J 12.5, 6.8, 1.3, CH2), 2.39 (2H, s, CH3), 

2.34 (1H, dd, J 12.5, 8.6, CH2), 2.26 - 2.14 (1H, m, H-3), 2.13 - 1.99 (1H, m, H-3), 

1.96 - 1.89 (2H, m, H-3), 1.70 - 1.38 (6H, m, CH);  δC (500 MHz, CDCl3): 145.6 (Ar), 

144.8 (Ar), 142.6 (Ar), 142.1 (=C), 137.7 (C-5), 129.2 (Ar), 128.6 (Ar), 128.5 (Ar), 

127.2 (Ar), 126.7 (Ar), 126.6 (Ar), 126.5 (Ar), 126.4 (Ar), 122.2 (=CH), 57.8 (N-

CH2), 56.1 (CH), 52.6 (C), 46.3 (CH2), 36.9 (C-3), 29.1 (C-3), 28.1 (CH), 27.5 (CH), 

26.7 (CH), 21.5 (CH3);  m/z (ESI): 472 ([MH]
+

, 100%);  HRMS (ESI) 472.1312 
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([MH]
+

,
 
C30H34NO2S requires 472.2310);  Anal. Calcd for C30H33NO2S: C, 76.40%; 

H, 7.05%; N, 2.97%.  Found: C, 76.43%, H, 6.96%, N, 2.92%. 

 

2-(Cyclopentylidenemethyl)-4,4-diphenyl-1-

tosylpyrrolidine 5.23: Isolated from 5.14 as a white solid 

using 15 mol% AgOTf (41 mg, 90%);  mp: 104-106 
o
C;  

Rf = 0.54 (hexanes:EtOAc, 3:1);  νmax/cm
-1

: 3041(C-H), 

2934 (C-H), 2846 (C-H), 1340 (S=O), 1160 (S=O); δH 

(500 MHz, CDCl3): 7.62 (2H, d, J 8.1, H-4), 7.33 - 7.04 

(12H, m, Ar), 5.21 - 5.18 (1H, m, =CH), 4.33 (1H, d, J 

10.3, N-CH2), 3.87 - 3.77 (1H, m, CH), 3.74 (1H, d, J 

10.3, N-CH2), 2.78 (1H, d, J 13.4, H-2), 2.63 (1H, dd, J 12.8, 8.1, CH2), 2.41 - 2.34 

(4H, m, CH2 and CH3), 2.30 - 2.24 (2H, m, H-2), 2.24 - 2.12 (2H, m, H-1), 1.92 - 1.78 

(3H, m, H-1 and H-2);  δC (500 MHz, CDCl3): 145.4 (Ar), 145.1 (Ar), 143.1 (C-3), 

141.1 (=C), 134.7 (C-5), 129.6 (Ar), 128.5 (Ar), 128.4 (Ar), 127.36 (Ar), 127.34 (Ar), 

126.8 (Ar), 126.4 (Ar), 126.3 (Ar), 126.0 (=CH), 58.31 (CH), 58.29 (N-CH2), 52.3 

(C), 42.6 (CH2), 37.6 (C-2), 35.2 (C-2), 32.4 (C-1), 23.4 (C-1), 21.5 (CH3);  m/z 

(ESI): 458 ([MH]
+

, 100%);  HRMS (ESI) (458.2152 [MH]
+

,
 
C29H32NO2S requires 

458.2154);  Anal. Calcd for C29H31NO2S: C, 76.10%; H, 6.83%; N, 3.06%.  Found: C, 

76.12%, H, 6.79%, N, 3.08%. 

 

2-(2-Methylprop-1-en-1-yl)-4,4-diphenyl-1-

tosylpyrrolidine 2-tosyl-3-vinyl-2-azaspiro[4.5]decane 

5.24:  Isolated from 5.15 as a white solid using 15 mol% 

AgOTf (37 mg, 86%);  mp: 65-66 
o
C;  Rf = 0.57 

(hexanes:EtOAc, 3:1);  νmax/cm
-1

: 3057 (C-H), 2977 (C-H), 

2929 (C-H), 1336 (S=O), 1156 (S=O);  δH (500 MHz, 

CDCl3): 7.60 (2H, d, J 8.3, H-2), 7.29 - 7.12 (12H, m, Ar), 

4.81 - 4.77 (1H, m, =CH), 4.49 - 4.33 (2H, m, CH and N-

CH2), 3.87 (1H, d, J 10.2, N-CH2), 2.75 (1H, ddd, J 12.4, 6.9, 1.5, CH2), 2.39 (3H, s, 

H-4), 2.33 (1H, dd, J 12.4, 8.5, CH2), 1.65 (3H, d, J 1.2, CH3), 1.58 (3H, d, J 1.2, 

CH3);  δC (500 MHz, CDCl3): 145.6 (Ar), 144.8 (Ar), 142.7 (C-1), 137.5 (C-3), 134.5 

(=C), 129.2 (Ar), 128.6 (Ar), 128.5 (Ar), 127.1 (Ar), 126.7 (Ar), 126.6 (Ar), 126.5 

(Ar), 126.4 (Ar), 125.3 (=CH), 57.7 (N-CH2), 57.0 (CH), 52.6 (C), 45.8 (CH2), 25.7 
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(CH3), 21.5 (C-4), 18.0 (CH3);  m/z (ESI): 432 ([MH]
+

, 100%);  HRMS (ESI) 

432.5940 ([MH]
+

,
 
C27H29NO2S requires 432.5944);  Anal. Calcd for C27H29NO2S: C, 

75.14%; H, 6.77%; N, 3.25%.  Found: C, 75.16%, H, 6.74%, N, 3.21%. 

