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Abstract 

 

Comparative analysis of a recent isolate (J) and a laboratory-adapted strain (W) of the 

parasitic nematode Nippostrongylus brasiliensis found that the former had higher 

fecundity and gave rise to more persistent infections, although these traits were 

partially abolished after three years of laboratory passage, suggesting that infection 

dynamics can be modified by continuous high-dose propagation. Host immune 

responses to the two strains were similar in mode and magnitude. Proteins secreted by 

infective larvae (L3) and adult parasites showed some subtle differences between 

strains, although the activity of enzymes which might impact on persistence such as 

acetylcholinesterases and nucleotide metabolising enzymes were similar.  

 

Activation of N. brasiliensis L3 was not influenced by host serum, but a 37°C 

temperature cue was sufficient to induce feeding and protein secretion. Rat skin 

extracts induced chemotaxis of L3 and also induced the secretion of pre-synthesised 

proteins, although feeding and subsequent protein secretion were unaffected. Analysis 

of L3 secreted products by two-dimensional immunoblotting revealed differential 

immune recognition of specific proteins. Analysis of host resistin-like molecules 

showed that they had no effect on parasite chemotaxis and feeding activities, in 

contrast to published data. 

 

The venom-allergen homologue/ASP-like (VAL) proteins are important therapeutic 

targets found in all parasitic nematodes studied to date, and eight secreted variants of 

VALs have been discovered in N. brasiliensis. Although N. brasiliensis VALs 

(NbVALs) were found to be immunogenic during natural infection, immunisation 

with recombinant NbVAL-7 did not protect mice against challenge. Moreover, natural 

infection induced antigen-specific IgE and Type I hypersensitivity reactions to 

NbVALs, suggesting that this may be an intrinsic property of these proteins which 

limits their use in immunoprophylaxis of nematode infection. 
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Overview 

 

Parasitic helminths are responsible for some of the most prevalent infections which 

constitute a major global concern and severely afflict health conditions, particularly in 

the developing world. Secreted proteins are the primary interface between parasite 

and host, and are involved in a wide range of functions including invasion, host 

colonisation and regulation of the host immune response. Such strategies allow 

parasitic nematodes to establish long-lasting infections in the host, which account for 

the chronic symptoms characteristic of many helminth diseases. A better 

understanding of nematode secreted proteins will improve our insight into host-

parasite relationships, and possibly inform on novel control strategies and therapeutic 

targets. 

 

 

1.1. Helminth phylogeny  

 

The term helminth broadly refers to four phyla of parasitic worms with superficial 

similarities: the Platyhelminthes (flatworms; includes the classes trematodes (flukes) 

and cestodes (tapeworms)), Nematoda (roundworms), Nematomorpha (hairworms) 

and Acanthocephala (spiny-headed worms) (Smyth, 1988). From a disease 

perspective, the most medically relevant parasites belong to the phyla Platyhelminthes 

and Nematoda.  

 

The nematodes, or roundworms, are elongate, cylindrical worms. They are encased in 

a stiff cuticle, which is often extended to form a variety of structures at the anterior 

and posterior ends. Although the basic anatomy of nematodes is relatively uniform, 

the pattern of diversity is complex, with estimates of species number within the 

phylum ranging from 40,000 to 100 million (Lambshead and Inst, 1993), one of the 

reasons why the credibility of classification based solely on morphological and 

ecological traits is no longer adequate. Modern classification schemes are based 

systematically on the molecular phylogeny of the nematodes, which, in addition to 

increased reliability and reproducibility, also lifts the stiff distinction between free-

living and parasitic species, which gives researchers a wider scope for cross-

referencing and analysis. There are several systems applied to the classification of 
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nematodes, but the most commonly accepted phylogenetic structure is shown in Fig. 

1.1., in which the phylum Nematoda is divided into five clades (I-V) based on their 

similarities in the ribosomal RNA small subunit (SSU) sequences, and the species 

within each order and suborder distinguished using a combination of internal 

transcribed spacer 1 and 2 (ITS-1 and ITS-2) sequence data (Audebert et al., 2005; 

Blaxter et al., 1998; Dorris et al., 1999).  

 

Under this classification system, Nippostrongylus brasiliensis belongs to clade V, 

within the order Strongylida and the superfamily Trichostrongyloidea (Chabaud et al., 

1965). Along with N. brasiliensis, many other vertebrate parasitic nematode species 

commonly used in research are also annotated in Fig. 1.1. The human hookworms 

Ancylostoma duodenale and Necator americanus lie in the same clade as N. 

brasiliensis, as well as the large ruminant cattle parasite Ostertagia ostertagi and the 

small ruminant sheep parasites Haemonchus contortus and Teladorsagia circumcincta. 

The model nematode Caenorhabditis elegans, though a free-living species, is shown 

in this diagram and also belongs to clade V, showing that it is quite closely related to 

N. brasiliensis. Nematodes which are parasitic to animals are loosely classified into 

intestinal, blood and/or tissue dwelling species, of which N. brasiliensis belongs to the 

first group. 
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Figure 1.1. The phylogenetic structure of the phylum Nematoda, revealed by analysis of 

small subunit (SSU), internal transcribed spacer 1 and 2 (ITS-1 and ITS-2) rDNA sequences. 

Nematodes are divided into five clades (clades I-V), and N. brasiliensis belongs to clade V. 

Parasitic species commonly used in research are shown in red, while the free-living 

nematodes are shown in blue. Diagram is modified from Dorris et al. (1999) and annotated 

with additional data from Blaxter et al. (1998). 
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1.2. Helminth infection and disease 

 

Parasitic helminths are responsible for some of the most prevalent diseases worldwide, 

accountable for debilitating chronic conditions which mostly afflict the developing 

world. The soil-transmitted nematodes or helminths (STN / STH) are the most 

common causes of helminthiases in humans. Their global prevalence far exceeds that 

of any other helminth class, accountable for over 2 billion cases of infection 

worldwide (Table 1.1). The major STHs in human disease are Ascaris lumbricoides 

(roundworm), Trichuris trichiura (whipworm), Necator americanus, Ancylostoma 

duodenale (hookworms), and Strongyloides stercoralis (threadworm). The infective 

eggs or larvae of these nematodes thrive in warm and moist soil (which is why such 

infections are most prevalent in tropical and subtropical countries), invading the host 

via cutaneous or oral routes. Adults can live in the gastrointestinal (GI) tract of 

humans for years after an infection, feeding on blood and / or host nutrients. The 

intensity of infection is also an important factor to take into account when considering 

its epidemiology, as the worm burden is often a determinant in the rate of 

transmission as well as the severity of symptoms in helminth diseases (Vercruysse et 

al., 2008).  

 

Although these infections are generally not fatal, they are often associated with high 

rates of morbidity. Assessments based on the disability-adjusted life year (DALY) 

metric, a calculation which combines the number of years lost due to ill-health, 

disability and premature mortality, indicate that their impact on global health is 

comparable to that of better-known conditions such as malaria and tuberculosis (TB) 

(Table 1.2) (Hotez et al., 2007; Vercruysse et al., 2008). Although lacking in the 

dramatic manifestations of filarial diseases such as elephantiasis (lymphatic filariasis; 

LF) and river blindness (caused by Wuchereria bancrofti / Brugia malayi and 

Onchocerca volvulus respectively), some effects of STH infection include severe 

anaemia, malnutrition, reduced physical development, as well as impaired memory 

and cognition (Crompton and Nesheim, 2002). As school-aged children are the most 

susceptible population group to STH infections, the extended health consequences 

may include stunted growth, educational performance and reduced future wage-

earning capacity and worker productivity (Bleakley, 2007), in addition to a chronic 

state of reduced well-being. These translate into substantial poverty-promoting effects 
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which impede economic progress in the developing world. Another population group 

particularly susceptible to hookworm infection is women of reproductive age (Hotez 

et al., 2007). The severe anaemia, iron-deficiency and overall malnutrition 

accompanying these infections during pregnancy result in high rates of premature or 

abnormal childbirth, reduced birthweight, in addition to maternal / neonatal mortality 

(Christian et al., 2004; Dreyfuss et al., 2000). 

 

In rural areas of extreme poverty throughout the tropics and subtropics, inhabitants 

are often found to be chronically infected with several different species of parasitic 

helminths (polyparasitism) (Hotez et al., 2008; Hotez et al., 2007). Sufferers of such 

coinfections endure the additive effects (e.g. severe anaemia and malnutrition) as well 

as synergistic effects (e.g. increased susceptibility, intensity and transmission) of 

disease, resulting in conditions of extreme poor health. Such effects are not confined 

to helminth infections. It has become increasingly apparent that helminth infections 

can exacerbate disease progression and increase susceptibility to malaria and 

HIV/AIDS (Borkow and Bentwich, 2006; Druilhe et al., 2005). Despite the serious 

consequences of such infections, less than 1% of global research dollars is spent on 

helminth research (Hotez et al., 2008), thus earning such conditions the term 

neglected tropical diseases.  

 

Parasitic nematodes also contribute to substantial economic losses in the livestock 

industry. Soil-transmitted nematodes have the largest impact on grazing animals such 

as cattle and sheep, causing premature mortality, malnutrition, reduced bodyweight 

and reduced milk production in these animals (Waller et al., 1997). The major 

nematodes of economic significance in livestock are Haemonchus spp., which feed on 

host blood by damaging the abomasal mucosa; Trichostrongylus spp. and T. 

circumcincta which infect sheep; and O. ostertagi, which is the major disease-causing 

nematode in cattle. It has been estimated that control of such nematodes cost the 

livestock industry £1000 million every year (Newton and Munn, 1999). Additionally, 

inspection of swines for Trichinella infection, which can be passed on to humans via 

consumption of pork, also costs the European Union over £346 million annually 

(Murrell and Pozio, 2000).  
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Current treatment for nematode infection include broad-spectrum anthelmintics of the 

benzimidazole class (e.g. albendazole, mebendazole, thiabendazole, fenbendazole), 

which disrupt microtubule structures in helminths; as well as ivermectin and 

levamisole, which target invertebrate ion channels and saturate nicotinic receptors, 

respectively (Kohler, 2001). Although effective in the killing and expulsion of 

nematodes, these drugs are associated with problems of rapid reinfection and 

developing resistance, as well as concerns about chemical residues in the food chain 

(Adugna et al., 2007; Conder et al., 1997; Prichard, 1994). It is probable that 

resistance is brought about by the extensive use, repeated administration and improper 

dosage in the application of these drugs, resulting in the survival and propagation of 

nematode sub-populations which are genetically and physiologically resistant to 

anthelmintic treatment. These limitations highlight the need for novel control 

strategies, and much of the recent research has focused on the development of 

immunoprophylactic vaccines.   
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Table 1.1. The prevalence and distribution of major helminth infection and disease. 

Diagram is from Hotez et al. (2008). 

 

 

 

 

 

 

Table 1.2. The impact of major STHs compared to other priority diseases such as TB 

and malaria expressed as DALYs lost annually. Diagram is from Vercruysse et al.  (2008).
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1.3. Nematode invasion and secreted proteins  

 

Infection generally begins with the invasion of a host. Most parasitic nematodes enter 

their hosts orally or by skin penetration, after which they may travel through the 

host’s body via distinct migratory routes to arrive at their final destination / preferred 

niche as mature adults. Others may utilise intermediate hosts, for example filarial 

nematodes utilise arthropods as vectors for transmission. Embryonated eggs of 

Trichuris and Ascaris spp. are directly ingested, whereas larvae of the cattle and sheep 

nematodes O. ostertagia, H. contortus and T. circumcincta moult to their infective 

forms within faeces and soil on pastures before they are orally taken up by grazing 

animals (Smyth, 1988). The infective larvae of other soil-transmitted nematodes such 

as N. brasiliensis, N. americanus, A. duodenale, A. caninum and S. stercoralis invade 

by skin penetration, which is a less passive strategy.  

 

Infective larvae of soil-transmitted nematodes often display negative geotropism, in 

that they crawl up to the highest points on objects such as grass stems, to maximise 

host encounter (Kassai, 1982; Smyth, 1988). They are also sensitive to host signals 

such as warmth, moisture and chemical signals, and they are often positively 

chemotactic towards such factors (Haas, 2003). This is particularly true of larvae 

which invade by active skin penetration, as they need to actively and accurately sense 

and respond to host signals, so that they can prepare and orient themselves 

appropriately for invasion. Animal skin is a major barrier to nematode invasion, 

consisting of tough layers of corneum and epidermal cells which are made to prevent 

entry of pathogens. The mechanics of skin penetration of nematodes has been studied 

in N. brasiliensis. Initial penetration and locomotion is facilitated by a thin film of 

lipid but not water, and it was observed that larvae penetrate headfirst into crevices or 

wrinkles (weaker interface) within the stratum corneum, where they migrate between 

cells down towards the epidermis and dermis within 5 minutes (Lee, 1972). The 

surface permeability of post-penetrative larvae appears to increase, suggesting a 

surface modification perhaps brought about by exsheathment of the outer cuticle 

(Proudfoot et al., 1993). Dissolution of collagen fibres in surrounding tissue and 

debris were observed along the migratory tracks, suggesting that larval digestion of 

the connective tissue and extracellular matrix is possible, similar to enzymes secreted 

during skin penetration of Schistosoma cercaria larvae (Lee, 1972; Salter et al., 2000; 
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Stirewalt and Fregeau, 1966). In a later study, it was found that N. americanus larvae 

also penetrated skin in a similar fashion. N. americanus larvae exsheath at the onset of 

penetration, leaving behind empty sheaths at the site of penetration, and a wake of 

disrupted tissue was observed along their migratory tracks (Matthews, 1982). More 

importantly, it was found that N. americanus larvae secrete an enzyme with 

proteolytic activity at 37°C, which may have a role in the penetrative process. 

Histochemical analyses of skin sections showed that migrating Strongyloides ratti 

larvae also disrupt basement membranes, dermal ground substances, collagen fibres 

and glycoproteins (Lee and Lewert, 1956). Moreover, live larvae and larval extracts 

of S. ratti and A. caninum both exhibited protease activity in vitro which can be 

abolished by treatment with heat or chelating agents, providing evidence that such 

enzymes are actively produced by the nematode larvae. Thus, parasitic nematodes 

seem to have evolved strategies to overcome the skin barrier, and several ‘invasion 

factors’ have been identified in their secreted proteins. 

 

Although the mechanistic action of incoming larvae may constitute some physical 

force in skin penetration, secretion of hydrolytic enzymes to digest skin components 

may facilitate the process. Parasitic nematodes secrete a range of serine-, aspartic-, 

cysteine- and metalloproteases, and many of these have been implied in tissue 

invasion and extracellular protein digestion (Dzik, 2006). Notably, a major secretory 

product of S. stercoralis larvae was found to be a metalloprotease which can degrade 

a model of the dermal extracellular matrix as well as elastin and collagen substrates, 

which are major macrocomponents of skin and tissue (McKerrow et al., 1990). 

Moreover, treatment with metalloprotease inhibitors blocked skin invasion by S. 

stercoralis larvae. It was also noted by the authors that elastinolytic proteases were 

also identified in skin-penetrating larvae of hookworms, Onchocerca and Schistosoma 

mansoni. The S. stercoralis metalloprotease was later identified to be a zinc 

endopeptidase and named Ss40 (Brindley et al., 1995). Ss40 is immunogenic, with 

high titres of antigen-specific IgG found in infected humans, but however also 

stimulates histamine release from peripheral blood leukocytes, suggesting that it is 

allergenic. 

 

Secretions of metalloproteases have also been discovered in hookworms. Both A. 

duodenale and A. caninum secrete enzymes with metalloprotease activities and could 
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degrade human fibronectin in connective tissue, but not bovine elastin or human 

laminin (Hotez et al., 1990). This may suggest differences in their invasive properties 

to S. stercoralis, whose infection route is strictly penetrative, and could degrade all 

three substrates. Similar to the situation in S. stercoralis, metalloprotease inhibitors 

also inhibited larval penetration of A. caninum L3 into dog skin (Williamson et al., 

2006). A specific metalloprotease identified from A. caninum, Ac-MTP-1, was 

subsequently cloned and expressed as a recombinant protein (Zhan et al., 2002). 

Immunobinding studies with antiserum to Ac-MTP-1 localised this protein to 

secretory granules and apparatus in A. caninum L3 (Williamson et al., 2006). The 

antiserum also inhibited the ability of Ac-MTP-1 to digest collagen by 85% and 

decreased larval skin penetration by 75%, compared to only 5% and 10% reductions 

when treated with immune serum from multiply infected animals. Moreover, secretion 

of Ac-MTP-1 is induced under experimental activation upon host stimuli, suggesting 

that it is an important molecule at the initial stage of infection (Zhan et al., 2002).   

 

The human hookworm N. americanus is another obligate skin-penetrator, and a 

comprehensive study has been carried out to examine all classes of proteases secreted 

by this parasite in relation to skin invasion. Larval secretions show substantial 

hydrolytic activities, degrading human collagen types I, III, IV and V, as well as 

fibronectin, laminin and elastin (Brown et al., 1999). Using a range of protease 

inhibitors, it was shown that all these substrates were hydrolysed by aspartyl proteases. 

Collagen and elastin can be hydrolysed by metalloproteases, whereas the serine 

proteases hydrolysed only elastin. It was further demonstrated that larval penetration 

through hamster skin was only inhibited by pepstatin A, suggesting that the major 

hydrolytic activities in N. americanus involved in skin penetration can be contributed 

to aspartyl proteases.    

 

Apart from skin penetration, secreted proteases also have an important role for 

nematode invasion of other host tissues. For example, collagenolytic and elastinolytic 

activities are very important for H. contortus L4 and Trichinella spiralis L1 larvae in 

the penetration of smooth muscle and epithelial cells in the gut. Serine- and 

metalloprotease activities in Onchocerca volvulus are also highly important for the 

larval migratory stages through cutaneous tissues (Dzik, 2006). The invasive 
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properties of such parasite secretions, although equally intriguing, are however 

beyond the scope of this thesis and will not be further examined in this section.  

 

Hyaluronic acid is a major component of the dermal ground substance which holds 

together the collagen, elastic and reticular fibres which constitute the skin layers. It 

also acts as a binding agent in cell-to-cell adhesion of epithelial cells and 

keratinocytes in skin (Miyake et al., 1990). Two biologically active hyaluronidase 

variants have been identified in hookworm larvae of the genus Ancylostoma (A. 

caninum, A, braziliense, A. tubaeforme) (Hotez et al., 1992) and gastrointestinal 

invasive stages of A. caninum, Anisakis simplex (Hotez et al., 1994) and H. contortus 

(Rhoads et al., 2000). The stage-specificity of hyaluronidase secretions by these 

parasites suggests that they may be important for tissue degradation during migration 

through skin and intestinal tissue. Moreover, of the hookworm species studied, A. 

braziliense showed greater hyaluronidase activity than A. caninum and A. tubaeforme, 

which may be relevant to the fact that it is an obligate skin-penetrating nematode 

which is the major cause of cutaneous larva migrans compared to the other two 

species (Hotez et al., 1992). 

 

Therefore, these experiments suggest that larval hydrolytic enzymes may represent 

major virulence factors which contribute to pathogenesis and infectivity. Strategies to 

target such proteins may give rise to possible therapeutic agents directed against the 

initial steps of infection.  
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1.4. N. brasiliensis as a model parasitic nematode  

 

N. brasiliensis is extensively used as a model gastrointestinal (GI) parasite in the 

study of nematode infection and immunity. The widespread use of this parasite is due 

partly to its resemblance in life cycle and host response to other nematodes which are 

of medical, veterinary and agricultural importance. N. brasiliensis lies within the same 

clade as the human hookworm species N. americanus and A. duodenale, and is also 

very closely related to the cattle parasite O. ostertagi and the sheep parasite H. 

contortus, both of which cause significant agricultural and economic losses each year. 

Unlike some of these nematodes, N. brasiliensis can be easily and inexpensively 

maintained in the laboratory; it has a short life cycle, no intermediate hosts are 

required, and large quantities of worms from various stages can be obtained relatively 

easily. The natural and most specific host of N. brasiliensis is the rat, which makes 

laboratory manipulations more accessible and results more predictable. Infections can 

also be established in other rodent hosts, such as (in order of susceptibility) the mouse, 

hamster, ground squirrel, gerbil, rabbit and chinchilla, although the infection 

dynamics may vary to different degrees (Kassai, 1982). In most of these cases 

however, the rate of establishment is low, so gradual adaptation to the host species is 

required. For example, 4-7 serial passages through the mouse is needed for an 

enhancement in infectivity (Solomon and Haley, 1966; Wescott and Todd, 1966), and 

16-30 passages are needed for adaptation to the hamster (Haley, 1966a, b). Infection 

with N. brasiliensis typically results in a highly potent and protective immune 

response in rodents, which are thereafter resistant against further infections (Ogilvie 

and Jones, 1971), therefore providing an excellent model for studying nematode 

immunity in both primary and secondary infections.  

 

The life cycle of N. brasiliensis can be divided into an external free-living phase and a 

within-host parasitic phase (Fig. 1.2). The third-stage infective larvae (L3) invades its 

host by skin penetration, and they travel around via the host circulatory system until 

they pass through the lungs between 24-72 hours post-infection, where they moult 

into the L4 stage, migrate up the trachea, and are coughed into the host’s pharynx 

(Ogilvie and Jones, 1971). There they are swallowed into the gastrointestinal tract and 

they migrate to the proximal end of the small intestine, the jejunum, where they attach 

to the intestinal wall as fully matured adults. The adults mate and produce eggs which 
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are passed out into the external environment via the host’s faeces. The eggs hatch and 

undergo two further moults until they emerge again as infective L3, thus completing 

the cycle.  

 

In the free-living stage, L3 are developmentally arrested in an environmentally-

resistant, metabolically repressed phase until they encounter an appropriate host. 

During invasion, host signals induce L3 to develop into their parasitic phase, a point 

in their life history known as the ‘transition to parasitism’ (Hawdon et al., 1992). 

Nematode secreted proteins are often released in a stage-specific manner. Proteins 

secreted during the parasitic stages can provide insight into mechanisms of host-

parasite dynamics, and may have possible therapeutic value. Of particular interest are 

proteins secreted by L3 at its transition to parasitism, which marks the beginning of an 

invasion process that can be partially mimicked in vitro by culturing larvae at 37 °C 

(Bonner, 1979). As discussed in the last section, proteins secreted at this stage may 

contain factors which are important for invasion and the early stages of infection. The 

significance of this and the activation process, which is a major focus of this thesis, 

will be discussed in Chapter 4. Proteins secreted by the gut-dwelling adults of N. 

brasiliensis may also give important clues into host-parasite dynamics after 

maturation and establishment of the parasite. 
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Figure 1.2: Life cycle of N. brasiliensis. The different stages of N. brasiliensis development 

is shown in purple, and divided into free-living and parasitic stages. The migratory route of N. 

brasiliensis through the host is shown in black.  Diagram is modified from Dunne (2001) and 

Ogilvie and Jones (1971).  
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1.5. Host response to infection 

 

During experimental infections in murine hosts, the adult worm population of N. 

brasiliensis in the intestines is normally static for a number of days, and eggs are 

steadily produced throughout this period. At the end of this time, egg production falls 

rapidly as adults are expelled from the intestine under host immune mechanisms, an 

event generally referred to as immune expulsion (Ogilvie et al., 1977). Although N. 

brasiliensis causes a relatively short-lived infection, it stimulates a powerful and 

protective immune response from the host. This phenomenon is common to many 

gastrointestinal helminths, and the biochemical basis of this event is discussed in this 

section.   

 

 

The T helper 2 (Th2) response 

 

Infections with helminths are typically associated with a dominating T helper 2 (Th2)-

mediated immune response from the host, which, in several GI nematode model 

systems, result in parasite clearance by expulsion from the gut (Grencis, 1997). Naive 

CD4
+
 T cells are programmed to eventually differentiate into progeny that follow a 

Th1 or Th2 path, and the pattern of differentiation is largely determined by the 

cytokine environment surrounding the T cell at the time of antigen presentation (Else 

and Finkelman, 1998). Interleukin (IL)-4, IL-5, IL-6, IL-9, IL-10 (Mosmann and 

Coffman, 1989) and IL-13 (McKenzie et al., 1998a) are considered signature 

cytokines of the Th2 response, and are the major cytokines secreted by the host upon 

gastrointestinal helminth infections (Finkelman et al., 1997; McKenzie et al., 1998b). 

Th1 cells on the other hand are characterised by secretion of interferon-gamma (IFN-

γ), tumour necrosis factor-beta (TNF-β) and IL-2 (Mosmann and Coffman, 1989), 

which induce proinflammatory responses characteristic of bacterial and viral 

infections. The Th1 and Th2 cells show cross-inhibitory effects through release of 

cytokines such as IFN-γ and IL-10 respectively (Mosmann and Sad, 1996), which 

creates a balance effect in which Th1 and Th2 responses represent competing arms of 

the immune system (Kidd, 2003).  
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A wealth of evidence indicates that a Th2 response is protective to nematode 

infections, whereas a Th1 response is linked to susceptibility. This was demonstrated 

in a definitive study using Trichuris muris, a GI nematode of the large intestine. 

Mouse strains which can effectively expel T. muris mount a Th2-biased response 

during infection, whereas mice unable to resolve an infection display a Th1-dominant 

profile (Else et al., 1992). Administration of exogenous Th2 cytokines IL-4 and IL-13 

to the latter however, can restore Th2 responses and induce expulsion (Bancroft et al., 

2000; Else et al., 1994). In human epidemiology studies, it was also found that 

individuals who have acquired immunity through repetitive exposure to parasitic 

nematodes are associated with expression of Th2 cytokines, whereas those which 

harbour chronic heavy infections tend to overproduce proinflammatory Th1 cytokines 

and develop severe intestinal inflammation (Artis and Grencis, 2008). 

 

 

Th2 effector mechanisms in expulsion of GI nematodes 

 

It is well-established that CD4
+
 T helper cells play a major role in nematode immunity, 

through experimental adoptive transfers and / or in vivo depletion of CD4
+
 cells in 

nematode infection models (Else and Finkelman, 1998). The major function of CD4
+
 

cells during nematode infections is to produce Th2 cytokines, especially IL-4 and IL-

13, to activate Th2-controlled effector mechanisms and to potentiate the Th2 response.  

 

Remarkably, adoptive transfer of CD4
+
 T cells to severe combined immunodeficient 

(SCID) mice, which lack both T and B cells and would normally develop chronic 

infections, resulted in expulsion of T. muris upon challenge (Else and Grencis, 1996). 

Apart from demonstrating a critical role for CD4
+
 T cells, such experiments also 

suggest that B cell and antibody responses are generally unimportant in primary 

expulsion of GI nematodes, even though infections typically result in the production 

of Th2-associated antibody isotypes IgG1 and IgE (Urban et al., 1992). It is a 

puzzling feature that helminth infections induce such high amounts of both parasite-

specific and non-specific IgE antibodies, and yet it does not appear to be necessary for 

expulsion of nematodes. It is noteworthy however, that even though expulsion in 

Trichinella spiralis is not IgE-dependent, mice deficient in IgE do experience a slight 

delay in expulsion as well as higher larval viability, associated with diminished mast 
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cell responses (Gurish et al., 2004). In human populations, IgE response is generally 

unrelated to worm burden of N. americanus, but, rather, with a decreased size and 

weight of adult hookworms in the gut as well as lower egg production (Pritchard et al., 

1995). In Strongyloides ratti, it was found that a high level of IgG1 is correlated with 

decreased parasite survival, whereas IgA, which is mostly produced by mucosal cells, 

is negatively correlated with survival as well as fecundity (Bleay et al., 2007). These 

experiments seem to suggest that antibodies may play a part in the weakening of 

parasite worms at the local site and decreasing their general fitness and well-being. In 

a study on H. polygyrus, it was found that  the production of polyclonal (non-parasite-

specific) antibodies can be induced by infection, which acts to limit adult fecundity, 

although they do not affect worm burden during a primary infection (McCoy et al., 

2008). However, mice lacking B cells were unable to resolve a secondary infection, 

unlike immunocompetent mice. This was shown to be effected by parasite-specific 

antibodies produced after multiple infections, particularly IgG and IgA (but not IgE), 

which act to reduce the number of L4s, the tissue-dwelling stage of H. polygyrus (Liu 

et al., 2010; McCoy et al., 2008). These antibodies responses are dependent on the 

presence of CD4
+
 T cells. On the other hand, mice deficient in B cells or antibody 

production potential were equally competent as wild-type (WT) mice in resolving 

both primary and secondary infections of N. brasiliensis (Jacobson et al., 1977; Liu et 

al., 2010), suggesting that antibody responses are not required for immunity against 

this parasitic nematode. 

 

Apart from increases in serum IgG1 and IgE, a range of cell effector mechanisms are 

stimulated by the Th2 response resulting from GI nematode infection, including 

intestinal mastocytosis, eosinophilia and goblet cell hyperplasia (Else and Finkelman, 

1998; Lawrence, 2003; Urban et al., 1992). Mastocytosis is promoted by Th2-type 

cytokines such as IL-3, IL-4, IL-9 and IL-10, and is important for the effective 

expulsion of several GI nematodes such as T. spiralis and Strongyloides venezuelensis 

(Ha et al., 1983; Khan et al., 1993; Knight et al., 2000). However, mast cell responses 

are not required in expulsion of N. brasiliensis and T. muris (Betts and Else, 1999; 

Knight et al., 2000; Mitchell et al., 1983). Similarly, significant IL-5-dependent 

eosinophilia is often observed upon infection with GI nematodes, but was generally 

found to be unimportant in immune expulsion (Betts and Else, 1999; Lawrence, 2003). 

Goblet cell hyperplasia and mucus secretion correlate positively with resistance to 
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several species of GI nematodes (Else and Finkelman, 1998), and has been shown to 

be necessary for expulsion of N. brasiliensis and T. spiralis (Horsnell et al., 2007; 

Khan et al., 2001). 

 

Evidently, the effective expulsion of different nematode species can require a 

different combination of effector mechanisms. However, a universal requirement 

emerges that activation of STAT6 (signal transducer and activator of transcription 6) 

through IL-4 and / or IL-13 signalling is essential for immune expulsion of GI 

nematodes including T. muris, H. polygyrus, T. spiralis and N. brasiliensis (Else and 

Finkelman, 1998; Lawrence, 2003). Both IL-4 and IL-13 use IL-4Rα (IL-4 receptor 

alpha) as a receptor component, and can therefore elicit some overlapping functions; 

for example, they both have inhibitory effects on the production of proinflammatory 

cytokines and chemokines in monocytes (Callard et al., 1996). However, it has been 

shown that expulsion of N. brasiliensis and T. spiralis is dependent on IL-4Rα 

expression on non-bone marrow-derived cells (Urban et al., 2001). Selective deletion 

of IL-4Rα expression on non-bone marrow-derived cells in mice resulted in an 

inability to expel both nematode species, whereas deletion of IL-4Rα expression on 

bone marrow-derived cells impaired normal expulsion of T. spiralis but not N. 

brasiliensis. Administration of exogenous IL-4 to the latter however, induced 

expulsion of T. spiralis. In general, IL-4 is more active in orchestrating and 

potentiating the Th2 response, as well as promoting mastocytosis and IgE production. 

IL-13 on the other hand has a larger role in the regulation of mucosal responses and 

inflammatory diseases as well as the promotion of the Th2 response (Kelly-Welch et 

al., 2003; McKenzie et al., 1998b; O'Garra, 2000). Depletion of IL-4 and/or IL-13 

through the use of neutralising antibodies or knockout mice generally results in 

parasite persistence, and administration of these cytokines induces or enhances 

expulsion of a number of nematode models. Such experiments have shown that the 

expulsion of T. muris and T. spiralis is dependent on the presence of both cytokines 

(Bancroft et al., 1998; Finkelman et al., 2004), whereas only IL-4 is essential for 

protection against H. polygyrus (Finkelman et al., 1997). In N. brasiliensis, IL-13 

signalling was found to be critical for driving worm expulsion from the gut, while IL-

4 was not required (Lawrence et al., 1996; McKenzie et al., 1998a; Urban et al., 

1998).  
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IL-13 signalling is transduced through IL-4Rα and STAT-6. It has been shown that 

disruption of any component of this pathway blocks the host’s ability to expel N. 

brasiliensis (Urban et al., 1998). The IL-13/IL-4Rα/STAT-6 signal transduction 

pathway is required for effective goblet cell hyperplasia, and also increases 

longitudinal smooth muscle cell (SMC) contraction in the intestine (Horsnell et al., 

2007). The principal asset of goblet cell hyperplasia is its mucus production, which is 

important for clearance of N. brasiliensis infection (Khan et al., 1995; Miller et al., 

1981). Mucus trapping may directly affect the viability of worms through inhibition 

of parasite motility (Lee and Biggs, 1990), chemotactic functions (Artis et al., 2004), 

and ability to feed (Rothwell, 1989). As for contractile responses, it was found that 

IL-4Rα deficient mice suffer an inhibition of expression of the muscarinic receptor 

M3 (Horsnell et al., 2007), which is the principal acetylcholine receptor in smooth 

muscle and drives 75% of contractile responses in the small intestine (Matsui et al., 

2002). This suggests that the IL-13/IL-4Rα/STAT-6 pathway is involved in M3 

expression and subsequently acetylcholine responsiveness, which drives SMC 

contractions. Together, goblet cell hyperplasia and increased SMC contractions of the 

gut are thought to constitute the major driving forces in immune expulsion of N. 

brasiliensis (Fig. 1.3). 

 

Intriguingly, transcriptional levels of the resistin-like molecule (Relm)β in mucosal 

cells were found to be prominently increased during infection with N. brasiliensis 

(Kawai et al., 2007). Expression of Relmβ can be induced by IL-13 signalling (Artis 

et al., 2004), and its secretion is restricted to intestinal goblet cells (Steppan et al., 

2001). The upregulation of Relmβ was found to coincide with the time of worm 

expulsion and maximal induction of protective Th2 immunity in N. brasiliensis, T. 

spiralis and T. muris, thus making it a particular interesting target to study (Artis et al., 

2004; Yamauchi et al., 2006). Recent data has shown that RELMβ is important for 

worm expulsion in N. brasiliensis and H. polygyrus. In RELMβ knockout mice, 

expulsion of N. brasiliensis was delayed, and intestinal worm numbers of H. 

polygyrus were also significantly decreased upon migration to the gut lumen (Herbert 

et al., 2009). It was further demonstrated that while RELMβ did not affect worm 

viability directly, it inhibited feeding in H. polygyrus adults, subsequently reducing 

their protein and ATP content as well as fecundity. On the other hand, normal 

expulsion of T. spiralis and T. muris were unaffected in RELMβ knockout mice (Artis 
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and Grencis, 2008; Herbert et al., 2009; Nair et al., 2008), which suggests that 

RELMβ is unimportant for immunity to nematodes which reside within the IEC layers 

as opposed to the intestinal lumen, where the worms are more heavily exposed to 

mucosal secretions. It has also been proposed that RELMβ may protect against 

luminal nematodes by inhibiting their chemotactic ability in location and orientation 

towards food source (not necessary for nematodes living within the IEC layer), 

thereby depleting the worms’ energy sources (Herbert et al., 2009). This hypothesis 

was extended from a study in which a link was found between RELMβ and 

chemotactic functions of nematode larvae. RELMβ was found to bind on the bacillary 

bands and cuticular pores of larval T. muris and S. stercoralis (possible locations of 

chemosensory receptors). Incubation of the latter with RELMβ was found to impair 

chemotaxis in vitro (Artis et al., 2004), which provides some evidence for this notion. 

 

 

 

 

  

 

 
Figure 1.3. IL-13-dependent mucosal immunity in expulsion of N. brasiliensis. IL-13 

signalling results in goblet cell hyperplasia and increased smooth muscle contractions of the 

gut, which contribute to expulsion of N. brasiliensis adult worms. 
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As such, mucosal immunity is also extremely important for the expulsion of T. 

spiralis and T. muris. IL-13 signalling was found to enhance the migration and 

turnover of intestinal epithelial cells (IECs), which is a critical expulsion mechanism 

for T. muris, the adults of which reside within the crypts of the mucosal epithelium 

(Cliffe et al., 2005). This forms an ‘epithelial escalator’ which propels the IECs 

upwards and dislodges the worms into the intestinal lumen. Dependent on STAT6 

activation, goblet cell hyperplasia has been shown to be important for the expulsion of 

T. spiralis (Khan et al., 2001), as are the increases in luminal fluidity and mucosal 

contractility which contributes to the so-called ‘weep and sweep’ mechanism in worm 

clearance from the gut (Madden et al., 2004). Additionally, it was found that mice 

deficient in mouse mast cell protease 1 (mMCP-1) fail to enhance epithelial 

permeability during infection and experience delayed expulsion of T. spiralis, 

suggesting a role for mast cells in such responses (Knight et al., 2000; McDermott et 

al., 2003). Sensitisation of rats with N. brasiliensis adult antigen also resulted in a 

massive release of rat mast cell protease II (RMCP-II) which was shown to increase 

intestinal mucosal permeability (Scudamore et al., 1995), although mast cell 

responses are not required for expulsion of this nematode (Knight et al., 2000; 

Mitchell et al., 1983). Mucin core peptide genes such as Muc2 and Muc3 show an 

increase in expression during infection with T. spiralis and N. brasiliensis (Kawai et 

al., 2007; Shekels et al., 2001), and expulsion of T. muris was found to be 

significantly delayed in Muc2-deficient mice (Hasnain et al., 2010). The mucosal 

expression of a number of glycosylating enzymes are also increased during infection 

with N. brasiliensis (Kawai et al., 2007), as well as alterations in post-translational 

glycosylation patterns of intestinal mucins not found in uninfected animals (Karlsson 

et al., 2000; Tsubokawa et al., 2009). These results suggest that the composition of 

mucosal secretions may have an influence on nematode immunity.  

 

 

Innate Type 2 responses 

 

Apart from playing an integral role in intestinal effector mechanisms, IECs can also 

act as sensors to intestinal helminthiasis. In response to infection by intestinal 

helminths, IECs secrete the cytokines IL-25, IL-33 and thymic stromal lymphopoietin 

(TSLP), which are inducers of early Th2 responses (Saenz et al., 2008). TSLP was 
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found to directly inhibit the production of IL-12 by dendritic cells (DC), thereby 

influencing them towards a Th2 phenotype (Rimoldi et al., 2005) which is protective 

to T.muris infection (Taylor et al., 2009a). The peak expression of IL-25 and IL-33 

has been found to coincide particularly with the time of establishment during infection 

with N. brasiliensis and T. muris respectively (Humphreys et al., 2008; Hurst et al., 

2002). Through the use of knockout mice and cytokine administration, it was 

demonstrated that IL-25 and/or IL-33 are indeed protective to T. muris and N. 

brasiliensis infection (Fallon et al., 2006; Owyang et al., 2006). However, such 

protection seems to be dependent upon the existence of an adaptive immune response 

and classical Th2 mechanisms. Although IL-25 treatment confers resistance to mice 

normally susceptible to T. muris infection, severe combined immunodeficient (SCID) 

mice treated with IL-25 were unable to clear the infection (Owyang et al., 2006). 

Similarly, IL-25 treatment results in accelerated expulsion of N. brasiliensis in mice, 

but only in the presence of at least one Th2 cytokine (IL-4, IL-5, IL-9 or IL-13) 

(Fallon et al., 2006). Induced expulsion of T. muris in IL-33-treated mice was also 

associated with a protective Th2 response, including the upregulation of IL-4, IL-9 

and IL-13, changes in the epithelial architecture, as well as increased goblet cell 

numbers and serum IgE levels (Humphreys et al., 2008). Interestingly, expulsion can 

only be induced if the mice were treated with IL-33 early in the infection; late 

administration of IL-33 fails to induce protection, which suggests that these protective 

mechanisms act during the onset of infection. The cellular target of IL-25 and IL-33 

were found to be a group of previously uncharacterised non-B-non-T (NBNT) cell 

population of negative lineage. These functionally similar cell types were named 

nuocytes, multipotent progenitor type-2 (MPP
type2

) and natural helper cells by 

independent research groups, and they promote ‘innate type 2 immunity’ to intestinal 

helminths through early secretion of IL-13 and/or IL-4 (Fallon et al., 2006; Moro et 

al., 2010; Neill et al., 2010; Saenz et al., 2010). These mechanisms are thought to be 

important in initiating and mediating protective immunity to intestinal helminths 

before the adaptive Th2 response can take hold, in a way similar to the natural killer 

(NK) cell response to viral infections. 