 

 

7.5 Catalysts 

3-((3aR,8aR)-2,2-Dimethyl-6-oxido-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-

e][1,3,2]dioxaphosphepin-6-yl)propane nitrile, R,R-

4.13.
146 

PCl3 (75 µL, 0.85 mmol.) was added dropwise 

to solution of R,R-4.11 (379 mg, 0.81 mmol.) and triethylamine (385 μL, 2.76 mmol.) 

in dry THF (5 mL) a 0 °C.  The resulting mixture was stirred at 0 °C for a further 30 

min before 3-hydroxypropionitrile (61 µL, 0.89 mmol.) in dry THF (5 mL) was added 

dropwise via cannula. The reaction mixture was allowed to warm to room temperature 

and stirred for 2 h.  The reaction mixture was then diluted with Et2O and the 

triethylammonium chloride salts were filtered through a celite pad.  The solvent was 

then removed under vacuum to obtain the phosphite R,R-4.12 as a light yellow solid 

which was used without purification in the oxidation step.  30% aqueous H2O2 (640 

μL, 4.8 mmol.) was add to the crude phosphite in CH2Cl2 (10 mL).  The biphasic 

mixture was stirred vigorously for 30 min and then quenched by the addition of 20 

mL of saturated aqueous NaHCO3 solution. The aqueous extracts were extracted with 

CH2Cl2 (2 x 5 mL) and the combined organic extracts were washed with brine (2 x 5 

mL), dried (MgSO4) and concentrated under vacuum. R,R-4.13 was isolated as a 

white solid (350 mg, 74% over two steps) after purification by column 

chromatography (hexanes:Et2O, 1:4 to pure Et2O).   Rf= 0.43 (pure Et2O); mp: 112-16 

o
C (lit 114-116 

o
C)

151
; νmax/cm

-1
:  3062 (C-H), 3006 (C-H), 2935 (C-H), 2865 (C-H), 

2254 (C≡N), 1290 (P=O), 1008 (P-O-C);  δH (CDCl3): 7.69 - 7.19 (20H, m, Ar), 5.46 

(1H, d, J 8.0, H-2), 5.17 (1H, d, J 8.0, H-2), 3.92 - 3.98 (1H, m, H-4), 3.42 (1H, m, H-

4), 2.35 -2.13 (1H, m, H-5), 2.00 (1H, dt, J 16.9, 6.5, H-5), 0.88 (3H, s, CH3), 0.52 

(3H, s, CH3);  δC (CDCl3): 143.8 (Ar), 143.7 (Ar), 143.2 (Ar), 139.5 (d, J 6.4, Ar), 

139.0 (d, J 10.5, Ar), 129.0 (Ar), 128.6 (Ar), 128.4 (Ar), 128.3 (Ar), 128.0 (Ar), 127.7 

(Ar), 127.3 (Ar), 126.9 (Ar), 116.1 (C-1), 113.9 (C≡N), 88.9 (d, J 7.8, C-3), 88.4 (d, J 

8.1, C-3), 78.0 (C-2), 78.2 (C-2), 70.0 (d, J 4.6, C-4), 26.9 (CH3), 26.2 (CH3), 19.0 (d, 
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J = 8.9, 2H, C-5); δP (CDCl3): -12.77;  m/z (ESI): 604 ([MNa]
+

, 100%), 431 (27);  

[α]D
25

 = -342
o
 (c = 1.0, CHCl3).   

 

(3aR,8aR)-6-hydroxy-2,2-dimethyl-4,4,8,8-

tetraphenyltetrahydro-[1,3]dioxolo[4,5-

e][1,3,2]dioxaphosphepine 6-oxide R,R-4.10-H.
145 

 DBU (95 

µL, 0.60 mmol.) was added dropwise to a solution of R,R-4.13 

(350 mg, 0.60 mmol.) in dry CH2Cl2 (10 mL).  The solution was stirred at room 

temperature and monitored by TLC.  Once the reaction was complete AcOH (35 µL) 

was added, followed by H2O (14 mL). The organic layer was then washed with 0.3 N 

HCl (2 x 10), saturated aqueous NaCl (10 mL), dried (MgSO4) and concentrated 

under vacuum.  The resulting white solid was dried under vacuum to afford R,R-4.10-

H (307 mg 97%); mp: 150-155 
o
C (lit 154-156 

o
C)

151
; νmax/cm

-1
:  3062 (C-H), 2987 

(C-H), 2935 (C-H), 2572 (P=O), 1602 (O=P-O), 1009 (P-O);  δH (CDCl3): 7.56 (4H, 

d, J 6.6, Ar), 7.48 - 7.14 (16H, m, Ar), 5.46 (1H, bs, OH), 5.22 (2H, s, H-2), 0.67 (6H, 

s, CH3);  δC (CDCl3): 143.3 (Ar), 139.5 (d, J 9.2, Ar), 128.7 (Ar), 128.2 (Ar), 128.1 

(Ar), 127.5 (Ar), 127.2 (Ar), 127.09 (Ar), 113.6 (C-1), 87.8 (d, J 7.0, C-3), 79.8 (C-2), 

26.2 (CH3);  δP (CDCl3): -8.03;  m/z (ESI): 551 ([MNa]
+

, 100%), 431 (30);  [α]D = -

216.0
o
 (c = 1.0, CHCl3).  

 

3-(((3aS,8aS)-2,2-dimethyl-4-(naphthalen-1-yl)-

4,8,8-tri(naphthalen-2-yl)-6-oxidotetrahydro-

[1,3]dioxolo[4,5-e][1,3,2]dioxaphosphepin-6-

yl)oxy)propanenitrile was obtained by a similar 

procedure to R,R-4.13
145

 on a 0.93 mmol. scale as a 

white solid (530 mg, 75% over two steps); Rf = 0.5 

(pure Et2O);  mp: 125 - 128 
o
C (lit 124 - 126 °C)

151
;  νmax (thin film)/cm

-1
:  3056 (C-

H), 2988 (C-H), 2255 (CN), 1289 (P=O), 1000 (P-O-C);  δH (CDCl3): 8.27 - 8.24 (3H, 

d, J 2.6, Ar), 8.20 (1H, d, J 1.4, Ar), 8.07 - 7.92 (4H, m, Ar), 7.89 -7.79 (6H, m, Ar), 

7.75 (1H, d, J 8.8, Ar), 7.68 (1H, d, J 8.8, Ar), 7.65 - 7.49 (10H, m, Ar), 7.47 (1H, dd, 

J 8.7, 1.8, Ar), 7.33 (1H, dd, J 8.7, 1.8, Ar), 5.83 (1H, d, J 8.0, H-2), 5.54 (1H, d, J 

8.0, H-2), 4.01 - 3.94 (1H, m, H-4), 3.51 - 3.31 (1H, m, H-4), 2.18 - 2.08 (1H, m, H-

5), 1.89 - 1.78 (1H, m, H-5), 0.93 (3H, s, CH3), 0.56 (3H, s, CH3);  δC (CDCl3): 140.4 
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(Ar), 140.30 (Ar), 140.27 (Ar), 136.8 (d, JPC7.1, Ar), 136.4 (d, JPC 10.0, Ar), 133.2 

(Ar), 132.9 (Ar), 132.8 (Ar), 132.7 (Ar), 132.6 (Ar), 132.5 (Ar), 132.4 (Ar), 128.9 

(Ar), 128.86 (Ar), 128.83 (Ar), 128.77 (Ar), 128.5 (Ar), 128.3 (Ar), 127.8 (Ar), 127.6 

(Ar), 127.4 (Ar), 127.4 (Ar), 127.3 (Ar), 127.07 (Ar), 127.05 (Ar), 126.8 (Ar), 126.7 

(Ar), 126.7 (Ar), 126.7 (Ar), 126.63 (Ar), 126.58 (Ar), 126.30 (Ar), 126.28 (Ar), 

126.2 (Ar), 125.8 (Ar), 125.7 (Ar), 125.33 (Ar), 125.29 (Ar), 115.81 (C-1), 114.2 

(C≡N), 89.1 (d, J = 7.3, C-3), 88.8 (d, JPC 8.1, C-3), 80.4 (C-2), 78.7 (C-2), 62.1 (d, 

JPC 4.6, 1H, C-4), 27.0 (CH3), 26.5 (CH3), 18.9 (d, JPC 8.2, C-5);  δP (CDCl3):  -12.40;  

m/z (ESI): 804 ([MNa]
+

, 100%), 631 (20);  [α]D
25

 = +128.0
o
 (c = 0.7, CHCl3).   

 

 

(3aR,8aR)-6-hydroxy-2,2-dimethyl-4-(naphthalen-1-yl)-

4,8,8-tri(naphthalen-2-yl)tetrahydro-[1,3]dioxolo[4,5-

e][1,3,2]dioxaphosphepine 6-oxide S,S-4.14-H was 

obtained by a similar procedure to R,R-4.10-H on a 0.69 

mmol. scale as a white solid after being dried for several 

days on a vacuum pump.
145

 (482 mg, 96%); Rf = 0.5 (pure 

Et2O);  mp: 189 - 202 
o
C (lit 186 - 188 °C)

151
;  νmax (thin 

film)/cm
-1

:  3059 (C-H), 2964 (C-H) 2344 (P=O), 1597 (O=P-O), 1051 (P-O);  δH 

(CDCl3): 8.19 (4H, s, Ar), 7.95 - 7.88 (2H, m, Ar), 7.86 - 7.82 (2H, m, Ar), 7.77 - 

7.67 (6H, m, Ar), 7.61 (2H, dd, J 8.8, 1.6, Ar), 7.56 (2H, d, J 8.8, Ar), 7.53 - 7.42 

(8H, m, Ar), 7.33 (2H, dd, J 8.8, 1.6, Ar), 6.45 (1H, bs, OH), 5.56 (2H, s, H-2), 0.69 

(6 H, s, CH3);  δC (CDCl3): 140.47 (Ar), 136.9 (d, JPC 8.6, Ar), 133.4 (Ar), 132.8 (Ar), 

132.6 (Ar), 132.4 (Ar), 129.0 (Ar), 128.7 (Ar), 128.2 (Ar), 127.8 (Ar), 127.5 (Ar), 

127.4 (Ar), 127.0 (Ar), 126.6 (Ar), 126.5 (Ar), 126.4 (Ar), 126.2 (Ar), 125.9 (Ar), 

125.4 (Ar), 125.3 (Ar), 114.1 (C-1), 88.2 (d, JPC 3.3, C-3), 80.0 (C-2), 26.8 (CH3);  δP 

(CDCl3):  -7.43;  m/z (ESI): 751 ([MNa]
+

, 12%), 631 (84), 573 (100);  [α]D
25

 = 

+277.9
o
 (c = 1.0, CHCl3).   
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All Ag catalysts were prepared from the corresponding carboxylic acid by methods 1, 

2 or 3. 