 

Recent studies have also indicated that basophils are another innate cell population 

which may contribute to nematode immunity. It has been shown that systemic 

recruitment and expansion of basophils occur during infection with N. brasiliensis, H. 
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polygyrus and S. venezuelensis, the effect of which is dependent on the presence of 

CD4
+
 T cells and enhanced by IL-3 (Lantz et al., 2008; Min et al., 2004; Mohrs et al., 

2005; Voehringer et al., 2004). Basophils are a potent source of IL-4 (Min et al., 2004; 

Siracusa and Artis, 2010; Sullivan and Locksley, 2009), and it was proposed that like 

the innate type 2 cells, they play a role in the amplification and augmentation of type 

2 immunity during infection through IL-4 secretion (Sullivan et al., 2011; Van 

Panhuys et al., 2011; Voehringer, 2009). Infection with N. brasiliensis results in IL-4 

secretion by basophils at the affected tissues during the early stages of infection, an 

effect which is dependent on CD4
+
 T cells. Targeted depletion of IL-4 and IL-13 from 

basophils and CD4
+
 T cells individually did not affect worm clearance during a 

primary infection, but combined deletion of these cytokines from both cell types 

significantly diminished expulsion of N. brasiliensis, demonstrating a contribution by 

basophil-derived IL-4 in primary Th2 immunity (Sullivan et al., 2011). Indeed, 

basophils isolated from spleen, liver or bone marrow strongly biased the development 

of naive CD4
+
 T cells towards a Th2 phenotype in vitro in an IL-4-dependent manner 

(Oh et al., 2007). Basophils have also been shown to secrete large amounts of IL-13 

in vitro through cross-linking of the high-affinity IgE receptor (FcεR1) on its cell 

surface (Falcone et al., 2000), but this has yet to be confirmed in an in vivo model of 

nematode infection. Expulsion of N. brasiliensis in transgenic mice deficient in 

basophils was unimpaired during a primary infection (Ohnmacht et al., 2010; Sullivan 

et al., 2011), probably since multiple operationally redundant mechanisms are able to 

induce a protective Th2 response. However, Ohnmacht et al. (2010) found a modest 

delay in expulsion after secondary infection in these mice, whereas no such effect was 

observed by Sullivan et al. (2011). It is nevertheless unlikely that basophils play a 

large role in secondary expulsion, since the major effector responses were unaffected 

by basophils during reinfection, when CD4
+
 T cells were the major source of IL-4 

(Van Panhuys et al., 2011).    

 

 

Immunity in the lungs 

 

Dependent on the host immune response, adult worm expulsion marks the end of an N. 

brasiliensis infection in a ‘self / spontaneous cure’ reaction, which means that normal, 

immunocompetent animals can clear the infection without extraneous help (Ogilvie 
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and Jones, 1971). Thereafter, hosts are strongly resistant and the parasites are cleared 

rapidly upon reinfection, with few or no adult worms reaching the intestines. Recently, 

compelling evidence showed that these worms are stopped under immune action at 

the lungs during a secondary infection (Harvie et al., 2010). The ability of L3 to 

penetrate and migrate through skin was comparable in naïve and previously infected 

mice, but the latter showed a ten-fold reduction in the number of transiting L4 in the 

lungs and subsequently those reaching the gut. Tissue-specific priming with live 

worms in the lungs was necessary and sufficient to induce such protection, associated 

with an increase in CD4
+
 T cells in mediastinal lymph nodes. Deficiency in the major 

histocompatibility complex (MHC) class II, STAT6 or IL-4 resulted in significantly 

diminished protection, indicating that a classical Th2 response is at play. The brief 

transition of L4 has therefore left a prolonged alteration of the immunological status 

of the lungs which is able to induce worm clearance during reinfection. Thus, 

vaccination strategies designed to directly stimulate Th2 responses in the lungs could 

be a possible way to interrupt reinfections and the parasite life cycle. Some support 

for this theory comes from vaccination studies on S. mansoni, in which Coulson and 

Wilson (1997) demonstrated that T lymphocyte recruitment to lungs is a prerequisite 

to prime the host for effective elimination of parasite at the lung stage.   

 

Innate immunity to N. brasiliensis has also been studied at the lung stage of infection. 

In both SCID mice and wild-type (WT) mice, N. brasiliensis infection induces the 

expression of genes encoding molecules associated with innate immunity and tissue 

repair or remodelling (Reece et al., 2006). However, cellular infiltrates caused by 

migratory larvae in the lungs were rapidly cleared in WT mice but not SCID mice. It 

was found that the transcription of these genes can only be sustained in WT mice, 

suggesting that an adaptive immune response is still needed to maintain such activities. 

Interestingly, one of the most prominent transcriptional changes observed in both WT 

and SCID mice upon infection was the upregulation of genes associated with 

alternatively activated macrophages (AAMΦ), ym1, ym2, fizz1 and arg1. The role of 

AAMΦs in helminth infections is thought to include tissue healing, debris scavenging, 

control of inflammation, and the regulation of Th2 responses (Kreider et al., 2007). 

Macrophages undergo alternative activation through stimulation by IL-4 and IL-13 

(Martinez et al., 2009), and are characterised by their secretion of YM1, arginase and 
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the resistin-like molecule alpha (RELMα, also called found in inflammatory zone 1, 

FIZZ1), which are likely to be of functional significance to AAMΦs. 

 

RELMα belongs to the same protein family as RELMβ, as well as RELMγ. Unlike 

RELMβ, RELMα is primarily expressed in white adipose tissue, but is also highly 

expressed by AAMΦ and other cell types such as eosinophils and epithelial cells 

during helminth infection (Loke et al., 2002; Maizels et al., 2009; Steppan et al., 

2001). Although their amino acid sequences (49% identity) and tertiary structure are 

similar, RELMα exist as a monomer whereas RELMβ is a homodimer, as RELMα 

lacks a critical cysteine residue which is necessary for dimerisation (Banerjee and 

Lazar, 2001). RELMα has been shown to play a role in the suppression of Type 2 

inflammation, a response characterised by the recruitment of Th2-related effector 

cells including mast cells, eosinophils, basophils, and B cells producing IgE (Nair et 

al., 2006). Although these responses are important in mediating protective immunity, 

they may also provoke destructive inflammatory responses, causing collateral damage 

to the host. In RELMα-knockout mice, schistosome-induced lung inflammation was 

exacerbated, as well as pulmonary granuloma formation (Nair et al., 2009; Pesce et 

al., 2009). RELMα-knockout mice infected with N. brasiliensis also had intensified 

lung pathology, in addition to reduced fecundity and accelerated expulsion of 

intestinal worms, associated with an amplified Th2 response which can be dampened 

by treatment with exogenous RELMα (Pesce et al., 2009). Apart from being a 

negative regulator of potentially destructive Th2 responses, RELMα has also been 

implied in a diverse range of functions including fibrosis at the site of infection and 

suppression of T cell proliferation (Horsnell and Brombacher, 2010; Nair et al., 2006). 

 

 

Host response to migratory larvae 

 

Although eosinophils do not seem to be important in mediating primary expulsion of 

parasitic nematodes, there is evidence that they are effective in killing migratory 

larvae. IL-5-dependent eosinophilia (Sanderson et al., 1986) has long been observed 

as a prominent host response upon infections with many helminth species (Urban et 

al., 1992). However, the outcome of primary infections was not affected in studies in 

which IL-5 knockout hosts or anti-IL-5 antibody treatment were used in a variety of 
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systems such as Trichuris muris, T. spiralis and Schistosoma mansoni (Betts and Else, 

1999; Herndon and Kayes, 1992; Sher et al., 1990), thus shifting sentiment away from 

a role for eosinophils in helminth immunity. A turning point was the discovery that 

IL-5 transgenic mice with constitutive IL-5 production and lifelong eosinophilia are 

highly resistant to primary infections of N. brasiliensis, and can reduce worm burden, 

interfere with parasite maturation and impair fertility (Dent et al., 1997; Dent et al., 

1999). The researchers went on to find that mice defective in IL-5 production and 

eosinophilopoiesis showed a lowered resistance to secondary infections, and that this 

response is likely to target worms at the larval stage before they reach the lungs 

(Knott et al., 2007). Similarly, IL-5 knockout mice also experience delayed expulsion 

and greater worm burden of T. spiralis during a challenge infection, associated with 

decreased eosinophilia in host tissue (Vallance et al., 2000). Additionally, depletion 

of IL-5 by treatment with neutralising antibodies in mice resulted in a greater 

recovery of S. venezuelensis worms at the lung stage after a secondary infection 

(Korenaga et al., 1991). Evidence for the direct killing of tissue migratory larvae 

comes from in vivo experiments in which diffusion chambers containing S. stercoralis 

larvae were implanted into subcutaneous tissue of mice. Eosinophils were the only 

cell type that accumulated in the diffusion chamber coincident with the killing of 

larvae (Rotman et al., 1996). Moreover, inhibition of eosinophil migration into the 

chamber or treatment with anti-IL-5 prevented such killing (Abraham et al., 1995; 

Herbert et al., 2000). 

It was further proposed that the complement system plays a role in eosinophil-

mediated responses. Complement and C3 deposition on the parasite surface facilitate 

the recruitment and attachment of cytotoxic effector leukocytes, including eosinophils 

(Giacomin et al., 2005), which release products that can damage, immobilise and/or 

kill the parasite (Butterworth, 1984; David et al., 1980). Indeed, eosinophil 

recruitment was reduced in mice deficient in factor B, a molecule involved in the 

alternative pathway of complement activation (Giacomin et al., 2008). However, 

eosinophil action was not sufficient to eliminate the parasite, because C3 and 

leukocytes can only adhere specifically to worms at the L3 larval stage of N. 

brasiliensis (Giacomin et al., 2005). L3 worms can moult into the L4 stage within 24 

hours of entering the host, which can no longer be targeted by complement. These 

data suggest that L3 of N. brasiliensis may be vulnerable to eosinophil-based 

cytotoxic attacks with possible input from the complement system. 
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The ‘modified Th2’ environment 

 

Although a diverse array of type 2 responses is stimulated by helminth infections, it is 

apparent that immunity to different species requires a different range of protective 

mechanisms. Moreover, the effector mechanisms generated towards different life 

cycle stages in different host organs may also operate in a context-dependent manner. 

The mechanisms which lead to the universal induction of the type 2 immune response 

by almost every helminth species are not well understood. It is unlikely that each 

species has individually evolved its own strategy to induce the same type of response, 

so it is probable that underlying factors exist. One hypothesis is that the innate 

immune system recognises conserved helminth-associated molecular patterns as 

‘danger signals’, preferentially generating a type 2 response, in a way comparable to 

the Toll-like receptor (TLR) pattern recognition mechanism which triggers type 1 

responses (Kapsenberg, 2003; Van der Kleij et al., 2002). A more popular theory 

suggests that helminths may have evolved to take an active part in the induction of the 

type 2 response (Maizels et al., 2004). As Th1 and Th2 responses represent competing 

arms of the immune system, polarisation towards Th2 will result in a downplay of 

Th1-induced inflammation, which minimises damage to both parties (Allen, 1997). 

Considering the dynamic host-parasite relationships which determine the outcome of 

selection, the generation of type 2 immunity is an evolutionarily appropriate response 

to worms.  

 

While the type 2 response is shown to be protective against helminths, this does not 

explain the chronic nature of some infections such as hookworms. It is a feasible 

thought that type 2 mechanisms working at their full power may have the potential to 

clear these normally chronic infections, but at the cost of generating excessive 

immune damage to the host in the process. It may thus be the lesser of two evils for 

the host to tolerate and accommodate such infections; and helminths, between a fine 

balance of host mortality and its own survival and propagation, may have evolved to 

dampen rather than disable the immune response directed against them, resulting in a 

‘modified Th2’ environment (Allen and Maizels, 2011; Maizels et al., 2004). The 

concept of a pathogen as an active participant involved in the generation of the host 

immune response is a process known as immunoregulation. 
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1.6. The role of secreted proteins in immunoregulation 

 

Immunoregulation is a universal concept defined by the suppression, diversion or 

conversion of the host immune response by a pathogen, usually to its advantage. Such 

strategies allow parasitic helminths to establish long-lasting relationships in the host 

by escaping immediate elimination, which accounts for the chronic features seen in 

many helminth infections. The generation of a favourable anti-inflammatory 

environment though the induction of a ‘modified type 2’ response is a hallmark of 

helminth infection, and increasing evidence has shown that parasite secreted proteins 

can play a central role in this phenomenon.  

 

It has been shown that N. brasiliensis secreted proteins can actively skew the immune 

response towards a Th2 pathway. Mice immunised with N. brasiliensis adult secreted 

products demonstrate the Th2 hallmarks of an infection without the need of any 

exposure to live parasites, an effect which can be abolished by heat or protease 

treatment of the parasite preparations, suggesting that these effects are likely to be 

caused by proteins (Holland et al., 2000). This phenomenon is unaffected by the co-

administration of complete Freund’s adjuvant (CFA), a pro-Th1 cocktail, indicating 

that the observed bias towards a Th2 response is not a ‘default’ in the absence of Th1 

stimuli. Moreover, the Th2 bias driven by N. brasiliensis secreted products can also 

be extended to third-party bystander antigens such as hen egg lysozyme (HEL), 

indicating that N. brasiliensis secreted products act as general Th2 adjuvants. 

Importantly, exposure to these secreted products can influence the maturation of bone 

marrow derived dendritic cells (BMDC) towards a Th2 phenotype which secretes IL-

6 (which inhibits Th1 differentiation; Diehl and Rincon, 2002) and downregulates IL-

12, and adoptive transfer of these treated cells to naive mice elicited potent Th2 

responses (Balic et al., 2004). As dendritic cells (DC) are important antigen-

presenting cells (APC) required for the priming and activation of CD4
+
 T 

lymphocytes whose path of differentiation is critically dependent on its cytokine 

environment at the time of antigen presentation (Else and Finkelman, 1998), this 

could subsequently direct T cell function towards a Th2 phenotype. Other parasite-

secreted products which has been shown to prime DCs for such Th2 responsiveness 

include ES-62 of the filarial nematode Acanthocheilonema viteae (Whelan et al., 

2000), soluble egg antigen (SEA) and larval secretions of S. mansoni (Jenkins and 
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Mountford, 2005; MacDonald et al., 2001), and the schistosome-associated glycan 

lacto-N-fucopentatose III (Thomas et al., 2003). Additionally, N. brasiliensis adult 

secreted products was found to potently suppress mitogen-induced production of IFN-

γ and IL-2 in mesenteric lymph node cells, and also inhibited secretion of IFN-γ from 

purified lymphocytes (Uchikawa et al., 2000), suggesting that they may have direct  

modulatory effects on T cell functions as well.  

 

Likewise, exposure to secreted products from Toxocara canis biased human 

peripheral blood lymphocytes to a Th2 phenotype with increased secretion of IL-4 

and IL-5, and reduced IFN-γ and IL-2 (Del Prete et al., 1991). Schistosome SEA is 

known to possess potent Th2-polarising properties, and individual molecules have 

been attributed to this phenomenon. Alpha-1 (also called IPSE; IL-4 inducing 

principle of schistosome eggs) induces IL-4 secretion by basophils in an antigen-

independent manner, and it also binds and sequesters chemokines to inhibit 

recruitment of inflammatory cells (Schramm et al., 2003; Schramm et al., 2007). 

Indeed, the depletion of Alpha-1 resulted in increased egg-induced inflammation 

during infection with S. mansoni (Smith et al., 2005). Omega-1, a ribonuclease found 

in schistosome SEA, conditions DCs in vitro to drive Th2 responses, and injection of 

omega-1 in mice elicited a Th2 response in vivo (Everts et al., 2009). 

 

Secretory products of N. brasiliensis larvae have also been shown to downmodulate 

Th1-associated inflammation in vivo. Administration of N. brasiliensis L3 secreted 

products to rats reduced neutrophil recruitment to the lungs (Keir et al., 2004) as well 

as the transcription of proinflammatory molecules such as IL-1β, tumour necrosis 

factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) against a background of 

LPS-induced inflammation in vivo (Zhao et al., 2009). Similar findings were obtained 

during in vitro stimulation of alveolar macrophages with L3 secreted products, in 

which both TNF-α and iNOS levels were again suppressed (Zhao, 2009). Whether 

this effect was caused by a suppression of classically activated macrophages (CAMΦ) 

of the Th1 phenotype or the induction of AAMΦs however, remains to be addressed 

in this model. AAMΦs are important cells activated during helminth infection which 

can promote Th2 responses and suppress Th1 inflammation (Herbert et al., 2004; 

Loke et al., 2000), and there has been evidence that helminth secretory products can 

directly induce their activation. It was demonstrated that a peroxiredoxin (Prx) 
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secreted by the blood and liver flukes (S. mansoni and Fasciola hepatica respectively) 

can induce the activation of AAMΦs in an IL-4/13-independent manner (Donnelly et 

al., 2005; Donnelly et al., 2008). Prx stimulated the expression of markers of AAMΦs 

such as Ym1 in macrophages, which induced the secretion of IL-4, IL-5 and IL-14 in 

naive CD4
+
 T cells. Immunisation of mice with Prx or treatment with anti-Prx 

antibodies resulted in a blockage of AAMΦs induction and diminished Th2 responses 

in vivo during a challenge infection with F. hepatica. Therefore, the induction of 

AAMΦs can be one of the helminth immunomodulatory strategies in tipping the 

balance towards Th2. Collectively, these results demonstrate the suppressive effects 

of helminth secreted products on proinflammatory Th1 responses. 

 

Extending on this, much evidence has supported an inverse relationship between 

helminth infections and inflammatory disorders mediated by Th1 and / or the recently 

described Th17 response (characterised by the production of IL-17, IL-6 and TNF-α), 

such as rheumatoid arthritis, inflammatory bowel diseases (IBD), type 1 diabetes and 

multiple sclerosis (Elliott et al., 2007; Zaccone et al., 2006). Experimental infections 

with various helminth species have also been proven on several counts to be 

protective to such diseases. In particular, the use of Trichuris suis and S. mansoni as 

therapeutic agents for IBDs and multiple sclerosis are being clinically considered and 

has shown promising results (Croese et al., 2006; Reddy, 2010; Summers et al., 

2005a; Summers et al., 2005b). Current research has indicated that secretory products 

from helminths may act as immunomodulators to mediate this phenomenon. 

Treatment with A. caninum and S. mansoni secretory products were found to reduce 

inflammatory symptoms and the production of proinflammatory cytokines IFN-γ and 

IL-17 in a model of ulcerative colitis in mice (Ruyssers et al., 2009). Exposure to ES-

62, a secreted protein discovered in A. viteae and present in many other filarial species 

including B. malayi, B. pahangi and O. volvulus, prevented the initiation of collagen-

induced arthritis in murine models, and also suppressed the progression of established 

disease (Harnett et al., 2004; McInnes et al., 2003). These effects were associated 

with a decrease in the production of proinflammatory cytokines, demonstrating the 

immunomodulatory effects of ES-62. Many of the anti-inflammatory effects of ES-62 

appeared to be dependent on post-translational substitutions which conjugate 

phosphorylcholine (PC), a hapten-like moiety, to N-linked glycans on the protein 

backbone, as the PC moiety chemically attached to an irrelevant molecule was 
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capable of mimicking the effects of ES-62 (Harnett and Harnett, 1993; Houston and 

Harnett, 1999). In one mode of action, PC residues on ES-62 were found to be 

responsible for interactions with TLR4, which in mast cells inhibits the release of 

inflammatory mediators (Goodridge et al., 2005). PC and related modifications are 

also present in other secreted products of many filarial nematodes, such as an N-

acetylglucosaminyltransferase of B. malayi and Juv-p120, a major secreted protein of 

Litomosoides sigmodontis (Hewitson et al., 2009; Houston and Harnett, 1999).  

 

Intriguingly, a number of studies drawing from epidemiological and experimental 

data have also indicated that helminth infections can protect against the pathologies of 

allergic inflammation, which are themselves Th2-mediated (Maizels, 2005; Wilson 

and Maizels, 2004). Such diseases, including asthma, hayfever, allergic rhinitis and 

atopic dermatitis, are characterised by the production of IgE and Th2 responses. In the 

case of asthma, eosinophil infiltration into the airway epithelium, the release of 

proinflammatory mediators and secretory mucins from goblet cells account for typical 

inflammatory symptoms which can cause substantial tissue damage. Notably, live 

infection or sensitisation with larval secretory products of N. brasiliensis in mice was 

shown to reduce inflammation in the lungs and airways respectively in a model of 

ovalbumin-induced asthma (Trujillo-Vargas et al., 2007; Wohlleben et al., 2004). 

While it is established that the type 2-biased response elicited by helminths provides a 

mechanism to counteract type 1 inflammation, this does not explain how helminths 

suppress type 2 allergic disorders. Recent research has shown that this phenomenon is 

likely to be mediated by regulatory strategies which can dampen type 2 responses 

through IL-10, transforming growth factor-beta (TGF-β) and a population of T cells 

with an immunosuppressive phenotype called regulatory T cells (Tregs).  

 

While IL-10 and TGF-β are immunosuppressive cytokines in their own rights, they 

were found to potentiate their effect by inducing the expansion of CD4
+
 CD25

+
 

FoxP3-expressing T regs, which interfere with T cell activation and secrete IL-10 and 

TGF-β (Belkaid, 2007). These responses are commonly induced during helminthiasis. 

Infection with H. polygyrus, as well as the filarial nematodes B. malayi and L. 

sigmodontis, induced the in vivo expansion of Tregs which show immunosuppressive 

activities in vitro (Finney et al., 2007; McSorley et al., 2008; Rausch et al., 2008; 

Taylor et al., 2009b), suggesting that they may be favourable to parasite persistence. 
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Indeed, depletion of Tregs impaired the survival and fecundity of L. sigmodontis in 

the host, associated with an amplified Th2 response (Taylor et al., 2009b). The further 

observation that inoculation of dead worms failed to elicit Treg responses suggest that 

its induction is a process actively regulated by the parasite (McSorley et al., 2008). 

Indeed, it was found that DCs exposed to H. polygyrus secreted products induced the 

differentiation of Tregs which produced IL-10 and inhibited T cell proliferation 

(Segura et al., 2007). S. mansoni has been found to activate Tregs by stimulating host 

TGF-β production through secretion of SEA (Zaccone et al., 2009), but H. polygyrus 

and Teladorsagia circumcincta can also induce Tregs directly by secreting a TGF-β 

mimic which could bind to the host TGF-β receptor, once again demonstrating the 

active immunomodulatory effects of nematode secreted proteins (Grainger et al., 

2010). Moreover, a TGF-β homologue has also been found in B. malayi (TGH-2), and 

was shown to bind to the mammalian receptor (Gomez-Escobar et al., 2000). It thus 

appears that the utilisation of secretory products to exploit Treg function could be a 

quite a common helminth strategy to suppress host immunity.  

 

As discussed, TGF-β is a helminth-secreted mammalian cytokine mimic with 

immunosuppressive functions. Another form of cytokine mimicry is demonstrated by 

the macrophage migration inhibitory factor (MIF) secreted by B. malayi and 

Ancylostoma ceylanicum, with homologues also present in a variety of other 

nematodes (Vermeire et al., 2008). The mammalian MIF is a protein which 

potentiates proinflammatory gene expression and mediates directed chemotaxis and 

recruitment of immune cells. It is quite surprising that earlier studies indicated that the 

nematode-derived MIFs appeared to induce similar effects as the mammalian MIFs by 

inducing directed chemotaxis of monocytes / macrophages (Pastrana et al., 1998) and 

the production of proinflammatory cytokines (Cho et al., 2007; Zang et al., 2002). 

However, it was later demonstrated that the B. malayi MIF synergises with IL-4 to 

induce the development of AAMΦs with a potent immunosuppressive phenotype 

(Prieto-Lafuente et al., 2009). Moreover, MIF also induced macrophages to 

upregulate the expression of IL-4Rα, thereby potentiating IL-4/13 responses in a Th2 

environment, producing an anti-inflammatory effect. 

 

Helminth secreted proteins have also been shown to downplay inflammation by 

interfering with leukocyte recruitment. A protein named SmCKBP, identified from S. 
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mansoni SEA, was able to bind to the host chemokine CXCL8, thereby inhibiting its 

interaction with the host chemokine receptor (Smith et al., 2005). This protein 

blocked CXCL8-induced migration and infiltration of neutrophils in a mouse air 

pouch model and in a chemotaxis model, and additionally suppressed inflammatory 

responses in vivo. The Ancylostoma-secreted neutrophil inhibitory factor (NIF) was 

found to bind as an antagonistic ligand to the CDllb subunit of the chemokine receptor 

CR3 (complement receptor 3), which blocks leukocyte adhesion to vascular 

endothelial cells and hydrogen peroxide release by activated human neutrophils 

(Moyle et al., 1994; Rieu et al., 1995). In another study, microfilarial secreted 

products from B. malayi showed potent inactivation of chemotaxis in human 

granulocytes, an effect brought about by cleavage of the complement anaphylatoxin 

C5a by a serine protease secreted by the parasite (Rees-Roberts et al., 2010). 

Secretory products of T. spiralis infective larvae also inhibited C5a-mediated 

chemotaxis of human granulocytes, but this was found to be effected through 

carboxypeptidase activity (Rees-Roberts et al., 2010). 

 

It is known that helminth secretions are generally rich in protease and protease 

inhibitors, and some of their functions have been implied in immunoregulation. 

Several proteases secreted by S. mansoni, F. hepatica and Dirofilaria immitis were 

shown to degrade host immunoglobulins as a possible way of evading host immune 

responses (Dzik, 2006; McKerrow et al., 2006). Recently, it was discovered that the 

major cathepsin cysteine proteases secreted by S. mansoni and F. hepatica were able 

to inhibit nitric oxide production, IL-12, IL-6 and TNF production by macrophages 

through endosomal degradation of TLR3, thus inhibiting subsequent signalling 

(Donnelly et al., 2010). This inhibited Th1 responses and protected mice from LPS-

induced lethality. On the other hand, helminth-secreted protease inhibitors may have a 

role in the degradation or protection against host proteases (McKerrow et al., 2006). 

A number of cystatins (cysteine protease inhibitors) secreted by filarial nematodes 

were found to suppress T cell proliferation, whereas some of the serpins (serine 

protease inhibitors) secreted by schistosomes appeared to have anti-coagulation 

properties (McKerrow et al., 2006). Cystatins secreted by N. brasiliensis, A. viteae, B. 

malayi and O. volvulus have also been shown to have immunomodulatory effects, 

through the inhibition of host cysteine proteases required for antigen-processing, or by 

induction of immunosuppressive cytokines such as IL-10 (Hartmann and Lucius, 
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2003; Hewitson et al., 2009). Treatment with a filarial cystatin has additionally been 

shown to suppress Th2-related allergic inflammation as well as Th1-mediated colitis 

in mice, an effect mediated by Tregs and IL-10-producing macrophages (Schnoeller et 

al., 2008).  

 

Most helminth parasites also secrete a range of antioxidants, including superoxide 

dismutases, catalases, glutathione peroxidises, thioredoxin peroxidises, and 

peroxiredoxins, which are thought to have a role in protecting the parasites against 

reactive oxygen species generated by the host (Hewitson et al., 2009). Interestingly, a 

distinctive pathway involving the exploitation of host nucleotide signalling has been 

proposed for T. spiralis in the evasion of host immune mechanisms. Tissue damage 

typically results in a massive release of extracellular nucleotides, which are utilised by 

the host immune system as ‘danger signals’, transduced through purinergic receptors 

(hence the term purinergic signalling). Signalling through the purinergic receptor P2 

by ATP, ADP, UTP and UDP can activate or reinforce a broad range of inflammatory 

responses, including platelet aggregation, release of proinflammatory mediators from 

granulocytes and recruitment of inflammatory cells (Gounaris and Selkirk, 2005). 

Such signalling also stimulates the release of chloride from epithelial cells which 

drives net fluid influx into the intestinal tract, and increases mucus secretion from 

goblet cells, resulting in an unfavourable environment for intestinal helminths 

(Bucheimer and Linden, 2004; Leipziger, 2003). To circumvent this situation, the gut-

dwelling stage of T. spiralis was found to secrete a set of ‘nucleotide metabolising 

enzymes’ to degrade or convert extracellular nucleotides. A secreted nucleotide 

diphosphate kinase (NDPK) was first discovered, which can convert a nucleoside 

triphosphate (NTP) to a nucleoside diphosphate (NDP) (Gounaris et al., 2001). A 5’-

nucleotidase (5-NT) hydrolyses ADP and UDP to their respective nucleoside 

monophosphate, then AMP into adenosine and an inorganic phosphate (Gounaris, 

2002; Gounaris et al., 2004). This mechanism proposes a way in which T. spiralis is 

able to decrease the availability and concentration of extracellular nucleotides, thus 

blocking the subsequent attack by the host immune response. Interestingly, this 

mechanism shows striking parallels to a strategy utilised by haematophagous 

arthropods, which secrete enzymes in their saliva that degrade nucleotides so to 

minimise the ensuring pain and inflammatory responses (Gounaris and Selkirk, 2005; 

Ribeiro and Francischetti, 2003). 
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The ability of helminths to regulate the host immune response is key to their success 

in prolonging survival in the host and optimising its own propagation. From the 

existing data, it is clear that helminths may actively manipulate the host response to 

their advantage, a phenomenon in which secreted proteins play a large role. The 

strategies employed are diverse: from the induction of Th2 differentiation, the 

suppression of Th1 responses, the manipulation of Treg cells and AAMΦs, to the 

inhibition of immune cell recruitment and host signalling. The extent and combination 

of these strategies utilised by different helminth species may differ, as may their 

different lifestyles, niches and life cycle stages. However, the ultimate goal in such 

immunoregulation is quite clear: to produce an anti-inflammatory environment which 

is favourable to parasite survival and propagation, via the generation of a ‘modified’ 

Th2 response.  
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1.7. Vaccination strategies and nematode secreted antigens 

 

Vaccine candidates for helminth infections can be categorised into three main types: 

worm surface antigens, hidden antigens, and secreted antigens (Munn, 1997). Worm 

surface antigens are quite literally molecules and epitopes found on the surface of the 

worm body. While it seems quite logical to assume that targeting these antigens is 

likely to be the most effective by weakening, killing and ultimately eliminating the 

worms directly, in reality this is not always the case. Most nematode species have 

very tough outer cuticles, which can often withstand immune damage. Moreover, 

nematodes undergo multiple moults during their parasitic stages in the host, resulting 

in a change in surface epitopes every time they shed a new layer (Philipp et al., 1980; 

Proudfoot et al., 1993), making them hard to target. Hidden antigens are not normally 

exposed to the immune system during a natural infection (such as those in the interior 

part of the worm soma), so they are less likely to have experienced selective pressure 

in parasite evolution to evade the immune response (Munn, 1997), i.e. a lower risk of 

antigenic variation. Although there has been success in the use of the nematode gut 

membrane antigens such as H11 and O12 for vaccination against the GI nematodes of 

livestock ruminants (H. contortus and Ostertagia spp. respectively) (Munn, 1997; 

Newton and Munn, 1999), it is not always easily determined whether protective 

immunity can be generated against other inaccessible antigens. It can also be argued 

that the majority of hidden antigens within the parasite soma are more likely to be 

released by damaged or dead worms, so that immune responses against such proteins 

would be futile. General somatic extracts are often not protective towards parasitic 

nematodes, so research attention has focused on parasite secretions instead (Maizels et 

al., 1999).      

 

Secreted proteins are essential to parasite survival. Early studies have shown that 

vaccination with attenuated live, but not dead, parasites can confer nematode 

resistance, suggesting that protective antigens are actively secreted by the parasites 

(Knox, 2000). Vaccination with x-ray attenuated larvae of A. caninum induced up to 

90% protection in dogs, although this vaccine was later commercially discontinued 

due to its high production costs, short shelf life and respiratory side-effects (Miller, 

1971, 1978). Vaccination with attenuated worms was found to be protective against 

many other nematode species, and commercially successful vaccines for the 
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lungworm in cattle (Dictyocaulus viviparous) and sheep (D. filaria) were produced 

using this approach (Jarrett et al., 1958; Sharma et al., 1988). Vaccination of humans 

with attenuated nematode larvae however, is generally deemed unacceptable for 

obvious safety and ethical reasons. 

 

Some secreted proteins are highly immunogenic, as they are recognised by the host 

during natural infections, so vaccination with such proteins could possibly augment 

host immunity during natural re-infections. However, whether these proteins will have 

functional significance in protecting the host can only be determined by vaccination 

experiments. Early experimentation studied the protective effects of whole or 

fractionated parasite secreted proteins. Immunisation with N. brasiliensis larval or 

adult secreted proteins both resulted in greatly reduced intestinal worm burden in rats 

or mice during challenge infections (Day, 1979; Rhalem et al., 1988; Thorson, 1953). 

Partial protection can also be achieved by immunising dogs with oesophageal extracts 

from A. caninum (Thorson, 1956). Interesting, proteolytic and lipolytic activities in 

these preparations are inhibited by antiserum from immune animals, suggesting that 

such secreted enzymes could be important targets (Thorson, 1954, 1956). Vaccination 

with adult secreted proteins of Trichostrongylus colubriformis, and larval secreted 

proteins of H. contortus and T. circumcincta have been found to induce variable 

protection from 30-70% in sheep to homologous challenge, in which different 

fractions generally show differential extents of protection (Emery, 1996; Newton and 

Munn, 1999). Immunisation with T. spiralis secreted proteins from muscle-stage 

larvae also provided protection to pigs and mice (Campbell, 1955; Murrell and 

Despommier, 1984). 

 

However, vaccination with whole secreted proteins may not always be an effective 

strategy against all nematode species; for instance immunisation with adult secreted 

proteins did not confer protection to H. polygyrus (Day, 1979). Although whole 

secreted protein preparations contain a complex mix of molecules, not all of them will 

be protective, and some may even be immunomodulatory molecules which can act to 

suppress or divert the protective immune response (Meeusen, 1996).  Moreover, it is 

probable that at least some components of secreted proteins contain allergenic 

epitopes – indeed, repeated exposure to larval secreted proteins of N. brasiliensis was 

shown to induce a parasite-specific airway inflammatory response with acute 
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infiltration of inflammatory cells in the airway and lungs (Marsland et al., 2005), 

which is a particularly dangerous characteristic in a vaccine candidate because 

repeated exposure to these antigens will be needed for the generation of acquired 

protective immunity. Collection of nematode secretory products in sufficient amounts 

to produce commercial vaccines by ex vivo cultivation is also impractical, considering 

the minute amount of proteins parasitic nematodes secrete. It was estimated by Emery 

et al. (1993) that the sacrifice of three donor sheep is needed to generate sufficient 

parasite materials to vaccinate one sheep, making this an unviable option. 

 

Therefore, research efforts are better spent on the study of selected molecules rather 

than crude parasite mixtures, so that targets can be produced industrially by 

recombinant protein engineering. With the advance of various technologies in protein 

analysis and manipulation, there has been some success in the discovery of individual 

protective targets. Immunisation with acetycholinesterase (AChE), a major parasitic 

nematode secreted enzyme considered important for parasite survival, was found to 

reduce N. brasiliensis egg output (Ball et al., 2007). A number of other nematode 

species including H. contortus, H. polygyrus, T. circumcincta and T. colubriformis 

also secrete AChE, and it was previously found that immune animals produce 

antibodies to this enzyme (Ogilvie et al., 1973). Immunisation with AChE purified 

from T. colubriformis resulted in cross-protection against a mixed infection of H. 

contortus, C. oncophora and T. colubriformis in sheep, but with inconsistent results 

(Griffiths and Pritchard, 1994). Vaccination with whole unfractionated secreted 

protein preparations of D. vivaparus did not elicit protection, but worm burden was 

significantly reduced in animals which received a fraction particularly enriched with 

AChE (McKeand et al., 1995). 

 

Many proteases are abundantly secreted by nematodes, and they are thought to be 

important in various biological functions including immunomodulation, host invasion 

and nutrient acquisition. The secretion of digestive proteases is assumed to be 

important for blood-feeding nematodes for the extracellular degradation of host 

haemoglobin and other serum proteins, so to derive peptides and amino acids which 

can be transported across their intestinal lumen. Digestion of haemoglobin is initiated 

under the synergistic action of the aspartic protease APR-1 and the cysteine protease 

CP-2, and the metalloprotease MEP-2 was able to cleave the resulting globin 
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fragments (Williamson et al., 2004). Based on this rationale, significant research 

progress has been made in hookworm vaccines by targeting their digestive proteases 

as a strategy to cut off their nutrient supply and subsequently survival and fecundity 

(Pearson et al., 2010). Vaccination with A. caninum AcAPR-1 in dogs resulted in a 

33% reduction in intestinal worm burden and a 70% reduction in faecal egg counts 

upon homologous challenge, and additionally reduced blood lost and anaemia in the 

host (Loukas et al., 2005). IgG from the vaccinated dogs inhibited APR-1 activity in 

vitro, and also bound in situ to the worm intestines, suggesting that the neutralising 

antibodies are ingested by the worms during feeding which can effectively inhibit 

their ability to digest blood. Hamsters immunised with AcAPR-1 also displayed a 

44% reduction in worm burden upon heterologous challenge with N. americanus, 

indicating that cross-protection can be extended to human hookworms (Xiao et al., 

2008). So promising were the protective effects of this antigen that the N. americanus 

Na-APR-1 is now the leader candidate under trials for the Human Hookworm Vaccine 

Initiative (HHVI, Sabin Institute) (Periago, 2010). 

 

Immunisation with the A. caninum Ac-CP-2 cysteine protease also resulted in partial 

protection in dogs, resulting in decreased fecundity and stunted growth,  however with 

no significant decrease in intestinal worm burden, even though the mode of vaccine 

action was similar to APR-1 (Loukas et al., 2004). Hamsters vaccinated with Na-CP-2 

on the other hand, showed a small but significant reduction in worm burden by 29.3% 

(Xiao et al., 2008). In H. contortus, it has been estimated that 16% of the adult 

transcriptome encode for cysteine proteases (Jasmer et al., 2004), and many of these 

are associated with activities in anticoagulation, degradation of fibrinogen, 

haemoglobin, collagen and IgG, likely to have roles in feeding, attachment to the host 

as well as immunomodulation. Immunisation with AC-1, a 35 kDa secreted cysteine 

protease from H. contortus, protected against homologous challenge in sheep, 

reducing worm burden, fecundity and survival (Boisvenue et al., 1992; Cox et al., 

1990). In vaccination studies with fractionated H. contortus extracts, it was found that 

only a fraction which was enriched for cysteine proteases conferred protection to 

lambs, resulting in a 47% decrease in worm burden and 77% reduction in faecal egg 

counts, suggesting that they are likely to be the immunodominant protective antigens 

for H. contortus infections (Knox et al., 2005).  Less experimentation has been done 

on protease inhibitors, but injection with anti-nippocystatin antibodies, an N. 
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brasiliensis secreted cysteine protease inhibitor which blocks host antigen-processing, 

resulted in reduced and earlier termination of egg production when challenged with N. 

brasiliensis in mice (Dainichi et al., 2001b).   

 

Glutathione S-transferases (GST) represent another class of nematode secreted 

proteins. One of its variants, Hc-GST-1 was identified from adult H. contortus cDNA 

library and characterised. It was found that that Hc-GST-1 bound haematin with high 

affinity, and it was postulated that it may be important for the detoxification or 

transport of heme, which holds particular significance to blood-feeding nematodes 

such as hookworms (Van Rossum et al., 2004). Dogs vaccinated with A. caninum Ac-

GST-1 show a 39.4% decrease in worm burden and 32.3% reduction in faecal egg 

counts during homologous challenge, although results did not reach statistical 

significance (Zhan et al., 2005). However, it was shown in the same study that 

vaccination of hamsters with the same antigen resulted in a significant decrease in 

worm burden (53.7%) against heterologous challenge with N. americanus, so that the 

hookworm homologue of this protein (Na-GST-1) is now also being considered as a 

vaccine candidate by the HHVI (Periago, 2010; Sabin, 2011). 

 

Earlier immunoblotting experiments with sera from sheep hyperimmune to H. 

contortus revealed two antigens at 15 and 24 kDa (named Hc15 and Hc24) which 

were strongly immunogenic, and immunisation with these purified antigens resulted 

in a 70% reduction in worm burden (Schallig et al., 1997). Hc24 was subsequently 

found to be a homologue of the venom-allergen homologue / Ancylostoma secreted 

protein (ASP)-like (VAL) protein family through bioinformatic analyses (Cantacessi 

et al., 2009). The VAL proteins are found in virtually all parasitic nematodes studied 

to date, and vaccination studies show that they are protective to many other parasitic 

nematode species including hookworms in dogs and humans (Bethony et al., 2005). 

These targets were chosen as the first and only vaccine candidates targeting the larval 

forms of human hookworms by the HHVI to date (Bethony et al., 2008b; Sabin, 

2011). Findings in our laboratory indicate that there exist at least eight variants of 

VAL proteins in N. brasiliensis, and this will be discussed in Chapter 5. 

 

Evidently, there have been few vaccine candidates studied to date which can confer 

100% protection against parasitic nematodes. However, whether sterilising immunity 
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is needed is dependent on the application. A very high level of protection is probably 

more important for helminth control in livestock due to commercial reasons. On the 

other hand, this is not quite as critical in control of human hookworms. Unlike viruses 

or bacteria, helminths generally do not reproduce asexually in the host, and parasite 

burden increase mainly through reinfections. Therefore a partial reduction in worm 

burden and/or fecundity may still be able to significantly reduce the rate of 

transmission, morbidity and host pathology including anaemic and iron deficient 

conditions. This has been demonstrated using a computer simulation model for 

hookworm which evaluated the cost-effectiveness of vaccines (Lee et al., 2011). The 

simulation programme indicated that a partial reduction in worm burden using a 

vaccine with an efficacy as low as 30% will still bring substantial health and 

economic benefits, particular to children and women of reproductive age, the 

population groups most susceptible to infection. It also indicated that optimal cost-

effectiveness occurs when a combination of such a vaccine and current drug treatment 

is used for control of hookworms.  

 

The ideal vaccine should also be able to protect against a number of helminth species. 

This is the appeal of investigating VALs, cysteine proteases and GSTs as vaccine 

candidates, as they are proteins commonly secreted by a number of helminth species. 