 

Method 1
138

  

The acid (1 equiv) was stirred in H2O (1 mL) in the dark.  To this NaOH (1 equiv) in 

H2O (1 mL) was added.  Then AgNO3 (1 equiv) in H2O (1 mL) was added and the 

product precipitated out of solution.  The mixture was then filtered, washed with cold 

EtOH (5 mL) and dried overnight on a vacuum pump. 

 

 R-4.4-Ag was obtained from R-2-hydroxy-2-phenylacetic acid as a 

fluffy white solid (1.63 g, 96%);
138

  mp: >240 
o
C (dec.); νmax (thin 

film)/cm
-1

: 3324 (O-H), 1951 (C-H), 1854 (C-H), 1544 (C=O);  δH 

(d
6
-DMSO): 7.42 (2H, d, J 7.2, Ar), 7.28 (2H, t, J 7.2, Ar), 7.23 - 

7.17 (1H, m, H-2), 4.84 (1H, s, CH), 3.38 (1H, bs, OH);   δC (d
6
-DMSO): 176.1 

(C=O), 143.3 (C-1), 128.0 (Ar), 127.0 (Ar), 126.9 (C-2), 74.6 (CH);  m/z (FAB): 260 

([M]
+

, 20%), 154 (100);  [α]D
25

 = -32
o
 (c = 0.5, DMSO). 

 

R,R-4.5-Ag was obtained from (2R,3R)-2,3-dihydroxysuccinic 

acid as a fluffy white solid (1.66 g, 97%);
138

 mp: >220 
o
C (dec.); 

νmax (thin film)/cm
-1

: 3538 (O-H), 3169 (O-H), 1678 (C=O), 

1588 (C=O);  δH (D2O): 4.38 (2 H, s, CH);  δC (D2O): 176.6 (C=O), 72.9 (CH);  Anal. 

Calcd for C4H5AgO6: C, 18.7%; H, 1.96%. Found: C, 19.0%, H, 2.06%; [α]D
25

 = 

+7.3
o
 (c = 1.0, H2O). 

 

Method 2
139,140

 

Ag2CO3 (0.5 equiv) was added in one portion to a solution of acid (1 equiv) in EtOH 

(5 mL) in the dark. The resulting mixture was protected from light and stirred 

vigorously overnight. The mixture was centrifuged and the solvent was decanted. A 

further portion of EtOH (5 mL) was added to the remaining solid.  This was placed in 

the centrifuge and then decanted again.  The EtOH extracts were combined and 

concentrated under vacuum. The resulting silver salt was dried overnight in vacuo.  
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R-4.7-Ag was obtained from  R-(+)-1,1'-Binaphthalene-2,2'-

diyl hydrogen phosphate as a white solid (574 mg, 88%);  

mp: >261 
o
C (dec.); νmax (thin film)/cm

-1
: 3056 (C-H), 2926 

(C-H), 1233 (P=O), 1065 (P-O-Ar);  δH (d
6
-DMSO): 8.20 

(2H, d, J 8.8, Ar), 8.11 (2H, d, J 8.0, Ar), 7.58 (2H, d, J  8.8, Ar), 7.54 (2H, dd, J  8.8, 

Ar), 7.39 (2H, dd, 8.8, Ar), 7.25 (2 H, d, J 8.4, Ar);  δC (d
6
-DMSO): 148.1 (d, JPC 9.1, 

Ar), 132.1 (Ar), 131.5 (Ar), 129.1 (Ar), 127.3 (Ar), 126.6 (d, JPC 3.0, Ar), 126.0 (Ar), 

121.6 (Ar), 121.5 (Ar);  δP (d
6
-DMSO): 9.42;  m/z (FAB): 455 ([M]

+
, 100%);  [α]D

25
 = 

+274
o
 (c = 1.0, CHCl3). 

 

 R-4.6-Ag was obtained from 1R-(-)-10-camphorsulfonic acid as a 

fluffy white solid (1.40 g, 96%); mp: >300 
o
C (dec.); νmax (thin 

film)/cm
-1

: 2960 (C-H), 1714 (C=O), 1250 (S=O);  δH (D2O): 3.17 

(1H, d, J 15.0, H-1), 2.75 (1H, d, J 15.0, H-1), 2.37 - 2.20 (2H, m, 

H-7 and H-3), 2.05 (1H, t, J 4.5, H-5), 1.99 - 1.90 (1H, m, H-4), 1.88 (1H, d, J 18.9, 

H-7), 1.53 (1H, ddd, J 14.0, 9.4, 4.3, H-3), 1.34 (1H, ddd, J 12.9, 9.4, 4.3, H-4), 0.92 

(3H, s, CH3), 0.72 (3H, s, CH3);  δC (D2O): 221.9 (C=O), 60.9 (C-2), 50.6 (C-6), 49.6 

(C-1), 45.0 (C-7), 44.7 (C-5), 28.6 (C-4), 27.0 (C-3), 21.3 (CH3), 21.1 (CH3);  m/z 

(FAB): 339 ([M]
+

, 5%), 154 (100), 136 (79); Anal. Calcd for C10H15AgO4S: C, 

35.40%; H, 4.46%. Found: C, 35.32%, H, 4.34%;   [α]D
25

 = -24.6
o
 (c = 1.0, CH3OH). 