Although many therapeutic targets and vaccine candidates have been developed 

without extensive knowledge about their in vivo functions, it is still important to 

elucidate their role in host-parasite relations to avoid the evocation of undesired 

mechanisms and pathology in the host. Our major research interest lies in larval 

secreted proteins, as vaccines based on protective antigens found at the L3 stage may 

have the added advantage that intervention and vaccination strategies can be effective 

at a much earlier stage than when targeting proteins at the adult stage, thus 

minimising damage and suffering to the host.  
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1.8. Characterisation of secreted proteins in N. brasiliensis and other nematodes 

 

The molecular and biochemical characterisation of the N. brasiliensis secretome is 

still in its infancy, mostly because a sequenced reference genome is not yet available 

for this organism. A major effort in this task has been provided by Harcus et al. 

(2004), who conducted a comprehensive bioinformatic analysis on the expressed 

sequence tags (ESTs) of N. brasiliensis. In this project, they utilised a full-length 

cDNA library constructed by oligo-capping to study sequences bearing signal peptide 

regions. They found that a high proportion (14.3%) of total ESTs have a conventional 

5’ signal peptide sequence, which suggest that they are likely to be secreted. The 

ESTs with signal sequences are less conserved with C. elegans or non-nematode 

genes than those without, suggesting that parasite secreted proteins may have 

experienced accelerated evolution compared to somatic proteins; that is, secreted 

proteins are likely to be particularly important for the parasite lifestyle. Many novel 

sequences which showed no homology to known proteins were found, and 32% of 

these have signal peptides, whereas only 3.4% of genes conserved to non-nematodes 

have signal peptides. This suggests that there is much room for exploration in the area 

of secreted proteins, as it is likely that the novel sequences may encode for yet 

undiscovered genes which are specifically important for the parasitic lifestyle. The 

EST sequences with homology to other nematode genes revealed that many of these 

code for proteases, lectins, VAL proteins and other enzymes, which is largely 

consistent with studies on secreted proteins of other nematode species. 

 

Only a few specific secreted proteins have been characterised in N. brasiliensis to date. 

These include the acetylcholinesterases (AChE), the globins, a platelet activating 

factor acetylhydrolase (PAF-AH), and a cystatin. All of these proteins were 

discovered from the secreted products of adult stage N. brasiliensis, although we have 

recently demonstrated that AChE is also secreted by N. brasiliensis L3 upon 

activation (Huang et al., 2010). 

 

AChE is an enzyme which hydrolyses acetylcholine (ACh) to acetate and choline. 

Although its secretion has been found in many GI nematodes including H. contortus, 

H. polygyrus, T. circumcincta, T. colubriformis (the Trichostrongylus spp) (Ogilvie et 

al., 1973), N. americanus (Pritchard et al., 1991), D. viviparus (McKeand et al., 1994)  
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and A. ceylanicum (Tekwani, 1992), their roles in the context of infection is yet 

unclear. The first evidence of AChE secretion was found in N. brasiliensis by Lee 

(1970) via cytochemical staining. This was then confirmed by Sanderson (1972), who 

found AChE activity in the secretory products of adults cultured in vitro. AChE was 

later purified from adult secreted products, and three isoforms (A, B and C) of this 

enzyme was found in N. brasiliensis which are distinguishable by non-denaturing 

polyacrylamide gel electrophoresis (PAGE) (Grigg et al., 1997). All three isoforms 

are monomeric and hydrophilic. These proteins were later cloned and expressed in 

Pichia pastoris, and the recombinants show high and specific efficiency in 

hydrolysing acetylthiocholine, an ACh analogue (Hussein et al., 1999). The isoforms 

A, B and C have apparent molecular weights of 74, 69 and 71 kDa respectively, and 

all of them have acidic isoelectric points (pI) (Hussein et al., 2002; Hussein et al., 

2000). Isoforms B and C are 90% identical in amino acid sequence, whereas AChE A 

is only 63-64% identical to the others. The expression of these isoforms appears to be 

developmentally regulated, as AChE A is secreted by L4 immediately after its arrival 

into the duodenum, and AChE B and C are secreted when worms have matured and 

migrated to a more distal position in the jejunum (Blackburn and Selkirk, 1992a). 

 

It is likely that AChE may contribute to some biological function to parasitic 

nematodes in vivo, as vaccination with AChE B in the rat resulted in reduced egg 

output of N. brasiliensis after a challenge infection (Ball et al., 2007). Quantitatively, 

AChE production is positively correlated with immune pressure from the host 

(Selkirk et al., 2005), but it is unclear whether this is caused by a general stress 

response or a functional role in immunomodulation. In earlier studies, it has been 

hypothesised that AChE may regulate contractile processes in the gut by inhibiting 

host ACh-induced peristalsis, thus protecting the worms from mechanical expulsion 

(Lee, 1970). Although N. brasiliensis adult secretory products were found to reduce 

the amplitude of contractions in rat intestines in vitro, administration of exogenous 

AChE did not produce the same effect, suggesting this phenomenon is likely to be 

regulated by other substances (Foster et al., 1994). Another possibility is that AChE 

may play a part in inhibiting host ACh-induced mucosal fluidity, thus blocking the 

‘weep’ in the ‘weep and sweep’ mode of nematode expulsion (Selkirk et al., 2005). 

Indeed, ACh has been shown to stimulate exocytosis in enterocytes, Paneth cells, and 

epithelial granulocytes (Cooke, 2000; Satoh et al., 1992). AChE purified from the 
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secretory products of T. colubriformis and Nematodirus battus was also shown to 

have direct modulatory effects on the proliferation of epithelial cells (Huby et al., 

1999). These studies suggest that AChE may possibly have a role in modifying the 

physiology of the host gut to enhance survival. On the other hand, the role of AChE 

may be unrelated to host physiology, for example it has been proposed that secretion 

of AChE into the environment directly exterior to the parasite may create a protective 

barrier to cholinesterase inhibitors ingested during feeding (Selkirk et al., 2005), thus 

protecting the neuromuscular AChE within the worms which is important for 

neurotransmission. 

 

N. brasiliensis expresses two forms of globins: an 18 kDa secreted / cuticular form, 

and a 17.5 kDa somatic form which lacks a signal peptide (Blaxter et al., 1994). 

These globins have oxygen affinities which are a hundred-fold higher than the 

haemoglobins of their rodent host, although they share a common core globin domain 

containing a single haem group. Nematode globins are thought to be involved in the 

scavenging of oxygen, the supply of which is scarce within the gut environment. The 

expression of globins may thus provide a high-affinity oxygen uptake system for 

nematodes residing within the GI tract. Expression of the N. brasiliensis globins is 

developmentally regulated; the somatic form is first expressed upon host invasion, 

and the secreted globin is expressed exclusively by intestinal-dwelling adults. Globins 

are not expressed by resting L3 in the free-living phase, which presumably does not 

need to acquire extra oxygen in this manner. Globins have been found across all taxa 

of nematodes, suggesting that it is probably a protein common to all species (Blaxter, 

1993). Nematode globins have been found to exist as monomers, dimers, trimers or 

tetramers, indicating that their quaternary structures are distinct to those of vertebrates. 

The ubiquity of globins however, makes them a potentially useful tool for 

phylogenetic analysis in inferring inter-species relationships. 

 

Platelet activating factor (PAF) is a host-secreted phospholipid mediator which 

induces platelet aggregation, inflammation and anaphylaxis (Janeway et al., 2005). It 

has been observed that adult secretory products of N. brasiliensis was able to inhibit 

PAF-induced platelet aggregation in vitro (Blackburn and Selkirk, 1992b). This 

activity was heat liable and specific for PAF, as the secretory products did not affect 

thrombin-induced platelet aggregation. The reaction was found to be effected by an 
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enzyme acetylhydrolase, which esterified an acetyl group on the glycerol backbone of 

PAF, thus inactivating its function. Further characterisation of this enzyme, a PAF-

acetylhydrolase (PAF-AH), indicated that it exists as a heterodimer in native form, 

consisting of two protein subunits with apparent molecule masses of 38 and 25 kDa 

(Grigg et al., 1996). As platelet aggregation and proinflammatory responses are 

generally unfavourable to the survival of GI nematodes, the secretion of PAF-AH by 

N. brasiliensis is likely to be a possible strategy in immunoevasion. 

 

A 14 kDa cysteine protease inhibitor, named Nippocystatin, has been identified in N. 

brasiliensis adult secretory products, and was proposed to interfere with antigen-

processing in APCs (Dainichi et al., 2001b). As discussed, vaccination with this 

protein resulted in reduced egg production upon a challenge infection with N. 

brasiliensis. It is known that the activity of lysosomal proteases, including those of 

cysteine proteases, is important for the processing of pathogenic antigens in APCs 

prior to antigen-presentation via MHC (Janeway et al., 2005). Nippocystatin was 

found to inhibit the activity of cysteine proteases specifically, and inhibited their 

cleavage of a third-party antigen, OVA, in vitro (Dainichi et al., 2001b). The 

administration of Nippocystatin to mice decreased lysosomal cysteine protease 

activity in vivo, and co-immunisation of Nippocystatin with OVA reduced OVA-

antigen-specific cellular proliferation in splenocytes, but not concanavalin A (ConA)-

induced (non-antigen-specific) proliferation. Antigen-specific release of both IL-4 and 

IFN-γ were reduced, suggesting a general suppression of T cell function. It was thus 

proposed that the secretion of Nippocystatin in N. brasiliensis may be utilised as a 

strategy in immunoevasion. Although Nippocystatin was identified in adult secretions, 

its mRNA was also expressed by activated L3 (Dainichi et al., 2001a). Moreover, 

Nippocystatin also showed amino acid sequence homology to the cystatins of C. 

elegans and a range of filarial nematodes, in which signature sequences of the cystatin 

superfamily were conserved. Although filarial cystatins have also been shown to 

inhibit T cell proliferation, their mode of action may differ to that in Nippocystatin, as 

they were shown to inhibit ConA or anti-CD3-induced (non-antigen-specific) T cell 

proliferation in general and also stimulated production of the immunosuppressive 

cytokine IL-10 (Hartmann et al., 1997; Hartmann and Lucius, 2003; McKerrow et al., 

2006).  
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Although a few N. brasiliensis secreted proteins have been studied in some detail, 

there is still, evidently, a lack of breadth in knowledge, particularly for proteins 

secreted by the larval stages. This observation was common in many other nematode 

species, but much progress has been made in the last decade as the availability of 

genome information increased and high-throughput proteomic methods were 

developed. The adult secretomes of H. contortus (Yatsuda et al., 2003), A. caninum 

(Mulvenna et al., 2008) and B. malayi (Hewitson et al., 2008) have been analysed by 

large-scale proteomic analyses. These studies provided a suite of newly identified 

proteins which were not previously known to contribute to the parasitic lifestyle, and 

also revealed factors which are commonly secreted by many parasitic nematodes, 

such as proteases, protease inhibitors, lectins, VAL homologues, antioxidants, as well 

as certain enzymes and immunomodulatory molecules, etc. Although such studies 

have greatly improved our understanding of nematode secretions, proteins secreted by 

different life cycle stages are likely to vary accordingly to the challenges the parasites 

face at different points during the infective process. This has been demonstrated in a 

preliminary proteomic survey sampling secreted proteins from L4 and adults of T. 

circumcincta (Craig et al., 2006). Stage- and gender-specific secreted proteins have 

also been studied in S. ratti (Soblik, 2009) and B. malayi (Moreno and Geary, 2008), 

which again were shown to be unequivalent. Changes which occur at the point at 

which resting larvae transits from its free-living existence to the parasitic phase are 

probably the most exciting and informative, and this has been studied in A. caninum 

by transcriptional profiling, which revealed a large range of differentially transcribed 

mRNA between activated and non-activated L3 (Datu et al., 2008). Partial proteomic 

characterisations were also carried out for proteins secreted by muscle-stage larvae of 

T. spiralis (Robinson and Connolly, 2005) and mucosal-stage larvae of T. 

circumcincta harvested early post-infection (Smith et al., 2009). These data will be 

useful in inferring host-parasite relationships as the identified proteins are functionally 

characterised. Thus studying proteins secreted by activated larvae would highlight 

molecules which are particularly important for the infective process and the parasitic 

lifestyle, which may reflect the strategies required to establish host-parasite 

relationships in a myriad of extraordinary ways. 
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1.9. Summary and aims 

 

It is clear that secreted proteins are important for the parasitic lifestyle, with potential 

functions ranging from invasion, establishment of infection, feeding, and modulation 

of the host immune response. Using N. brasilienis as a model, the aim of this project 

is to improve our understanding of nematode secretions, with particular focus on 

larval secreted proteins. 

 

 

Aim 1: To analyse N. brasiliensis secreted proteins by two-dimensional gel 

electrophoresis (2-DE) 
 

Proteins secreted by the larval stage of most parasitic nematodes has been a topic 

much neglected, probably due to a lack of knowledge of the factors required to 

activate secretion, and the fact that they secrete very small amounts of proteins. One 

of the major aims is to characterise the secretion profile of N. brasiliensis larvae by 2-

DE. The first tasks are to collect sufficient material analysis by routine cultivation of 

large batches of larvae, and to optimise electrophoretic conditions. Although the 

major interest of this project is in larval secreted proteins, adult secreted proteins will 

also be analysed in comparison. Since N. brasiliensis is not a genome-verified 

organism, the global proteomic identification of all secreted proteins is not a major 

aim.  

 

Aim 2: To compare two strains of N. brasiliensis in terms of infection dynamics, 

host response and secreted proteins 
 

At the beginning of this project, a field strain of N. brasiliensis was donated to our 

laboratory by Professor Mark Viney (University of Bristol, UK). This strain was 

noticeably more productive than our laboratory strain, as observed from initial life 

cycle propagation. Another aim of this project is thus to compare the infection 

dynamics of the two strains and the host responses they elicit. This study may 

illustrate the effects of laboratory passage on properties of the parasite. Importantly, if 

the two strains differ in infectivity, this would provide a classifier to distinguish 

factors important for the infective process, in which case potential differences seen in 

larval secreted proteins of the two strains will be analysed.  
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Aim 3: To investigate the activation of larval protein secretion 
 

The L3 stage of N. brasiliensis and many other GI nematodes are developmentally 

arrested during the free-living phase, until host encounter triggers changes in the 

worms which transits them into their parasitic phase. This process is known as 

‘activation’, which is central to the infective process. By mimicking host-like factors, 

their effect on larval activation and protein secretion will be investigated.  

 

 

Aim 4: To investigate the effect of immunisation with a larval secreted protein 
 

One of the ultimate goals of studying nematode secreted proteins is to discover 

molecules which can confer protective immunity through vaccination. A major aim of 

this project is thus to perform vaccination trials with a candidate protein secreted by 

N. brasiliensis larvae. The VAL proteins were initially found to be abundantly 

secreted by A. caninum larvae after activation by host-like factors, suggesting that 

they are likely to be molecules involved in the infective process. Characterisation of 

VAL proteins has been an ongoing project in our laboratory, and one of my major 

aims is to perform vaccination trials with a larval-secreted VAL protein.    
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Chapter 2  
 

 

Materials and Methods 
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2.1. Infection and recovery of N. brasiliensis 

 

The life cycle of N. brasiliensis was maintained in male Sprague-Dawley (SD) rats, 

housed in the Central Biomedical Services at Imperial College London. To establish 

an infection, SD rats were subcutaneously injected with infective larvae (L3) in 

phosphate buffered saline (PBS), typically at a dose of 7,000 per rat for the Wellcome 

strain, and 2,000 for the Japanese strain, unless otherwise stated. Rat faeces 

harbouring eggs of the parasite were collected from 6 to 10 days post-infection, 

hydrated with distilled water, mixed with charcoal and incubated at room temperature 

for a minimum of one week to allow eggs to hatch and larvae to moult into L3. 

Experimental infections of mice were carried out at 500-600 L3 per mouse. 

 

L3 were recovered from week-old faeces by filtration in a Baermann apparatus with 

water at 20°C through 3 layers of muslin and 2 layers of lens tissue for 90-120 

minutes. Recovered L3 were collected into a 15 ml Falcon tube and washed 

extensively with PBS. The number of recovered L3 was estimated by counting viable 

larvae on an egg counting chamber (McMaster).  

 

L4 can be collected from the lungs of rats or mice at 24 to 48 hours post-infection. 

The lungs were harvested by dissection of the thoracic cavity, then placed on a small 

piece of muslin on a small weighting boat, where they were minced finely with 

dissection scissors and sharp forceps. A solution of 1% agarose in PBS kept at 37°C 

was added to the weighting boat (5 ml per set of lungs) and left to set. The solidified 

mixture was lifted from the weighting boat from an exposed edge of the muslin, then 

entirely wrapped in a fresh 7 x 7 cm muslin piece and secured at the top of a 50 ml 

falcon tube containing PBS at 37°C. The tubes were incubated overnight at 37°C, 

during which L4 worms migrate out of the tissue and agarose. L4 were then collected 

at the bottom of the tube and counted under a light microscope. 

 

To collect adult stage N. brasiliensis worms, infected rats or mice were sacrificed on 

day 4-10 or day 4-7 post-infection respectively. The intestines of the rats were 

harvested and cut opened by longitudinal incision. Adult parasites were recovered by 

incubating the dissected rat intestine in PBS at 37°C for 1-2 hours whilst filtering 

through one layer of muslin.     
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2.2. In vitro cultivation of N. brasiliensis  

 

Prior to cultivation, L3 were further sterilised from bacteria and fungi by incubation 

for 30 minutes to 1 hour in PBS supplemented with 1000 U/ml penicillin, 1 mg/ml 

streptomycin, 200 μg/ml gentamicin and 200 U/ml nystatin. They were then washed 

and resuspended in worm medium (WM; 1% (w/v) glucose, 100 U/ml penicillin, 100 

μg/ml streptomycin, 20 μg/ml gentamicin, 20 U/ml nystatin, 2 mM L-glutamine in 

RPMI-1640). L3 were normally cultured at approximately 100,000 worms per 10 ml 

WM at 37°C in 5% CO2 for a period of three days, unless otherwise stated. The first 

24 hours of cultivation is considered an ‘activation period’. 

 

Adult worms were washed extensively with PBS and at least three times with WM 

prior to culture. Adults were typically cultured at 2,000 worms per 10 ml medium at 

37°C in 5% CO2 for a period of 3 days. The culture medium was collected and 

changed each day during the cultivation period.  

 

 

2.3. Radioactive labelling of secreted proteins 

 

Since L3 secrete only very small amounts of proteins, radioactive labelling allows for 

a more sensitive method of detection during the initial assessment of their secretion 

profiles. In addition, the effect of other factors such as serum or rat skin extracts on 

the secretion profiles of L3 can also be determined. Secreted proteins which are newly 

synthesised by the parasites during cultivation were radioactively labelled by the 

addition of 0.2 mCi of 
3S

S-methionine (
3S

S-Met) per ml of WM during the cultivation 

period, at 20°C or 37°C. For serum or rat skin-induced activation conditions, WM 

was supplemented with 10% rat serum or rat skin fractions (extracted from 0.25 g of 

skin per ml WM, described in section 2.18) during the activation period at 20°C or 

37°C, after which L3s were washed extensively with WM before re-incubation with 

fresh WM with 
3S

S-Met for the remaining 48 hours of culture. The amount of protein 

in S
35

-Met incorporated preparations was determined by liquid scintillation counting. 

 

For analysis of pre-synthesised proteins, L3 were pre-incubated at 20°C for 40 hours 

with 0.25 mCi of 
3S

S-Met per ml of WM. After this initial labelling, L3 were washed 
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thoroughly to eliminate the remaining 
3S

S-Met in the medium. The washed L3 were 

then resuspended in 1 ml of fresh worm medium for each condition and stimulated 

with the aqueous or lipid fractions of rat skin extract (each equivalent to fractions 

extracted from 0.25 g of rat skin) for 30 minutes at 20°C or 37°C, after which the 

culture medium was collected.  

 

 

2.4. Recovery and concentration of secreted products 

 

At the end of the cultivation period, the worms were left to settle to separate them 

from the medium. The culture medium containing secreted products was collected and 

sterilised by filtering through a 0.2 μm syringe filter (Sartorius) and stored at -20°C 

until further use. Unless otherwise stated, the medium was pooled from at least 6 

individual batches of culture. Small and large volumes of media were concentrated 

using centricon and amicon ultrafiltration units (Millipore), with a 3 kDa molecular 

weight cut-off membrane, respectively. Concentrated samples were buffer exchanged 

at least three times with 25 mM hepes (pH 7.5) or PBS (pH 7.4) to eliminate WM 

components to trace levels. 

 

 

2.5. Assessment of protein concentration 

 

Protein concentration was determined using the bicinchoninic acid method (Pierce) 

according to the manufacturer’s instructions. Bovine serum albumin (BSA) ranging 

from 0.125 mg/ml to 1.5 mg/ml was used as standards.  

 

 

2.6. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Protein samples were separated using polyacrylamide gels consisting of a 5% stacking 

gel (5% (v/v) acrylamide mix, 0.125 M Tris base pH 6.8, 0.1% (w/v) SDS, 0.15% 

(w/v) ammonium persulphate and 0.1% (v/v) TEMED) and a 10%, 12% or 15% 

separating gel (10%. 12% or 15% (v/v) acrylamide mix in 0.4 M Tris base pH 8.8, 

0.1% (w/v) SDS, 0.1% (w/v) ammonium persulphate and 0.04% (v/v) TEMED), 
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depending on the complexity and molecular weight range of the sample. Gradient gels 

were purchased from Bio-rad (Criterion Tris-HCl gels, 10-20%). Protein samples 

were incubated at 95°C for 10 minutes with a protein loading buffer (0.2 M sucrose, 

6% (w/v) SDS, 125 mM Tris base pH 6.9, 4 mM EDTA, 2% (v/v) β-mercaptoethanol 

and 0.001% (v/v) bromophenol blue) prior to loading. Samples were separated on the 

gel in SDS-PAGE running buffer (25 mM Tris-Cl pH 8.3, 192 mM glycine and 0.1% 

(w/v) SDS) at a constant current of 30 mA and a maximum voltage of 150 V, until the 

leading edge of the dye has reached the bottom of the gel. The unstained precision 

plus protein standard (Biorad) was typically used as a molecular weight marker. Gels 

were stained overnight at room temperature (RT) in 0.4% (w/v) Coomassie brilliant 

blue stain in 10% (v/v) acetic acid and 40% (v/v) methanol. The gels were destained 

with 10% (v/v) acetic acid and 40% (v/v) methanol until protein bands could be 

clearly visualised. 

 

 

2.7. Two-dimensional gel electrophoresis (2-DE) 

 

The 2-DE method separates proteins on both a charge and mass basis. Protein samples 

were prepared using acetone precipitation. Cold acetone (-20°C) and the protein 

sample were mixed in a 4:1 volume ratio and incubated overnight at -20°C. The 

sample was then centrifuged at 16,000 x g for 30 minutes at 4 °C. The supernatant 

was discarded and the pellet was allowed to air-dry for 15-30 minutes until all traces 

of acetone had evaporated. Rehydration buffer (8 M urea, 2% (w/v) 3-3’-

(Cholamidopropyl)-3,3-dimethylammoniumpropylsulfate (CHAPS), 0.5% (v/v) IPG 

buffer, 0.002% bromophenol blue in ddH2O) at a volume of 100 μl was added to the 

precipitate and vortexed thoroughly until the pellet had dissolved.  

 

The protein sample was subjected to a first-dimensional separation by isoelectric 

focusing (IEF) on immobilised pH gradient gels (IPG) strips (11 cm, 3-11NL, GE 

Healthcare), carried out on the IPGphorIII IEF machine (Amersham). The sample 

dissolved in rehydration buffer was dotted along the chamber of the IPG strip holder 

in droplets and the IPG strip was laid on top whilst avoiding any bubbles. The 

chamber was filled with 1 ml of cover fluid (GE Healthcare) to prevent evaporation, 

closed and aligned along the electrodes in the IEF machine. The optimised 



71 

 

programme was as follows: rehydration for 12 hours at 30 V, then 1 hour at 500 V, 1 

hour at 1000 V, and a final focusing at 8000 V for 5 hours. An equilibration buffer 

(EqB) was prepared (50 mM Tris-Cl pH 8.8, 6 M urea, 30% (v/v) glycerol, 2% (w/v) 

SDS in distilled water). The IPG strip was subjected to a first equilibration in EqB 

with 0.01 g/ml dithiothreitol (DTT), and a second equilibration in EqB with 0.025 

g/ml iodoacetamine. For the second dimensional separation, the strip was transferred 

to 10-20% gradient precast gels (Biorad) and vertically resolved at 40 V for 10 

minutes, then at 150 V for 100 minutes. The unstained precision plus protein standard 

(Biorad) was used as a molecular weight marker. 

 

 

2.8. Autoradiography 

 

For radioactively labelled samples, separated bands or spots on the gel were 

visualised by autoradiography. After electrophoresis, polyacrylamide gels were dried 

and exposed to X-ray film (Fuji) in lightproof cassettes with intensifying screens for a 

length of time as appropriate to the amount of radioactive sample loaded. The 

cassettes were incubated in a -80°C freezer to obtain a more refined exposure for 
35

S-

incorporated samples, and the films were developed in the darkroom.  

 

 

2.9. Molecular comparison of parasite strains 

 

Genomic DNA (gDNA) was obtained from single adult parasites. A master mix of 

worm lysis buffer (WLB) was prepared (110 mM NaCl, 110 mM Tris-Cl pH 8.5, 55 

mM EDTA, 1.1% (w/v) SDS, 1.1% (v/v) 2-mercaptoethanol). Immediately before use, 

proteinase K was added to WLB at a final concentration of 100 μg/ml, and 10 μl of 

this mixture was added to each individual worm in separate PCR tubes. The tubes 

were frozen at -80°C overnight. The following day, the frozen tubes were transferred 

to a pre-heated heat block at 65°C for 1 hour followed by 5 minutes at 95°C.  This 

extract was used as the PCR template at a 1 in 100 dilution. 

 

For a molecular analysis of the two strains of N. brasiliensis, regions within the 

ribosomal RNA gene (rDNA) were amplified by polymerase chain reaction (PCR). 
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Regions selected for comparison include the conserved small subunit (SSU) gene and 

the variable internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) (Fig. 2.1). The 

primer sequences used to amplify these regions are shown in Table 2.1. The PCR 

reactions consist of 500 nM of the forward and reverse primers, 250 µM of each 

dNTP (dATP, dTTP, dCTP and dGTP), 25 mU/µl Taq DNA polymerase, and 2 µl of 

the PCR template constituted in standard Taq buffer (B9014S, NEB) to a final volume 

of 40 µl. The amplification conditions used were 95°C for 5 minutes, followed by 35 

cycles at 95°C for 30 s, 60°C for 30 s, 72°C for 1 minute, and a final extension for 10 

minutes at 72°C. PCR products were resolved on a 1.5% (w/v) agarose gel in Tris-

acetate-EDTA buffer (TAE; 40 mM Tris-acetate, 1 mM EDTA) with inclusion of 0.5 

µg/ml ethidium bromide (EtBr) in the gel for visualisation of DNA bands under 

ultraviolet (UV) light. Successfully amplified PCR products were purified using the 

Qiaquick PCR purification kit (Qiagen) according to manufacturer’s instructions, and 

the DNA concentration and purity were assessed photospectrometrically. Each 

purified sample was sent for automated sequencing with the forward primers for SSU, 

ITS-1 and ITS-2 at Cogenics (Beckman Coulter Genomics). Each sequence was 

obtained from 3 individual worms from each strain, and their alignments were 

verified to be identical. Sequences from the two strains were aligned using ClustalW 

and Multialign analyses, then shaded and presented using the Boxshade Server 3.21. 

 

The sequences of ITS-1 and ITS-2 were aligned with those of other parasitic 

nematodes closely related to N. brasiliensis to construct a phylogenetic tree using the 

neighbour joining method. ITS-1/ITS-2 sequences were retrieved from Genbank 

(NCBI) for 7 parasitic nematodes within the order Strongylida (Table 2.2). The 

alignment matrices for ITS-1 and ITS-2 were concatenated within the Mesquite 

system for phylogenetic computing (Maddison and Maddison, 2010), and 

phylogenetic analyses was carried out on Phylogeny.fr (Dereeper et al., 2008), 

utilising algorithms based on the neighbour-joining (NJ) method to determine 

phylogenetic distances, then verified using maximum likelihood (ML) analysis. 
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Figure 2.1. Structure of the rRNA cistron, diagram from Dorris et al. (1999). SSU, small 

subunit gene; ITS, internal transcribed region. Sequence variability of regions of the gene 

within the phylum Nematoda are shown above the gene structure. 

 

 

 

Target Primer name Sequence 5' to 3' 

SSU SSU18A (F) AAAGATTAAGCCATGCATG 

 
SSU26R (R) CATTCTTGGCAAATGCTTTCG 

ITS-1 NC5_F (F) GTAGGTGAACCTGCGGAAGGATCATT 

 
NC13_R (R) GCTGCGTTCTTCATCGAT 

ITS-2 ITS2F (F) CAGTGGGGCTTGTAGTACAC 

  ITS2R (R) CACAAACAAGCGGTACCATTATG 

 

Table 2.1. Oligonucleotide primer sequences for PCR amplification of the SSU, ITS-1 

and ITS-2 regions. F, forward primer; R, reverse primer. 

 

 

 

 
Accession number 

Species ITS-1 ITS-2 

C. minutus AY332645.1 AY333379.1  

O. erbaevae AY332647.1 AY333381.1 

H. polygyrus AY332649.1 AY333382.1 

N. battus AJ251569.1 Y14010.1 

N. filicollis AJ251572.1 Y14011.1 

H. contortus AF044927 X78803.1 

T. circumcincta AF044934.1 X86026.1 

 

Table 2.2. Genbank accession numbers for ITS-1 and ITS-2 sequences of parasitic 

nematode species within the order Strongylida.  
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2.10. Faecal egg count 

 

The egg output of intestinal nematodes is an important determinant of infection 

intensity, and a salt-flotation method was employed to isolate parasite eggs from 

faeces. Rats or mice were caged individually, and all faecal  pellets produced byeach 

animal were collected every 24 hours into a plastic packet. Each packet of faeces were 

soaked in distilled water at 10 ml/g faeces and broken up into a suspension. 10 ml of 

the faecal suspension was withdrawn and centrifuged at 100 x g for 2 minutes to 

sediment faecal material and eggs. The pellet was resuspended in 10 ml of saturated 

sodium chloride (NaCl) and centrifuged for another 2 minutes at 100 x g. At this point 

the eggs are floating at the meniscus. The top 1 ml of the supernatant was withdrawn 

and the eggs within were counted in a haemocytometer. The number of eggs in a 

particular sample was expressed as number of eggs per gram (epg) of dry faeces 

collected. 

 

 

2.11. In vitro egg counts 

 

Adult worms were cultured in vitro, and the number of eggs released during the 

cultivation period was used as a measure of fecundity. Adults were cultured at 37°C, 

5% CO2 at 2,000 adults per group, in 10 ml WM, for a period of 24 hours. The 

number of eggs released was quantified using a McMaster egg counting chamber and 

divided by the number of adult worms in culture. 

 

 

2.12. Histology of rat jejunum 

 

Sections of jejunum were harvested from sacrificed rats and prepared for histology. 

Jejunum portions (1.5 cm) were cut at approximately 30 cm distal from the pyloric 

sphincter, and gut contents were flushed out gently with PBS using a narrow-tip glass 

Pasteur pipette. The tissue was fixed in neutral buffered formalin (NBF), embedded in 

wax, cut in cross-section and stained with Periodic acid-Schiff (PAS) for visualisation 

(histology performed by Miss Lorraine Lawrence, NHLI, Imperial College London). 

Goblet cells were stained magenta due to their rich carbohydrate content, and were 
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enumerated per 20 villus crypt units. Mucosal depth, crypt length, and muscle 

thickness were measured using the LuciaG Laboratory imaging software (Nikon) and 

recorded.  

 

 

2.13. Measurement of rat mast cell protease II (RMCP II)  

 

Levels of RMCP II in rat sera were assayed by enzyme-linked immunosorbent assay 

(ELISA) using the RMCP II ELISA kit (Moredun Scientific Limited, gift from 

Professor Dave Knox, Moredun Institute) according to the manufacturer’s instructions. 

General procedures for ELISA are provided in section 2.24. 

 

 

2.14. Lymphocyte proliferation and cytokine measurements 

 

Mesenteric lymph nodes (MLNs) were harvested from sacrificed rats and passed 

through a 100 µm cell strainer into a sterile tube. The cells were washed with RPMI-

1640 and centrifuged at 300 x g at 4°C, then washed twice with cold medium. The 

cells were resuspended in cell culture medium (RPMI-1640 supplemented with 10% 

(v/v) foetal calf serum (FCS), 100 U/ml penicillin and 100 μg/ml streptomycin), 

counted, and seeded at 5 x 10
5
 cells per well in a 96-well plate. N. brasiliensis adult 

worm homogenate (50 μg/ml) was added to the culture medium to a final volume of 

200 µl/well for assessment of antigen-specific proliferation. The cells were incubated 

for 48 hours at 37°C and 5% CO2. At the end of the 48-hour incubation, the cell 

supernatant was collected for assessment of cytokine levels. Levels of IL-4, IL-5, IL-

10, IL-12, IL-13 and IFNγ were assayed by using a 6-plex cytokine bead assay kit 

(Millipore) according to the manufacturer’s instructions. 

 

After the spent media was collected for cytokine measurements, the wells were 

refilled with culture medium with 
3
H-thymidine added at 1 μCi per well, and the cells 

were incubated for a further 16 hours at 37°C and 5% CO2 for assessment of 

lymphocyte proliferation. Cells were collected onto a filter disc using an automated 

96-well plate cell harvester, after which radioactive counts (cpm) were assessed in a 

beta-counter.  
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2.15. Gel separation of acetylcholinesterase (AChE) isoforms 

 

A direct-colouring thiocholine method for cholinesterases was used to visualise 

isoforms of AChE on a 8% native polyacrylamide gel (Karnovsky and Roots, 1964). 

Adult secreted proteins were resolved on the native gel (same constitutions as 8% 

SDS-PAGE but with omission of SDS in all reagents) at 4°C until the dye front has 

reached two-thirds of its full length, then incubated in 65 ml of 0.1 M sodium or 

potassium phosphate buffer (NaPO4 or KPO4), pH 6.5 at room temperature for 30 

minutes. On a shaking platform, the following reagents were added sequentially: 50 

mg acetylthiocholine iodide powder, 5 ml of 0.1 M sodium citrate, 10 ml of 30 mM 

CuSO4, 10 ml dH2O, and finally 10 ml of 5 mM potassium ferricyanide. The 

cholinesterases liberate thiocholine, which reduces ferricyanide to ferrocyanide. The 

latter combines with Cu
2+

 ions to form an insoluble brown copper ferrocyanide. 

Excess Cu
2+

 ions in the medium are complexed with citrate to prevent formation of 

copper ferricyanide. Bands stained for AChE were developed within 15-30 minutes as 

reddish-brown precipitations. The reaction was stopped in H2O and fixed in 10% 

acetic acid. 

 

 

2.16. Measurement of AChE activity in secreted proteins 

 

The AChE activity of parasite secreted proteins was measured by using 

acetylthiocholine (ASCh) iodide, a hydrolysable analogue of acetylcholine (ACh), as 

substrate. In a 200 µl reaction on a 96-well plate, 0.5 µg of secreted proteins were 

added to the substrate mixture (1 mM ASCh iodide, 1 mM 5.5’-dithiobis(2-

nitrobenzoic acid) (DTNB) in 100 mM sodium phosphate, pH 7.0).  The rate of 

hydrolysis of ASCh is similar to that of ACh, but reaction with the former results in 

liberation of thiocholine, which reacts with DTNB to give the yellow anion of 5-thio-

2-nitrobenzoic acid. Absorbance was monitored colourimetrically at 414 nm and 

measured at 10 minutes (end-point) into the reaction. Results were presented as ΔOD 

per minute per µg protein. 
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2.17. Enzymatic assay for phosphate hydrolysis 

 

Nucleotide hydrolysing activities of N. brasiliensis adult secreted proteins were 

measured by assaying the amount of inorganic phosphate liberated in the reaction. In 

a total volume of 40 μl, reactions were carried out in a buffer consisting of 25 mM 

Hepes (pH 7.50), 150 mM sodium chloride (NaCl), 5 mM magnesium chloride 

(MgCl2) and 2.5 mM dithiothreitol (DTT). The reactions were initiated by the 

addition of N. brasiliensis adult secreted products (protein concentration ranging from 

0.15 to 5 µg in 25 mM hepes, pH 7.50) and an appropriate nucleotide substrate (ATP, 

ADP, UDP or AMP) at a final concentration of 2.5 mM. Controls for spontaneous or 

nonenzymatic phosphate release from nucleotides and secreted proteins were assayed 

in parallel. All reactions were incubated at 37°C for 5 to 10 minutes, after which 200 

μl of the chromogenic reagent malachite-green phosphomolybdate (1.25 mM 

malachite green, 8.6 mM ammonium phosphomolybdate in 1.7 N HCl) was added 

immediately to each reaction. The amount of liberated inorganic phosphate was 

measured by determining the absorbance at 600 nm, and quantified by comparison to 

a standard curve obtained with sodium dihydrogen orthophosphate (NaH2PO4.2H2O) 

at a range of 0.05-0.5 mM. The level of phosphatase specific activity was expressed 

as ng phosphate released per minute per mg of secreted protein (ng/min/mg protein).  

 

 

2.18. Preparation of rat skin extracts 

 

Rat skin was collected from euthanised and shaved SD rats and fractionated into an 

aqueous and a lipid fraction as described in Safer et al. (2007), utilising the Folch 

method (Folch et al., 1957). The skin of the rats was excised from the abdomen and 

the back of the rats, which is then cut and ground into a fine paste. Portions (2.2 g 

each) of the paste were extracted with 10 ml chloroform / methanol / water at a ratio 

of 2:1:0.2 (vol/vol) in sterilised glass tubes. The tube contents were mixed thoroughly, 

placed on a rotary mixer for 90 minutes, then centrifuged at 1,500 x g for 15 minutes 

to accelerate phase separation. This resulted in solvent partition into two distinct 

phases. The lower phase consists of chloroform / methanol / water at a ratio of 

86/14/1, in which all lipids (polar and non-polar, irrespective of chain length) can be 
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solubilised (Folch et al., 1957). The upper phase consists of chloroform / methanol / 

water at a ratio of 3/48/47, and contains the aqueous fraction, which was carefully 

extracted from the top without disturbing the phases. This aqueous phase was partially 

dried by rotary evaporation for 1-2 hours to remove residual organic solvent, and 

lyophilised to dryness. Lyophilised material was reconstituted with 1 ml of distilled 

water per 7.5 g of skin paste, resulting in an extract with a protein concentration of 

approximately 3 mg/ml. The organic phase containing the lipids was extracted from 

the bottom layer, transferred to a clean glass tube and dried down by nitrogen-

facilitated evaporation. The resulting dried lipid was also resuspended with 1 ml of 

distilled water per 7.5 g of skin paste, and sonicated for 5 x 30 s before use.      

 

 

2.19. Chemotaxis Assay for L3 

 

Chemotaxis assays (modified from Safer et al., 2007) were performed in 60 x 15 mm 

sterile plastic Petri dishes containing 5 ml of 0.9% (w/v) agarose (unless otherwise 

stated), on a levelled platform at room temperature, in triplicates for each condition. A 

well measuring 8 mm in diameter and approximately 2 mm in depth was made at each 

end of the plate using a P1000 pipette tip and a scalpel, without disturbing the bottom 

of the agarose gel. On each plate, 50 μl of either test or control substance was pipetted 

into the wells, and allowed to diffuse into the agarose for 45 minutes. Thereafter, L3 

(2 groups of 150 larvae per plate) suspended in 12 μl of PBS were added across the 

surface diameter, halfway between the two wells, in small droplets without disturbing 

the gel surface. The plates were placed in random orientations in a uniformly-lit room 

to allow L3 to disperse at will. The number of larvae at each well was scored every 30 

minutes for 3 hours. The level of directed positive chemotaxis was determined by 

subtracting the number of L3 in the negative from the positive well. The test 

substances used in this assay include rat skin extracts (prepared as described in 

section 2.18), rat serum (Sigma-Aldrich), BSA (Roche), and urocanic acid (Acros 

Organics) at various concentrations. To test the effect of resistin-like molecules 

(RELMs) on chemotactic functions, L3 were pre-incubated with RELMα/β/γ 

(Peprotech) at 5 μg/ml or 50 μg/ml for 1 hour prior to performing the chemotactic 

assays. An additional control was introduced by pre-incubating a group of L3 with 

BSA in parallel.    
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2.20. Feeding assay with fluorescent BSA 

 

Fluorescent feeding assays were carried out at 20°C or 37°C to assess the activation 

of feeding in N. brasiliensis L3. Where indicated, 10% rat serum or fractions of rat 

skin (extracted from 0.25 g rat skin per ml of medium) were included in the worm 

culture medium (WM). In one of the specified treatment groups, L3 were chemically 

exsheathed by incubation with sodium hypochlorite (NaClO) in PBS for 20 minutes 

and washed six times prior to incubation. 

 

Groups of approximately 2,000 L3 were sampled for feeding activation by the 

addition of fluorescein-5-isothiocynate conjugated BSA (FITC-BSA) to a final 

concentration of 2.5 mg/ml during the final hour of incubation, after which they were 

washed four times with PBS and examined by fluorescence microscopy. A minimum 

of 200 viable larvae were counted from each of three triplicates per treatment group.  