 

β-4.16-Ag was obtained from β-4.16-H as a fluffy white solid (622 

mg, 87%);  mp: >300 
o
C (dec.); νmax (thin film)/cm

-1
: 3001 (C-H), 

2921 (C-H), 1451 (P-C), 1202 (P=O);  δH (CDCl3): 2.43 (2H, dd, J 

13.2, 1.9, H-3), 1.96 (2H, dd, JPH 23.6, 13.2, H-3), 1.43 (6H, s, H-

1), 1.34 (6H, d, JPH 11.5, H-4);  δC (CDCl3): 96.5 (C-2), 71.7 (d, JPC 93.5, C-5), 43.4 

(C-3), 27.2 (C-4), 18.9 (C-1);  δP (CDCl3): 31.0;  m/z (FAB): 1527 ([M4Ag5]
+
, 40%), 

1173 ([M3Ag4]
+
, 89%), 355 ([M]

+
, 15);  Anal. Calcd for C10H16AgO5P: C, 33.83%; H, 

4.54%. Found: C, 34.01%, H, 4.54%; [α]D
25

 = +39.0
o
 (c = 0.5, CHCl3).   

 

Method 3
36

  

Ag2CO3 (0.5 equiv) was added in one portion to a solution of acid (1 equiv) in CH2Cl2 

(5 mL) followed by H2O (5 mL). The resulting mixture was protected from light, and 
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stirred vigorously for 2 h. After this time, the mixture was diluted with CH2Cl2 (10 

mL) and H2O (10 mL). The biphasic suspension were separated and the aqueous layer 

extracted with further portions of CH2Cl2 (2 x 15 mL). The combined organic extracts 

were filtered through celite and concentrated under vacuum. The resulting silver salt 

was dried overnight in vacuo.  

 

 R-1.66 was obtained from R-3,3´-

bis(2,4,6triisopropylphenyl)-1,1´-binaphthyl-2,2´-

diylhydrogenphosphate as a fluffy white solid (525 mg, 

94%);
36

  mp: >251 
o
C (dec.) (lit. 250-254 dec.)

36
; νmax (thin 

film)/cm
-1

: 2965 (C-H), 1275 (P=O), 1123 (P-O-Ar), 1077 

(P-O-Ar);  δH (CDCl3): 7.91 (2H, d, J 8.2, Ar), 7.84 (2H, s, 

Ar), 7.58 - 7.45 (2H, m, Ar), 7.41 - 7.31 (4H, m, Ar), 6.99 

(2H, s, Ar), 6.96 (2H, s, Ar), 3.99 (1H, septet, J 6.1, CH), 

2.87 (2H, septet, J 6.8, CH), 2.71 -2.50 (3H, m, CH), 1.25 (12H, d, J 6.8, CH), 1.17 

(4H, dd, J 6.1, 2.8, CH), 1.06 (12H, dd, J 15.2, 6.4, CH),0.92 (6H, d, J 6.8, CH);  δC 

(CDCl3): 148.3 (Ar), 148.0 (Ar), 147.5 (Ar), 146.3 (Ar), 146.1 (Ar), 132.5 (d, JPC 8.9, 

Ar), 132.3 (Ar), 130.9 (Ar), 129.5 (Ar), 128.1 (Ar), 127.4 (Ar), 126.1 (d, JPC 3.0, Ar), 

125.5 (Ar), 122.0 (Ar), 121.1 (Ar), 120.2 (Ar), 34.2 (CH), 30.9 (CH), 30.7 (CH), 26.3 

(CH), 25.1 (CH), 25.0 (CH), 24.0 (CH), 23.3 (CH);  δP (CDCl3): 14.8;  m/z (FAB):  

879 (45%),  861 ([MH]
+
, 10);   [α]D

25
 = -116.9

o
 (c = 0.5, CHCl3). 

 

 R-4.8-Ag was obtained from R-3,3'-

Bis[3,5bis(trifluoromethyl)phenyl]-1,1'-binaphthyl-2,2'-

diyl hydrogenphosphate as a fluffy white solid (451 mg, 

90%);
143

  mp: >300 
o
C (dec.); νmax (thin film)/cm

-1
: 2960 

(C-H), 2869 (C-H), 1410 (C-F), 1242 (P=O), 1083 (P-O-

Ar);  δH (CDCl3): 8.07 (1H, s, Ar), 8.04 (7H, s, Ar), 7.68 - 

7.57 (4H, m, Ar), 7.50 - 7.39 (4H, m, Ar);  δC (CDCl3): 

143.6 (d, JPC 9.3, Ar), 138.6 (Ar), 132.3 (Ar), 132.0 (Ar), 

131.4 (Ar), 131.4 (q, JFC 33.4, Ar), 131.1 (d, JPC 3.1, Ar), 130.9 (Ar), 128.7 (Ar), 

127.6 (Ar), 127.1 (Ar), 126.8 (Ar), 123.5 (q, JFC 344.0, Ar), 121.8 (d, JPC 1.9, Ar), 

121.6 (Ar);  δP (CDCl3): 14.1; δF (CDCl3): -63.1; Product fragmentised using MS; m/z 
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(FAB): 791 (100%);  Anal. Calcd for C36H16AgF12O4P: C, 49.28%; H, 1.83%. Found: 

C, 49.28%, H, 1.80%; [α]D
25

 = -187.5
o
 (c = 1.0, CHCl3). 