 

 

2.21. Feeding assay with radiolabelled BSA 

 

BSA was radiolabelled by the addition of 250 μCi Sodium-
125

Iodide (Na-
125

I, MP 

Biomedicals) to 50 μl of 1 mg/ml BSA in PBS, followed by 5 μl of 1 mg/ml 

Chloramine T to initiate iodination. The mixture was left to react for 2 minutes, after 

which another 5 μl of Chloramine T was added. After a further 5 minutes, the reaction 

was quenched by the addition of 10% (vol/vol) of saturated tyrosine solution. The 

products were then separated on a Sephadex G-25 column and eluted in 250 μl 

fractions. The level of 
125

I-incoporated BSA in each fraction was tested by 

trichloroacetic acid (TCA) precipitation. Briefly, 1 ml of cold 10% TCA solution was 

added to 5 µl of sample and mixed thoroughly then incubated overnight at 4°C. The 

tubes were centrifuged at 13,000 x g at 4°C for 10 minutes, and the supernatant was 

discarded. The pellet was washed twice with 200 µl cold acetone and resuspended in 

PBS. Incorporated 
125

I in each sample was measured in a gamma counter. 

 

L3A or adult worms were fed with 
125

I-BSA to assess their rate of feeding 

quantitatively. Groups of 4,000 L3A (activated by cultivation at 37°C for 24 hours) or 
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50 adults were incubated with 2 x 10
6
 cpm of 

125
I-BSA in 500 µl of WM for 2 hours 

at 37°C. The worms were washed 6 times with PBS and transferred to a fresh tube, 

then counted for each of three replicates per treatment group measured in a gamma 

counter. Background levels were established by performing the assay in parallel on 

dead parasites killed by heating at 65°C for 10 minutes in triplicate. 

 

 

2.22. Western blotting 

 

Proteins separated by SDS-PAGE or 2-DE were transferred to nitrocellulose 

membranes (Hybond ECL; Amersham Biosciences) by Western blotting. Prior to 

transfer, the polyacrylamide gel, nitrocellulose membrane, filter paper and fibre pads 

were equilibrated in chilled transfer buffer (25 mM Tris base, 192 mM glycine and 

20% methanol) at 4°C for 5 minutes, then arranged in a blotting cassette with the gel 

facing the cathode and the membrane facing the anode, with 4 sheets of filter paper 

and 1 fibre pad on each side. The Bio-rad mini or regular Tran-blot electrophoretic 

transfer cell was used for small or large gels, run at 90 V for 2 hours or 12 V 

overnight, respectively. Following electrophoretic transfer of protein, blots were 

visualised with DB71 staining to check for successful transfer, scanned and destained 

(Section 2.23). The blots were incubated on a shaking platform at RT for 1 hour in 

blocking solution (5% (w/v) skimmed milk powder and 0.1% (v/v) Tween-20 in PBS) 

at RT, then incubated with the primary antibody diluted to an appropriate 

concentration with blocking solution for 2 hours or overnight at 4°C. The blots were 

washed 3 times with PBS-Tween (0.1% Tween-20 in PBS) for 10 minutes each. 

Secondary antibody conjugated to peroxidase was diluted to an appropriate 

concentration with PBS-Tween, and incubated with the blot for 2 hours at RT. 

Dependent on the species in which the primary antibody was raised, the secondary 

antibodies goat anti-rat IgG-HRP (Bio-rad) and goat anti-mouse IgG-HRP (Sigma) 

were typically used at a dilution of 1:60,000 and 1:2,000 respectively. The blots were 

then washed 3 times in PBS-Tween, and 3 times in PBS for 10 minutes each. Bound 

antibodies were detected using enhanced chemiluminesence (ECL Western Blotting 

Detection Reagents, GE Healthcare). The blot was immersed in ECL reagent for 2 

minutes, during which the peroxidase-catalysed oxidation of luminol (and 

subsequently enhanced chemiluminesence) was elicited on areas where the 
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peroxidase-conjugated antibody is bound to the antigen on the membrane. The 

resulting light is detected on Fujifilm superRX and developed in the darkroom.   

 

 

2.23. DB71 staining of Western blots 

 

After protein transfer, blots were incubated in direct blue 71 (DB71) stain solution 

(0.008% DB71 in 40% ethanol, 10% acetic acid) for 5 minutes while protein bands or 

spots become visible. The stained blots were washed briefly in 40% ethanol, 10% 

acetic acid, then scanned to record the images in their original sizes. The blots were 

destained in 150 mM sodium bicarbonate in 47.5% ethanol prior to the next 

incubation steps in Western blotting.    

 

 

2.24. Serum ELISA 

 

Antibodies to N. brasiliensis secreted proteins and NbVALs were detected by ELISA. 

Mice were bled by cardiac puncture or tail-vein bleed, and the collected blood was 

left to clot overnight at 4°C. The blood was centrifuged at 16,000 x g for 10 minutes, 

after which the serum was collected.  

 

Maxisorb Surface 96-well plates (Nunc) were coated with 100 μl/well of antigen 

samples diluted to 5 μg/ml in coating buffer (0.06 M sodium carbonate buffer, pH 

9.5). Plates were sealed and incubated overnight at 4°C. The coating antigen was then 

aspirated and the plates were washed 3 times with wash buffer (0.05% (v/v) Tween 20 

in PBS). Plates were then incubated with 200 μl/well of blocking buffer (5% (v/v) 

FCS in PBS) for 2 hours at room temperature. Plates were washed as before and 100 

μl of serum diluted in blocking buffer was added to each well, then incubated 

overnight at 4°C. Plates were washed four times and horseradish peroxidase (HRP)-

conjugated antibodies diluted in blocking buffer was added at 100 μl/well. These 

included HRP-conjugated rabbit anti-mouse IgG1 (1:4000 dilution), IgG2a (1:2000), 

IgG2b (1:3000) (Zymed Laboratories, CA), HRP-conjugated goat anti-mouse IgA 

(1:4000), IgG3 (1:2000), and HRP-conjugated rat anti-mouse IgE (1:2000) antibodies 

(AbD Serotec). Plates were sealed and incubated for 2 hours at room temperature, 
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then washed 6 times with wash buffer. Substrate solution (100 μg/ml TMB diluted in 

DMSO, 0.003% (v/v) H2O2, in 0.11 M acetate buffer, pH 5.5) was added at 100 

μl/well, and the plate was incubated in the dark at room temperature for 30 minutes. 

The reaction was stopped by the addition of 50 μl/well of 1.8 M H2SO4, and the 

absorbance values were measured at 450 nm using a FLUOstar optima microplate 

reader (BMG Labtech, Offenberg).  

 

 

2.25. Transformation of plasmids into E. coli SHuffle cells 

 

NbVAL3 to NbVAL8 cDNAs were previously cloned individually into the pET-29b 

expression vector (Novagen) and verified to be in frame (Huang, 2010). The pET-29b 

plasmid contains a kanamycin resistance gene and a lac-operon (Fig. 2.2). These 

plasmids were transformed into Escherichia coli SHuffle cells for expression testing 

by heat shock. Competent E. coli SHuffle cells (NEB) in 100 µl aliquots were thawed 

on ice, and 100 ng of each plasmid in 100 µl of transformation buffer (0.1 M KCl, 30 

mM CaCl2, 50 mM MgCl2) was added to the cells and left on ice for 30 minutes. The 

tubes were immersed in a water bath at 42°C for 30 seconds and immediately 

transferred back to ice for 5 minutes, after which 1 ml of Luria-Bertani broth (LB, 1% 

(w/v) tryptone, 1% (w/v) NaCl, 0.5% yeast extract, pH 7.0) was added to each tube 

and placed in a shaking incubator at 37°C for 1 hour. The cells were centrifuged at 

16,000 x g for 2 minutes and resuspended in 100 µl LB. This suspension was spread 

onto pre-warmed LB-agar (LB supplemented with 1.5% (w/v) agar) plates containing 

25 µg/ml kanamycin for antibiotic selection, and incubated at 30°C for 16-24 hours. 

Individual colonies were verified for positivity by colony PCR with primers specific 

for each variant of NbVAL (Table 2.3). Briefly, a small sample of the colony was 

resuspended in 10 µl of sterile H2O, and 5 µl of this was transferred to a PCR tube. 

The sample was denatured by heating at 95°C for 5 minutes and cooled before the 

addition of 20 µl of PCR master mix to standard concentrations and reacted under 

standard cycling conditions (Section 2.9). Amplified products were resolved by 

agarose gel electrophoresis (1.5%). A band at the correct size indicates that the colony 

was positive for the corresponding insert. 
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Figure 2.2. Vector map of pET-29b. Coding sequences for signal peptides were removed 

and cDNAs of NbVAL3 to NbVAL8 were individually cloned into pET-29b with a 

polyHistidine tag at the C-terminal end. Figure is adapted from the Novagen website.  

 

 

Target Primer name Sequence 5' to 3' 

NbVAL3 NbVAL3_49-72Nde1 CATATGATCCAGTCGAAATTCAACTGTCCT 

 
NbVAL3_ 649-672Not1 GCGGCCGCTATGGTTGCTGGGCCCAATGGTTC 

NbVAL4 NbVAL4_58-81Nde1 CATATGGGCGCGTGTCCTAAGACGGAGGGC 

 
NbVAL4_622-645Not1 GCGGCCGCCCTGACAACACACAGACCGTTCTC 

NbVAL5 NbVAL5_49-72Nde1 CATATGAACGCCAGATTTGCTCGGCAGATC  

 
NbVAL5_619-642Xho1 CTCGAGGCTCATATAGCAGAGTGTGCCACC 

NbVAL6 NbVAL6_49-72Nde1  CATATGACGCCGATTAGCCCAGTTTCCATG 

 
NbVAL6_652-675Xho1  CTCGAGTGGGAGTGCCCAATCAGGATAGCA 

NbVAL7 NbVAL7_61-84Nde1  CATATGCATGAATACCACTGCAATAAGGAC  

 
NbVAL7_631-651Xho1  CTCGAGATTATCAGGCGCCTCACAAAGACC 

NbVAL8 NbVAL8_91-114Nde1 CATATGACTCAAAATTTCAACTGTCAAAAC 

  NbVAL8_706-729Xho1  CTCGAGGTTTTCTCTTTTCTTAATGCACAA 

 

Table 2.3. PCR primers for verification of NbVAL inserts in pET-29b plasmids. 
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2.26. Expression testing of recombinant NbVALs in E. coli SHuffle cells 

 

Expression of NbVALs in SHuffle cells were first tested in small-scale cultures. Cells 

were picked from positive colonies with a sterile loop and inoculated into 5 ml of LB-

kanamycin (25 µg/ml). The tubes were incubated overnight in a shaking incubator at 

30°C. An aliquot of these overnight cultures was inoculated into a small volume of 

fresh LB-kanamycin at a 1:100 ratio (10 µl of culture into 10 ml LB), and grown in a 

shaking incubator at 30°C, 26°C or 16°C until absorbance at 600 nm reaches 0.6 

(OD600 = 0.6). This is taken as the zero-hour time point. At this point the cells were 

either left in culture without induction, or induced by the addition of isopropyl β-D-1-

thiogalactopyranoside (IPTG) to a final concentration of 0.5 or 1 mM. The cells were 

returned to culture at the specified temperatures. At the specified time points, 1 ml of 

culture was withdrawn into an eppendorf and centrifuged at 16,000 x g for 5 minutes. 

The cell pellets were lysed in 100 µl of B-PER protein extraction reagent (Pierce) and 

placed on a rotary mixer for 30 minutes at 4°C, then centrifuged at 16,000 x g for 5 

minutes to pellet the insoluble fraction and cell debris. The supernatant containing the 

soluble fraction was separated from the pellet, which was itself resuspended in 100 µl 

of the B-PER reagent. Proteins in the soluble and insoluble fractions (10 µl each) 

were resolved by 15% SDS-PAGE (Section 2.6) and probed with an anti-

polyHistidine antibody (1:3000, Sigma) by Western blotting (Section 2.22).   

 

 

2.27. Large-scale expression and purification of NbVALs 

 

Overnight cultures of the transformed SHuffle cells were grown as described in 

section 2.26. Each of these were used to inoculate into 1L of LB supplemented with 

25 µg/ml kanamycin at a 1:100 ratio. The cultures were grown in a shaking incubator 

at 26°C for 24 hours after OD600 has reached 0.6, without IPTG induction. The cells 

were harvested by centrifugation at 4,000 x g for 30 minutes at 4°C, and the pellets 

were frozen until further use. 

 

Protein purification was carried out under native conditions at 4°C. The cell pellets 

were thawed for 15 minutes on ice and resuspended in lysis buffer (50 mM NaH2PO4, 

300 mM NaCl, 10 mM imidazole, pH 8.0) at 3 ml per gram wet weight. A protease 
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inhibitor cocktail (EDTA-free, Sigma) was added to the mixture at 50 µl per gram of 

cells. Lysozyme was added to 1 mg/ml and the tubes were incubated on ice for 30 

minutes. The mixture was sonicated on ice using a microtip sonicator with six 30-

second bursts at 40 W, with 30-second cooling periods in between. RNase A and 

DNase I were added to a final concentration of 10 µg/ml and 5 µg/ml respectively. 

The tubes were incubated on ice for 15 minutes, then centrifuged at 10,000 x g for 30 

minutes at 4°C to pellet the cellular debris. The supernatant was syringe-filtered 

through a 0.4 µm membrane and tested for the presence of the recombinant protein by 

Western blotting.  

 

Lysates containing the His-tagged recombinant protein was purified by Nickel-chelate 

affinity chromatography at 4°C (Qiagen). Typically, 1 ml of 50% Ni-NTA slurry 

equilibrated with lysis buffer was added per 4 ml of cleared lysate and mixed on a 

rotary mixer for 90 minutes. The lysate-Ni-NTA mixture was loaded onto a column, 

and the flowthrough was collected into a tube. The resin was washed twice with 10 ml 

of wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0), and a 

third time with wash buffer containing 40 mM imidazole. Finally, the recombinant 

protein was eluted in 0.5 ml fractions with an elution buffer (50 mM NaH2PO4, 300 

mM NaCl, 250 mM imidazole, pH 8.0) and collected separately. Samples of the 

flowthrough, wash fractions and eluates (10 µl each) were analysed by SDS-PAGE. 

Fractions containing pure recombinant proteins were dialysed against PBS (3 x 2L) in 

dialysis tubing with a molecular weight cut-off at 7,000 kDa. The final protein 

concentration was determined by the BCA assay (Section 2.5). 

 

 

2.28. LPS removal 

 

LPS was removed from protein preparations using the Detoxi-gel endotoxin removing 

column (Pierce) according to manufacturer’s instructions. Briefly, the resin was 

washed with five resin-bed volumes of 1% sodium deoxycholate, then washed and 

equilibrated with ten resin bed volumes of sterile buffer (PBS). The column was 

capped and the sample was applied to the column, where they were incubated with the 

resin for 1 hour. The samples were eluted with sterile PBS in 0.5 ml fractions.        
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2.29. Immediate hypersensitivity skin test  

 

The fur of subject mice was removed from the abdomen with depilatory cream (Veet) 

2 days before the experiment. Mice were placed in a heat box at 37°C for 10 minutes 

prior to injection with 100 μl of 0.5% (w/v) Evans blue (Sigma) in PBS through the 

tail vein. Each mouse was then anaesthetised with 30 μl of 100 mg/ml Ketaset and 15 

μl of 20 mg/ml xylazine. Mice were intradermally challenged on the abdomen with 1 

μg of NbVAL4 or NbVAL7, 500 ng of mast cell activating compound C48/80 

(positive control, Sigma) or PBS (negative control), in a total volume of 15 μl. 

Extravasation of Evans blue was assessed 15 minutes post-challenge. 

 

 

2.30. Immunisation of mice with NbVAL7 

 

Female Balb/c mice were immunised with NbVAL7 precipitated with alum as 

adjuvant. Equal volumes of NbVAL7 (0.5 mg/ml in PBS) and 9% (w/v) aluminium 

potassium sulphate was mixed in a tube. One drop of phenol red indicator dye was 

added to the mixture, which turns the solution yellow. The solution was neutralised by 

the dropwise addition of 1 M NaOH until the indicator turned pink. The solution was 

left to stand at room temperature for 30 minutes. The tubes were centrifuged at 3000 x 

g for 10 minutes, and the supernatant was withdrawn. A sample of this (25 µl) was 

resolved by SDS-PAGE to verify that the precipitation was successful. The pellet was 

washed four times with PBS and resuspended in PBS to a final concentration of 0.25 

mg/ml of NbVAL7. Each mouse was immunised with 100 µl of this suspension (25 

µg of NbVAL7 per mouse) by subcutaneous injection. Control mice were injected 

with an equal amount of precipitated alum in parallel. Mice were boosted twice with 

15 µg of NbVAL7-alum (or just alum for controls), with 4 weeks of resting period in 

between each immunisation.     

 

 

2.31. Measurement of proliferation and cytokine release by mouse splenocytes 

 

Spleens were harvested from sacrificed mice and minced finely with sharp forceps in 

cold sterile RPMI-1640. The pieces were shredded by passing through a 18G needle 
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syringe and passed through a 100 µm cell strainer. The cells were centrifuged for 5 

minutes at 300 x g at 4°C and washed twice with cell culture medium. Red blood cells 

were lysed by the addition of 0.83% ice-cold ammonium chloride (1 ml per spleen) 

for 2-3 minutes with gentle agitation. The cells were washed twice and a sample of 

cells in trypan blue was quantified in a haemocytometer. The cells were seeded at 4 x 

10
5
 cells/well in a 96-well cell culture plate. Antigen sample (adult secreted products) 

diluted in cell culture medium was added to the cells to a final protein concentration 

of 10 µg/ml in a total volume of 200 µl per well. Cells were cultured for 72 hours at 

37°C, 5% CO2. The culture medium was withdrawn from the wells and used for 

cytokine analysis. 
3
H-thymidine was added to the cells (1 µCi per well) and cultured 

for another 16 hours. Cells were collected onto a filter disc using an automated 96-

well plate cell harvester, after which radioactive counts (cpm) were assessed via a 

beta-counter to determine the levels of cell proliferation.  

 

Cytokine ELISA anaylsis was used to detect cytokine levels in cell culture 

supernatants. The procedures were similar to those of the antigen-specific serum 

ELISA, but with the following modifications. Maxisorb Surface 96-well plates (Nunc) 

were coated with 50 µl/well of capture antibody, the range of which included anti-

mouse IL-4 (2 µg/ml), anti-mouse IL-5 (0.5 µg/ml), anti-mouse IL-10 (2 µg/ml) and 

anti-mouse IFNγ (1.3 µg/ml), diluted in PBS. The plates were sealed and incubated 

overnight at 4 °C. The coating solution was then aspirated and the wells washed 3 

times with wash buffer (0.05% (v/v) Tween 20 in PBS). The plates were blocked by 

the addition of 200 μl/well of blocking buffer (1% BSA (v/v) in PBS) and incubated 

for 2 hours at room temperature, after which the solution was aspirated and the wells 

were washed 3 times with wash buffer. Test supernatant or serially diluted cytokine 

standards (in blocking buffer) ranging from 125 pg/µl to 8000 pg/µl were added at 50 

µl/well and incubated overnight at 4 °C. The plates were washed 4 times with wash 

buffer prior to the addition of 50 µl/well of anti-mouse biotinated detection antibody 

for IL-4 (0.1 µg/ml), IL-5 (0.1 µg/ml), IL-10 (0.5 µg/ml) and IFNγ (0.5 µg/ml), 

diluted in blocking buffer, and incubated for 2 hours at RT. The plates were washed 6 

times with wash buffer and 50 µl of avidin-horseradish peroxidise (HRP) diluted 

1:1000 in blocking buffer was added per well. The plates were incubated for 30 

minutes at RT, then washed 6 times with wash buffer. Substrate solution (100 μg/ml 

TMB diluted in DMSO, 0.003% (v/v) H2O2, in 0.11 M acetate buffer pH 5.5) was 
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quickly added at 100 μl/well and incubated in the dark at room temperature for 30 

minutes. The reaction was stopped by the addition of 50 μl/well of 1.8 M H2SO4, and 

the absorbance values were measured at 450 nm using a FLUOstar optima microplate 

reader (BMG Labtech, Offenberg). 

 

 

2.32. Assay for skin penetration  

 

The skin of euthanised and shaved rats was excised from the abdomen and cut into 

sections measuring approximately 4 cm in diameter. Each section was sandwiched 

between two 20 ml syringe barrels clamped together with bulldog clips, with the 

lower syringe filled with warm PBS in contact with the underside of the skin. The 

setup was placed in a 37°C water bath in which the lower chamber was submerged. 

The integrity of the skin was checked by adding 1 ml of PBS to the upper chamber for 

15 minutes. L3 (3000 worms / group in triplicates) were incubated in 50 μl of either 

PBS, naïve mouse serum, hyperimmune mouse serum, or antisera against VAL 

proteins produced in mice, for 1 hour at room temperature. An additional triplicate 

group of L3 worms were heat-killed at 65°C for 10 minutes (negative control). Each 

group of L3 was then added to the upper chamber of the apparatus to the 1 ml of PBS 

already present. The L3s were allowed to migrate for 30 minutes in the setup. The 

remaining L3 were collected from the upper chamber, which was then washed with 4 

x 1 ml PBS into the collection tube and counted. The number of migrated L3 was 

calculated by subtracting the number of remaining L3 from the negative control. 

 

 

2.33. MTT viability assay for adult worms 

 

Adult worms were isolated and washed extensively with PBS. The worms were 

aliquoted in triplicate into the wells of a 96-well plate, containing 70 worms in 200 μl 

PBS. Additional groups of worms were heat-killed at 65°C for 10 minutes in triplicate 

as a background level control. A 5 mg/ml solution of 3-(4,5-Dimethylthiazol-2-yl)-

2,5-diphenyltetrazolium bromide (MTT) dissolved in PBS was filter sterilised and 20 

μl of this was added to each well. The plate was put into culture at 37°C and 5% CO2 

for 6 hours, after which 200 μl of the supernatant was removed from each well and 
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replaced with 200 μl of DMSO to solubilise the dye and the worms, with shaking at 

37°C for 2 hours. ‘Blank’ wells were subjected to the same treatment as the test wells 

throughout the assay but without any worms. Absorbance was measured at 540 nm. 

 

 

2.34. Statistical analysis 

 

Graphs were plotted using Prism 4 (GraphPad Software) or Microsoft Excel. Error 

bars represent the standard error of the mean (SEM), and statistics were performed 

using the unpaired Student’s t-test assuming unequal variances, unless otherwise 

stated. Levels of significance are indicated as follows: Three symbols: P < 0.001, two 

symbols: P < 0.01, one symbol: P < 0.05. The sample sizes used in the statistical 

testing were represented by n and shown in figure legends where appropriate.  

 

For proportionate data, the uncertainty level was quantified by a 95% confidence level 

(CI), calculated using the modified Wald method on the GraphPad QuickCalc web 

calculator (http://www.graphpad.com/quickcalcs/ConfInterval1.cfm). In such cases 

this is clearly stated in the figure legends and represented by the error bars. For ranked 

data, the level of significance was determined by the Mann-Whitney rank sum test 

using the Graphpad Prism software. 
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3.1 Introduction  

 

The traits of all living species are shaped by the life history and experience of their 

ancestors through natural selection and evolution. Nematodes in particular are highly 

ubiquitous forms of life with complex diversities in nature, which is perhaps an 

indicator of their adaptability and trait plasticity in the face of selection. For research 

in helminthology, a subset of work distinctive to other branches of parasitology is the 

need to propagate the parasite life cycle by serial passages in laboratory animals. In 

the case of N. brasiliensis, passaging infective larvae through new host rats at least 

once every six weeks is necessary to keep the stock alive. Although this process 

facilitates research by making parasite stocks readily available, and makes results 

more replicable from the use of a relatively homogeneous stock, it is a somewhat 

artificial process. It is not known whether the act of serial laboratory passage itself has 

effects on the life history traits of the parasite, and whether a stock with these putative 

changes may misrepresent natural infection. Experimental data collected from the use 

of parasitic nematodes maintained in the laboratory are often used to address 

immunological issues and predict epidemiological models, which may contribute to 

the design of drugs and vaccines for use in the natural setting. If a laboratory-

maintained model fails to correctly represent natural infection, these predictions may 

become inaccurate and possibly compromise drug and vaccine efficacy. Therefore, 

studying the effects of laboratory adaptation on parasitic nematodes is important, and 

is the focus of this chapter.   

 

Parasites are a particularly interesting group of organisms in the study of evolution, 

because the selective forces acting on parasite traits are influenced by their interplay 

with their hosts, which, through generations, may themselves evolve in response to 

the parasite, forming a dynamic of co-evolution unlike any other forms of life 

(Anderson and May, 1982; Hafner and Nadler, 1988). As the lifespan of animal hosts 

is often longer than that of the parasite, the parasite may cycle through many 

generations within a single generation of the host, and thus represents the more 

rapidly evolving party of the two (Anderson and May, 1982). Parasitic nematodes can 

undergo adaptations according to their life history conditions. Repeated passage of 

nematodes through specific hosts can have profound influences on their biological 

traits. For example, many parasitic nematodes can be adapted to infect laboratory 
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animal species which are not their natural hosts via serial passage. The human 

hookworm Necator americanus can be adapted to infect hamsters (Sen, 1972), and N. 

brasiliensis can be adapted to mice and hamsters (Haley, 1966a, b; Solomon and 

Haley, 1966; Wescott and Todd, 1966). In contrast, restrictive serial passage of the 

nematode Heligmosomoides polygyrus through ten generations in the Quackenbush 

mouse increased the parasite’s infectivity in this particular mouse strain but not others 

(Dobson and Owen, 1977). Propagation of H. polygyrus through immune mice rather 

than naïve mice also selected for a strain which performed better in subsequent 

infections in terms of survival and fecundity, particularly in secondary infections (Su 

and Dobson, 1997). Similarly, Trichostrongylus colubriformis passaged through 

vaccinated sheep survived better in infections than those propagated through naïve 

sheep, with the adaptation evident after a single passage (Windon, 1990). At the other 

end of the spectrum, repeated passage of a field isolate of Haemonchus contortus 

through immune or susceptible (immunosuppressed) sheep did not result in a 

difference in infection kinetics, even after fourteen generations of parasite passage 

(Albers and Burgess, 1988; Woolaston et al., 1992). This shows that there is a degree 

of variability in the results of these selection experiments between different host-

parasite combinations, which may be due to qualitative differences in host-parasite 

relationships, or differing selection regimes. 

 

Infection outcome is balanced by the dynamic interactions between the parasite and 

the host, in which life history traits such as the infectivity, establishment, survivorship 

and fecundity of the parasite are important parameters. As in most other organisms, 

the life history traits of the parasitic stages of gastrointestinal helminths are subject to 

density-dependent effects, in which case the parasite’s abundance and aggregation in 

the host regulates and stabilises infection kinetics (Keymer, 1982; Quinnell et al., 

1990; Scott and Lewis, 1987). Density is usually constrained by an upper limit of 

virulence and infectivity, as it is rarely in the interest of the parasite to kill its host 

(Andre et al., 2003; Keymer and Dobson, 1987; Scott and Lewis, 1987). For GI 

nematodes, density (i.e. the parasite worm burden in the host gut) generally shows a 

negative correlation with fecundity and/or survivorship, without significant effects on 

initial worm establishment (Paterson and Viney, 2002; Quinnell et al., 1990; Stear et 

al., 1999). In some cases decreased fecundity can be partially attributed to a decrease 

in survivorship, whereas in other cases it can be completely independent (Keymer and 
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Slater, 1987; Stear et al., 1999). The basis of these density-dependent effects has been 

debatable, as it was not clear whether within-host intraspecific competition for 

resources such as nutrients or space is responsible, or if they were brought about by 

the effects of the host immune response. A higher worm density is likely to escalate 

the severity of host defence mechanisms, which in turn may possibly reduce worm 

survivorship and/or fecundity. It has later been demonstrated that survivorship and 

fecundity are not constrained by density-dependent effects in immuno-compromised 

nude mice however, suggesting that host responses can act to regulate the infection 

before constraints from intraspecific competition in the host gut could take place 

(Paterson and Viney, 2002). Since the evolution of parasitic nematodes are largely 

confined by the conspecifics within a host and the immune response, it has been 

proposed that life-history traits such as survivorship and fecundity may trade-off 

against other traits which would be favourable for its propagation during selection 

(Paterson and Barber, 2007). 

 

Much of what is currently known of the biology, host-parasite relationship and 

immunology of N. brasiliensis infections came from experiments utilising a strain 

which originated from the Wellcome laboratories in 1958 (Jenkins, 1972). In recent 

years it has been suspected that this Wellcome (W) strain is displaying altered 

infection dynamics including reduced egg output. However, these observations have 

not been documented and quantified. At the start of this project, a strain of N. 

brasiliensis recently isolated from a wild rat in Japan was donated to our laboratory. 

As this Japanese field strain (J) is representative of the parasite in its natural 

environment, this provided a window of opportunity to define the infection dynamics 

and compare it with the laboratory passaged W strain. 

 

A comparison of the ribosomal RNA gene (rDNA) sequences was first carried out 

between the W and the J strain to confirm the latter’s identity as N. brasiliensis. The 

infection dynamics of the two strains were then compared, as well as the host 

response to infection. The secreted protein profiles of the two strains were also 

compared. Lastly, the activity of two known nematode secreted enzymes, 

acetylcholinesterases and nucleotide metabolising enzymes, were determined.   



94 

 

3.2. Confirmation of identity of the Japanese strain 

 

Eggs, L3 and adult worms of the W and J strain were observed to be morphologically 

indistinguishable by light microscopy (Fig. 3.1). The anatomical features of N. 

brasiliensis are most distinctive at the adult stage. Freshly collected adult worms were 

bright red in colour from the intrinsic globin produced by the worms, and the females 

were larger and more intensely red than the males. At the posterior end, the male was 

distinguished by a copulatory bursa, whereas the females had a curved, conical end 

with a cuticle covering the vulva and the anus, with developing oocytes clearly visible 

in the ovary. The eggs produced by the two strains were similar in size and shape, 

with an egg shell protecting the developing cells. The L3 of both strains appeared 

identical, moved in the same manner, and both were attracted to warmth and/or light. 

Based on morphological criteria, the two strains thus appeared to belong to the same 

species. 

 

To confirm that the Japanese isolate could be classified as N. brasiliensis, a 

comparison of sequences within the ribosomal RNA gene (rDNA) cistron was carried 

out between the W and J strain. Within this cistron there are regions of sequence 

variability which are frequently used as phylogenetic markers in nematodes and other 

organisms (Blaxter et al., 1998; Dorris et al., 1999). Three regions of the rDNA 

cistron were chosen for analysis: the small subunit (SSU) gene, the internal 

transcribed spacers (ITS)-1 and ITS-2, in ascending order of sequence variability (Fig. 

3.2, top panel). Nucleotide sequences within these regions were obtained by PCR 

amplification of genomic DNA, product purification and sequencing. Alignments of 

the SSU, ITS-1 and ITS-2 sequences from both strains are shown in Fig. 3.2, 3.3 and 

3.4 respectively. The sequences of SSU, ITS-1 and ITS-2 were all 100% identical 

between strains. Since the SSU region consists of a coding, structural sequence of a 

functional gene, it was perhaps not surprising that this region was completely 

conserved. The ITS-1 and ITS-2 regions are highly variable between different 

nematode species, and their invariability between the strains suggests that the W and J 

strain are extremely phylogenetically conserved (Fig. 3.3 and 3.4).  
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Figure 3.1. The Wellcome strain (left panel) and the Japanese strain (right panel) of N. 

brasiliensis are anatomically indistinguishable for the egg, L3 and adult stages. Eggs 

were photographed at x1600 magnification, L3 and adults at x100 magnification. The 

copulatory bursa of the male adults and the oocytes within the ovary of the female adults are 

indicated with arrows in the diagram. Scale bar (blue): 25 µm. Scale bar (black): 400 µm. 



96 

 

 

 

 

 

Figure 3.2. Alignment of the rDNA small subunit gene (SSU) sequences between the W 

and J strain of N. brasiliensis. SSU sequences from the W and J strains were aligned using 

Multialign and presented using Boxshade software. The location of this sequence within the 

rDNA cistron is shown at the top. Identical nucleotides are shaded in black.  
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Figure 3.3. Alignment of the rDNA internal transcribed spacer 1 (ITS-1) sequences. ITS-

1 sequences from the W and J strains were aligned using Multialign and presented using 

Boxshade software. The location of this sequence within the rDNA cistron is shown at the top. 

Identical nucleotides are shaded in black.  
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Figure 3.4. Alignment of the rDNA internal transcribed spacer 2 (ITS-2) sequences. ITS-

2 sequences from the W and J strains were aligned using Multialign and presented using 

Boxshade software. The location of this sequence within the rDNA cistron is shown at the top. 

Identical nucleotides are shaded in black.  
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The ITS-1 and ITS-2 sequences of seven other members of the nematode order 

Strongylida – Carolinensis minutus, Ohbayashinema erbaevae, Heligmosomoides 

polygyrus, Nematodirus battus, Nematodirus filicollis, Haemonchus contortus and 

Teladorsagia circumcincta - were retrieved from Genbank for comparison with the 

sequences of the W and J strain of N. brasiliensis. The alignments for ITS-1 and ITS-

2 are shown in Fig. 3.5 and Fig. 3.6 respectively, with both regions displaying 

considerable sequence variability between the different species. The alignment 

matrices for ITS-1 and ITS-2 were concatenated within the Mesquite system for 

phylogenetic computing (Maddison and Maddison, 2010) and used to construct a 

phylogenetic tree on Phylogeny.fr (Dereeper et al., 2008), utilising algorithms based 

on the neighbour-joining (NJ) method to determine phylogenetic distances, then 

verified using maximum likelihood (ML) analysis (Fig. 3.7). Bootstrap values were 

annotated, with all branches but one supported by a value of 1, showing that the tree is 

extremely well-supported. Branch lengths are indicative of how closely related the 

species are to each other, proportional to the amount of inferred evolutionary changes. 

W and J strains of N. brasiliensis clustered together. Of all the other species, C. 

minutus was determined to be the most closely related to N. brasiliensis, in 

accordance with the published literature (Audebert et al., 2005). They were also 

shown to have a common root with O. erbaevae and H. polygyrus, which is reflective 

of their phylogenetic relationship in that all four species are members of the 

Heligmosomoidea family within the order Strongylida. Similarly, N. battus and N. 

filicollis, both members of the Molineoidea family, are sub-grouped together. H. 

contortus and T. circumcincta, two closely related nematodes of small ruminants 

belonging to the Trichostrongylidae family, form a sub-group (Audebert et al., 2005). 

These analyses show that ITS-1 and ITS-2 are good phylogenetic markers for 

distinguishing between closely related nematode species, as well as the categorisation 

of families within an order. Therefore, these data validate the use of ITS-1and ITS-2 

for species identification, and strongly confirm the identity of the J isolate as a strain 

of N. brasiliensis.   
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Figure 3.5. Alignment of ITS-1 sequences from the W and J strain of N. brasiliensis and 

other nematodes from the order Strongylida. The ITS-1 sequences of C. minutus, O. 

erbaevae, H. polygyrus, T. circumcincta, N. battus, N. filicollis and H. contortus were 

retrieved from Genbank and aligned with the N. brasiliensis sequences using Multialign and 

Boxshade. Identical nucleotides (for 5 sequences or more) are shaded in black.  
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Figure 3.6. Alignment of ITS-2 sequences between the W and J strains of N. brasiliensis 

and other nematodes from the order Strongylida. The ITS-2 sequences of H. polygyrus, T. 

circumcincta, N. battus, N. filicollis and H. contortus were retrieved from Genbank and 

aligned with the N. brasiliensis sequences using Multialign and Boxshade. Identical 

nucleotides (for 5 sequences or more) are shaded in black.  
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Figure 3.7. Phylogenetic tree of species within the order Strongylida based on the 

alignment of their ITS-1 and ITS-2 sequences. The tree was constructed on Phylogeny.fr, 

utilising algorithms based on the neighbour-joining (NJ) method and confirmed using 

maximum likelihood (ML) analysis. Nodal support was estimated with the bootstrap 

procedure using 100 replicates, annotated in red. A bootstrap value of 1 indicates that the 

branch is completely supported, and values over 0.7 are generally considered to be valid.  
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3.3. Comparative infection dynamics of the N. brasiliensis strains  

 

Several parameters which define infection dynamics in a specific host-parasite 

combination are the parasite’s life history traits such as infectivity, establishment, 

fecundity and survivorship in the host environment, and these were assessed for the W 

and J strain. Infectivity was measured by the worm burden in infected animals at an 

early stage of infection, establishment as the number of worms which are present in 

the host gut as mature adults, fecundity as the number of eggs produced by a set 

number of adults, and survivorship as the number of adults remaining in the host gut 

at a defined time late in infection. 

 

Rats were infected with either the W strain or the J strain of N. brasiliensis at a dose 

of 2,000 L3, and sacrificed on days 3, 4, 7, 10 or 13 p.i., when adult worms were 

recovered from their intestines and quantified (Fig. 3.8). On day 3 and day 4 p.i., 

many of the worms have arrived at the gut as L4 or young adults. Worm recovery was 

indistinguishable between strains on both days, indicating no difference in terms of 

initial infectivity. By day 7 p.i., adult worms were fully mature and established in the 

gut, and their numbers had peaked and stabilised. Worm recovery on D7 p.i. showed 

no significant difference between the two strains. The percentage recovery of adults 

relative to the initial infection dose was 42.3 ± 2.7 % for the W strain, and 34.8 ± 

8.3 % for the J strain, suggesting that the two strains are equally capable in terms of 

establishment in the host. However, a dramatic difference in adult numbers between 

the strains was seen on day 10 p.i., when the W strain was almost completely expelled 

by the host, and J strain adults continued to remain in high numbers. Adults of the J 

strain were eventually cleared by day 13. These results show that the J strain can 

survive and persist for longer in the host compared to the W strain. 

 

The total egg output resulting from infection was measured by faecal egg count 

carried out daily from day 3 to day 14 p.i. (Fig. 3.9). There appeared to be a difference 

in egg output between the two strains. The most obvious difference was that egg 

production of the W strain was terminated a lot earlier than the J strain (day 8 

compared to day 12 p.i.). This is most likely due to that fact that the W strain adults 

were expelled a lot earlier from the gut, resulting in a much shorter period of egg 

production. The peak days of egg production were on day 6 p.i. for the W strain, and 
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day 7-10 p.i. for the J strain, resulting in a much higher total egg output from the latter. 

To show this difference quantitatively, the area under each graph in Fig. 3.9 was 

calculated for an estimate of the total egg output of each strain. Over the course of a 

primary infection, a total number of 19,085x (where x is the amount of faeces 

produced by a rat per day in grams) eggs were produced by the J strain, whereas only 

5252x eggs were produced by the W strain. This indicates that the total reproductive 

output of the J strain is over 3.6 times that of the W strain. There was also the 

interesting observation that egg production started and peaked earlier for the W strain 

compared to the J strain, although results did not reach statistical significance. 

 

To assess the per capita fecundity of the two strains, the number of eggs isolated from 

faeces was divided by the number of worms present in the host gut on day 7 p.i., when 

the worms had reached maturity and numbers were stabilised. It was found that the 

per capita fecundity of the W strain was 2.15x per worm, and that of the J strain was 

6.47x per worm, i.e. over 3 times that of the former (Fig. 3.10A). In vitro egg counts 

were also carried out to assess the fecundity of the two strains under more controlled 

conditions, in which the host environment had a lesser role. Fully mature adult worms 

of the W and J strain were isolated from infected rats on day 7 p.i. and cultured for 24 

hours, after which the eggs produced were counted. It was found that the number of 

eggs produced by the J strain was over 2 times that of the W strain (Fig. 3.10B), 

indicative of higher fecundity. 

 

The rats were then re-infected six weeks after the primary infection. Re-infection with 

either strain did not result in any egg production, as determined by faecal egg counts 

from day 3 to day 7 p.i.. No adult worms were recovered on day 7 p.i., showing that 

the worms were cleared before maturity. This indicates that protective immunity was 

elicited in the rats by a primary infection with both strains, mounting an adaptive 

immune response which eliminated the parasite at an early stage of infection. 

 

To summarise, the W and J strain of N. brasiliensis did not differ in infectivity and 

host establishment, but both survivorship and fecundity of the J strain were higher. It 

was unclear to what extent these represented intrinsic differences in properties of the 

parasite or susceptibility to host immunity, and therefore, the host immune response 

was also investigated. 
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Figure 3.8. Adult worm recovery post-infection. Rats were infected with 2,000 L3 with 

either the W strain (blue bars) or the J strain (red bars), and adults were recovered from the 

intestines at the indicated days post-infection. Results are presented as the mean number of 

worms recovered + 1 SEM, from 5 rats per group. Asterisks show a significant difference 

between the strains where *** P < 0.001 (n = 5), determined by the Student’s t-test.  
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Figure 3.9. Egg output during infection. Graphs represent the mean number of eggs 

recovered per gram of faeces (epg) from rats infected with the W strain (blue) or the J strain 

(red) at a dose of 2,000 L3. Counts were performed daily from day 3 to day 14 post-infection. 