 

 S-4.9-Ag was obtained from S-2,2′-Diphenyl-(4-

biphenanthrol) as a fluffy white solid (297 mg, 85%);  mp: 

>245 
o
C (dec.); νmax (thin film)/cm

-1
: 3054 (C-H), 2916 (C-H), 

1223 (P=O), 1050 (P-O-Ar);  δH (d
6
-DMSO) 10.02 - 9.87 (2H, 

m, Ar), 8.08 - 7.97 (2H, m, Ar), 7.88 (4H, close AB, Ar), 7.78 

- 7.63 (4H, m, Ar), 7.53 (2H, s, Ar), 7.10 (2H, t, J 7.2, Ar), 

6.95 (4H, t, J 7.6, Ar), 6.45 (4H, d, J 7.6, Ar);  δC (d
6
-DMSO): 165.3 (Ar), 165.1 (d, 

JPC 2.9, Ar), 151.6 (Ar), 141.0 (Ar), 140.4 (Ar), 134.1 (Ar), 133.1 (Ar), 130.4 (Ar), 

129.4 (Ar), 129.2 (Ar), 128.7 (Ar), 128.4 (Ar), 127.9 (Ar), 127.5 (Ar), 127.0 (Ar), 

126.8 (d, JPC 4.6, Ar), 125.2 (Ar), 122.1 (Ar);  δP (d
6
-DMSO): 1.1;  m/z (FAB): 815 

([MAg]
+

, 54%), 707 ([M]
+
, 68), 55 (100);  [α]D

25
 = +474

o
 (c = 0.6, CH3OH). 

 

R,R-4.15-Ag was obtained from R,R-1-hydroxy-1-oxo-2,5-trans-

diphenylphospholane (R,R-4.15-H) as a fluffy white solid (681 mg, 

98%);  mp: >300 
o
C (dec.);  νmax (thin film)/cm

-1
:  3059 (C-H), 3026 

(C-H), 2947 (C-H), 2865 (C-H), 1449 (P-C), 1220 (P=O), 1022 (P-O-

Ar);  δH (D2O): 7.38 - 7.12 (10H, m, Ar), 3.16 - 2.93 (2H, m, H-1), 2.30 - 2.20 (2H, 

m, H-2), 2.01 - 1.98 (2H, m, H-2).  m/z (FAB): 379 ([M]
+

, 10%), 262 (29), 55 (100);  

Anal. Calcd for C16H16AgO2P: C, 50.69%; H, 4.25%. Found: C, 50.58%, H, 4.19%. 

 

R,R-4.10-Ag was obtained from R,R-4.10-H as a fluffy white 

solid (240 mg 87%); mp: >234 
o
C (dec.); νmax (thin film)/cm

-1
:  

3057 (C-H), 2991 (C-H), 1210 (P=O), 1036 (P-O-Ar);  δH 

(CDCl3): 7.61 (4H, d, J 7.6, Ar), 7.52 (4H, d, J 7.6, Ar), 7.37 - 

7.06 (12H, m, Ar), 5.18 (2H, s, H-2), 0.82 (6 H, s, CH3);  δC 

(CDCl3): 143.5 (Ar), 139.6 (d, JPC 9.2, Ar), 128.8 (Ar), 128.2 (Ar), 128.1 (Ar), 127.6 

(Ar), 127.2 (Ar), 126.9 (Ar), 113.7 (C-1), 87.9 (d, JPC 7.0, C-3), 79.4 (C-2), 26.5 

(CH3);  δP (CDCl3): - 0.15 (br. s);  m/z (FAB): 635 ([M]
+
, 31%), 431 (45), 179 (100);  

Anal. Calcd for C31H28AgO6P: C, 58.60%; H, 4.44%. Found: C, 58.45%, H, 4.36%; 

[α]D
25

 = -219.0
o
 (c = 1.0, CHCl3).  
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S,S-4.14-Ag was obtained from S,S-4.14-H  as a white 

solid (183 mg, 80%); mp >220 
o
C (dec.);  νmax (thin 

film)/cm
-1

:  3066 (C-H), 2989 (C-H), 1213 (P=O), 1041 (P-

O-Ar);  δH (CDCl3): 8.52 (2H, s, Ar), 8.20 (2H, s, Ar), 7.95 

(2H, d, J 8.0, Ar), 7.87 (2H, d, J 8.0, Ar), 7.72 (4H, t, J 8.0, 

Ar), 7.61 (2H, d, J 8.0, Ar), 7.56 - 7.37 (12H, m, Ar), 7.33 

(2H, t, J 7.4, Ar), 5.43 (2 H, s, H-2), 0.88 (6H, s, CH3); δC 

(CDCl3): 140.4 (Ar), 136.9 (d, J PC 8.6, Ar), 133.1 (Ar), 132.7 (Ar), 132.6 (Ar), 132.5 

(Ar), 128.9 (Ar), 128.8 (Ar), 128.2 (Ar), 127.7 (Ar), 127.6 (Ar), 127.4 (Ar), 126.9 

(Ar), 126.6 (Ar), 126.5 (Ar), 126.4 (Ar), 126.2 (Ar), 16.0 (Ar), 125.4 (Ar), 125.3 (Ar), 

114.0 (C-1), 88.2 (d, JPC 3.3, C-3), 80.0 (C-2), 26.8 (CH3); δP (CDCl3):  -0.51;  m/z 

(FAB): 835 ([MH]
+

, 11%), 737 (50), 267 (100);  Anal. Calcd for C47H36AgO6P: C, 

67.55%; H, 4.34%. Found: C, 68.0%, H, 4.04%. [α]D
25

 = +279.3
o
 (c = 1.0, CHCl3).   
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Appendix 1: Crystal data and structure refinement for 2.11. 

 

 

 

Identification code MH0802 

Empirical formula C18 H18 O 

Formula weight 250.32 

Temperature 173(2) K 

Diffractometer, wavelength OD Xcalibur 3, 0.71073 Å 

Crystal system, space group Orthorhombic, Pna2(1) 

Unit cell dimensions a = 14.1920(13) Å α = 90° 

 b = 12.8979(13) Å β = 90° 

 c = 7.4178(6) Å γ = 90° 

Volume, Z 1357.8(2) Å3, 4 

Density (calculated) 1.225 Mg/m3 

Absorption coefficient 0.074 mm-1 

F(000) 536 

Crystal colour / morphology Colourless platy needles 

Crystal size 0.15 x 0.05 x 0.01 mm3 

θ range for data collection 3.97 to 27.50° 

Index ranges -17<=h<=16, -15<=k<=13, -7<=l<=9 

Reflns collected / unique 5103 / 2203 [R(int) = 0.0798] 

Reflns observed [F>4σ(F)] 1140 
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Absorption correction None 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2203 / 1 / 172 

Goodness-of-fit on F2 0.853 

Final R indices [F>4σ(F)] R1 = 0.0497, wR2 = 0.0803 

 R1+ = 0.0497, wR2+ = 0.0803 

 R1- = 0.0497, wR2- = 0.0803 

R indices (all data) R1 = 0.1215, wR2 = 0.0981 

Absolute structure parameter x+ = 0(3), x- = 1(3) 

Largest diff. peak, hole 0.186, -0.153 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 
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 Bond lengths [Å] and angles [°] for 2.11. 

 

C(1)-O(2) 1.464(4) 

C(1)-C(10) 1.487(5) 

C(1)-C(11) 1.505(5) 

C(1)-C(12) 1.543(5) 

O(2)-C(3) 1.433(4) 

C(3)-C(4) 1.546(4) 

C(4)-C(14) 1.519(4) 

C(4)-C(5) 1.521(4) 

C(4)-C(13) 1.534(4) 

C(5)-C(6) 1.369(4) 

C(5)-C(10) 1.410(4) 

C(6)-C(7) 1.393(4) 

C(7)-C(8) 1.386(5) 

C(8)-C(9) 1.370(5) 

C(9)-C(10) 1.391(5) 

C(12)-C(13) 1.543(4) 

C(14)-C(19) 1.385(5) 

C(14)-C(15) 1.390(5) 

C(15)-C(16) 1.378(5) 

C(16)-C(17) 1.369(6) 

C(17)-C(18) 1.374(5) 

C(18)-C(19) 1.384(5) 

 

O(2)-C(1)-C(10) 108.2(3) 

O(2)-C(1)-C(11) 105.5(3) 

C(10)-C(1)-C(11) 115.8(3) 

O(2)-C(1)-C(12) 106.4(3) 

C(10)-C(1)-C(12) 108.2(3) 

C(11)-C(1)-C(12) 112.2(3) 

C(3)-O(2)-C(1) 112.9(2) 

O(2)-C(3)-C(4) 112.0(3) 

C(14)-C(4)-C(5) 112.8(3) 
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C(14)-C(4)-C(13) 114.8(3) 

C(5)-C(4)-C(13) 105.8(3) 

C(14)-C(4)-C(3) 109.8(3) 

C(5)-C(4)-C(3) 108.0(3) 

C(13)-C(4)-C(3) 105.1(3) 

C(6)-C(5)-C(10) 120.4(3) 

C(6)-C(5)-C(4) 126.8(3) 

C(10)-C(5)-C(4) 112.6(3) 

C(5)-C(6)-C(7) 119.8(3) 

C(8)-C(7)-C(6) 120.0(3) 

C(9)-C(8)-C(7) 120.5(3) 

C(8)-C(9)-C(10) 120.3(4) 

C(9)-C(10)-C(5) 119.0(3) 

C(9)-C(10)-C(1) 127.6(4) 

C(5)-C(10)-C(1) 113.4(3) 

C(1)-C(12)-C(13) 109.7(3) 

C(4)-C(13)-C(12) 109.8(3) 

C(19)-C(14)-C(15) 117.8(3) 

C(19)-C(14)-C(4) 120.0(3) 

C(15)-C(14)-C(4) 122.2(3) 

C(16)-C(15)-C(14) 120.4(4) 

C(17)-C(16)-C(15) 120.8(4) 

C(16)-C(17)-C(18) 120.0(4) 

C(17)-C(18)-C(19) 119.3(5) 

C(18)-C(19)-C(14) 121.7(4) 

 

 

 

 

 

 

 

 

 

 



197 

 

Appendix 2: Crystal data and structure refinement for 3.1. 

 

 

 

Identification code MH0901 

Empirical formula C36 H36 O2 

Formula weight 500.65 

Temperature 293(2) K 

Diffractometer, wavelength OD Xcalibur PX Ultra, 1.54184 Å 

Crystal system, space group Monoclinic, P2(1)/c 

Unit cell dimensions a = 6.3771(3) Å α = 90° 

 b = 19.8345(8) Å β = 97.321(4)° 

 c = 23.2868(12) Å γ = 90° 

Volume, Z 2921.5(2) Å3, 4 

Density (calculated) 1.138 Mg/m3 

Absorption coefficient 0.530 mm-1 

F(000) 1072 

Crystal colour / morphology Colourless needles 

Crystal size 0.18 x 0.06 x 0.03 mm3 

θ range for data collection 2.94 to 63.18° 

Index ranges -7<=h<=4, -21<=k<=22, -26<=l<=23 

Reflns collected / unique 8043 / 4532 [R(int) = 0.0278] 

Reflns observed [F>4σ(F)] 2460 

Absorption correction Analytical 
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Max. and min. transmission 0.987 and 0.949 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4532 / 24 / 357 

Goodness-of-fit on F2 0.840 

Final R indices [F>4σ(F)] R1 = 0.0483, wR2 = 0.1162 

R indices (all data) R1 = 0.0859, wR2 = 0.1279 

Extinction coefficient 0.0018(2) 

Largest diff. peak, hole 0.160, -0.170 eÅ-3 

Mean and maximum shift/error 0.000 and 0.000 
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 Bond lengths [Å] and angles [°] for 3.1. 