Error bars indicate ± 1 SEM (n = 5 rats per group). Asterisks indicate a significant difference 

between the strains on a given day, ** P < 0.01, * P < 0.05. 
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Figure 3.10. Assessment of parasite fecundity A) by per capita egg output in vivo and B) 

in vitro. A: Egg output in faeces (epg) was divided by the number of adults (males + females) 

residing in the host gut on day 7 post-infection. The error bars show + 1 SEM (where n = 5, 

i.e. worm counts recovered from 5 individual animals). A significant difference was observed 

between the strains, * P < 0.05. B: Adult worms (males + females) of the two strains were 

cultured in vitro for 24 hours under standard conditions and egg output measured. Results 

represent mean egg counts + SEM (where n = 5) from 5 separate cultures, each measured in 

triplicate. A significant difference was observed between the strains, *** P < 0.001.    
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3.4. Comparative host response to infection 

 

I next sought to investigate whether the differences in infection dynamics could be 

attributed to a differential host immune response directed against the two strains, 

using a variety of measures. Morphological changes in the gut epithelium, goblet cell 

hyperplasia, mastocytosis and lymphocyte activation are all manifestations associated 

with the host immune response to GI nematodes. These responses were compared 

between rats infected with the W strain and the J strain of N. brasiliensis. In all 

experiments, rats were infected with 2,000 L3, and uninfected rats matched in sex, 

age and weight used as controls. Rats were sacrificed on day 7 and day 10 p.i. for 

assessment of host immune responses. 

 

 

Morphological changes in jejuna  

 

To visualise potential changes in gut morphology after infection, cross-sections of rat 

jejuna were prepared for histology, and representative slides are displayed in Fig. 3.11. 

Morphological changes in the gut epithelium resulting from an N. brasiliensis 

infection are generally characterised by crypt elongation, increase in muscle thickness, 

enterocyte detachment and oedema at the villus tips (Perdue, 1989). On observation of 

the slides, some of these changes were apparent in rats infected with the W strain but 

not the J strain. On both day 7 and day 10 p.i., crypt length and muscle thickness 

appeared more prominently increased in rats infected with the W strain than the J 

strain. For a quantitative assessment, measurements were made of the mucosal depth, 

crypt length and muscle thickness (Fig. 3.12). Indeed, these measurements showed a 

small but significant increase in the W strain-infected rats on both day 7 and day 10, 

in comparison to both the J strain and control. Mucosal depth increased by the same 

extent as crypt length, and therefore crypt length was increased while villus length 

remained the same. There was also some evidence of villus tip oedema in rats infected 

with the W strain on day 10 p.i. (Fig. 3.11, marked by blue asterisks), but this was 

difficult to assess reliably, as some samples suffered some damage due to flushing of 

the gut prior to sample fixation. Enterocyte detachment was also difficult to observe 

for the same reason.  
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Figure 3.11. Morphological changes in the jejunum resulting from infection with N. 

brasiliensis. Jejuna of rats infected with the W strain or the J strain, as well as those of 

uninfected rats (control), were isolated on day 7 or day 10 post-infection. Slides were 

prepared and stained with Periodic acid-Schiff (PAS), and photographed at x100 

magnification. Sites of heavy villus tip oedema are indicated with blue asterisks (*). Scale bar 

(black): 400 µm. 
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Figure 3.12. Gross alterations in jejunal tissue post-infection with N. brasiliensis. 

Samples were taken on day 7 or day 10 post-infection from rats infected with the W or the J 

strain. Each bar represents the mean + 1 SEM (where n = 5) of measurements of jejunal 

tissues harvested from 5 individual rats, in which 20 measurements at regular intervals along 

the cross-section were taken from each. * P < 0.05, relative to uninfected controls. 
+
 P < 0.05, 

showing a significant difference between the W and J strain. 
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Goblet cell hyperplasia 

 

Goblet cell hyperplasia is also a feature of the host response to N. brasiliensis 

infection, and increased mucus secretion contributes to parasite expulsion. The 

number of goblet cells in latitudinal sections of the jejunum was counted (Fig. 3.13). 

No significant difference was found in goblet cell numbers on day 7 p.i. with either 

strain. On day 10 p.i., however, goblet cell numbers in rats infected with the W strain 

were significantly elevated over uninfected animals, although the difference between 

the W strain and the J strain did not reach statistical significance.  

 

 

Mastocytosis 

 

The systemic release of rat mast cell protease II (RMCP II), a major secreted product 

of rat mucosal mast cells, was used as an indicator of the extent of mastocytosis. The 

level of RMCP II in sera of rats infected with both strains was measured by enzyme-

linked immunosorbent assay (ELISA) (Fig. 3.14). RMCP II levels were found to be 

significantly elevated on both day 7 and day 10 p.i. with both strains. A low level of 

RMCP II was detected in the control (uninfected) group reflecting the basal level of 

RMCP II secretion. On both day 7 and day 10 p.i., there was no significant difference 

in RMCP II levels between rats infected with the W and J strain. Therefore, infection 

with both strains resulted in increased mastocytosis, but this did not differ between the 

strains.   

 

 

Cellular responses in the mesenteric lymph nodes (MLN) 

 

Cells from the draining mesenteric lymph nodes (MLN) were isolated to assess the 

degree and type of immune response primed by infection. On day 7 p.i., cell numbers 

were significantly increased in all infected rats, and remained high at day 10 with no 

significant changes (Fig. 3.15). The cell numbers between the W and J strain were not 

significantly different on either day, suggesting that both strains induced a similar 

level of cellular infiltration. MLN cells were then assessed for antigen-specific 

lymphocyte activation by 
3
H-thymidine incorporation (Fig. 3.16). N. brasiliensis adult 
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extracts did not stimulate lymphocyte proliferation to a significant level in MLNs 

harvested on day 7 p.i. for either strain, but showed high levels of activation by day 

10 p.i. for both strains. There were no significant differences between infection with 

either strain on either day, indicative of a similar degree of lymphocyte activation. 

 

Supernatants from the cell cultures were collected to analyse cytokine responses (Fig. 

3.17). MLN cells primed by infection with both strains released high levels of IL-10 

and IL-13, and moderate levels of IL-4 and IL-5 on stimulation with parasite extracts. 

These increases could be detected from day 7 p.i., and levels of IL-4, IL-5 and IL-10 

were additionally increased by day 10. No IL-12 release was detected, and IFN-γ 

levels were not significantly different from controls on day 7 or 10. These results are 

consistent with a Th2-biased cytokine profile. No significant differences were found 

in the cytokine profiles elicited by infection with either strain.   

 

In summary, although infection with the W strain appeared to have elicited slightly 

greater gross alterations in jejuna tissues than the J strain, this was not supported by 

the levels of goblet cell hyperplasia, mastocytosis, cellular response and cytokine 

release by MLN cells, which were stimulated to similar levels by infection with the 

two strains. It was thus determined that the degree and type of immune response to the 

two strains were largely similar.  
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Figure 3.13. Quantification of goblet cells in the jejuna of infected rats. Jejunum samples 

were taken from day 7 or 10 post-infection with the W or J strain of N. brasiliensis. Each bar 

represents the mean + 1 SEM of goblet cells in 20 villus crypt units in jejunum sections 

(where n = 5 rats). ** P <0.01, relative to uninfected controls. NS denotes no significant 

difference between the strains. 
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Figure 3.14. N. brasiliensis strains induce comparable levels of mastocytosis. Serum 

samples were taken from day 7 or 10 post-infection with the W or J strain for detection of rat 

mast cell protease II (RMCP II). Each bar represents the mean RMCP II level detected in sera 

of 5 rats assayed in triplicate, + 1 SEM (where n = 5). *** P < 0.001, ** P < 0.01, * P < 0.05, 

relative to uninfected controls. NS represents no significant difference between the strains. 
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Figure 3.15. Cellular infiltration into mesenteric lymph nodes (MLN) after infection 

with N. brasiliensis. Cells were isolated and quantified from the MLNs of rats infected with 

either strain on day 7 or 10 post-infection, and compared to those from uninfected controls. 

Figures represent the mean number of cells + 1 SEM (where n = 5) from 5 rats. *** P < 0.001, 

** P < 0.01, * P < 0.05, relative to control. NS denotes no significant difference between the 

strains.  
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Figure 3.16. Antigen-specific proliferation of MLN cells. Cells were isolated from the 

MLNs of rats infected with the W or J strain, on day 7 or 10 post-infection, and from 

uninfected rats as controls. Results are expressed as the mean counts per minute (cpm) + 1 

SEM (where n = 5) of values from cells harvested from 5 rats, each assayed in triplicate. ** P 

< 0.01, relative to control. NS represents no significant difference between the strains. 
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Figure 3.17. Antigen-specific cytokine responses. Cells from the MLNs were harvested 

from rats infected with the W or J strain of N. brasiliensis on day 7 or 10 post-infection. Bars 

show means + 1 SEM (where n = 5) of cytokines secreted by cells from 5 rats, each assayed 

in triplicate. Asterisks (*) show a significant difference relative to the control, and hash (#) 

signs indicate a significant elevation of cytokine secretion on day 10 relative to day 7 post-

infection of the given strain. Three symbols: P < 0.001, two symbols: P < 0.01, one symbol: P 

< 0.05. NS represents no significant difference between the strains. 
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3.5. Comparison of secreted proteins 

 

Since the degree and type of immune response generated by infection with the two 

strains was largely similar, it was possible that differences in persistence and 

fecundity were related to intrinsic properties of the parasite, perhaps more importantly 

at the adult stage. Secreted proteins constitute a major form of communication from 

the parasite to the host, and have the potential to influence the infection in a myriad of 

ways such as invasion, evasion and modulation of host responses etc. A comparative 

analysis of parasite secreted proteins was therefore performed. 

 

The amount of protein secreted by activated L3 (L3A, activated by culture at 37°C) 

and adults of the W and J strain of N. brasiliensis were compared (Fig. 3.18), and it 

was found that the two strains secrete similar amounts of proteins. The amount of 

proteins secreted per day of culture was approximately 1.3 ng per L3A, and 26 ng per 

adult worm. The majority of L3A secreted proteins lie between a molecular weight of 

15-37 kDa, with some subtle differences between the strains evident by one-

dimensional (1-D) gradient SDS-PAGE (Fig. 3.19A). The 1-D resolution of L3A 

secreted proteins between the 15-20 kDa region generally appears as a smear rather 

than distinctive bands, the effect of which was seen in all batches of culture tested. 

This suggests that there may be a large variety of proteins secreted in small quantities 

within this molecular weight range, which was confirmed by two-dimensional gel 

electrophoresis (2-DE) (Fig. 3.20), on which large numbers of small protein spots can 

be resolved around this region. The composition of L3A secreted proteins of the two 

strains was found to be largely similar. By Coomassie staining, approximately 80-100 

individual protein spots could be visualised, all of which are below 37 kDa. The 

precise number would need to be confirmed by gel imaging software, which may also 

be able to pick up subtle differences in the secreted protein profiles of the two strains.  

 

In contrast, the composition of adult secreted proteins show a broader range in 

molecular weight, as shown by 1-D SDS-PAGE (Fig. 3.19B). Distinctive bands can 

be seen, suggesting that particular proteins are secreted in large amounts. Resolution 

by 2-DE showed that there are indeed many prominent protein spots (Fig. 3.21). 

Several proteins were resolved at the same molecular weight but with different 

isoelectric points (pI), perhaps suggesting differences in glycosylation or other kinds 
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of post-translation modification of the same protein. Approximately 140-160 protein 

spots can be visualised by eye, which suggests that secreted proteins of adults are 

more complex than those of activated L3. The separation profile of adult secreted 

proteins was again largely similar between the two strains, but some differences could 

be seen. Elucidation of the identity of these proteins may perhaps be helpful in 

explaining the differences in infection dynamics of the two strains.  

 

The 2-DE separation profiles shown in Fig. 3.19 and Fig. 3.20 represent the majority 

of proteins secreted by L3A and adults, as these were confirmed by gel separation of 

radiolabelled proteins and visualisation by autoradiography. However, it is possible 

that some proteins are secreted in such small amounts that could not be visualised by 

either method. Although silver staining is less sensitive than radioactive detection, it 

is more sensitive than Coomassie staining, and would be useful for proteomic work in 

future studies. 
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Figure 3.18. The two strains of N. brasiliensis secrete similar amounts of proteins. 

Parasites were cultured in vitro under standard conditions, and secreted proteins collected 

from the medium and quantified for L3A (A) and adults (B). Results are expressed as the 

mean amount of protein secreted per parasite per day + 1 SEM (where n = 5), from 5 

individual cultures assayed in triplicate.  
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Figure 3.19. The secretion profiles of N. brasiliensis strains resolved by 1D gradient 

SDS-PAGE. Proteins secreted by A) L3A and B) adults were collected after 3 days of culture 

and concentrated. Approximately 60 μg of proteins were resolved by 10-20% gradient SDS-

PAGE and stained with Coomassie blue. 

A B 
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Figure 3.20. Proteins secreted by activated L3A of each strain are largely similar. 

Proteins were separated by 2DE; horizontally by isoelectric focusing then vertically on a 10-

20% polyacrylamide gradient gel, and stained with Coomassie blue. Each gel was loaded with 

170 μg of secreted protein. Panel A: W strain; Panel B: J strain. 
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Figure 3.21. Proteins secreted by adult worms show subtle differences. Proteins were 

separated by 2DE; horizontally by isoelectric focusing, then vertically on a 10-20% 

polyacrylamide gradient gel, and stained with Coomassie blue. Each gel was loaded with 170 

μg of secreted protein. Panel A: W strain; Panel B: J strain.  

A 

B 
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Immunogenicity 

 

Differential recognition of proteins secreted by the two strains of N. brasiliensis was 

analysed by Western blotting using immune sera collected from rats infected twice 

with either the W or J strain as a probe (Fig. 3.22). Immune serum to the J strain was 

able to bind to proteins secreted by the W strain, and vice versa, indicating cross-

recognition. Strain-specific reaction appeared to be stronger, that is, the J strain 

immune serum shows stronger reactivity with J strain-secreted proteins than with W 

strain secreted proteins (Panel 4, comparison between W and J lanes). Overall, the J 

strain immune serum reacted more strongly with every protein sample than did the W 

strain immune serum (comparison between panels 3 and 4), perhaps reflecting a 

stronger antigenic stimulus resulting from more persistent infection. Proteins secreted 

by L3A reacted more strongly with immune sera than that of adults, probably as a 

result of the reinfection process, during which the parasites are eliminated before they 

reach the adult stage, so that only L3-specific factors were re-exposed to the immune 

system, stimulating the memory response and expansion of L3-specific antibodies.    
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Figure 3.22. Reactivity of proteins secreted by the two strains with immune sera. 

Proteins secreted by L3A and adults of the two strains were resolved by 15% SDS-PAGE and 

reacted with immune sera collected from rats infected twice with either the W or J strain. 

Panel 1 shows the protein separation profile of 15 µg L3A or adult secreted proteins of the 

two strains, visualised by DB71 staining. Duplicate gels were blotted onto nitrocellulose 

membranes and reacted with W or J strain immune sera (panels 3 and 4 respectively), or with 

naive rat serum as a negative control (panel 2). Sera (pooled from 5 individual rats for each 

condition) were used as a primary antibody at a dilution of 1:500, followed by anti-rat IgG-

HRP secondary antibody at 1:60,000. 
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Secretion of acetylcholinesterase (AChE) 

 

Acetylcholinesterase (AChE) is one of the major known secretory enzymes of N. 

brasiliensis. It is thought to be an important molecule in modulation of immunity and 

parasite persistence (Selkirk et al., 2005), so secretion of AChE by adult worms was 

analysed. It is known that young adults of N. brasiliensis secrete three isoforms of 

AChE (isoform A, B and C), and they switch to secreting only isoform B and C as 

they mature (Hussein et al., 2002). Isoform B is visualised as two distinctive bands, 

and previous studies have shown that this is due to proteolytic cleavage of AChEs 

(Selkirk, personal communication). It has been proposed that isoform switching of 

AChE during different life cycle stages is a strategy to evade action of antibodies 

directed against the earlier forms of the enzyme (Lee, 1996), although this seems 

unlikely given their sequence similarity. By analysing the secreted proteins of adults 

isolated on day 4 p.i. (young adults) and day 7 p.i. (mature adults), these isoforms 

were clearly demonstrated in the W strain of N. brasiliensis. However, some 

differences in electrophoretic mobility were observed for AChEs from the J strain 

compared to the W strain (Fig. 3.23). The downregulation of isoform A from day 4 to 

day 7 p.i. was still apparent in the J strain, but the distinction of isoforms B and C was 

unclear. The overall amount of AChE activity in the secreted proteins of the two 

strains was however similar, suggesting that they are equally competent in 

metabolism of acetylcholine (Fig. 3.24). 

 
 



128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.23. Comparison of acetylcholinesterase secretion by adult worms. Secreted 

proteins from day 4 p.i. (young adults) or day 7 p.i. (mature adults) of both strains were 

resolved by 8% native polyacrylamide gel electrophoresis, and visualised using a direct-

colouring thiocholine method for cholinesterases (Karnovsky and Roots, 1964). The isoforms 

A, C and B are annotated on the left. The bands within the isoform B region represent 

proteolytically modified forms of the same protein. 
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Figure 3.24. Levels of acetylcholinesterase activity in adult secreted proteins. Adult 

secreted proteins collected from the two strains were added at 0.5 μg to each reaction, and 

incubated for 10 minutes. Results are expressed as the mean change in OD414 nm per minute 

per µg of N. brasiliensis adult secreted protein resulting from 5 secreted protein preparations 

assayed in triplicate, with error bars representing + 1 SEM (n = 5).  
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Secretion of nucleotide metabolising enzymes 

 

The higher persistence of the J strain may be related to a superior capacity to resist 

host immune expulsion mechanisms. A possible way in which this may be achieved is 

through the expression of anti-inflammatory molecules such as the nucleotide 

metabolising enzymes (NMEs). Enzymatic assays for phosphate hydrolysis were 

therefore carried out to investigate whether N. brasiliensis secretes any enzymes with 

an ability to metabolise nucleotides, and if they do, whether their activity differs 

between the strains.  

 

Whole secreted protein samples collected from adult N. brasiliensis were tested for 

hydrolysis of ATP, ADP, AMP and UDP, assaying for liberation of inorganic 

phosphate. Secreted proteins from both strains of N. brasiliensis hydrolysed ATP, 

ADP and UDP with very high specific activities, but not AMP (Table 3.1). This 

provides novel data that N. brasiliensis is capable of metabolising extracellular 

nucleotides. Enzymatic activity on the substrate (Na)ATP was higher than that for 

(Mg)ATP, suggesting that sodium is a more effective cofactor than magnesium in 

assisting the hydrolytic activities of the enzyme(s) involved. However, enzymatic 

activity in proteins secreted by the W strain was significantly higher than that of the J 

strain for all substrates (except (Mg)ATP), which suggests that the greater persistence 

of the latter cannot be attributed to a higher level of nucleotide-metabolising activities. 

 

The nucleotide-metabolising enzymes of N. brasiliensis appear to exhibit classic 

apyrase activities similar to those from arthropods, which readily hydrolyse ATP and 

ADP but not AMP. This differs from T. spiralis, the secreted proteins of which show 

no reactivity with ATP, but hydrolyse ADP, UDP and AMP via a single enzyme, 5’-

nucleotidase (enzymatic scheme shown in Fig. 3.25;  Gounaris et al., 2004). Secreted 

proteins from both N. brasiliensis strains hydrolysed ADP at a higher rate than ATP. 

If both activities were catalysed by a single apyrase, the ADP released upon ATP 

hydrolysis should be further broken down into AMP, resulting in a higher amount of 

phosphate release. There are two plausible explanations for the discrepancies in 

specific activities for the two substrates: 1) a single apyrase secreted by N. brasiliensis 

is much more efficient in hydrolysing ADP as a substrate than ATP, creating a rate-
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limiting step which resulted in a slower overall reaction; or 2) the two reactions are 

catalysed by separate enzymes. 

 

Since the substrate specificity of the NMEs of N. brasiliensis differs from that of T. 

spiralis, there is a further consideration that the action of these enzymes may not be 

exclusive to nucleotide hydrolysis. To test the substrate specificity of the reaction, 

sodium pyrophosphate and glucose-6-phosphate (G6P) were used instead of the 

nucleotides. It was found that sodium pyrophosphate could indeed be hydrolysed by N. 

brasiliensis adult secreted proteins, but no such activity was found against G6P (Table 

3.2). This may suggest that enzyme(s) present in N. brasiliensis secreted products can 

cleave the bond between two linked phosphates, but not a phosphate residue linked to 

another (non-phosphate) moiety, such as AMP and G6P. Furthermore, they also 

appear to be more adept at cleaving phosphate from diphosphates (e.g. ADP) than 

triphosphates (e.g. ATP). 

 

The activities observed could debatably have been catalysed by a non-specific 

phosphatase. Therefore, in the next sets of experiments, phosphatase inhibitors were 

used to test if they blocked the reactions (Table 3.3). Levamisole did not affect the 

ability of secreted proteins in hydrolysing ATP, ADP or sodium pyrophosphate, 

suggesting that alkaline phosphatases were not responsible for the reactions. In 

contrast, sodium fluoride (NaF) was found to completely inhibit liberation of 

phosphate from all three compounds. Although NaF has been shown to inhibit the 

activities of both 5’-NT and apyrase, it is also an inhibitor to acid phosphatases, which 

have an acidic pH optimum. Assays were therefore performed at pH values ranging 

from 6.5 to 9.5. Hydrolysis of ATP and ADP occurred with a pH optimum of 8.5-9.5 

(Fig. 3.26), suggesting that the reactions were not effected by an acid phosphatase.  

 

In summary, these experiments show that secreted proteins from N. brasiliensis adult 

worms contain enzymes capable of hydrolysing extracellular nucleotides with high 

efficiency via a pathway which appears to differ from T. spiralis, although it is 

difficult to come to firm conclusions when dealing with a preparation (total secreted 

proteins) which may contain multiple enzymatic activities. Nevertheless, these results 

do not explain the higher persistence of the J strain of N. brasiliensis. 
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Table 3.1. Enzymatic activities in N. brasiliensis adult secreted proteins involved in the 

metabolism of nucleotides. Three individual protein samples from each strain were assayed 

in triplicate, and the results are expressed as mean ± 1 SEM. All substrates were used at 2.5 

mM. N. brasiliensis whole secreted proteins were used at a final concentration of 3.75 ng/μl 

(0.15 μg was added in a 40 μl reaction) for the substrates ATP, ADP and UDP. AMPase 

activities were tested using up to 5 μg of N. brasiliensis whole secreted proteins at various pH 

values. Values which differ significantly between the strains are indicated * P < 0.05. 
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Figure 3.25. Schemes for nucleotide metabolising enzymatic cascades in (a) 

haematophagous arthropods; and (b) T. spiralis.  Abbreviations: 5’-NT: 5’-nucleotidase; 

ADA: adenosine deaminase; NDPK: nucleoside diphosphate kinase; PK: exo- and ecto- 

protein kinases, PN: purine nucleotidase. Figure is from Gounaris and Selkirk (2005). 
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Table 3.2. Liberation of phosphate from other substrates by N. brasiliensis secreted 

proteins. Both sodium pyrophosphate and glucose-6-phosphate were used at a final 

concentration of 5 mM. N. brasiliensis whole secreted proteins were used in the reaction at a 

final concentration of  25 ng/μl (1 μg was used in a 40 μl reaction). Results are expressed as 

means ± 1 SEM. The chemical structure of the substrates are shown at the top. 
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Table 3.3. Effect of phosphatase inhibitors on phosphate-hydrolysing activities of N. 

brasiliensis secreted proteins. The inhibitors, levamisole and sodium fluoride (NaF), were 

included at a final concentration of 5 mM. ATP and ADP substrates were used at 2.5 mM, 

and sodium pyrophosphate was used at 5 mM final concentration. N. brasiliensis whole 

secreted proteins were used in the reaction at a final concentration of 3.75 ng/μl (0.15 μg was 

added to a 40 μl reaction) for the substrates ATP and ADP, and at a final concentration of  25 

ng/μl (1 μg was added to a 40 μl reaction) for sodium pyrophosphate. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26. Phosphatase activities in N. brasiliensis secreted protein showed an alkaline 

pH optimum. ATP and ADP substrates were used at a final concentration of 2.5 mM. N. 

brasiliensis (W strain) whole secreted proteins were used in the reaction at a final 

concentration of 3.75 ng/μl (0.15 μg was added to a 40 μl reaction). Assays were performed at 

pH values ranging from 6.5 to 9.5, with bis-tris propane substituting hepes as the reaction 

buffer for its wider buffering range. 
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3.6. Infection dynamics of the Japanese strain after multiple laboratory passages 

 

The comparison of infection dynamics between the W and J strain in section 3.3 

aimed to study changes resulting from multiple passage in a laboratory setting over a 

long period of time. A flaw in this comparison is that the two strains originated from 

different geographical locations, and might have intrinsically different properties. By 

the year 2010, I performed serial passage of the J strain through 30-40 generations in 

SD rats for maintenance of the life cycle. This presented an opportunity to carry out 

an analysis of the effect of laboratory passage on the same strain.  

 

The overall dynamics of establishment and expulsion of adult worms was not changed 

after three years of laboratory passage of the J strain (Fig. 3.27), but egg output was 

significantly diminished (Fig. 3.28). The total egg output over a primary infection was 

19,085x (where x is the amount of faeces produced by a rat per day in grams) in year 

2007, and only 10027x in year 2010, which is an overall reduction of 47.5%. The per 

capita fecundity on day 7 p.i. was 6.47x per worm in 2007, and 2.61x in 2010 (Fig. 

3.29A). Adults isolated on day 7 p.i. were also isolated and cultured for an assessment 

of fecundity in vitro (Fig. 3.29B), which was found to be significantly decreased in 

2010 compared to 2007 by over 28%. Collectively, these data provide strong evidence 

that multiple laboratory passage results in a loss of fecundity, and ultimately total egg 

output, of a parasite strain, although no differences in persistence or survival was seen 

in this particular experiment.    
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Figure 3.27. Dynamics of establishment and expulsion of adult worms before and after 

laboratory passage. Rats were infected with 2,000 J strain L3 in 2007 (red bars) and 2010 

(purple bars), and adults were recovered from the intestines at the indicated days post-

infection. Results are presented as the mean number of worms recovered + 1 SEM (where n = 

5 rats per group). No significant difference was observed between the groups on any day of 

sampling. 
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Figure 3.28. Faecal egg output before and after laboratory passage. Points represent the 

mean number of eggs recovered per gram of faeces from rats infected with 2000 J strain L3 in 

2007 or 2010. Counts were performed daily from day 3 to day 14 post-infection. Error bars 

indicate ± 1 SEM (n = 5 rats per group). *P < 0.05. 
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Figure 3.29. Assessment of parasite fecundity before and after laboratory passage A) by 

per capita egg output in vivo and B) in vitro. A: Egg output in faeces (epg) was divided by 

the number of adults (males + females) residing in the host gut on day 7 post-infection. A 

significant difference was observed, * P < 0.05. B: Adult worms of the two strains were 

cultured in vitro for 24 hours under standard conditions and egg output measured. Results 

represent mean egg counts + SEM (where n = 5) from 5 separate cultures, each measured in 

triplicate. A significant difference was found, ** P < 0.01.    
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3.7. Discussion 

 

The objective of this chapter was to examine the effects of laboratory passage on N. 

brasiliensis in terms of infection dynamics, host response to infection, and secreted 

proteins. The implications of these findings will be discussed in this section.  

 

 

The use of rDNA regions in distinguishing species 

 

Comparison of rDNA sequences provided strong evidence to confirm the identity of 

the J strain as N. brasiliensis, as both its ITS-1 and ITS-2 regions were completely 

identical with the W strain, and different from very closely related nematodes such as 

C. minutus. The use of these sequences to distinguish between sister species is a 

widely accepted technique in the nematode community (Audebert et al., 2005; Blaxter 

et al., 1998; Dorris et al., 1999), and in a study of T. muris, ITS-2 sequences were also 

used to confirm the identity of a field isolate, which was 100% identical to laboratory 

passaged strains (Johnston et al., 2005). ITS-2 is a particularly useful rDNA region in 

the discrimination of species, as it is highly polymorphic between different species, 

but usually conserved within the same species (Dorris et al., 1999; Muller et al., 

2007). Ultimately, the definition of a species is based on the ability to reproduce 

intraspecifically (Mayr, 1982). It was found across various eukaryotic systems that 

when the evolutionary distance of two taxa accumulated to a point at which even one 

compensatory base change in certain regions of the ITS-2 sequences occurred, 

populations in these two taxa were incapable of intercrossing. This concept has been 

extended with a classifier that a taxa difference of at least one base gives a 93.11% 

reliability to indicate that the organisms belong to different species (Muller et al., 

2007). Therefore, the lack of variation of the ITS-2 sequences gives high confidence 

that the W and J strain belong to the same species.  

 

 

Infection dynamics 

 

Parasitism is a lifestyle defined by the intricately-linked interplay between parasite 

and host. Knowledge of the infection dynamics of a parasite helps to decipher the host 
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response to infection, and build models for possible methods of intervention and 

vaccination. Several parameters which define infection dynamics are the parasite’s 

infectivity, its survival in the host, and its capability to reproduce. In the current study, 

the W strain is representative of laboratory passaged N. brasiliensis, and the J strain is 

a recent field isolate, which is a better representative of natural infection. In terms of 

infection dynamics, the J strain was shown to have higher survivorship and fecundity. 

The two strains did not differ in infectivity or establishment, which suggests that the 

differences in survivorship and fecundity observed were not directly under the 

influence of density-dependent effects during the infection, as worm burden in the gut 

was the same for both strains at these time-points. Host response was also determined 

to be similar in type and magnitude towards both strains, and thus survivorship and 

fecundity are likely to be properties intrinsic to the parasite, probably manifested at 

the adult stage of N. brasiliensis and selected by previous life history conditions.  

 

Although there has been limited data in the literature on the effect of routine 

laboratory passage on the life history traits of parasitic nematodes, a difference in 

survivorship has also been found in a study comparing two sibling lines of T. muris 

which were originally derived from the same stock but maintained in separate 

laboratories for approximately 100 generations in 30 years, even though their methods 

of life cycle maintenance were mostly similar (Bellaby et al., 1995). Moreover, the 

authors also showed that a field isolate, more recently obtained from a wild mouse, 

can consistently survive for longer than the laboratory-passaged strains in various 

types of mice, although fecundity of the strains was not addressed. These results 

suggest that the survivorship of a parasite strain may be compromised after prolonged 

laboratory passage, similar to the situation with the W and J stain of N. brasiliensis. 

 

Unlike the N. brasiliensis strains however, the T. muris strains were found to elicit 

differential immune responses in the host (Johnston et al., 2005). Mice infected with 

the field isolate of T. muris experienced a profoundly downregulated Th2 response 

and retained the worms, whereas infection with the laboratory-passaged strain 

induced a strong and protective Th2 response which expelled the parasites. The higher 

survival of the T. muris field strain was therefore most likely due to its greater 

capacity for immunoregulation, which limited IL-4 and IL-13 associated goblet cell 

hyperplasia, mastocytosis and eosinophilia, subsequently evading immune expulsion. 
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In contrast, the mode and magnitude of host immune response to the N. brasiliensis 

strains were largely similar, suggesting that the differences in infection dynamics may 

not be attributed to these factors.  

 

Although the decreases in survivorship and fecundity in the W strain are most likely 

to have been shaped by regimes of laboratory passage (reasons discussed in the next 

sub-section), there is also the possibility that they were legacies from their life history 

origins in different geographical locations. This limitation also applies to the studies 

on the T. muris strains, in which the laboratory passaged strains originated from 

Edinburgh and the field isolate was obtained in Portugal (Bellaby et al., 1995). 

Propagation of a species in different geographical locations is likely to result in 

differences in life history traits, adapted to be most favourable in its particular 

environment, especially in light of the high turnover rate of generations and trait 

plasticity of nematodes. Studies on different geographical isolates of T. spirais, a 

widely distributed parasitic nematode with a very promiscuous host range, provide an 

extreme example, exhibiting differential infectivity, immunogenicity, pathogenicity, 

antigenicity, and variations in repetitive DNA sequences (Bolas-Fernandez and 

Wakelin, 1990; Goyal and Wakelin, 1993; Wakelin and Goyal, 1996). With 

consideration to this, the infection dynamics of the J strain were re-assessed in 2010 

after three years of laboratory passage and compared with data from 2007 when the 

strain was newly isolated. The finding that adult fecundity decreased significantly 

over 3 years is a strong indication that laboratory passage is a key influencing factor, 

although survivorship was not affected. Experimental selection of S. ratti larvae 

produced early in infection, which should in theory remove the need for parasites to 

invest in being long lived, also did not affect parasite survivorship but resulted in a 

change in fecundity of the parasite strains, suggesting that fecundity is perhaps a trait 

with higher plasticity (Paterson and Barber, 2007). It may perhaps require a greater 

number of laboratory passages for the effects on survivorship to become apparent. 

 

 

Laboratory infection regimes versus natural infections 

 

There are several ways in which laboratory infection regimes suffer a degree of 

artificiality, which are discussed below with reference to how repeated parasite 
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passage under these regimes may select for certain traits and affect infection kinetics, 

and the implications for natural infection. 

 

Needle injection 

In natural infections with N. brasiliensis or other strongylid nematodes, most hosts are 

lightly infected with low numbers of infective larvae in the field through skin 

penetration (Scott and Lewis, 1987). In contrast, laboratory infections are typically 

carried out with a dose of several thousand infective larvae, directly injected into each 

animal subcutaneously. Infecting animals by injection bypasses the need for larvae to 

sense, penetrate and migrate through host skin, and injection with such large numbers 

may possibly allow parasites which are not as adept in the invasive process to slip by. 

These procedures pose little selection of fitness on the parasite, as host barriers have 

been artificially relaxed. Through prolonged laboratory passage, such factors which 

should regulate infectivity in the natural scenario may become redundant and lost due 

to a lack of selective pressure during propagation. Although infectivity was 

determined to be similar between the laboratory passaged and field strains in my 

experiments, it was measured by quantifying the worm numbers on days 3 and 4 post-

infection via needle injection, which did not take into account the initial events of host 

invasion such as host-recognition and larval penetration. Thus while it can be 

concluded that laboratory passage did not affect the ability of the parasite to colonise 

the host, the ability to respond and penetrate the host was not compared. As an 

alternative to needle injection, it has been demonstrated that infections of 

Strongyloides ratti or N. brasiliensis can be established by direct application of small 

numbers of larvae onto the naked skin of rats (Tindall and Wilson, 1990a, b), but this 

method has not been widely utilised for N. brasiliensis. 

 

Large infecting dose 

The infecting dose may have a direct effect on infection outcome and the host 

immune response during primary infections. It has been shown in the literature and 

my experiments that ‘large single infections’ (generally involving several thousand 

infective larvae) of N. brasiliensis result in a parasitic phase which lasts for 10-14 

days, at the end of which adult worms are expelled by host immune mechanisms 

(Ogilvie and Jones, 1971). However, with small infections (50 L3), worm loss 

becomes gradual over a 30-day period (Haley and Parker, 1961). Moreover, when rats 
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are infected by daily exposure to small numbers of N. brasiliensis larvae (5 per day 

for 5 days a week), the infection profile is vastly different. These ‘trickle infections’ 

result in a gradual increase in worm burden which can be sustained for over 12 weeks. 

In addition, the worm population remained steady in the host a month after the 

administration of infective parasites is terminated, displaying the nature of chronic 

infections which is not seen in large single infections (Jenkins and Phillipson, 1971). 

It has been proposed, in the T. muris model, that chronic infections of parasitic 

nematodes can establish in the host under ‘trickle’ regimes because they do not trigger 

a Th2 response which is crucial for worm expulsion, instead biasing CD4
+
 T cells to 

mature in the Th1 pathway (Bancroft et al., 1994). However, in N. brasiliensis it was 

found that a Th2 response was still dominant in mice infected via a ‘trickle’ regime (5 

infective larvae for 3 times a week), and that the infection was sustained for 3 months, 

at the end which worms were expelled, presumably because the threshold worm 

burden was reached (Selkirk, unpublished data). These data suggest that the infecting 

dose could have an important effect on the outcome of an infection as well as the host 

immune response, and the ‘trickle’ regime is probably much closer to the situation in 

naturally occurring parasitic nematode infections. 

 

Although the type of immune response to large and trickle infections of N. 

brasiliensis is similar, a large infecting dose elicits a higher level of immune response 

which acts accordingly to regulate the worm population (Paterson and Viney, 2002). 

Through prolonged high-dose laboratory passage, parasite survivorship is consistently 

limited by a ferocious host immune response which increases in intensity as the 

infection progresses - it was shown in my experiments that cellular and cytokine 

responses of MLN cells to the parasites were higher on day 10 post-infection 

compared to day 7. Thus investment in survival past the egg-production period may 

not be particularly advantageous in this context, as expulsion is virtually inevitable 

considering the strength of response, and any progeny produced will continue to be 

artificially propagated in large amounts in any case. This could be a potential reason 

why the J strain can persist for longer in the host compared to the W strain. Similarly, 

even though investment in fecundity would increase the chances of propagation, the 

selective pressure presented by high-dose infections is probably much more relaxed 

compared to the natural scenario.  
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Alternatively, it is possible that survivorship and fecundity in the laboratory-passaged 

parasites were compromised in a trade-off with other life history traits which would 

be more useful in aiding propagation of the species in the long run (Paterson and 

Barber, 2007). The effect of such trade-offs may not be immediately apparent, since 

the interactions between selective forces can be very complex. It would be tempting to 

suggest that survival and/or fecundity of the W strain was decreased under a trade-off 

with age to maturity to enable an accelerated phase of egg production, the latter of 

which would make particular sense since investment in a shorter time to maturation 

would conceivably result in a smaller worm size, which limits fecundity (Poulin, 

1998). This theory has been supported by a optimality model for maturation time 

based on the fecundity, mortality rate and prepatent period of 28 gastrointestinal 

nematode species (Gemmill et al., 1999). It was observed in my experiments that egg 

production of the W strain initiated and peaked slightly earlier than the J strain, even 

though results did not reach statistical significance, but comparison with data in the 

literature do seem to suggest that the egg production period of the W strain has shifted 

forward (Ball, 2004; Kassai, 1982; Ogilvie and Jones, 1971). However, this effect was 

not replicated in the J strain after three years of laboratory passage. 

 

Another feature of the study by Paterson and Barber (2007) suggests that parasitic 

traits may undergo selection by repeated passage of parasite progeny produced early 

or late in infection. Thus routine laboratory passage may potentially select for sub-

populations of worms if larvae from eggs produced very early or very late in infection 

was repeatedly use for life cycle maintenance. In consideration to this, larvae from 

eggs produced mid-cycle or a mixture from all days post-infection has been used for 

infections to avoid this potential consequence.  

 

Host homogeneity 

Lastly, the life cycle of N. brasiliensis is typically maintained by serial passage in 

laboratory rats, usually making use of a single host strain. In our laboratory, outbred 

male Spraque Dawley (SD) rats were used for all passages and experimental 

infections. However, as was shown in the serial passage of H. polygyrus in 

Quackenbush mice, host homogeneity can restrict infection of the parasite to a 

particular host strain (Dobson and Owen, 1977), whereas in nature its host strain 
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preference may be more relaxed. Serial passage of N. brasiliensis in SD rats could 

thus potentially restrict its diversity in infection of different rat strains. 

 

 

Epidemiological perspectives in the use of laboratory passaged parasite strains 

 

It has been a concern of many parasitologists that laboratory infections may have 

limited relevance for natural infections, and that a laboratory-passaged strain would 

not be able to correctly represent the parasite in the wild (Maizels and Kurniawan-

Atmadja, 2002; Paterson and Viney, 2002).  In the current study, I have found that the 

infectivity (at least after the events of skin penetration) and establishment of the 

parasite was not affected by laboratory passage. The host immune response was also 

similar, so that immunological studies on laboratory-passaged parasites should still be 

relevant. However, the laboratory-passaged strain displayed a decrease in 

survivorship and fecundity, which would result in incorrect parameters for parasite 

clearance and transmissibility in epidemiological predictions in the natural setting. 

Virulence of the parasite, which is defined as the degree of pathogen-induced host 

mortality, usually assessed by LD50 (lethal dose which results in 50% of death in the 

host population), was not experimentally assessed due to ethical reasons. However, 

both strains were found to cause death of the host when infected with over 10,000 L3, 

so that the upper limit of worm dose (and thus perhaps virulence) appears to be 

similar in the two strains. Considering that multiple parameters which define infection 

dynamics can be affected by prolonged laboratory passage, the importance of field 

studies in advising epidemiological models is highlighted.   

 

 

Secreted proteins 

 

The W and J strain secrete similar amounts of proteins during both the L3A and adult 

stage, but their secreted protein profiles show some subtle differences. This may 

suggest that the two strains have faced different objectives in relation to their 

allocation of resources under their different life history conditions, traits which may 

have co-evolved with their secreted proteins. This is not surprising, as secreted 

proteins are the primary interface between the parasite and host. As discussed 
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regarding the limited selection of fitness in laboratory passage regimes, proteins 

which may otherwise be of high importance in natural infections may become 

redundant and gradually eliminated from the secretome of the W strain. Within the 

context of this study, the comparison of adult secreted proteins between the strains is 

probably more relevant to parasite survivorship and fecundity.  

 

Since the production of proteins is ultimately determined by genetic information, it is 

intuitive to assume that genetic variation would have an underlying basis in the 

adaptation of parasite life history traits, in which those with genotypes which can 

thrive in a particular environment will be selected and propagated. A clue to this 

would be that the adaptations acquired are inheritable and passed on through 

generations of progeny. For example, in adapting N. brasiliensis to mice, infectivity 

gradually rose from 14% to 56% over four passages, and furthermore, the resulting 

strain showed a decreased ability to infect rats (the original host) after eight passages 

(Wescott and Todd, 1966). Similarly, passaging Schistosoma mattheei through 

hamsters lowered its pathogenicity for sheep, the natural host (Taylor et al., 1977). In 

terms of molecular evidence, Strongyloides ratti lines with different genotypes were 

found to vary in survivorship and fecundity during infections (Paterson and Viney, 

2003). A more specific example of genetic alterations underlying parasite adaptation 

comes from experiments in which an African isolate of Schistosoma mansoni was 

maintained separately for twelve years in baboons and mice. The baboon line of S. 

mansoni showed polymorphic alleles at several loci, whereas single alleles were fixed 

in the mouse line at the same loci. After serial passage of the baboon line through 

laboratory mice for four generations, the resulting progeny were found to have fixed 

the same alleles as the original mouse strain, providing strong molecular evidence for 

host-induced selection (LoVerde et al., 1985).  

 

It is not surprising that immune sera to the W and J strain can cross-react with 

secreted proteins of each other in the immunoblotting experiment, as their secretion 

profiles are largely similar. On the other hand, the fact that strain-specific reaction 

was stronger suggests that the secreted proteins of the two strains are not completely 

identical. In addition, it was interesting that J strain-specific IgG is capable of higher 

recognition of proteins secreted by both the W and J strain than that of the W strain-

specific IgG. Although peripheral antibody responses are generally not related to 



148 

 

primary expulsion kinetics (Else and Grencis, 1996; Jacobson et al., 1977), it has been 

shown in S. ratti that parasite survivorship is negatively correlated to parasite-specific 

IgG1 and IgA, whereas fecundity and IgA levels are inversely correlated (Bleay et al., 

2007). The case for antibody responses influencing the outcome of N. brasiliensis 

infection however, is unclear but unlikely to be of high importance to immunity 

(Jacobson et al., 1977; Liu et al., 2010).  

 

In terms of secreted enzymes, it was determined that secreted proteins of the J strain 

did not display higher levels of AChE and nucleotide metabolising enzyme activities, 

suggesting that they are not directly responsible for the difference in persistence and 

fecundity between the strains. Although the secretion of AChE has been well 

described in N. brasiliensis (Hussein et al., 2002), this report provides the first data 

showing that this parasite secretes nucleotide metabolising enzymes also. The specific 

nucleotide metabolising activities in N. brasiliensis secreted proteins appear to be 

much higher than that of T. spiralis (Gounaris, 2002). However, these conclusions 

should be qualified by the fact that total secreted proteins may contain multiple 

enzyme activities which complicate analysis, and it would therefore be interesting to 

identify the enzymes responsible for nucleotide hydrolysis in N. brasiliensis before 

direct comparison with those of other nematodes. Secondly, the substrate specificities 

of the nucleotide metabolising enzymes of N. brasiliensis appeared to differ to those 

of T. spiralis, and more akin to the apyrases secreted by arthropods (Gounaris and 

Selkirk, 2005). It was recently discovered however, that T. circumcincta and O. 

ostertagi also secrete an enzyme apyrase which hydrolyses ATP, ADP, but not AMP 

(Nisbet et al., 2011; Zarlenga et al., 2011), the substrate specificities of which are 

closer to that of N. brasiliensis than to T. spiralis. Apart from indicating that the 

degradation of host nucleotides could be a common nematode strategy in 

immunoevasion, this may also suggest that the enzymatic schemes responsible for this 

phenomenon may differ between nematode clades.  
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Chapter conclusions 

 

In the current study, strong data has been presented to suggest that laboratory passage 

of parasitic nematodes such as N. brasiliensis could have profound effects on 

infection dynamics, which may ultimately misrepresent events of a natural infection, 

bias epidemiological models and potentially compromise efficacy of drugs and 

vaccines. Although it is not clear as to why the survivorship and fecundity of N. 

brasiliensis decreased after prolonged laboratory passage, it is most likely that 1) 

large infecting doses by needle injection relaxes the need for selection of the fittest, 

and 2) a possible trade-off of survival and fecundity may have occurred with an 

unknown trait that is not immediately apparent but is favourable in the laboratory-

passage context. Moreover, although a direct cause for the differences in infection 

dynamics could not be inferred through studies on host response and enzyme 

activities, this is likely to be determined by a plethora of biological activities rather 

than one or two major factors which could be measured by the assays employed here. 

Nevertheless this study is a cautionary tale to the potential dangers of practising 

multiple passages of parasites. By relaxing natural constraints to ensure a successful 

infection every time (i.e. infecting with large numbers of parasites and direct 

injection), we are repeatedly subjecting the parasites to a process in which infection is 

made more facile. This may make redundant functions important in a natural infection, 

along with the proteins responsible for them. As multiple passage of parasitic 

nematodes cannot be avoided in laboratory use, it may be advantageous to do this at 

the minimal infection dose possible, avoid selecting for sub-populations of worms, 

and explore methods of worm administration other than needle injection.   
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4.1 Introduction 

 

The initial events of the infectious process in parasitism are major determinants of the 

eventual infection outcome. The establishment of an infection is often dependent upon 

the parasite’s ability to locate, recognise, invade, colonise and develop in its host, 

which requires its infective stage to sense and respond to host signals appropriately. 

At its free-living, infective stage, many parasitic nematodes are developmentally 

arrested in an environmentally resistant state of metabolic repression, non-feeding 

with low motility (Ogilvie and Jones, 1971), which lowers the energy cost during the 

waiting period. Host factors activate the infective larvae to resume development and 

enter into its parasitic phase, an event known as the ‘transition to parasitism’, or 

‘activation’ (Hawdon et al., 1992). Once the parasite has entered its host, the factors 

for nematode activation become a black box to researchers. However, by breaking 

down the separate factors in the host environment individually, it can be studied in 

components by in vitro methods. 

 

It is evolutionarily feasible for a parasite to optimise its chances of host encounter and 

invasion to ensure its successful transmission and propagation. Most parasitic 

nematodes produce infective larvae in large amounts, which position themselves to 

maximise host encounter. The infective larvae of most soil-transmitted strongylid 

nematodes, including those of N. brasiliensis, are known to exhibit negative 

geotropism in which they crawl up objects, such as the tips of grass stems, for 

maximal likelihood of host contact (Haas, 2003; Kassai, 1982; Smyth, 1988). Once a 

host is encountered, the parasite has a small window of opportunity for invasion, 

within which it would need to sense and react to host signals appropriately. Many 

parasitic nematodes have been known to be responsive to chemical and thermal cues. 

Skin-penetrating larvae of A. caninum and Strongyloides stercoralis are attracted to 

the hydrophilic (aqueous) fraction of host skin (Granzer and Haas, 1991), and in the 

latter it was found that urocanic acid, a generic chemical found in most mammalian 

skin which is particularly concentrated in the foot (the mostly likely site of larval 

penetration), was the major chemoattractant (Safer et al., 2007). Infective larvae of 

most parasitic nematodes which infect warm-blooded animals are also positively 

thermotactic, suggesting that temperature could be another important factor in host 

finding and invasion (Granzer and Haas, 1991; Haas, 2003; Smyth, 1988).  
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During host invasion, infective larvae are activated by host factors to transit into their 

parasitic stage. At this point a string of events are triggered, including exsheathment 

of the outer cuticle (retained from the previous L2 stage), secretion of proteins, 

resumption of feeding, and reinitiation of the developmental program (Hawdon and 

Hotez, 1996). Resumption of feeding is frequently used as a marker for activation, 

because it is a distinguisher which can be easily sampled in vitro by feeding worms 

with fluorescent protein. Using this method, the factors which trigger activation of A. 

caninum L3 have been extensively studied. At host-like temperatures, feeding in A. 

caninum can be stimulated by exposure to canine serum and reduced glutathione 

(GSH), independent of pH and culture medium (Hawdon and Schad, 1990, 1992, 

1993). Serum and GSH can individually induce feeding, but show a synergistic effect 

when combined. Both compounds display concentration-dependent effects on feeding 

activation up to 10% for serum and 50 mM for GSH, at which saturation effects 

become apparent. Once exposed to these factors for a short period, the pathway to 

feeding can be activated without the continued presence of these stimuli, indicating a 

trigger / switch mechanism for activation. The trigger and saturation effects suggest 

that activation is a receptor-mediated signalling process. However, the trigger signals 

for activation may differ between nematode species. In a study of hookworm 

activation, serum and GSH were found to stimulate feeding in larvae of various 

species within the genus Ancylostoma to varying extents, but had no effect on Necator 

americanus (Hawdon et al., 1992), findings which cautions against over-

generalisations in the study of hookworm biology.  

 

The developmentally arrested L3 stage of parasitic nematodes is often compared to 

the dauer (German for resting, enduring) stage of C. elegans, which are 

phenotypically and functionally similar (Hotez et al., 1993). Under conditions of low 

food supply, high pheromone concentration (indicator of overcrowding) or high 

temperatures, L1 larvae of C. elegans may choose to enter an alternate state of 

dormancy, referred to as the dauer stage, after the second larval moult (Cassada and 

Russell, 1975; Golden and Riddle, 1984). Like the L3 stage of parasitic nematodes, 

the dauer stage is metabolically and developmentally repressed, non-feeding, 

ensheathed in a tough cuticle and resistant to harsh environmental conditions. C. 

elegans larvae can remain viable for many months in its dauer form, until favourable 
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environmental conditions induce them to exit the dauer stage and resume 

development to become reproductive adults. Indeed, this mechanism exhibits striking 

parallels with the transition of free-living L3 into its parasitic stages upon host entry, 

which encouraged many investigators to equate the hookworm activation process with 

dauer recovery. 

 

During invasion, larvae of parasitic nematodes are also activated to secrete a plethora 

of proteins, which may be involved with the penetration of defensive barriers, the 

avoidance or modulation of host immune response, the facilitation of feeding, survival 

and host colonisation (Hawdon and Hotez, 1996). These generally include a range of 

proteases, protease inhibitors, hydrolytic enzymes, cytokine homologues and 

antioxidant enzymes (Dzik, 2006). Very little is known about the specifics of how 

they facilitate the invasion process, but a few invasion factors have been studied. 

Notably, activated larvae of A. caninum, Ancylostoma brasiliensis, Anisakis simplex 

and H. contortus secrete an active hyaluronidase which is likely to facilitate tissue 

degradation, thus enabling passage of larvae through the epidermis and dermis during 

migration (Hotez et al., 1994; Hotez et al., 1992; Rhoads et al., 2000). 

Metalloproteases such as MTP-1 secreted by A. caninum L3 upon serum-stimulated 

activation showed an ability to digest tissue substrates and facilitate larval migration 

in vitro (Williamson et al., 2006; Zhan et al., 2002). Ensheathed larvae have also been 

reported to secrete an ‘exsheathing fluid’, which includes collagenases, proteases and 

lipases, which are able to digest the tough cuticles that are normally resistant to host 

and environmental attack (Rogers, 1982; Sommerville and Rogers, 1987). A more 

recent study has investigated the transcriptional changes in A. caninum during 

activation. It was found that the gene set which was upregulated in activated L3 

differs substantially from that of C. elegans during dauer recovery (Datu et al., 2008), 

suggesting that they may represent unique parasite-specific factors. A large number of 

the upregulated genes were predicted to be extracellular (likely to be secreted), with 

putative roles in host-parasite interactions. These include a range of cysteine-, 

aspartyl- and metalloproteases, as well as an enzyme apyrase and multiple members 

of the VAL protein family.  

 

The objective of this chapter is to investigate the factors which influence the 

activation and protein secretion of N. brasiliensis L3. Host-like factors which have 
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been successful in triggering activation in other nematode species were mimicked in 

my experiments, and the outcome assessed using an in vitro feeding assay. 

Chemotaxis assays were also carried out to discover substances to which N. 

brasiliensis L3 are responsive, and promising candidates were then tested as 

stimulants for activation. The influence of these factors on protein secretion of L3 was 

then investigated qualitatively through the use of one- and two-dimensional gel 

separation methods. Finally, the effect of resistin-like molecules (RELMs) on the 

early events of activation was studied, as a member of this protein family, RELMβ, 

has been found to inhibit larval chemotaxis and adult feeding in the parasitic 

nematodes S. stercoralis and H. polygyrus respectively (Artis et al., 2004; Herbert et 

al., 2009). 
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4.2. Chemotaxis of N. brasiliensis infective larvae 

 

Chemotaxis assays were carried out to elucidate the chemical cues which attract N. 

brasiliensis L3. This was done by monitoring larval migration on solid agarose, with 

test wells punched into opposing edges of the plate. When only water was added into 

the test wells, L3 migrated randomly or remained stationary. The aqueous fraction 

(Aq) of rat skin and rat serum were then tested as chemoattractants in a time-course 

experiment (Fig. 4.1). Directed migration of L3 towards both chemoattractants were 

observed by 30 minutes after the addition of worms and increased over time, until the 

numbers were stabilised by 120 minutes into the experiment. At every time-point 

sampled, the aqueous fraction of rat skin proved to be a stronger chemoattractant than 

rat serum. A comparison of other substances as chemoattractants were carried out at 

the 120-minute time point (Fig. 4.2), in which L3 were found to be most attracted to 

the aqueous fraction of rat skin. The lipid fraction (Lp) of rat skin had no effect on the 

migration of N. brasiliensis L3, but the worms showed some directed chemotaxis 

towards urocanic acid, albeit to a lesser extent than to the aqueous fraction of rat skin. 

N. brasiliensis L3 were moderately attracted to rat serum, and the degree/level of 

chemoattraction diminished as serum concentration was decreased. Migration of L3 

was not affected by 0.3% or 7% BSA (equivalent protein concentration to the aqueous 

fraction of rat skin and neat rat serum respectively), showing that the worms were not 

solely migrating up a generic protein gradient, but the process is dependent on 

specific chemical cues derived from the host.  

 

The chemotaxis assays were originally carried out on 0.5% and 0.7% agar plates, as 

suggested by experiments on S. stercoralis (Safer et al., 2007). Interestingly, a 

number of N. brasiliensis L3 penetrated into the soft agar equilibrated with the test 

substances, evident when the aqueous fraction of rat skin or rat serum were used as 

chemoattractants. This suggests that these substances may have induced penetrative 

behaviour in N. brasiliensis L3. However, the larvae which penetrated often got stuck 

within the agar, which made the scoring of positive chemotaxis in the test wells 

difficult and inconsistent. The assay was then modified to use 0.9% agarose as the 

solid medium, the surface on which the larvae could glide freely but did not penetrate, 

so that the distinction of directed chemotaxis towards different chemical cues could be 

determined more uniformly and reliably. 
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Figure 4.1. N. brasiliensis L3 worms show positive chemotaxis towards the aqueous (Aq) 

fraction of rat skin and rat serum. Results show the time course of chemotaxis expressed as 

mean numbers of L3 in the positive well (containing test chemoattractant, i.e. rat skin aq 

fraction or rat serum) less those in the negative well (containing water) + SEM (where n = 3), 

assayed in triplicate. The assays were carried out on 0.9% agarose plates. Numbers were 

scored at the indicated time points after the addition of L3 (2 droplets each of 150 worms) 

onto the test plates. 
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Figure 4.2. Chemotaxis of L3 towards constituents of rat skin and rat serum. Results 

show the time course of chemotaxis expressed as mean numbers of L3 in the positive well 

(containing test chemoattractant) less those in the negative well (containing water) + SEM 

(where n = 3), assayed in triplicate. Numbers were scored 120 minutes after the addition of 

L3 (2 droplets each of 150 worms) onto the test plates. Aq: aqueous fraction; Lp, lipid 

fraction; BSA; bovine serum albumin. The assays were carried out on 0.9% agarose plates. 
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4.3. Activation of feeding in N. brasiliensis L3 

 

Initiation of feeding is a hallmark of larval activation often used to determine the 

emergence of L3 from its state of developmental arrest, as it is a distinguisher which 

can be sampled relatively easily by measuring the worms’ ingestion of fluorescent 

FITC-BSA. Initiation of feeding in normal L3 was induced from 6 hours after 

cultivation at 37°C, as evident from fluorescence in the worm’s alimentary tract (Fig. 

4.3A), and the percentage of feeding worms increased over time up to approximately 

90% at the 48-hour time point (Fig. 4.3B).  

 

Exsheathment is a prerequisite for feeding, as the tough outer cuticle envelops the 

worm and obstructs its buccal opening. Freshly isolated larvae consist of a mixture of 

ensheathed and exsheathed worms, suggesting that exsheathment can occur naturally 

without an activation stimulus. When larvae were cultured at 37°C, worms were 

observed to exsheath, as evident by the shedding of their cuticles in the culture 

medium (Fig. 4.4A). Exsheathed larvae were smaller and tended to curl up during 

cultivation at 37°C (Fig. 4.4B). Feeding was observed in exsheathed larvae only, at all 

time-points and conditions sampled. By 24 hour cultivation at 37°C, all larvae were 

observed to be exsheathed (Fig. 4.4C). In contrast, the morphology of L3 cultured at 

20°C remained the same, and no empty cuticles or feeding activities were observed in 

any of the experiments conducted at this temperature (Fig. 4.4D).  

 

Exsheathment of worms can also be achieved chemically with the use of sodium 

hypochlorite. However, chemically exsheathed L3 actually showed a lower 

percentage of feeding activation than normal L3 at all time points, achieving only 

50% feeding by 48-hour after cultivation at 37°C (Fig.4.3B). While it was possible 

that sodium hypochlorite treatment may have had harmful effects on the worms, it 

may also mean that activation of feeding cannot be achieved solely by the removal of 

the worm’s outer cuticle. The experiments were also carried out at 20°C, and no 

feeding activity was observed in L3 with or without chemical exsheathment.
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Figure 4.3. Time course of feeding activation of N. brasiliensis L3 at 37°C. Ingestion of 

FITC-BSA results in fluorescence in the alimentary tract of L3, indicating feeding activation. 

A) Images of L3 under phase and fluorescence microscopy at the indicated time points. Scale 

bar (black): 400 µm. B) Percentage of feeding was sampled at 9 time points (0, 3, 6, 14, 16, 

20, 24, 38 and 48 hours) from triplicate cultures (200 worms were sampled from each culture), 

expressed as mean values with the error bars representing the 95% confidence intervals (CI), 

in red for normal L3 and blue for chemically exsheathed L3 (ExsL3).  
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Figure 4.4. Morphology of exsheathed and ensheathed L3 during cultivation. All images 

photographed at x100 magnification. A) Morphology of exsheathed L3 at 37°C. Shed cuticles 

were also visible under light microscopy. B) Comparison of exsheathed and ensheathed L3 at 

37°C. The former is enveloped in a tough cuticle, distinguished by a tapered posterior end. 

Both pictures (A and B) were taken at 6 hours post-activation at 37°C. C) All larvae were 

exsheathed by 24 hours activation at 37°C. D) Morphology of exsheathed and ensheathed L3 

at 20°C, 24 hours into incubation. The ridged surface of ensheathed L3 can be observed in 

this picture. Scale bar (black): 400 µm. 
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I next sought to investigate if rat serum had an effect on activation of feeding in N. 

brasiliensis L3. The experiments were carried out at 20°C and 37°C, with or without 

the inclusion of rat serum in the culture medium (Fig. 4.5). It was found that feeding 

activities cannot be initiated at 20°C, regardless of the presence of rat serum, 

suggesting that temperature is a critical factor for activation. Feeding was activated at 

37°C by 6 hours into cultivation to approximately 20%, which increased to about 90% 

by 48 hours, and rat serum had no effect on the feeding percentage at either time point.  

 

Similarly, assays were carried out to investigate the effect of rat skin fractions 

(aqueous and / or lipid) on feeding activation (Fig. 4.6). The results were similar to 

that of rat serum; neither the aqueous or lipid fraction or rat skin, or a combination of 

both, influenced feeding activation in N. brasiliensis L3 at 20°C or 37°C. In a separate 

experiment, a whole piece of rat skin was included in the culture, and feeding was 

also unaffected. 
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Figure 4.5. The effect of temperature and rat serum (RS) on activation of feeding. Where 

indicated (+RS), 10% rat serum was included within the medium in which N. brasiliensis L3 

were cultured, at 20°C or 37°C. Feeding was assessed by ingestion of FITC-BSA and 

sampled at 6 or 48 hours from the beginning of the cultivation period in triplicate. Results are 

expressed as mean values with error bars representing the corresponding 95% confidence 

intervals (CI). 
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Figure 4.6. The effect of temperature and rat skin on feeding activation. Where indicated, 

the aqueous (Aq) or lipid (Lp) fraction of rat skin was included within the medium in which N. 

brasiliensis L3 were cultured, at 20°C or 37°C. No additives were added to the control (Ctrl) 

condition. Feeding was assessed by ingestion of FITC-BSA and sampled at 6 or 48 hours 

from the beginning of the cultivation period in triplicate. Results are expressed as mean 

values with error bars representing the corresponding 95% confidence intervals (CI). 
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4.4. Activation of larval protein secretion 

 

The conditions which stimulate L3 to secrete proteins were investigated. The secreted 

proteins were metabolically radiolabelled by the addition of 
35

S-methionine (
35

S-Met) 

in the medium with the worms during culture, to assess de novo protein synthesis 

under the specified conditions. At 20°C, L3 secrete only a small amount of proteins, 

whereas much greater amounts were secreted at 37°C (Fig. 4.7). Rat serum did not 

affect the secretion profile at either temperature. The labelled proteins secreted at 

37°C were further resolved by two-dimensional gel electrophoresis (2-DE) for a finer 

comparison, in which the secretion profiles were again mostly indistinguishable in the 

presence or absence of rat serum (Fig. 4.8 and 4.9, secreted proteins of W strain and J 

strain worms respectively). L3 were then cultured in the same manner but with 

addition of rat skin fractions instead of rat serum. It was found that neither that 

aqueous or lipid fraction of rat skin affected the secretion profile of L3, at either 20°C 

or 37°C (Fig. 4.10).  

 

Apart from the activation of de novo protein synthesis, some parasitic helminths have 

also been known to pre-synthesise and store proteins during the pre-parasitic phase, 

which were then released upon activation. To investigate if such release of secreted 

proteins can be induced in N. brasiliensis, L3 were pre-labelled by incubation with 

35
S-Met at room temperature for 40 hours, washed extensively to remove the free 

excess radioisotope, then cultured for 30 minutes in fresh medium under the specified 

conditions, after which the proteins secreted during this short period were collected, 

resolved on SDS-PAGE, and visualised by autoradiography (Fig. 4.11). It was found 

that an elevation of temperature to 37°C alone did not induce release of pre-

synthesised proteins. As the initial penetration of larvae into host skin presumably 

involves the secretion of hydrolytic enzymes, I also sought to investigate if exposure 

to rat skin fractions may stimulate the release of pre-synthesised proteins. The 

aqueous fraction of rat skin stimulated the release of a small bolus of proteins, to the 

same effect at 20°C and 37°C (Fig. 4.11). The lipid fraction of rat skin also stimulated 

this secretion but to a lesser extent.  

 

Pre-synthesised proteins released by the aqueous fraction of rat skin were resolved on 

2-DE (visualised by autoradiography) and compared with the normal secretion profile 
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at 37°C (visualised by Coomassie blue staining). It was found that these pre-

synthesised proteins were identical to those normally secreted at 37°C (Fig. 4.12), 

suggesting that there is no specific subset of proteins synthesised and released in this 

manner. 
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Figure 4.7. Protein secretion by N. brasiliensis L3 is activated at 37°C, and is unaffected 

by exposure to rat serum (RS). L3 secreted proteins (J strain) were metabolically labelled 

with 
35

S methionine (
35

S-Met), resolved by 10-20% gradient SDS-PAGE and visualised by 

autoradiography. L3 were pre-sensitised with rat serum (+RS) where indicated. Each lane 

shows the protein secreted by 1700 L3 over a cultivation period of 2 days under the indicated 

conditions. 
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Figure 4.8. Rat serum sensitisation shows no effect on the protein secretion profile of N. 

brasiliensis L3 (W strain) at 37°C. L3 secreted proteins were metabolically labelled with 

35
S-Met, separated horizontally by isoelectric focusing and vertically by 10-20% gradient 

SDS-PAGE, then visualised by autoradiography. L3 were pre-sensitised with rat serum (+RS) 

where indicated. The amount of protein loaded was standardised to approximately 750,000 

cpm per gel.  
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Figure 4.9. Rat serum sensitisation shows no effect on the protein secretion profile of N. 

brasiliensis L3 (J strain) at 37°C. L3 secreted proteins were metabolically labelled with 
35

S-

Met, separated horizontally by isoelectric focusing and vertically by 10-20% gradient SDS-

PAGE, then visualised by autoradiography. L3 were pre-sensitised with rat serum (+RS) 

where indicated. The amount of protein loaded was standardised to approximately 750,000 

cpm per gel.  
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Figure 4.10. Stimulation with rat skin fractions did not affect de novo production of 

proteins by L3. L3 (J strain) were pre-sensitised with rat skin fractions for 24 hours, washed 

and cultured in fresh medium with 
35

S-Met for 2 days at 20°C or 37°C, so that newly 

synthesised proteins were metabolically labelled. The medium was collected, concentrated 

and resolved by 10-20% gradient PAGE. 
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Figure 4.11. Release of pre-synthesised proteins by N. brasiliensis L3 is stimulated by rat 

skin fractions, independent of temperature. N. brasiliensis L3 (J strain) were pre-labelled 

by cultivation at room temperature for 40 hours with 
35

S-methionine and stimulated with 

aqueous (Aq) or lipid (Lp) fractions extracted from 0.25 g of rat skin, at 20°C or 37°C for 30 

minutes. The medium was collected, concentrated, resolved by 15% SDS-PAGE and 

visualised by autoradiography. 
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Figure 4.12. Proteins released by stimulation with rat skin are the same as those released 

at 37°C. A) Separation profile by 2-DE of L3 proteins secreted during cultivation at 37°C, 

visualised by Coomassie blue staining. B) Separation profile of pre-synthesised proteins 

stimulated by the aqueous fraction of rat skin, visualised by autoradiography. 
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4.5. Immunogenicity of L3 proteins 

 

Proteins secreted by L3 through activation at 37°C (hereafter referred to as L3A 

secreted proteins) were resolved by 15% SDS-PAGE and transferred to nitrocellulose 

membranes for Western blotting analysis. The proteins were reacted with sera 

collected from rats after a primary infection or a secondary infection (Fig. 4.13). 

Reactivity with the secondary immune serum was observed to be much stronger than 

that with the primary immune serum, indicating that immune recognition of L3A 

secreted proteins was increased by reinfection.  

 

The L3A proteins secreted by the J strain was then resolved on 2-DE and analysed by 

Western blotting (Fig. 4.14). No reactivity was observed with the primary immune 

serum, but 8 distinct spots of reactivity were found with the secondary immune serum. 

The strength of reactivity was not correlated to the quantity of protein. For example, 

spot 1 and 2 on Fig. 4.14B, i.e. those with the highest reactivity, were mapped to very 

small protein spots on Fig. 4.14C. In contrast, spot 4 showed relatively weak 

reactivity, but represented a major protein. Their differential reactivity to immune 

serum suggests that these proteins would be interesting for future studies.   

 

Proteins secreted by L3A show greater reactivity with hyperimmune serum than those 

secreted by adult worms, as shown by Western blotting analysis (Fig. 4.15). ELISA 

was carried out to determine the immunoglobulin isotypes directed against secreted 

proteins of L3 and adults during infection. Hyperimmune mouse serum was initially 

titrated to determine the optimal dilutions (Fig. 4.16). Sera from individual mice were 

then used at an appropriate concentration for each immunoglobulin isotype (Fig. 4.17). 

Background levels (assessed by reaction with naïve sera) were very low. Higher 

levels of IgG1 than IgG2a specific to both L3A and adult secreted proteins were 

found, indicating a Th2-biased profile. Comparable levels of IgA and IgE were also 

detected, which is a typical response to gastrointestinal nematode infection. 

Significantly higher levels of IgG1, IgG2a, IgG2b and IgE were observed to L3A 

secreted proteins in comparison to those from adult worms.  
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Figure 4.13. Immunogenicity of L3A secreted proteins during infection. L3A secreted 

proteins of the J strain was resolved A) by 15% SDS-PAGE and visualised by Coomassie 

blue staining, with 25 μg of proteins loaded per lane. B) Western blotting analysis of L3A 

proteins, in which reactions were carried out with sera collected from rats after a primary or 

secondary infection at a dilution of 1:400. Anti-rat IgG-HRP secondary antibody was used 

(1:60,000). 
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Figure 4.14. N. brasiliensis L3A secreted proteins, separated by 2-DE, and reactivity 

with secondary immune serum. A) L3A secreted proteins resolved on 2-DE showed no 

reactivity to primary immune serum, but B) reacted specifically with secondary immune 

serum, resulting in 8 distinct reactive spots. Reaction was carried out with primary or 

secondary immune serum (1:400). Anti-rat IgG-HRP secondary antibody was used (1:60,000). 

C) The reactive spots (numbered 1-8, in descending order of reactivity) were mapped to the 

original 2-DE separation profile on the original nitrocellulose membrane visualised by DB71 

staining. 
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Figure 4.15. Secreted proteins of L3A show greater reactivity with hyperimmune serum 

than those of adult worms. A) Protein separation profile of L3A or adult (Ad) secreted 

proteins on 15% SDS-PAGE, in which 15 μg of proteins was resolved per lane, visualised by 

DB71 staining. B) Western blot analysis of these proteins, reaction to hyperimmune serum 

(1:400) from mice infected 4 times with N. brasiliensis. Anti-mouse IgG-HRP secondary 

antibody was used at a dilution of 1:2000. 
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Figure 4.16. Detection of L3 or adult-specific immunoglobulin isotypes in hyperimmune 

sera by ELISA. Plates were coated with L3 or adult secreted proteins at 5 μg/ml and reacted 

with hyperimmune serum pooled from 5 multiply infected mice, diluted to the indicated 

concentrations. HRP-conjugated secondary antibodies to immunoglobulin isotypes were used. 
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Figure 4.17. L3 and adult-specific immunoglobulin isotypes in hyperimmune sera. 

ELISA plates were coated with L3 or adult secreted proteins at 5 μg/ml and reacted with sera 

collected from 5 individual naïve or multiply infected (hyperimmune) mice, each assayed in 

triplicate. Sera were diluted 1:100 for IgA and IgE detection and 1:1000 for detection of all 

IgG subclasses. HRP-conjugated secondary antibodies to immunoglobulin isotypes were used. 

Asterisks indicate a significant difference between reactivity to L3A and adult secreted 

proteins, ***P < 0.001, **P < 0.01. Hash signs indicate a significant difference between 

levels of antibody isotypes, ### P < 0.001. 
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4.6. The effect of RELMs on chemotaxis and feeding 

 

The REsistin-Like Molecules (RELMs) consist of a family of proteins secreted by 

mammalian cells including those of humans and rodents (Steppan et al., 2001). In 

particular, RELMα and RELMβ have been shown to be relevant to nematode 

infection (Artis et al., 2004; Pesce et al., 2009). Furthermore, RELMβ has been 

shown to bind to chemosensory structures on S. stercoralis and inhibit larval 

chemotaxis in S. stercoralis (Artis et al., 2004), as well as blocking feeding activities 

in the adult stage of H. polygyrus (Herbert et al., 2009). Therefore, the focus of these 

experiments was to study the effect of RELMs on chemotaxis, activation and feeding 

of N. brasiliensis.  

 

Incubation with RELMα, β or γ did not seem to affect the general motility or 

appearance of L3 as observed by light microscopy (Fig. 4.18), nor did it affect larval 

migration towards an aqueous fraction of rat skin in chemotaxis assays (Fig. 4.19). 

The number of larvae which migrated towards rat skin was not affected when RELMα, 

β or γ were used at 5 µg/ml or 50 µg/ml, the latter of which is the RELMβ 

concentration effective in inhibiting chemotaxis of S. stercoralis larvae (Artis et al., 

2004). Additionally, RELMβ also did not affect chemotaxis of L3 when a different 

substance, rat serum, was used as chemoattractant (Fig. 4.20).  

 

Assay with FITC-BSA showed that RELMβ had no effect on the activation of feeding 

in L3 (Fig. 4.21). Approximately 60-70% of larvae were activated to feed by 24 hours 

into cultivation at 37°C, regardless of the presence of RELMβ at 5 µg/ml or 50 µg/ml. 

To additionally assess the rate of feeding, L3A were fed with BSA radiolabelled with 

125
I, and the amount of BSA ingested was quantified by radioactive counts. RELMβ 

had no effect on the rate of feeding in L3A (Fig. 4.22). As the inhibition of feeding by 

RELMβ has been reported for the adult stage of H. polygyrus, I also sought to assess 

the rate of feeding in N. brasiliensis adults, although no significant difference was 

found between groups incubated with RELMβ and control (Fig. 4.23). 
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Figure 4.18. RELM proteins do not have any overt effect on L3 motility. L3 were 

observed under a light microscope after incubation with RELMs at room temperature for 3 

hours. A negative control is also shown in which L3 were incubated with PBS only. L3 were 

photographed at x100 magnification. Scale bar (black): 400 µm. 
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Figure 4.19. RELMs do not affect chemotaxis of L3s to rat skin. Prior to the assay, L3s 

were pre-incubated with RELMα/β/γ or BSA for 1 hour. Each bar show the number of L3s in 

the positive well (containing rat skin aqueous fraction) less those in the negative well 

(containing water), + 1 SEM, assayed in triplicate. Numbers were scored 120 minutes after 

addition of L3s. A negative control is also shown in which L3 were incubated with PBS only. 
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Figure 4.20. RELMβ does not affect chemotaxis of L3s to rat serum. Prior to the assay, 

L3s were pre-incubated with RELMβ or BSA for 1 hour. Each bar show the number of L3s in 

the positive well (containing rat serum) less those in the negative well (containing water), + 1 

SEM, assayed in triplicate. Numbers were scored 120 minutes after addition of L3s. A 

negative control is also shown in which L3 were incubated with PBS only. 
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Figure 4.21. RELMβ does not affect the activation of feeding in L3. L3 were cultured for 

24 hours, then incubated with RELMβ for 1 hour (where indicated) prior to feeding with 

FITC-BSA. Each bar shows the proportion of the larval population feeding at 24 hours post-

incubation, + 1 SEM, in triplicate. A negative control is also shown in which L3 were 

incubated with PBS only. 
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Figure 4.22. RELMβ does not affect the feeding rate of L3. L3 were cultured for 24 hours, 

then incubated in RELMβ or BSA (where indicated) for 1 hour prior to feeding with 
125

I-BSA 

for another 2 hours. Each bar corresponds to the amount of 
125

I-BSA uptake of L3, + SEM, 

assayed in triplicate. A negative control is also shown in which L3 were incubated with PBS 

instead of the RELM molecules. Worms were heat-killed by incubation at 65°C for 10 

minutes and assayed in parallel to the test conditions to assess background binding of 
125

I-

BSA to the worm surface. This background value + 3 SEM was shaded at the bottom of the 

graph (1266 cpm). 
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Figure 4.23. RELMβ does not affect the feeding rate of adult worms. Adult worms were 

incubated in RELMβ or BSA (where indicated) for 1 hour prior to feeding with 
125

I-BSA for 

another 2 hours. Each bar corresponds to the amount of 
125

I-BSA uptake of L3, + SEM, 

assayed in triplicates. A negative control is also shown in which L3 were incubated with PBS 

instead of the RELM molecules. Worms were heat-killed by incubation at 65°C for 10 

minutes and assayed in parallel to the test conditions to assess background binding of 
125

I-

BSA to the worm surface. This background value + 3 SEM was shaded at the bottom of the 

graph (5110 cpm). 
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4.7. Discussion 

 

The factors for activation and protein secretion have been investigated in this chapter. 

In this section, aspects of these activities will be discussed with additional reference to 

nematode biology and the pathways which lead to these events. 

 

 

Host finding and invasion of skin-penetrating nematodes 

 

The ability of the parasite to sense and respond appropriately to host signals is 

fundamental to successful host detection and invasion. Skin-penetrating nematodes 

have been found to be attracted to chemical factors derived from the skin. Like N. 

brasiliensis, infective larvae of A. caninum are attracted to aqueous extracts of host 

(dog) skin, but not the lipid fraction (Granzer and Haas, 1991). This finding is also 

true of S. stercoralis larvae, and through fractionation of the aqueous extracts, it was 

subsequently found that the major chemoattractant for S. stercoralis is urocanic acid, 

a chemical found in mammalian skin (Safer et al., 2007). In these assays urocanic 

acid was used at 150 mM to demonstrate its chemotactic properties, which I replicated 

in addition to two other concentrations at 250 and 50 mM, although no significant 

concentration-dependent effects were found. This range encompasses the 

concentration of urocanic acid in normal human skin, which is approximately 60 mM 

(Safer et al., 2007). Chemoattraction to this relatively generic compound is perhaps 

reflective of the wider host spectrum of S. stercoralis, which can infect a range of 

mammals including dogs, humans and other primates (Safer et al., 2007). In contrast, 

N. brasiliensis has a much higher host specificity (normally infecting only rats), so it 

is likely that there exist other factors unique to rat skin that could serve as more 

specific entry cues for infective larvae. It would be an interesting project to elucidate 

the identity of such cues for N. brasiliensis in future work. Specificity of host 

recognition is particularly important for a parasite with a narrow host spectrum, since 

there may be fewer opportunities for infection, and entering a host which is not 

permissive to its development would be detrimental to its subsequent survival and 

propagation. 
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However, there also appear to be some common cues underlying host-finding and 

invasive behaviour in skin-penetrating nematodes. In addition to urocanic acid, S. 

stercoralis larvae are also sensitive to less specific host factors such as carbon dioxide 

and sodium chloride concentrations (Forbes et al., 2003; Sciacca et al., 2002). Carbon 

dioxide at physiological concentrations (3.3 - 4% in human breath) was found to 

induce active, non-directional crawling and waving in infective larvae, termed 

‘nictating’ or ‘questing’, behaviour which seems to facilitate host detection and 

attachment of A. caninum and S. stercoralis, but not H. contortus, which normally 

infects the host occur via oral ingestion and so presumably does not require active 

host-seeking strategies (Sciacca et al., 2002). Infective larvae of Strongyloides ratti 

and S. stercoralis migrate optimally towards a sodium chloride concentration of 30 – 

70 mM (Forbes et al., 2003; Tobata-Kudo et al., 2000a), a range which suggests that 

they could be responsive to sweat (Patterson et al., 2000). It is also very well-known 

that most parasitic nematodes of warm-blooded animals, such as N. brasiliensis and 

Strongyloides ratti, are strongly and positively thermotactic, and they show increased 

motility in response to warmth (Kassai, 1982; Tobata-Kudo et al., 2000b). Infective 

larvae of the hookworms A. caninum, N. americanus and A. duodenale were shown to 

migrate sensitively to a zone of 37°C on a heat gradient, and they also exhibit 

turnback behaviour from lethal temperatures. It was additionally shown in these 

species that penetrative behaviour could be induced by heat alone (Granzer and Haas, 

1991; Haas, 2003). 

 

Interestingly, penetrative behaviour can also be induced in A. caninum L3 by aqueous 

skin extracts and serum (Granzer and Haas, 1991). This mirrors my results in that 

these substances also induced N. brasiliensis L3 to penetrate when a permissive 

medium (agar) was used. However, penetrative behaviour in N. americanus and A. 

duodenale were induced by fatty acids only (Haas et al., 2005), suggesting that 

penetrative signals can differ even between closely related skin-invading nematodes. 

Although signals for host-finding and penetration may not be mutually exclusive, I 

believe that my findings may be more relevant to the latter, as chemoattraction may 

not be such an effective host finding strategy for a fast-moving host such as the rat. 

Indeed, analysis of the chemotactic properties of trematode cercariae showed that 

species which infect fast-moving host do not use chemotaxis for host finding, whereas 

those that infect slower moving targets such as snails do (Haas, 2003). Moreover, it is 



187 

 

also not clear how a chemical gradient of aqueous chemoattractant could be freely 

established from the intact skin of the host rat, leaving behind tracks for the infective 

larvae to actively follow. It is more likely that the larvae, abundantly positioned on the 

on the tips of grass stems, may be induced to become more active when a host is near 

(by less specific cues such as carbon dioxide levels or heat radiation) and would then 

attach passively to rat fur during a chance encounter, after which specific host cues 

may direct them towards entry sites on skin surface where they would be induced to 

penetrate towards the correct direction by chemo- and / or thermo-orientation. 

 

 

Activation of feeding and protein secretion in parasitic nematodes 

 

Activation is an intriguing process at the point which the parasite transits from its 

free-living form into a parasitic phase, and the study of it improves our understanding 

of the infective process. The in vitro fluorescent feeding assay developed by John 

Hawdon has been a useful tool in elucidating host factors which trigger activation, 

which was studied in most detail in A. caninum. The kinetics of activation appears to 

be similar between A. caninum and N. brasiliensis. Feeding activities were initiated in 

vitro in both species from 6 hours post-activation, and peaks at a feeding percentage 

of approximately 90%, although this can be achieved at an earlier time-point in A. 

caninum under serum and GSH-stimulated conditions (Hawdon and Schad, 1990, 

1992).  