 

O(1)-C(2) 1.425(2) 

O(1)-C(6) 1.428(2) 

C(2)-O(7) 1.421(2) 

C(2)-C(3) 1.510(3) 

C(2)-C(26) 1.511(3) 

C(3)-C(4) 1.509(3) 

C(4)-C(5) 1.540(3) 

C(5)-C(27) 1.523(3) 

C(5)-C(33) 1.532(3) 

C(5)-C(6) 1.540(3) 

O(7)-C(8) 1.416(2) 

C(8)-C(9) 1.536(3) 

C(9)-C(20) 1.527(3) 

C(9)-C(14) 1.531(3) 

C(9)-C(10) 1.541(3) 

C(10)-C(11') 1.492(16) 

C(10)-C(11) 1.494(5) 

C(11)-C(12) 1.282(6) 

C(12)-C(13) 1.292(5) 

C(11')-C(12') 1.277(14) 

C(12')-C(13') 1.327(14) 

C(14)-C(15) 1.379(3) 

C(14)-C(19) 1.382(3) 

C(15)-C(16) 1.374(3) 

C(16)-C(17) 1.359(4) 

C(17)-C(18) 1.368(4) 

C(18)-C(19) 1.388(3) 

C(20)-C(21) 1.388(3) 

C(20)-C(25) 1.394(3) 

C(21)-C(22) 1.388(3) 

C(22)-C(23) 1.366(4) 

C(23)-C(24) 1.367(4) 
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C(24)-C(25) 1.382(4) 

C(27)-C(28) 1.376(3) 

C(27)-C(32) 1.381(3) 

C(28)-C(29) 1.384(3) 

C(29)-C(30) 1.364(4) 

C(30)-C(31) 1.355(4) 

C(31)-C(32) 1.382(4) 

C(33)-C(38) 1.375(3) 

C(33)-C(34) 1.384(3) 

C(34)-C(35) 1.376(3) 

C(35)-C(36) 1.367(4) 

C(36)-C(37) 1.361(3) 

C(37)-C(38) 1.382(3) 

 

C(2)-O(1)-C(6) 114.34(15) 

O(7)-C(2)-O(1) 110.76(16) 

O(7)-C(2)-C(3) 104.54(17) 

O(1)-C(2)-C(3) 110.56(16) 

O(7)-C(2)-C(26) 112.68(17) 

O(1)-C(2)-C(26) 105.58(17) 

C(3)-C(2)-C(26) 112.84(19) 

C(4)-C(3)-C(2) 111.97(18) 

C(3)-C(4)-C(5) 110.59(17) 

C(27)-C(5)-C(33) 108.17(16) 

C(27)-C(5)-C(4) 113.46(17) 

C(33)-C(5)-C(4) 109.75(17) 

C(27)-C(5)-C(6) 106.71(16) 

C(33)-C(5)-C(6) 113.31(17) 

C(4)-C(5)-C(6) 105.51(16) 

O(1)-C(6)-C(5) 114.34(17) 

C(8)-O(7)-C(2) 117.00(15) 

O(7)-C(8)-C(9) 107.41(16) 

C(20)-C(9)-C(14) 109.85(17) 

C(20)-C(9)-C(8) 107.61(16) 
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C(14)-C(9)-C(8) 110.59(17) 

C(20)-C(9)-C(10) 110.99(17) 

C(14)-C(9)-C(10) 108.83(16) 

C(8)-C(9)-C(10) 108.97(17) 

C(11')-C(10)-C(9) 116.1(14) 

C(11)-C(10)-C(9) 113.8(3) 

C(12)-C(11)-C(10) 124.5(5) 

C(11)-C(12)-C(13) 179.2(7) 

C(12')-C(11')-C(10) 124(2) 

C(11')-C(12')-C(13') 172(3) 

C(15)-C(14)-C(19) 117.0(2) 

C(15)-C(14)-C(9) 124.0(2) 

C(19)-C(14)-C(9) 119.0(2) 

C(16)-C(15)-C(14) 121.6(2) 

C(17)-C(16)-C(15) 120.7(3) 

C(16)-C(17)-C(18) 119.4(3) 

C(17)-C(18)-C(19) 119.9(3) 

C(14)-C(19)-C(18) 121.4(3) 

C(21)-C(20)-C(25) 116.2(2) 

C(21)-C(20)-C(9) 123.9(2) 

C(25)-C(20)-C(9) 119.8(2) 

C(22)-C(21)-C(20) 121.7(2) 

C(23)-C(22)-C(21) 120.4(3) 

C(22)-C(23)-C(24) 119.5(3) 

C(23)-C(24)-C(25) 120.2(3) 

C(24)-C(25)-C(20) 122.0(3) 

C(28)-C(27)-C(32) 116.4(2) 

C(28)-C(27)-C(5) 124.1(2) 

C(32)-C(27)-C(5) 119.6(2) 

C(27)-C(28)-C(29) 121.4(2) 

C(30)-C(29)-C(28) 121.0(3) 

C(31)-C(30)-C(29) 118.7(3) 

C(30)-C(31)-C(32) 120.4(3) 

C(27)-C(32)-C(31) 122.1(3) 
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C(38)-C(33)-C(34) 116.7(2) 

C(38)-C(33)-C(5) 123.99(19) 

C(34)-C(33)-C(5) 119.2(2) 

C(35)-C(34)-C(33) 121.7(3) 

C(36)-C(35)-C(34) 120.4(3) 

C(37)-C(36)-C(35) 119.1(3) 

C(36)-C(37)-C(38) 120.4(3) 

C(33)-C(38)-C(37) 121.7(2) 
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