 

The major differences were the activation signals for the two species. An elevation of 

temperature to 37°C was sufficient to induce feeding in N. brasiliensis L3 to 90%, 

whereas only 20% of A. caninum L3 could be induced to feed under these conditions 

(Hawdon and Schad, 1990). With addition of serum and GSH, the feeding percentage 

of A. caninum can be increased to 90% (Hawdon and Schad, 1992), whereas these 

compounds had no effect on the feeding of N. brasiliensis L3 at any time point 

(Huang et al., 2010). Rat skin, either whole or fractionated, did not affect feeding, 

even though it was shown to be a potent chemoattractive signal for host-finding and / 

or penetration. A temperature cue at 37°C was also sufficient to stimulate synthesis 

and secretion of a complex mixture of proteins, again unaffected by serum or rat skin. 

These findings seem to suggest that a chemosensory input is not essential, but a 
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thermosensory input can suffice to induce activation in N. brasiliensis L3. This is 

somewhat surprising because nematode parasite activation is generally viewed as a 

complex event, sensitively dependent on physiochemical signals from the host. 

Nevertheless, it is notable that feeding and protein secretion represent a subset of the 

early events associated with activation, and the later, more complex events such as 

development to adults are likely to require more complex stimuli and cues.    

 

Chemical exsheathment, which did not stimulate L3 to feed at 20°C and actually 

decreased feeding at 37°C, was found to have adverse effects on worm viability as 

shown by the MTT assay (Huang et al., 2010), thus explaining the results. 

Nevertheless, it is not likely that initiation of feeding can be achieved solely by 

exsheathment of L3, as 1) Larvae which exsheathed naturally at room temperature did 

not show any feeding activities, and 2) the worms which remained viable after sodium 

hypochlorite treatment did not start feeding at an earlier time point than their 

unexsheathed counterparts. Moreover, nonfeeding L3 of A. caninum have been 

observed to exsheath in the absence of serum, suggesting that exsheathment and 

feeding are initiated by different stimuli (Hawdon and Schad, 1990). This is likely to 

be the case for N. brasiliensis L3 as well. In my experience, larvae freshly isolated 

from faecal cultures were usually a mixture of ensheathed and exsheathed worms, and 

there seems to be fewer ensheathed worms when older batches of faecal cultures were 

isolated, which suggests that N. brasiliensis L3 may be able to exsheath naturally at 

room temperature within the faeces, prior to activation. 

 

L3 of A. caninum can also be activated to secrete proteins, but serum and GSH 

stimulation are required (Hawdon et al., 1996). The fact that a temperature cue alone 

is sufficient to stimulate protein secretion in N. brasiliensis means that this is an ideal 

system for studying activation stimuli for protein secretion in larval parasitic 

nematodes. By cultivation at 37°C alone, clean and pure secreted proteins can be 

collected from supernatants, uncontaminated by foreign (e.g. serum) proteins. 

Through repeated batch culture, a comprehensive proteomics project could possibly 

yield fruitful data. A proteomics approach is likely to yield more realistic data for the 

study of secreted proteins than a transcriptomic approach (such as that carried out by 

Datu et al., 2008), which, although informative, may not guarantee an infallible 

prediction of protein expression and secretion. The most abundantly secreted protein 
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found in A. caninum was named Ancylostoma secreted protein 1 (Hawdon et al., 

1996). Subsequently, it was found to belong to a large family of related proteins, with 

homologues in virtually all nematodes studied to date. We have found that these 

proteins are also secreted by N. brasiliensis, the study of which is the focus of Chapter 

5 of this thesis. 

 

The fact that N. brasiliensis L3 can release pre-synthesised proteins upon stimulation 

by rat skin suggests that chemosensory input is at least in part involved in some 

aspects of the early events of activation. Although protein pre-synthesis in the L3 

stage has not been studied in parasitic nematodes, a precedent of this has been 

investigated in infective cercariae of the trematode Schistosoma mansoni (Newport et 

al., 1988; Salter et al., 2000). Host penetration by cercariae was found to be facilitated 

by a serine protease which was stored in their glands and released upon skin lipid 

stimulation. This means that important invasion factors need not necessarily be 

upregulated at activation, which additionally points to another weakness in the 

transcriptomic approach to the study of larval protein secretion. Indeed, transcripts of 

Ac-MTP-1, a metalloprotease which was shown to be one of the most abundantly 

secreted proteins upon activation and important for host invasion, was found in non-

activated larvae as opposed to activated larvae (Datu et al., 2008),  It is very possible 

that nematodes may also be able to synthesise large amounts of proteins during their 

quiescent period – dauer larvae of C. elegans have been found to express thousands of 

genes despite their developmental and metabolic arrest (Fielenbach and Antebi, 2008). 

Theoretically, pre-synthesis of invasion factors would be a highly feasible strategy for 

nematode parasites of animal hosts, considering the narrow window of opportunity for 

invasion. The ability to immediately and abundantly release these proteins on host 

contact would be highly beneficial to the success of host colonisation.   

 

Through Western blotting and ELISA analyses, it was found that L3A secreted 

proteins are highly immunogenic. Sera from animals which were multiply infected 

with N. brasiliensis showed higher immune recognition with L3A secreted proteins 

than with adult secreted proteins. This is most likely due to the fact that the majority 

of the parasites are killed at the lungs during reinfection (Harvie et al., 2010), so that 

secreted factors of L3 are repeatedly exposed to the immune system while those of 

adults are not. This may have implications on the use of L3A proteins as vaccine 
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targets, as subsequent infections could augment natural immunity, creating a boosting 

effect on the memory response. Analysis of immunoreactivity of the proteins 

separated by 2-DE showed that the degree of recognition by immune serum was not 

correlated to the quantity of protein secreted, suggesting differential antigenic 

reactivity of the proteins with the immune system, as well as specificity of reaction. 

Such proteins may be interesting targets for further studies, as vaccination with these 

proteins may have the potential to generate a protective effect to infection. Some of 

the protective vaccine candidates identified from H. contortus secretory products, 

Hc25, Hc24 and GA1, reacted with hyperimmune sheep serum similarly when 

separated under 2-DE methods and analysed by Western blotting (Yatsuda et al., 

2003). Analysis of the antibody isotypes generated to N. brasiliensis secreted proteins 

during reinfection suggests that the response is Th2-biased, with greater amounts of 

antigen-specific IgG1 produced to IgG2a. Although antibody responses are generally 

unimportant in expulsion, the IgG1/IgG2a balance is often helpful in determining the 

type of T-helper response. IgG1 is upregulated by IL-4, a major Th2 cytokine in 

helminth infection, which downregulates IgG2a (Finkelman et al., 1990). In contrast, 

IFN-γ upregulates IgG2a (Snapper and Paul, 1987). Moreover, IL-4 also contributes 

heavily to class-switching to IgE, which showed an increase during infection with N. 

brasiliensis with antigen specificity to secreted proteins. It is known that helminth 

infection typically result in the production of IgE, although its protective properties 

have always been under debate. The production of antigen-specific IgE suggest that 

there may be some epitopes within the complement of secreted proteins which could 

have the potential to induce IgE-related hypersensitivity reactions, so that this should 

be kept in mind when considering vaccine candidates from the secreted origin. 

 

 

Neuronal control of chemotaxis, thermotaxis and developmental switching in 

nematodes 

 

The ability of nematodes to sense and respond to host and environmental signals 

suggests that they possess functional sensory structures. Electron microscopy has 

revealed the neuronal structures of several nematodes, including C. elegans and S. 

stercoralis (Ashton and Schad, 1996). The structures, termed cuticular sensilla, are 

generally located in the head adjacent to the mouth. The tips of dendritic processes are 
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extended to pores in the nematode’s cuticle, exposed to the external environment, 

which make them viable locations for sensory receptors involved in receiving signals 

from the environment exterior to ensheathed larvae. Of the cuticular sensilla, the 

amphidial neurones are the largest and most complex, and are the major sensory 

neurones of nematodes (Ashton et al., 1999). 

 

In C. elegans, there are twelve sets of bilaterally symmetric amphidial neurones. The 

structure of a generalised amphid is shown in Fig. 4.24. Through laser microbeam 

ablation studies, it was found that eleven of these are chemosensory (class ADF, ADL, 

ASE, ASG, ASH, ASI, ASJ, ASK, AWA, AWB and AWC), and one of them is 

thermosensory (class AFD) (Ashton et al., 1999; Mori et al., 2007). Most of these 

neurones end with a single or a double dendritic process, but two of them are 

structurally unique – the finger cell (AFD), with multiple digitiform dendritic 

structures, and the wing cell (AWA, AWB, AWC), with extended flattened processes 

(Fig. 4.24). The wing cell has also been shown to have olfactory properties, and are 

involved in the detection of volatile substances (Bargmann, 2006). In S. stercoralis, a 

neurone which consists of a large complex of lamellae (lamellar cell, ALD) was 

identified, and it appears to have physical characteristics of both the finger cell and 

wing cell (Ashton and Schad, 1996). Ablation of these lamellar cells resulted in 

impaired chemotaxis and thermotaxis, suggestive of sensory functions akin to the 

wing cell and the finger cell (Lopez et al., 2000). Additionally, it was recently shown 

that directed chemotaxis of S. stercoralis can be induced when urocanic acid was 

presented as a volatile chemoattractant, suggesting olfactory input (Nyamu et al., 

2011). Structural homologues of the finger cell have been mapped in H. contortus and 

A. caninum, and in the latter they were again found to be the major thermoreceptors 

through laser ablation studies (Bhopale et al., 2001). These cells are likely to play an 

important role in the thermoregulation of host-finding, invasion and developmental 

control. It is also likely that structural homologues of the chemosensory neurones in C. 

elegans would be functionally similar to those of parasitic nematodes, and indeed it 

was demonstrated that homologues of ASE and ASH mediate chemoattractive and 

chemorepulsive behaviour in S. stercoralis respectively (Forbes et al., 2004).  

 

Since the decision to enter or exit from developmental stages in nematodes is based 

on the detection of host signals or environmental conditions, it is not surprising that 
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amphidial neurones also play a major part in these processes. In C. elegans, ADF and 

ASI control development into dauer stage when conditions become unfavourable, and 

ASJ is primarily responsible for exit of the dauer stage and resumption of 

development (Bargmann and Horvitz, 1991). Parallels of this system were found in S. 

stercoralis, in which ablation of the ASF (equivalent to ADF in C. elegans) and ASI 

neurones prevented formation of its free-living, environmentally resistant stage 

(functionally comparable to the dauer stage in C. elegans) (Ashton et al., 1998). 

Moreover, ablation of ASJ neurones resulted in disrupted activation of S. stercoralis 

infective L3 (Ashton et al., 2007). These studies suggest that the neuronal control of 

development between free-living and parasitic nematode taxa may share some 

underlying similarities.   

 

 

 

  

 

Figure 4.24. Diagram of a generalised amphid.  A) Representation of amphidial neurones 

in C. elegans. Annotations: c, cuticle; so, socket; sh, sheath; AFD, finger cell; AWA, AWB, 

AWC, wing cells. B) Structural characteristics of the amphidial neurones. Nomenclature: The 

first letter A is for amphidial, second letter denotes a single (S) or double (D) dendritic 

process, or W for wing cell and F for finger cell. Diagram from Bargmann (2006).  
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Pathway to activation in nematodes 

 

Formation of an environmentally resistant, metabolically economical dormant state is 

a common strategy utilised by the free-living C. elegans and parasitic nematodes for 

prolonging survival in the face of adversity. Dauer formation in C. elegans is used for 

enduring unfavourable conditions such as extreme temperatures, high population 

density and food scarcity, whereas developmental arrest at the L3 stage is aimed at 

maximising its potential lifespan (‘buying time’) until a host is encountered. Both 

events occur at the dispersive (third) stage of their respective life cycles, to ensure 

maximisation of reproductive output. However, for C. elegans entry into the dauer 

state is a conscious decision (Hotez et al., 1993; Riddle and Albert, 1997), as evident 

by mutants which are dauer defective in certain signalling components, which are 

unable to enter the dauer stage even when conditions are unfavourable (Fielenbach 

and Antebi, 2008). In contrast, the formation of developmentally arrested L3 appears 

to be a default option for parasitic nematodes (Hotez et al., 1993), which is intuitive 

because the parasite would rarely have the good fortune to encounter a host 

immediately after maturation to its infective stage. Within the context of 

developmental switching, C. elegans and parasitic nematodes share in common a 

trigger mechanism in the exit of the dauer and L3 stage respectively, an event which 

is of particular interest to parasitologists because it would give insight of the events 

during invasion, which may be relevant to intervention strategies for diseases.   

 

Dauer recovery in C. elegans is regulated by converging transforming growth factor-

beta (TGF-β) and insulin-like signalling pathways (Fig. 4.25) (Beall and Pearce, 2002; 

Fielenbach and Antebi, 2008), activated when environmental conditions are 

favourable, resulting in the inactivation of negative regulators to genes which promote 

growth and metabolism, such as those involved in the synthesis of steroid hormones 

on which reproductive growth is dependent (Antebi et al., 2000; Motola et al., 2006). 

The TGF-β signalling pathway is initiated by increased food supply and low 

pheromone levels, as perceived by the ASI neurone. This activates the production of a 

small molecule called dauer-formation (DAF)-7, a TGF-β-like ligand to the DAF-

1/DAF-4 receptor kinase complex (Kimura et al., 1997; Ren et al., 1996). Binding 

results in phosphorylation of the downstream effector Smads, DAF-8 and DAF-14, 

which translocate to the nucleus and antagonise DAF-3, a negative regulator of genes 
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that promote growth and metabolism. Similarly, signalling through the insulin-like 

pathway is also dependent on the perception of favourable environmental signals via a 

sensory neurone that releases acetylcholine (ACh), which then signals through a 

muscarinic receptor to produce a ligand for the DAF-2 receptor kinase complex 

(Braeckman et al., 2001). Binding initiates a phosphoinositide 3 (PI3)-kinase 

signalling cascade, which results in phosphorylation of the negative regulator DAF-16, 

thus inactivating it and allowing for transcription of genes that promote growth and 

metabolism.  

 

Fueled by this knowledge, studies were then carried out to investigate the pathway to 

activation in A. caninum L3. Thanks to the ubiquity of cholinergic signalling, 

activation can be studied through the use of agonists and antagonists to this pathway. 

Recovery from the L3 stage was found to be induced by muscarinic ACh receptor 

agonists and inhibited by atropine, a muscarinic antagonist (Tissenbaum et al., 2000). 

Inhibition of the PI3K signalling cascade also prevents activation in L3 of A. caninum 

and A. ceylanicum (Brand and Hawdon, 2004). These data demonstrate the 

importance of cholinergic input and suggests that an insulin-like signalling pathway 

akin to that responsible for dauer recovery is involved in activation. Furthermore, this 

pathway was found to be preceded by cyclic GMP (cGMP) signalling in both A. 

caninum and C. elegans, collectively suggesting a common pathway for dauer 

recovery and A. caninum activation (Birnby et al., 2000; Hawdon and Datu, 2003). 

Recently, the signalling pathway leading to activation in N. brasiliensis has been 

studied in our laboratory (Huang et al.). Unlike A. caninum and C. elegans, cGMP 

and cholinergic signalling are not required for activation of N. brasiliensis L3, but 

functional PI3K signalling is required. These data suggest that there are substantial 

differences between the early signalling events which lead to the activation of A. 

caninum and N. brasiliensis, but the pathways may converge downstream of PI3K 

signalling.    

 

Although daf-7 homologues have been identified in several species of parasitic 

nematodes, there has been no substantial evidence that the TGF-β signalling pathway 

is involved in activation and L3 recovery (Viney et al., 2005). Temporally, daf-7 is 

expressed in pre-dauer larvae (L1 and L2) of C. elegans under favourable 

environmental conditions, but not in the dauer larvae themselves until stimulated to 
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resume development (Ren et al., 1996). However, daf-7 homologues were found to be 

predominantly expressed in the resting, infective L3 stage of most parasitic nematodes 

including S. ratti, S. stercoralis, Parastrongyloides trichosuri, H. contortus, N. 

brasiliensis and A. caninum (Brand et al., 2005; Crook et al., 2005; Freitas and Arasu, 

2005; Massey et al., 2005; McSorley et al., 2010), which is counterintuitive to the 

view that expression of daf-7 induces resumption of growth and development. The 

mRNA levels of daf-7 were found to be decreased in S. ratti and P. trichosuri upon 

host-induced activation (Crook et al., 2005), which lead some researchers to the 

hypothesis that the role of DAF-7 in parasitic nematodes is to maintain the state of 

developmental arrest, the opposite of its function in C. elegans. In addition, the 

expression of daf-7 is unaltered in A. caninum L3 before and after serum-stimulated 

activation (Brand et al., 2005), a finding which further dissociates its involvement 

with the L3 recovery process.     

 

The study of activation in parasitic nematodes is technically challenging because it is 

an event which normally occurs within the host. The in vitro activation assay has so 

far allowed study of control of some early events, namely resumption of feeding, 

exsheathment, protein synthesis and secretion. However, thus far it has not been 

possible to induce development of L3 to adult worms in vitro, a process which is 

probably sensitively dependent on successive exposure to complex host factors. 

Comprehensive knowledge of the signalling pathways leading to dauer recovery 

comes from the ability to generate mutants in C. elegans, in addition to being a free-

living species, which allows for all stages of its development to be studied. An 

obvious solution would be the utilisation of RNAi to produce and study the knock-

down phenotypes, however this technique has yet to be fully developed in parasitic 

nematodes. Until then, C. elegans will continue to be an invaluable tool for the 

modelling of the biology of parasitic nematodes, although qualified by potential 

differences.  
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Figure 4.25. Schematic overview of the converging TGF-β and insulin-like signalling 

pathway in C. elegans. Activation of these pathways result in transcription of genes involved 

in growth and development, and subsequently dauer recovery (Beall and Pearce, 2002). 
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RELMs 

 

Experimentation on the effect of RELMs on chemotaxis of N. brasiliensis L3 stems 

from the observation that RELMβ binds to the bacillary and cuticular pores of T. 

muris and S. stercoralis larvae (possible sites of chemosensory reception), and the 

demonstration that RELMβ impairs chemotaxis of S. stercoralis larvae in vitro (Artis 

et al., 2004). This effect was not replicated in my experiments with N. brasiliensis L3. 

The effect of other members of the RELM family was additionally tested in the 

chemotaxis assay, as they are highly related by sequence homology, but they also did 

not affect larval chemotaxis. Furthermore, RELMβ also did not have an effect on 

activation or the rate of feeding of N. brasiliensis L3, suggesting that larval activities 

are generally unaffected by RELMβ.    

 

The RELMs belong to a family of resistin-like proteins expressed in mammalian cells. 

RELMα and RELMβ, in particular, have been shown to be involved in immunity to 

parasitic nematodes. RELMβ is expressed exclusively by intestinal goblet cells 

(Steppan et al., 2001), and its expression was found to be highly upregulated after 

infection with T. muris, T. spiralis and N. brasiliensis at the time of expulsion (Artis 

et al., 2004). In another independent study, RELMβ was also found to be upregulated 

at day 7 post-infection with N. brasiliensis, along with other genes which are thought 

to contribute to expulsion (Yamauchi et al., 2006). Mice knocked-out for the RELMβ 

gene experience delayed expulsion of N. brasiliensis, and the intestinal worm 

numbers of H. polygyrus were also decreased (Herbert et al., 2009). These lines of 

evidence suggest that RELMβ functions at the intestinal surface, and is likely to target 

adult worms rather than larvae. It was further demonstrated that RELMβ inhibits 

feeding in the adult worms of H. polygyrus, subsequently decreasing their ATP 

content and survival in the gut (Herbert et al., 2009). However, RELMβ also did not 

affect adult feeding in N. brasiliensis in my experiments, perhaps due to a difference 

in worm biology or experimental protocol. 
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Chapter conclusion 

 

Although the characteristics of larval activation were similar between the nematode 

species such as A. caninum and N. brasiliensis, which were both initiated to feed, 

exsheath and secrete proteins, the activation stimuli and signalling pathway which 

leads to this event can show substantial differences. The definition and identification 

of proteins secreted by L3 during activation is expected to yield interesting insights 

into the mechanisms of the infectious process and host-parasite interactions during the 

early events of infection, and therefore deserves further attention. 
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VAL proteins in N. brasiliensis 
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5.1. Introduction  

 

Venom allergen homologue / Ancylostoma secreted protein-like (VAL) proteins are a 

major group of nematode secreted proteins, found in all parasitic nematodes studied to 

date. Expression patterns of VALs are often stage-specific, and are generally 

upregulated at infection or at later parasitic stages. VAL proteins have been shown to 

exhibit immunogenicity across various systems, and are considered as important 

vaccine candidates. In N. brasiliensis we have discovered eight variants of the VAL 

proteins, and their expression patterns, immunogenicity and suitability for vaccination 

will be the focus of this chapter. 

 

VALs belong to a family of cysteine-rich proteins collectively known as the 

SCP/TAPS family. Members of this family share a common primary structure, 

characterised by a signal peptide followed by a signature SCP-extracellular domain. 

Based on sequence homology, these proteins have been identified across a number of 

eukaryotic taxa from a phylogenetically diverse variety of animals, plants, fungi, 

helminths and insects (Cantacessi et al., 2009). Various groups of these proteins are 

thought to have biological roles in host-pathogen interactions, of which the best 

characterised include the plant pathogenesis-related proteins (PRPs) which are often 

upregulated in response to pathogen-induced injury or other stress (Van Loon et al., 

2006), and the vespid venom allergen proteins, major components of the venom of 

biting insects which cause allergic reactions (King and Spangfort, 2000). Other 

prominent members include the glioma pathogenesis-related protein (GliPR) (Murphy 

et al., 1995), the sperm coating glycoproteins (SCP) (Jalkanen et al., 2005), 

mammalian testis-specific protein (Kasahara et al., 1989), along with other members 

of the cysteine-rich secretory protein (CRISP) superfamily of mammals (Gibbs et al., 

2008) The widespread distribution of the SCP/TAPS proteins suggests that they serve 

diverse but critical functions. 

 

In parasitic nematodes, these proteins were first described in the dog hookworm 

Ancylostoma caninum. Like N. brasiliensis, unstimulated A. caninum L3 secrete 

virtually no proteins, but become activated when exposed to host-specific factors 

(Hawdon and Schad, 1990, 1992), as previously described in Chapter 4. The most 

abundantly secreted proteins upon activation were resolved at molecular weights of 
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24 and 45 kDa, and were named Ancylostoma secreted proteins (ASP)-1 and ASP-2 

respectively (Hawdon et al., 1996; Hawdon et al., 1999). 

 

The authors went on to discover four more members of ASPs in A. caninum, ASP-3 to 

ASP-6 (Zhan et al., 2003). Comparison of their amino acid sequences revealed a 

common theme in the domain structure of the ASPs (illustrated in Fig. 5.1). All 

members possess an N-terminal signal peptide, followed by either a single or a double 

PRP domain. A cysteine-rich (CR) region follows each domain, which forms the 

joining hinge of the molecule in the case of double domain ASPs. At least 10 

conserved cysteines were found in single domain ASPs, and over 20 in double domain 

ASPs. The molecular weight of a single domain lies generally between 20-25 kDa, 

making a double domain protein 40-50 kDa (Zhan et al., 2003). In a later study, it was 

found that the VAL proteins constitute the major upregulated transcripts in activated 

A. caninum L3 larvae (Datu et al., 2008). 

 

 

 

 

 

Figure 5.1. Primary structure of double and single domain ASPs. SP, signal peptide; PRP, 

pathogenesis-related protein domain; CR, cysteine-rich region; C, conserved cysteine residues. 

Figure from Zhan et al. (2003). 

 

 

 

Bioinformatic and phylogenetic analyses have since revealed a great number of VAL 

homologues in a broad range of nematodes parasitic in animals and plants, as well as 

in the free-living species C. elegans (Zhan et al., 2003). Multiple variants of VALs 

commonly exist in a given species; for example at least three variants have been 

found in N. americanus, two in A. duodenale, fifteen in O. ostertagi (Visser et al., 

2008), thirteen in S. mansoni (Chalmers et al., 2008), three in Onchocerca volvulus 

(Tawe et al., 2000) and at least seventeen in C. elegans (Zhan et al., 2003). Most of 
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them possess either a double domain or a C-type single domain (a single domain 

protein with higher homology to the C-terminus of the prototype double domain VAL) 

(Visser et al., 2008).  

 

The discovery of these proteins results from a convergent effort by researchers 

working on different helminth species. Database searching had often revealed well-

characterised proteins from other systems as VAL homologues – such was the case 

for the Hc24 and Hc40 proteins of H. contortus – whose immunogenic properties 

have been discovered and used as vaccine candidates years before the description of 

the A. caninum ASPs (Rehman and Jasmer, 1998; Schallig et al., 1994; Sharp et al., 

1996). This, however, has resulted in some inconsistencies regarding the 

nomenclature of these proteins, for example some of them were named ASP-like (AL) 

based on their homology to the ASPs, or activation-associated secreted protein (ASP), 

while others were named venom allergen-like (VAL), venom allergen homologues 

(VAH) or venom allergen proteins (VAP) based on the homology with the major 

allergens in the venom of the yellow jacket wasp (Henriksen et al., 2001), with many 

others given unrelated names. They will hereon be collectively called VALs, standing 

for Venom allergen homologue / Ancylostoma secreted protein-Like proteins. 

 

The functions of VAL proteins in parasitic helminths are still largely unclear. Based 

on their activation-associated properties seen in A. caninum L3 under host factor-

stimulated conditions, it is frequently speculated that they are important molecules in 

the transition to parasitism from an environmental existence and the infection process. 

In support of this, it was found that antibodies to Na-ASP2 from N. americanus were 

able to inhibit larval migration in vitro, although no protease activity has been found 

for this protein (Bethony et al., 2005; Goud et al., 2004). Although it is not known 

whether B. malayi infective larvae secrete VALs, Bm-VAL-1 was detected in L3 

extracts (Murray et al., 2001) and has been shown to be secreted by microfilariae 

(Rees-Roberts, 2007). In O. volvulus, the filarial nematode which causes river 

blindness, OvASP-1 is one of the most abundant larval transcripts (Tawe et al., 2000). 

Three members of OvASPs were subsequently found, and their expression was shown 

to be developmentally distinct; OvASP-3 is L3-specific, OvASP-2 is expressed at all 

stages, whereas OvASP-1 was produced by L2, L3, moulting L3 and adult females. 

OvASP-1 and 2 have been suggested to have a role in pathogenesis and survival, by 
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promoting angiogenesis to increase blood supply and support the nodules in which the 

parasites reside, but this would however be a function more relevant to microfilaria 

(which can migrate to the eye and causes ocular onchocercaisis) and adults (which 

reside within nodules in subcutaneous tissue) (Higazi et al., 2003; Tawe et al., 2000). 

Infective L3 on the other hand, migrate through skin until they mature as adults, so 

increased vascularisation is not particularly beneficial to this stage. 

 

Data supporting a proinflammatory role for VALs have been presented for Na-ASP-2, 

which shows structural and charge similarities to the CC-chemokines as determined 

by x-ray crystallography (Asojo et al., 2005). Na-ASP-2 was found to induce 

recruitment of exclusively neutrophils and monocytes using an in vivo air-pouch 

model and an in vitro chemotactic (Boyden chamber) assay (Bower et al., 2008). The 

authors suggest that Na-ASP-2 may act as a chemokine mimic, and they speculate that 

this could possibly favour larval invasion by manifesting higher tissue permeability 

and oedema. However, it has been criticised that the level of chemotaxis shown in the 

data is low, with a chemotactic index (number of cells which migrated in test 

conditions divided by the number of cells migrated in medium alone) of only 1.5 – 2. 

Moreover, the idea that migrating larvae should actively recruit neutrophils in aid of 

tissue digestion is somewhat counterintuitive, and has not been widely accepted by 

the nematode research community.  

 

Alternatively, VALs have been suggested to act as antagonistic ligands to 

complement receptor 3 (CR3, Mac-1, Mol, CD11b/CD18), an integrin expressed on 

the surface of neutrophils, monocytes, NK cells and macrophages (Arnaout, 1990), 

thereby blocking leukocyte adhesion to endothelial cells and pointing towards an anti-

inflammatory role instead. One of the best functionally characterised members of the 

nematode VALs is the neutrophil inhibitory factor (NIF) secreted by A. caninum. 

AcNIF is a 41 kDa protein shown to bind to granulocytes and monocytes, specifically 

to the CD11b domain of CR3, subsequently blocking adhesion to vascular endothelial 

cells as well as hydrogen peroxide release by activated human neutrophils (Moyle et 

al., 1994; Rieu et al., 1995). A later study showed that AcNIF can block leukocyte 

adhesion through the inhibition of CD11a as well as CD11b (Lo et al., 1999). NIF has 

additionally been shown to inhibit neutrophil recruitment in a model of acute lung 

injury in guinea pigs (Barnard et al., 1995) and during LPS-induced cell infiltration 
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into the lungs of mice (Zhou et al., 1998), subsequently reducing inflammatory insult. 

A 55 kDa NIF has also been identified in H. contortus adult secretory products, which 

cross-reacts with an antibody raised against AcNIF and showed similar inhibitory 

functions (Anbu and Joshi, 2008). Notably, vaccination with NIF conferred protection 

to hamsters from A. ceylanicum in terms of impairing parasite fecundity (Ali et al., 

2001). Also showing high sequence homology to NIF and the ASPs is the hookworm 

platelet inhibitor (HPI) protein, which inhibits the aggregation and adhesion of 

platelets to collagen and fibrinogen (Chadderdon and Cappello, 1999; Del Valle et al., 

2003). HPI is secreted by the blood-feeding adult stage hookworms in the gut, and 

they are therefore potentially useful targets for vaccine strategies aimed at inhibiting 

hookworm feeding.  

 

Although a wealth of data has been generated on VAL proteins across multiple 

systems, to date no definitive function can be established for the nematode VAL 

proteins. Admittedly, with the consideration that at least seventeen VAL homologues 

exist in free-living C. elegans (Zhan et al., 2003) comes the argument that VAL 

proteins may function in general nematode housekeeping rather than in parasitism. It 

could also be the case that the VAL proteins serve diverse functions even within the 

phylum nematoda through divergent evolution.  

 

Despite their elusive functions, the VAL proteins of many parasitic nematodes show 

promising immunogenic properties. Natural antibodies produced in hosts after 

multiple infections often show reactivity with VALs, which means that an adaptive 

immune response can be mounted by these proteins. This was shown in H. contortus 

for Hc24 and its related proteins, which displayed a range of reactivity to 

hyperimmune sera, and protective effects were also conferred by vaccination with 

these molecules (Schallig et al., 1994; Yatsuda et al., 2003). B. malayi BmVAL-1 is 

recognised by the sera of >95% of human filariasis patients (Murray et al., 2001). A 

VAL orthologue secreted by O. ostertagi is also recognised by antibodies collected 

from abomasal mucus and draining lymph nodes of hyperimmune calves (De Maere 

et al., 2002). In addition, studies on protective fractions against O. ostertagi and A. 

caninum have also indicated VAL homologues as the immunodominant antigens 

(Fujiwara et al., 2006; Geldhof et al., 2003). 
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These promising results attracted the interest of developing VAL proteins as vaccine 

candidates. The human hookworm vaccine initiative was found in 2000, forming the 

first effort at a clinical trial towards a hookworm vaccine. It aims to formulate an 

injectable bivalent vaccine composing of two hookworm antigens - one from the 

larval stage and one from the adult stage, as targeting the parasite at both stages is 

likely to provide a higher level of protection. Na-ASP-2 of N. americanus was chosen 

as the larval antigen according to the following rationale: 1) ASP-2 is abundantly 

secreted during hookworm activation upon exposure to host factors, and protective 

parasite fractions are enriched in ASP-2 (Geldhof et al., 2003; Hawdon et al., 1999); 2) 

Vaccination with ASP-2 resulted in significantly reduced hookworm burden upon 

parasite challenge in hamsters and dogs (Bethony et al., 2005; Goud et al., 2004); 3) 

Antibodies raised in rats and dogs against ASP-2 were able to inhibit larval 

penetration of host skin in vitro (Bethony et al., 2005; Goud et al., 2005); 4) a cross-

sectional serological and parasitological survey of human subjects from hookworm 

endemic areas in Brazil and China revealed a reciprocal association between high 

anti-ASP-2 immunoglobulin levels and the risk of heavy hookworm infection 

(Bethony et al., 2005).  

 

Phase I clinical trials were conducted with Na-ASP-2 expressed in Pichia pastoris, 

formulated with Alhydrogel as adjuvant, in healthy hookworm naïve human 

volunteers, inducing high humoral and cellular responses (Bethony et al., 2008b). 

Although the study concluded with the description that the vaccine was ‘well 

tolerated’ and ‘without any significant vaccine-related adverse effects’, it was 

observed that 3 out of the 36 participants were excused from the study after the first 

and third boost due to ‘mild adverse reactions’. Vaccination with Na-ASP-2 also 

induced measurable amounts of IgE, which was consistently higher than controls, 

although not statistically significant. The authors went on to test the vaccine in 

previously infected individuals in Brazil, in which adverse hypersensitivity reactions 

immediately became evident. Within 2 hours of vaccination, 3 out of 7 volunteers 

injected with the Na-ASP-2 vaccine developed generalised urticaria (Bethony et al., 

2008a). It was found that the affected individuals all had higher Na-ASP-2-specific 

IgE prior to the vaccination, and they all responded to treatment with antihistamine. 

This shows that the Na-ASP-2 antigen can induce immediate-type hypersensitivity in 
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previously infected individuals, which include the main target population of the 

vaccine. Human trials for the Na-ASP-2 vaccine are currently on hold (Periago, 2010). 

 

Previous work in our lab (Huang, 2010) has identified eight variants of VAL proteins 

in N. brasiliensis by searching EST databases using AcASP-1 as the query sequence, 

and their full length sequences were obtained by rapid amplification of 5’/3’ cDNA 

ends (5’ and 3’-RACE). The eight variants were named NbVAL1 to NbVAL8, and 

they show stage-specific transcription. All were transcribed by the adult stage as 

shown by reverse transcription-polymerase chain reaction analysis (RT-PCR) (Fig. 

5.2). NbVAL8 and NbVAL3 were abundantly transcribed by L3, whereas NbVAL7 

and NbVAL2 were also transcribed but at a lower level. Sequence analysis showed 

that they follow the same domain structure with the prototype VALs, with an N-

terminal signal peptide, followed by a single or a double PRP domain joined by a 

cysteine-rich hinge (Fig. 5.3). The presence of a signal peptide in all eight variants 

suggests that they are all secreted proteins, but their secretion would need to be 

confirmed by further experimentation. Four of the NbVALs have single domains 

(NbVAL1, 4, 5 and 6), while the other four possess double domains (NbVAL2, 3, 7 

and 8). Cysteine residues were highly conserved (shaded yellow in Fig. 5.3), and they 

also align well with VAL homologues in different nematode species (Huang, 2010). 

Work in our lab has focused on NbVAL3 to NbVAL8, and work on NbVAL1 and 

NbVAL2 is being carried out by our collaborators, the Maizels lab. 

 

The full length cDNA of single domain NbVALs and the N-terminal domain of the 

double domain NbVALs, with the signal peptide sequences removed, were amplified 

and cloned into the pET29b expression vector, then verified to be in frame with a 

poly-histidine tag at the C-terminal end. The plasmids were successfully transformed 

into E. coli BL21(DE3) cells, and expression of NbVAL3-8 could induced at a high 

level with IPTG. However, the expressed products were mostly insoluble. The 

insolubility of the NbVALs is most probably due to the high number of disulphide 

bonds, making correct folding in the cytosol difficult. This problem has been common 

with most researchers working on VAL proteins (Hotez et al., 2003).  

 

Therefore, one of the aims of this project was to establish a protocol to produce the 

NbVALs in a soluble form, which has a higher chance of being correctly folded and 
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could be used in a much wider range of experimentation. The next aims were to 

analyse the immunogenicity of the NbVAL proteins, the outcome of vaccination with 

recombinant proteins, and to study whether they, like their counterparts in N. 

amercianus, might have the tendency to induce Type I hypersensitivity.  
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Figure 5.2. Stage-specific transcription of NbVALs analysed by RT-PCR. Total RNA was 

isolated from L3, activated L3 (L3A), L4 and adult stages of N. brasiliensis, and was 

amplified by RT-PCR with primers specific for each NbVAL variant. Primers for actin used 

as a positive control to determine relative transcript levels (Huang, 2010). 
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Figure 5.3. Amino acid sequence alignment of A) double and B) single domain NbVALs. 

Identical/similar amino acids are shaded in black/grey. Cysteine residues are highlighted in 

yellow. Conserved cysteines are marked with an asterisk above the indicated positions. 

Predicted signal peptide sequences are in underline-italics. The cysteine-rich (CR) / hinge 

region is indicated with an orange bar below the sequences. Figure is adapted from Huang 

(2010). Additionally, putative N-linked glycosylation motifs are boxed in blue, and 

asparagines residues predicted to be N-glycosylated are additionally coloured in red (analysed 

on NetNGlyc). Putative O-linked glycosylation patterns are highlighted and boxed in green, 

and predicted residues for O-glycosylation are bold in lime green (analysed on OGPET). 
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5.2. Analysis of recombinant NbVALs expressed in E. coli BL21(DE3) cells 

 

As mentioned, recombinant proteins of NbVAL3-8 have been successfully cloned into 

pET29b plasmids, expressed in E. coli BL21(DE3) cells, and purified from the 

insoluble fractions. Each NbVAL protein was used to immunise mice for the 

generation of antisera. The antiserum to NbVAL1 was provided by the Maizels lab, 

and antiserum to NbVAL2 has not been produced. 

 

The antisera for NbVAL1 and NbVAL3-8 were individually used to identify native 

proteins in the secreted proteins of N. brasiliensis adult and L3 by Western blotting 

(Fig. 5.4). A pre-bleed mouse serum was used as a negative control, which did not 

bind to L3 or adult secreted proteins. The antisera showed good general reactivity 

with adult secreted proteins, recognising each single or double domain NbVAL at its 

predicted size (Fig. 5.4A, squared in red). The reactivity of anti-NbVAL5 and anti-

NbVAL8 with adult secreted proteins were slightly questionable, as the reactions were 

weaker than others. Other bands were also observed on the blots at the incorrect sizes, 

due probably to non-specific binding and perhaps cross-reactivity to the other NbVAL 

variants. 

 

The antisera to NbVAL7 and NbVAL8 showed reactivity to L3 secreted proteins at 

about 50 kDa, their predicted size (Fig. 5.4B). However, NbVAL3 was not detected in 

L3 secreted proteins, despite its high transcription levels shown by the RT-PCR 

results (Fig. 5.2). This suggests that there could be some post-transcriptional 

processing involved which inhibited the expression of NbVAL3, or that the protein is 

expressed but not secreted. The latter was found to be untrue, as the antiserum did not 

show specific reactivity with the somatic extracts of L3 (Huang, 2010).  

 

Taken together with the RT-PCR results, it is determined that NbVAL1 and NbVAL3-

8 are all transcribed and highly likely to be secreted by the adult worms, and NbVAL7 

and NbVAL8 are additionally secreted at the L3 stage. This experiment also showed 

that the antisera generated by vaccination with VAL proteins produced in BL21(DE3) 

cells, although insoluble and probably incorrectly folded, are capable of recognising 

the native protein. However, due to high similarity between the NbVAL variants, the 

possibility of cross-reactivity between the VAL variants cannot be excluded. 
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Figure 5.4. Reactivity of A) Adult secreted proteins and B) L3A secreted proteins with 

anti-NbVALs in Western blotting analysis. Adult or L3A secreted proteins were resolved 

by 12% SDS-PAGE, blotted to nitrocellulose membranes and probed individually with anti-

NbVAL1, 3-8 and a pre-bleed serum (-ve) produced in mice, at a 1:400 dilution. Anti-mouse 

IgG-HRP secondary antibody was used (1:2000). The P lane shows the profile of proteins 

stained with DB71. Molecular weight markers are shown in kilodaltons. Open red squares 

indicate putative VAL proteins at their predicted sizes. 
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Recombinant NbVAL3-8 were also tested for immune recognition by hyperimmune 

mouse serum (Fig. 5.5). NbVAL4, 6, 7, and 8 were all recognised, with NbVAL8 

reacting most strongly, whereas NbVAL3 and NbVAL5 did not react (Fig. 5.5B). 

Naïve mouse serum showed no reactions to any of the recombinant proteins, showing 

that the binding is likely to be specific (Fig. 5.5C). This experiment also showed that 

antibodies produced against the natural native protein were capable of recognising the 

recombinant proteins. The immunogenicity exhibited by NbVAL4, 6, 7 and 8 

suggested that they may be suitable candidates for further vaccination experiments.       

 

 

5.3. Expression testing of NbVALs in E. coli SHuffle cells 

 

Expression of the NbVAL proteins in E. coli BL21(DE3) cells previously resulted in 

only insoluble products, which is usually an indicator of incorrect folding. For 

functional analysis and vaccination studies, a structurally accurate protein which is as 

similar as possible to the native product should be produced. This is a considerable 

challenge as recombinant VALs are notoriously difficult to express in a soluble and 

stable form due to their high cysteine content. Attempts have been made to optimise 

their expression in BL21(DE3), but in none of the conditions were soluble proteins 

produced. Multiple attempts to express NbVALs in the yeast Pichia pastoris X-33 

strain were also unsuccessful. 

 

For want of a better system, expression was tested in E. coli SHuffle cells (New 

England Biolabs). SHuffle is a strain of E. coli which can promote protein folding 

through the constitutive expression of the disulphide bond isomerase DsbC. NbVAL7 

was chosen for the initial expression testing and optimisation, as it was one of the 

candidates for vaccination experiments. NbVAL7 is secreted by both L3 and adults, 

and was shown to be immunogenic in natural infection.  
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Figure 5.5. NbVALs are differentially reactive to hyperimmune serum. A) Purified 

recombinant NbVAL3-8 produced in the BL21(DE3) strain of E. coli resolved by 12% SDS-

PAGE and visualised by staining with coomassie blue. B) Western blotting analysis of 

NbVAL3-8 with hyperimmune serum at a dilution of 1:400. Anti-mouse IgG-HRP secondary 

antibody was used (1:2000). C) Negative control, reaction with pooled serum from naïve mice 

at a 1:400 dilution. 
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The pET29b-NbVAL7 plasmid was purified and transformed into both BL21(DE3) 

and SHuffle competent cells for direct comparison. Expression tests at 30°C with 

IPTG induction showed that SHuffle cells consistently expressed a proportionately 

larger amount of soluble proteins than BL21(DE3) cells (Fig. 5.6). However, a large 

proportion of the proteins expressed in SHuffle cells still lay in the insoluble fraction.  

 

It was further observed that some NbVAL7 proteins were being expressed by SHuffle 

cells before IPTG induction (0 hour fractions, Fig. 5.6). This is indicative of ‘leaky’ 

expression, which I next aimed to exploit. Expression tests were performed again at 

30°C, but without IPTG induction (Fig. 5.7). Under these conditions, BL21(DE3) 

cells produce virtually no recombinant proteins. In contrast, a large amount of mostly 

soluble NbVAL7 protein was produced in SHuffle cells. It is probable that without 

IPTG induction, the NbVAL7 protein was being expressed at a much slower rate, 

allowing more time for the protein to fold correctly in the cytosol, producing a soluble 

product. 

 

With this rationale, the expression tests were repeated at 16°C, as a lower temperature 

also results in a slower expression of proteins. However, expression of soluble 

proteins was not particularly enhanced (Fig. 5.8). At the 24-hour timepoint, uninduced 

SHuffle cells produce more insoluble NbVAL7 at 16°C than 30°C. SHuffle cells were 

found to grow very slowly at 16°C, and an incubation period of three days was 

needed before the culture was at the point where OD600nm = 0.6 (0 hour).  

 

It was therefore determined that optimal expression of soluble NbVAL7 could be 

carried out without IPTG induction at 30°C, and the cells could be harvested at 24 

hours after OD600nm = 0.6. Expression tests were carried out next for NbVAL3-8 under 

these conditions, to analyse whether the other NbVAL variants could be expressed in 

soluble form. 
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Figure 5.6. Expression of NbVAL7 in BL21(DE3) and E. coli SHuffle cells compared, at 

30°C with IPTG induction. Transformed cells were cultured until OD600 reached 0.6 (0 

hour), then induced with 1 mM IPTG. Cell aliquots were taken out at 1, 5 and 24 hours post-

induction and separated into soluble and insoluble fractions, which were then resolved by 

15% SDS-PAGE and reacted with anti-His using Western blotting analysis.  
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Figure 5.7. Expression of NbVAL7 in BL21(DE3) and E. coli SHuffle cells compared, at 

30°C without IPTG induction. Transformed cells were cultured until OD600 reached 0.6. 

Cell aliquots were taken out at 1, 5, 24 and 48 hours post-induction and separated into soluble 

and insoluble fractions, which were then resolved by 15% SDS-PAGE and reacted with anti-

His by Western blotting analysis.  
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Figure 5.8. Expression of NbVAL7 in BL21(DE3) and E. coli SHuffle cells compared at 

16°C. Transformed cells were cultured until OD600 reached 0.6 (0 hour). Each culture was 

then split into two, so that one continued to grow under the same conditions and the other was 

induced with 1 mM IPTG. Cell aliquots were taken out at the 24 hour time-point and 

separated into soluble and insoluble fractions, which were then resolved by 15% SDS-PAGE 

and reacted with anti-His using Western blotting analysis.  
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The pET29b plasmids containing NbVAL3 to NbVAL8 constructs were purified and 

verified for the correct insert by PCR with primers specific for each NbVAL variant 

(Fig. 5.9). All six plasmid preparations tested positive for the inserts and at the correct 

size at 650-700 base pairs (bp). Previous sequencing efforts had determined the 

inserts to be in frame and including a poly-histidine tag. The pET29b-NbVAL 

plasmids were transformed into SHuffle cells and expressed at 30°C without IPTG 

induction in small cultures for expression testing. However, soluble proteins could 

only be obtained for NbVAL7, whereas the expressed proteins of NbVAL3, 4, 5, 6 

and 8 were all insoluble. Expression tests were repeated at 26°C, and soluble proteins 

were found to be expressed for NbVAL7 and NbVAL3, and in very small amounts for 

NbVAL4 and NbVAL5 (Fig. 5.10). 

 

 

5.4. Large scale expression and purification of NbVALs in E. coli SHuffle cells 

 

Half litre cultures each of NbVAL3-8 were grown, and large amounts of soluble 

NbVAL7 could be purified under native conditions (Fig. 5.11). Lesser amounts of 

soluble protein could be purified for NbVAL4, NbVAL6 and NbVAL3. I decided to 

proceed with NbVAL7 and NbVAL4, a double domain VAL expressed by both L3 

and adults and a single domain VAL exclusive to the adult stage, respectively. 

 

Eluted fractions of NbVAL4 and NbVAL7 were individually dialysed in PBS. Both 

proteins were stable throughout dialysis with no precipitates formed. The yields for 

NbVAL4 and NbVAL7 were 0.72 mg and 8.8 mg of recombinant protein per half litre 

culture respectively. The elution fractions with higher purity, E3 for NbVAL4, and 

elution fractions E4, E5 and E6 for NbVAL7 (pooled) were used in further 

experiments (Fig. 5.11). 
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Figure 5.9. PCR products of NbVAL3-8 from purified pET29b plasmids containing 

NbVAL3 to NbVAL8 constructs. PCR was carried out using primers specific for each 

indivudual NbVAL variant, and resolved by agarose gel electrophoresis (0.8% w/v). PCR 

products were as expected at 650-700 base pairs (bp). 

 

 
 

Figure 5.10. Expression of NbVAL3-8 in E. coli SHuffle cells at 26°C. Transformed cells 

were grown until OD600 reached 0.6, then cultured for another 24 hours. Cell aliquots were 

sampled at the 24 hour time-point and separated into soluble and insoluble fractions, which 

were then resolved by 15% SDS-PAGE and reacted with anti-His using Western blotting 

analysis. A negative control was included with untransformed competent SHuffle cells. 
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Figure 5.11. Purification of A) NbVAL4 and B) NbVAL7 produced in E. coli SHuffle 

under native conditions. Polyhistidine-tagged NbVAL4 and NbVAL7 were purified from 

cleared cell lysates (Lys) from 500 ml of culture using nickel affinity chromatography. After 

the flow-through (FT) fraction was collected, columns were washed with 20 mM imidazole 

(W1 and W2) and 40 mM imidazole (W3). Recombinant proteins were eluted with 250 mM 

imidazole in 0.5 ml aliquots (E1-E7).  
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5.5. Immunogenicity of NbVALs 

 

Cellular and humoral responses of multiply infected (hyperimmune) mice to NbVAL4 

and NbVAL7 were tested to evaluate their immunogenicity. LPS was removed from 

protein preparations prior to experiments. 

 

Splenocytes were isolated from mice infected four times with N. brasiliensis and 

tested for cellular proliferation in response to NbVAL4 and NbVAL7 (Fig. 5.12). It 

was found that significant proliferation was stimulated by NbVAL7 but not by 

NbVAL4. N. brasiliensis adult secreted products (SP) were used as a positive control, 

which stimulated a higher level of proliferation than NbVAL7. This shows that like N. 

brasiliensis SP, NbVAL7 can stimulate a cellular immune response in the spleen.  

 

Splenocytes from infected mice were also assayed for cytokine release. As expected, 

stimulation with N. brasiliensis secreted products resulted in secretion of IL-4, IL-5, 

IL-10 but no IFN-γ, a typical cytokine profile of a Th2-biased response elicited by 

parasitic nematode infection (Fig. 5.13). However, no detectable secretion of these 

cytokines could be found on stimulation with NbVAL4 or NbVAL7. 

 

Serum samples were also collected from infected mice to assay for the humoral 

response to NbVAL4 and NbVAL7. Sera from five mice were pooled and titrated to 

test for levels of IgG1, IgG2a, IgG2b, IgG3, IgA and IgE specific for NbVAL4 or 

NbVAL7. It was found that the overall reaction to NbVAL7 was stronger than 

NbVAL4 (Fig. 5.14). Individual samples were then tested at a specific dilution for 

each immunoglobulin class or subclass to account for individual variation (Fig. 5.15). 

The humoral response to NbVAL4 and NbVAL7 followed a similar trend; of the IgG 

subclasses, only IgG1 levels were significantly higher in infected mice compared to 

naïve controls, with no detectable differences in IgG2a, indicative of a Th2-biased 

response. Antigen-specific IgA was also produced, a response typical of 

gastrointestinal helminth infections. Antigen-specific IgE was detected, suggesting 

that N. brasiliensis VAL proteins had the potential to induce immediate-type 

hypersensitivity.   
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Figure 5.12. Splenocytes from multiply infected mice proliferate in response to NbVAL7 

and adult secreted proteins. Splenocytes were harvested from mice infected 4 times with N. 

brasiliensis, 1 week after the final infection. Cells were cultured with adult secreted products 

(SP), NbVAL4 or NbVAL7 at 10 μg/ml, or in medium alone (Ctrl) for 60 hours, then for 

another 16 hours with 
3
H-thymidine added at 1 μCi per well. Background values from 

splenocytes of naïve mice treated identically were subtracted. Results represent mean counts 

per minute + SEM (n = 5) from splenocytes of 5 individual mice assayed in quadruplicate. 

*** P < 0.001, ** P < 0.01, * P < 0.05, relative to control.  
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Figure 5.13. Cytokine release from splenocytes of multiply infected mice. Splenocytes 

were harvested from mice infected 4 times with N. brasiliensis, 1 week after the final 

infection. Cells were cultured with adult secreted products (SP), NbVAL4 or NbVAL7 at 10 

μg/ml, or in medium alone (Ctrl) for 60 hours, when the medium was collected for cytokine 

measurement by ELISA for IL-4, Il-5, IL-10 and IFN-γ. Background values from splenocytes 

of naïve mice treated identically were subtracted. Results represent mean values + SEM (n = 

5)  from splenocytes of 5 individual mice assayed in quadruplicate.    
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Figure 5.14. Antibody responses to NbVAL4 and NbVAL7 in infected mice (titration).  

Plates were coated with NbVAL4 or NbVAL7 at 5 μg/ml and reacted with hyperimmune 

serum pooled from 5 multiply infected mice, diluted to the indicated concentrations. HRP-

conjugated secondary antibodies to immunoglobulin isotypes were used, and background 

values were subtracted. Samples were assayed in triplicate. 
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Figure 5.15. Antibody responses to NbVAL4 and NbVAL7 in infected mice. Serum 

samples were used at a 1:100 dilution for IgA and IgE detection, and at a 1:1000 dilution for 

all IgG subclasses for direct comparison. Results represent mean values + SEM (n = 5)  from 

immune sera of 5 multiply-infected mice assayed in triplicates. *** P < 0.001, ** P < 0.01, * 

P < 0.05, relative to naïve serum control.   
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5.6. Type 1 hypersensitivity induced by NbVAL4 and NbVAL7 

 

To test if exposure to N. brasiliensis infection made mice susceptible to immediate 

(type 1) hypersensitivity reactions on subsequent challenge with VALs, multiply 

infected mice were subjected to intradermal challenge with NbVAL4 and NbVAL7, 

followed by monitoring local mast cell degranulation using Evans blue extravasation 

as a read-out (Fig. 5.16A). The mast cell activating compound C48/80 was used as a 

positive control, which induced a local area of extravasation in every mouse tested. 

PBS was used as a negative control, which did not elicit reactions in any of the mice. 

Challenge with NbVAL4 and NbVAL7 resulted in clear positive reactions (++) in 4 

out of 10 mice, whereas 2 out of 10 did not react to either antigen (Fig. 5.16B). These 

results strongly suggest that the NbVAL4 and NbVAL7 antigens are potential 

inducers of type I hypersensitivity. 
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Figure 5.16. NbVAL4 and NbVAL7 induce Type I hypersensitivity in infected mice. 

Passive cutaneous anaphylaxis reactions were induced by NbVAL4 and 7, using Evans blue 

extravasation as a read-out. Mice infected 4x were challenged with 1 μg of NbVAL4 and 

NbVAL7, 500 ng of mast cell activating compound C48/80 (positive control), and PBS 

(negative control). A) Photograph of skin reactivity taken 20 minutes after antigen challenge. 

B) Strength of reaction in individual mice, with + designated as weak and ++ as strong 

reactivity. A non-significant difference between results obtained for NbVAL4 and NbVAL7 

was determined using the Mann-Whitney rank sum test (P < 0.05) on the Graphpad Prism 

software.  
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5.7. Immunisation with NbVAL7 

 

NbVAL7 was chosen for the immunisation experiments because, like the Na-ASP-2 

used in human clinical trials, it is secreted by L3. It also showed higher 

immunogenicity than NbVAL4 in terms of stimulating cellular proliferation and 

antibody responses.  

 

Female BALB/c mice were immunised with 25 μg of NbVAL7 precipitated with 

potassium aluminium sulphate (alum) as adjuvant, and thereafter were each boosted 

twice with 15 μg of NbVAL7-alum at monthly intervals. A control group of mice 

matched to the test subjects were immunised and boosted with an equivalent amount 

of PBS-alum at the same time points. One week after the final boost, mice from both 

groups were tested for their immune response to NbVAL7 and challenged with 500 N. 

brasiliensis L3. 

 

Cellular immune responses were tested one week after the final boost. Splenocytes 

harvested from immunised mice showed a high proliferative response (Fig. 5.17), and 

secreted IL-5 on stimulation with NbVAL7 (Fig. 5.18). The humoral response was 

assessed by antigen-specific ELISA with sera collected from immunised mice. The 

serum samples were first pooled and titrated (Fig. 5.19). Individual samples were then 

each tested at the optimal dilution for each specific immunoglobulin class or sub-class 

(Fig. 5.20, open bars, ‘pre-challenge with L3’ group). Immunisation stimulated 

production of NbVAL7-specific IgG1, IgG2a, IgG2b, but not IgG3. IgG1 responses 

were significantly and consistently higher than IgG2a, perhaps indicative of a slightly 

Th2-skewed response. It is particularly noteworthy that, even before challenge with N. 

brasiliensis L3, immunisation resulted in production of NbVAL7-specific IgE, 

demonstrating the allergenic potential of the VAL antigen. 

 

Serum samples were also collected post-challenge with L3. There was a slight trend 

for boosting of antigen-specific IgG2a, IgG2b and IgE by challenge infection (Fig. 

5.19), but in no case was this statistically significant (Fig. 5.20, black bars, 7 days 

post-challenge group). 
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Figure 5.17. Splenocytes from NbVAL7 immunised mice proliferate in response to 

recombinant NbVAL7. Splenocytes were harvested from mice immunised with NbVAL7 

conjugated to alum, 1 week after the final boost. Cells were cultured with NbVAL7 at 10 

μg/ml, or in medium alone (Ctrl) for 60 hours, then for another 16 hours with 
3
H-thymidine 

added at 1 μCi per well. Background values from identically treated splenocytes of alum-

immunised mice were subtracted. Results represent mean counts per minute + SEM from 

splenocytes of 5 individual mice assayed in quadruplicate. ** P < 0.01, relative to control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Cytokine release from splenocytes of NbVAL7 immunised mice. Splenocytes 

were harvested from mice immunised with NbVAL7 conjugated to alum, 1 week after the 

final boost. Cells were cultured with NbVAL7 at 10 μg/ml, or in medium alone (Ctrl) for 60 

hours, when the medium is collected for cytokine measurement by ELISA for IL-4, Il-5, IL-

10 and IFN-γ. Background values from identically treated splenocytes of alum-immunised 

mice were subtracted. Results represent mean values + SEM from splenocytes of 5 individual 

mice assayed in quadruplicate.   
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Figure 5.19. Titration of antibody responses to NbVAL-7 in immunised and naive mice, 

pre- and post-challenge with infective larvae. Plates were coated with NbVAL7 at 5 μg/ml 

and reacted with serum pooled from 5 immunised mice, diluted to the indicated 

concentrations. HRP-conjugated secondary antibodies to immunoglobulin isotypes were used. 

Samples were assayed in triplicate. 
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Figure 5.20. Antibody responses in NbVAL7 immunised mice.  Mice were immunised 

with NbVAL7 conjugated with alum, or alum alone (control). Sera were collected before and 

after challenge with N. brasiliensis L3 from 5 individual mice per group, and assayed by 

ELISA in triplicate. Sera were diluted 1:100 for IgA and IgE measurement, and 1:5000 for all 

IgG subclasses for direct comparison. Results are presented as mean levels of NbVAL7-

specific immunoglobulin +SEM (n = 5). ***P < 0.001, **P < 0.01, *P < 0.05, relative to 

control. Hash signs indicate a significant difference between levels of the IgG1 and IgG2a 

isotypes; ##P < 0.01, #P < 0.05. 
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Immunisation with NbVAL7 was thus successful in terms of producing strong 

antigen-specific cellular and humoral responses. To assess whether these conferred 

any protective effect against N. brasiliensis infection, parasite recovery was quantified 

from control and immunised mice post-challenge. Worms were recovered from the 

lungs of mice on day 1 post-infection (D1 p.i.), and from the intestines on D4 and D7 

p.i. (Fig. 5.21). Worms collected on D1, D4, and D7 consist of L4, young adults and 

mature adults respectively, and reflect the ability to infect, migrate and persist in 

different anatomical compartments. It was found that parasite recovery numbers were 

similar between the control and NbVAL7 immunised groups at all three time points. 

The numbers on D1 p.i. provide a snapshot of L4 transiting through the lungs at that 

particular timepoint, consisting of 12.3 ± 3.0% and 12.5 ± 1.2% of the initial infection 

dosage of 500 L3 for the control and immunised group respectively. The percentage 

establishment of adults on D4 p.i. was 24.9 ± 3.4% for the control group, and 23.3 ± 

3.0% for the immunised group. Most worms were expelled from the mice by D7 p.i., 

with 3.4 ± 0.6% and 3.3 ± 0.7% remaining for the control and immunised groups 

respectively. These results show that no protective effects were conferred in terms of 

total numbers of parasites recovered at different stages of the life cycle. Worms 

isolated on D4 p.i. were also tested for viability by the MTT assay. This did not differ 

between the groups (Fig. 5.22), suggesting that immunisation with NbVAL7 did not 

compromise parasite fitness. 

 

Since antisera to Na-ASP-2 has been shown to inhibit penetration of dog skin by L3 

in vitro (Bethony et al., 2005), I replicated this experiment with antisera to the 

NbVALs. Pre-incubation of N. brasiliensis L3 with anti-NbVAL7 collected from the 

above immunisation experiments did not affect their migration into rat skin, as 

compared to those incubated in naïve serum or PBS (Fig. 5.23). Pre-incubation with a 

mixture of antisera to NbVAL1 and NbVAL3-8 had no effect either. Pre-incubation 

with hyperimmune serum also no effect on L3 penetration, suggesting that the skin is 

an unlikely site of effective immune action to eliminate N. brasiliensis, at least when 

considered in terms of antibody-mediated mechanisms. 
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Figure 5.21. Immunisation with NbVAL7 does not confer protection against infection 

with N. brasiliensis. Mice were immunised with NbVAL7 conjugated with alum, or alum 

alone (control). Both groups were challenged with 500 N. brasiliensis L3 one week after the 

final boost. Mice were sacrificed on day 1, day 4 and day 7 post-infection (p.i.) in groups of 8 

per condition. Worms were recovered from the lungs on day 1 p.i., and from the intestines on 

day 4 and day 7 p.i. Results are presented as the mean number of worms recovered + SEM (n 

= 8). 
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Figure 5.22. Immunisation of mice with VAL7 has no effect on parasite viability at the 

intestinal stage. Viability of worms recovered on day 4 p.i. was measured by the MTT assay, 

with 50 worms per group, measured in triplicate. Results are presented as the mean 

absorbance value at 540 nm +SEM (n = 3). 
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Figure 5.23. Penetration of rat skin by N. brasiliensis L3 is not affected by immune 

serum or antibodies to NbVALs. N. brasiliensis L3 were incubated with PBS, naïve serum, 

immune serum, mixed anti-NbVALs or anti-NbVAL7 for 1 hour prior to the skin penetration 

test, in which L3 were loaded onto a testing chamber sandwiching a piece of intact rat skin 

and left to migrate for 30 minutes. Results are presented as the mean number + SEM (n = 3) 

of migrated worms, assayed in triplicate.  
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5.8. Discussion 

 

Discovery of the eight variants of VALs in N. brasiliensis provided an opportunity to 

improve our understanding of these proteins under experimentally controlled methods, 

the tools of which are limited for the human hookworm N. americanus. As Na-ASP-2 

was selected as a major candidate by the Human Hookworm Vaccine Initiative 

(HHVI), it is informative to collect data in various systems for a broader evaluation of 

the potential of VALs for immunoprophylaxis of nematode infections in general. 

These are extremely important in light of the decreasing effectiveness of current 

anthelmintic treatments. The success of vaccines hinges on the following criteria: 

viable production methods, ability to stimulate protective immunity, and safety of 

administration. These themes will be the main topics of discussion.    

 

 

Expression of VAL proteins 

 

While isolating natural products from the parasite itself would generate the target 

protein in its most native form, in practice nematodes secrete too little proteins for this 

procedure to be applicable, and downstream purification is not always a viable option. 

This is why an expression system must be employed to produce the target protein as a 

recombinant. There are high numbers of disulphide bridges in VAL proteins - it was 

predicted that there are 4 disulphide bonds in each of the single domain NbVALs (1, 4, 

5, 6), 8 bonds for NbVAL2, 7 and 8, and 10 bonds for NbVAL3 (Huang, 2010). 

Therefore, achieving correct folding in recombinants is challenging. Although all the 

information for a protein’s ultimate conformation is encoded in its primary sequence, 

the actual folding process may become erratic once it is taken out of its native 

environment. In the eukaryotic cell, most disulphide bonds found in secreted proteins 

are formed in the oxidative environment of the rough endoplasmic reticulum after 

protein translation and translocation. Prokaryotic cells have no such compartments, 

and recombinant proteins produced in bacterial expression systems remain in the 

reducing environment of the cytosol, which is unconductive to protein folding. Also, 

bacterial systems are unable to provide the post-translational modifications and/or 

suitable molecular machinery and chaperones which some eukaryotic proteins require 

to achieve accurate and stable folding. Moreover, the use of strong promoters and 
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inducers to activate overexpression of the target recombinant often results in high 

concentrations of folding intermediates with exposed sulphydryl (-SH) groups which 

may randomly interact with each other in an intra- or inter-molecular fashion in 

subsequent steps, making it even more difficult to produce recombinants which 

resemble the native structure (Sorensen and Mortensen, 2005). Unfolded or misfolded 

proteins have a tendency to form into insoluble aggregates called inclusion bodies in 

the bacterial cytosol. These inclusion bodies are usually heavily contaminated with 

other bacterial constituents, which are frequently not possible to eliminate completely, 

restricting the downstream applications of the recombinant proteins, particularly in 

cellular immunology and vaccination studies. 

 

The E. coli SHuffle strain and the expression conditions used for the NbVALs were 

chosen with these considerations in mind. SHuffle cells were engineered to optimise 

efficient folding of proteins with high cysteine content by harnessing the constitutive 

expression of the disulphide bond isomerase DsbC, which catalyses the formation and 

reshuffling of disulphide bonds in the bacterial cytosol (Bessette et al., 1999). DsbC 

also acts as a folding chaperone, which directs and stabilises the folded structure 

(Chen et al., 1999). A lowering of the cultivation temperature is known to discourage 

hydrophobic interactions which contribute to aggregation reactions, and also results in 

a slower rate of protein synthesis which reduces the system’s metabolic burden 

(Sorensen and Mortensen, 2005). This is also achieved by not using any inducers to 

stimulate overexpression, which is favourable because the recombinant proteins have 

more time to fold according to the conformational preferences of the nascent 

polypeptide chain, resulting in the alignment of the proper cysteine residues for 

disulphide bond formation. A slower rate of synthesis also means that there would be 

fewer interactions between molecules with exposed unoxidised -SH groups, 

minimising chain reactions of protein-protein aggregates.  

 

Using the E. coli SHuffle system under these conditions, large amounts of soluble 

NbVAL7 were produced by growing cells at 26°C without induction. It is critical for 

the expressed product to be soluble, because (1) there is higher fidelity in its correct 

folding, which would make it functionally and immunologically closer to the native 

protein, and (2) it is more suitable for most methods of experimentation (e.g. ELISA 

and cellular stimulation). The SHuffle system also enabled the expression of smaller 
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amounts of soluble NbVAL4, 6 and 3, which was still an improvement to the 

BL21(DE3) system which produced only insoluble proteins. It was somewhat 

surprising that proteins with such similar sequences should behave so differently, 

especially when the position of their cysteine residues, and thus presumably the 

formation of disulphide bonds, were also considerably conserved. It seems that further 

optimisation of expression of the NbVAL proteins is needed, which may possibly 

result in different conditions for each variant. In future work to express these proteins 

in soluble form, the following options may be considered. 

 

Bacterial expression systems have remained a choice method for recombinant protein 

synthesis due to their utilisation of inexpensive carbon sources, simple and rapid 

growth, ability to withstand high density cultivation and simple process scale-up. 

Strategies that have been employed to express cysteine-rich proteins include export of 

the recombinant protein to the oxidising environment of the periplasmic space by the 

inclusion of an N-terminal translocation sequence, where the formation of disulphide 

bonds is energetically favourable and aided by multiple molecular chaperones and 

disulphide isomerases (Baneyx and Mujacic, 2004). Others have utilised similar 

concepts as the E. coli SHuffle strain by genetically engineering the cell cytoplasm 

into an environment conductive to protein folding. For example, the Origami and 

Rosetta gami (Novagen) strains of E. coli, a preferred choice of structural biologists, 

are cells with disabled thioredoxin reductase (TrxB) and glutathione reductase (gor). 

TrxB and gor are enzymes which actively keep cysteines in the E. coli cytoplasm in a 

reduced state, and their elimination was found to greatly enhance protein folding in 

the bacterial cytoplasm (Derman et al., 1993). If all fails, refolding protocols may be 

considered. These generally involve the isolation and resolubilisation of inclusion 

bodies, followed by in vitro renaturation under conditions which favour protein 

folding and disulphide bond formation. These methods can however be associated 

with low recovery yields, and the resolubilisation process may compromise the 

integrity of the refolded proteins (Verma et al., 1998). The optimal refolding 

conditions are also often different for different proteins, perhaps making it a more 

expensive option than optimising conditions to produce soluble proteins. 

 

Bacterial systems are however still lacking in post-translational processing such as 

glycosylation, which may be important for protein structure and function. Multiple N-
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linked glycosylation sites were predicted in NbVAL2, 3 and 8, although they do not 

show conservational patterns. Interestingly, O-linked glycosylation sites were 

predicted in the cysteine-rich / hinge region of NbVAL2, 3, 7 and 5 which appear to 

be positionally similar (Fig. 5.3). Moreover, multiple O-linked glycosylation sites 

have also been found in the hinge region of Hp-VAL-1 of H. polygyrus (Murray et al., 

2010). Structural modelling showed that the hinge region lies apart from the SCP 

domains of the molecule like Na-ASP-2, suggesting that it is exposed to its 

surroundings and may be capable of interacting with other molecules. This could be 

of functional significance, as it is possible that the hinge region is more than just a 

linker connecting the two domains (in the case of double domain VALs) or a residual 

legacy from divergent evolution (for single-domain VALs). It is known that 

nematodes secrete many glycoconjugates including glycoproteins, mucins, C-type 

lectins and galactins (Dzik, 2006). In fact, the NIF protein, a VAL homologue 

purified from H. contortus and A. caninum, was found to be heavily glycosylated – 

the sugar moiety of AcNIF accounts for 40% of its molecular weight (Anbu and Joshi, 

2008; Moyle et al., 1994). Considering that carbohydrate moieties are often important 

for the recognition and binding of immune cells (Gu, 2007), it is possible that the 

glycosylation of NIF is important for its binding to adhesion molecules which 

contributes to its  inhibition of leukocyte recruitment. Apart from contributing to 

biological functions, the correct glycosylation of proteins may also be required to 

induce an appropriate immune response, which is important for vaccination studies. 

Therefore, it is highly feasible to produce recombinant VALs which are glycosylated, 

in which case the utilisation of eukaryotic expression systems may be more 

appropriate. 

 

Popular and established eukaryotic expression systems include yeast (e.g. Pichia 

pastoris) and insect cells (e.g. baculovirus with insect cell lines such as Sf21). Both 

types of cells are able to N-glycosylate proteins at the Asn-X-Ser/Thr motifs, in a 

manner that is usually similar to higher eukaryotes (Feldmann, 2007). Although both 

cell types are also able to perform O-linked-glycosylation (Invitrogen, 2010), the 

resulting glycosylation patterns could however be different to nematodes, as analysis 

of O-glycan structures in C. elegans has revealed unusual patterns (Guerardel et al., 

2001). Both yeast and insect cells usually produce high yields of proteins with the 

added advantage of being endotoxin (LPS)-free, thus making the products more 
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suitable for use in cellular immunology studies and vaccination. VAL variants of 

Heligmosomoides polygyrus have been expressed in insect cells by the Maizels lab, 

with excellent results (Murray et al., 2010). Mammalian cell expression systems (e.g. 

Chinese hamster overy, CHO cells) are also good for producing proteins which are 

often expressed in their native form, but is however associated with high cost and low 

yield (Verma et al., 1998). 

 

During my project I have additionally made multiple attempts to express the full 

length versions of NbVAL3 and NbVAL8 in P. pastoris. The NbVAL3 and NbVAL8 

inserts were previously cloned into the vector pCR2.1-TOPO by Huang (2010). I then 

excised the inserts and ligated them into the yeast vector pPICZαA, and verified that 

the sequences were in frame. I next attempted to transform the vectors into P. pastoris 

X-33 strain by electroporation and lithium chloride transformation. Although positive 

colonies were obtained, the transformants did not produce the target VAL proteins, 

although it was unclear why this was so. 

 

The possibility of expressing parasitic nematode genes in C. elegans is a very 

attractive option. Since the basic biochemistry and genetics of C. elegans is similar to 

parasitic nematodes, it is highly likely that the recombinants produced would 

resemble the native structure and have the correct post-translational modifications. 

Kwa et al. (1995) showed that it is possible to stably express and maintain a β-tubulin 

gene, tub-1 from H. contortus in C. elegans by microinjection of DNA into germ cells 

of the gonad. The expressed product was functional and able to rescue the C. elegans 

orthologous mutant phenotype, demonstrating that the protein was correctly folded 

and processed. In another study, a cystatin gene from A. viteae was also successfully 

expressed in C. elegans (Pillai et al., 2005). Expression of a H. contortus cathepsin L 

protease, Hc-cpl-1, in C. elegans restored normal embryogenesis in mutants for the 

orthologous gene (Britton and Murray, 2002). The expressed protease was 

enzymatically active and glycosylated, and recombinant protein from transgenic C. 

elegans can be produced and purified in sufficient amounts for vaccination studies to 

be carried out (Murray et al., 2007). These studies highlight the potential of using C. 

elegans as a surrogate system in producing parasitic nematode proteins for functional 

and biochemical analysis, as well as vaccine testing.  
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Keeping in mind that the VAL proteins are ultimately to be mass produced as vaccine 

targets, one must take a pragmatic view in terms of the cost, efficiency and safety of 

batch production. Bacterial systems are undesirable, because of the concern of LPS 

contamination, which can alter the physiology and cause adverse effects if injected 

into humans. Yeast systems such as P. pastoris are ideal, since they can give high 

yields at a relatively low cost, which is important as hookworm is an infection of the 

world’s poorest. Insect and nematode systems may have a higher possibility in 

expressing products more similar to the native form, but at this stage they are still 

very expensive and much more difficult to deal with on a large scale, and therefore 

more suited to production of proteins for research purposes rather than for bulk 

generation of vaccine.  

 

 

VALs and protective immunity 

 

Through serum ELISA and lymphocyte proliferation experiments with multiply-

infected mice, it was demonstrated that NbVAL7 displayed significant 

immunogenicity, with both cellular and humoral responses activated at higher levels 

than NbVAL4. These responses seemed to be characteristic of Th2-biased immunity, 

with significantly elevated levels of antigen-specific serum IgE, IgG1 and IgA, 

although cytokine response was not detectable. Importantly, these experiments also 

showed that the immune components, primed by multiple infection, can respond to 

the recombinant NbVAL7 produced in SHuffle cells. These lines of evidence support 

the rationale for using NbVAL7 in vaccination experiments. 

 

Although VAL proteins have been shown to protect against hookworm infection in a 

variety of systems, this effect was not demonstrated in my experiments with NbVAL7. 

There could be several reasons for this, the most obvious being that immune 

responses to NbVAL7 are not protective for N. brasiliensis infection. Although a great 

body of evidence exists in the literature to support the protective effects of VAL 

antigens, there have been cases in which they did not elicit protection. Another 

possibility lies in the conformation of the recombinant protein used in the vaccination 

experiment, which has not been tested by NMR or X-ray crystallography. Although 

the NbVAL7 proteins generated from SHuffle cells were soluble and stable from 
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expression to dialysis, this is not proof of correct conformation. Conformational 

epitopes are likely to be important for eliciting protection, as observed in several cases 

in which vaccination with VALs produced in E. coli failed to elicit protection. For 

example, vaccination with the baculovirus expressed Hc40 from H. contortus 

conferred protection in sheep, while its E. coli-expressed counterpart did not (Sharp 

and Wagland, 1998). Immunisation with Bm-VAL-1 produced in E. coli also did not 

protect jirds from a challenge infection with B. malayi (Murray et al., 2001). On the 

other hand, vaccination with the baculovirus expressed Oo-ASP1 failed to elicit 

protection, even though vaccination with the native protein purified from O. ostertagi 

resulted in a 74% reduction in faecal egg counts (Geldhof et al., 2008). Antisera to the 

recombinant protein (which was insoluble) failed to recognise its native version, 

suggesting that the baculovirus produced-protein was also incorrectly folded or lacked 

post-translational modifications essential for recognition.   

 

In addition, only the N-terminal domain of the double-domain NbVAL7 was cloned 

and expressed as a recombinant protein, and perhaps important epitopes for eliciting 

protection exist other parts of the protein, or the presence of the whole molecule may 

be required. Lastly, the recombinant proteins produced in E. coli were not 

glycosylated, which could be an important factor for immune recognition. Indeed, 

most of the successful vaccination trials have made use of VALs produced in yeast, 

including the studies involving ASP-2 in dogs and hamsters (Bethony et al., 2005; 

Goud et al., 2004). Moreover, antibodies produced during vaccination of sheep with 

H. contortus secreted proteins were found to recognise predominantly glycan moieties 

(Vervelde et al., 2003). Interestingly, such glycan-specific antibody responses are 

most prominent for the isotypes IgG and IgA, but only moderate for IgE, perhaps 

suggesting that such epitopes may have the potential to generate a protective immune 

response without eliciting IgE-related hypersensitivity reactions. Furthermore, it was 

found that a quarter of the antibodies generated against the H. contortus gut antigen 

H11 target carbohydrate epitopes (Newton and Meeusen, 2003). Immunisation of 

sheep with native H11 purified from H. contortus induces a 90% reduction of worm 

burden during challenge, but little protection can be elicited by vaccination with 

recombinants produced in E. coli or baculovirus. 
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There is also room for consideration with regards to the vaccination procedures. The 

dosage for vaccination could be a variable, as could the choice of adjuvant. 

Alternative adjuvant candidates, such as the oil-water emulsion type ISA-720 (Seppic) 

and AS02 (GSK) could be further explored (Hotez et al., 2003). More importantly, it 

should be noted that mice are not the natural host of N. brasiliensis. The decision to 

use mice rather than rats, their natural host, for vaccination is based on that fact that 

the immunological reagents to screen immune responses are far superior for mice in 

terms of variety and availability. Indeed, it has been possible to carry out a wide range 

of experiments to test the immune response of the mice pre- and post-vaccination with 

convincing data. Nevertheless, this decision may have compromised the quality of 

data involving parasite recovery after challenge, as the parasite life cycle in the mouse 

is truncated much earlier. 

 

The original plans were to produce a mouse-adapted strain of N. brasiliensis for these 

experiments, a procedure claimed to be possible according to the literature (Kassai, 

1982). This involves passaging parasites through the mouse and subsequent selection 

of the surviving progeny until a stable population of mouse-adapted worms are 

produced, which would normally require 4-6 passages. This procedure has been 

repeated 6 times in our laboratory over four months, and in only one infection have 

we been able to recover a very small number of L3, which were then lost again 

through re-infection. Isolation of adult worms from the gut of the infected mice 

revealed that a portion (about 20%) of the parasites were able to transit through the 

mouse, but the resulting adults were infertile and unable to produce eggs, explaining 

the extremely low recovery of L3. Therefore, in our experiments we were only able to 

assess the effect of vaccination on worm burden and viability, but not egg output. It 

also could be possible that the different physiology of the mouse to the rat may have 

affected the infection process, confounding the results in ways unknown. The 

vaccination experiments should be replicated in rats to assess vaccine efficacy in the 

natural host. 

 

VAL proteins are secreted antigens, and one possible mode of vaccine action could be 

based on production of neutralising antibodies, inactivating VAL protein function. As 

discussed, the functions of VALs remain undefined. The fact that vaccines based on 

VALs have been effective in a number of models could be an indication that they do 



245 

 

have important functions. For functional studies with recombinant proteins to 

generate reliable and useful data, it is important for the expressed product to resemble 

the native protein as much as possible in structure and activity. An appropriate 

expression system should be chosen, and the conformation of expressed products 

verified by structural methods such as X-ray crystallography or NMR prior to 

experimentation.     

 

The data showing that neutralising antibodies to ASP-2 were able to inhibit 

hookworm penetration forms part of the reasoning for choosing Na-ASP-2 to be the 

vaccine candidate by the Human Hookworm Vaccine Initiative (Bethony et al., 2005; 

Goud et al., 2005), with the implication that ASP-2 perhaps plays a role in skin 

penetration at the onset of infection. This basis for postulate seems to be the 

homology between the nematode VALs and Ves v 2, a venom allergen protein in 

yellow jacket wasps which is a hyaluronidase, an enzyme which has the capacity to 

break down mammalian skin structure (Henriksen et al., 2001). It also fits the theory 

that VAL proteins play important roles in the transition to parasitism and onset of 

infection. However, these results were not replicated in my current study with N. 

brasiliensis using any of the antisera to NbVALs. In addition, the hyperimmune serum, 

a concoction which include antibodies to most secreted proteins and other antigens of 

N. brasiliensis, also did not inhibit skin penetration. This suggests that immune 

protection is not effected by antibody-mediated inhibition of penetration of the skin. 

Indeed, in studies of N. brasiliensis reinfection of immune animals, the site of 

immune priming and elimination of the worms occurs almost entirely at the lungs 

(Harvie et al., 2010). These findings suggest that design of vaccination strategies 

against strongylid nematodes target immune responses in the lungs rather than the 

skin. 

 

 

VALs and Hypersensitivity 

 

Production of IgE by B cells is an effector response common in parasitic infections, 

but can also sensitise mast cells for type I hypersensitivity reactions through its 

effectively irreversible binding to their FcεRI receptors. Cross-linking of bound IgE 

molecules on re-encounter of its antigen causes degranulation and release of 
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mediators from mast cells and/or basophils, resulting in allergic reactions, which can 

potentially be life-threatening in anaphylactic cases. For a vaccine candidate such as 

NbVAL7 to have the capacity to induce production of IgE is potentially dangerous, 

because the recipient will have to undergo repeated exposure to the antigen through 

multiple vaccination boosts as well as possible future and/or previous encounter with 

the pathogen, stimulating clonal expansion of IgE every time.  

 

It was demonstrated in this chapter that NbVAL7- and NbVAL4-specific IgE were 

produced in mice infected with N. brasiliensis. While this confirms the 

immunogenicity of NbVALs, it also highlights a potential drawback in their use as 

vaccines. Their capacity for inducing Type I hypersensitivity reactions was confirmed 

by the in vivo skin tests, in which immediate cutaneous anaphylaxis to NbVAL7 and 

NbVAL4 were clear in 4 out of 10 multiply-infected mice. These data mirror the 

results from the human vaccination trials with Na-ASP-2, in which previously 

infected human individuals exhibited Type I hypersensitivity reactions upon 

immunisation, an effect which correlated with increased IgE levels (Bethony et al., 

2008a). 

 

It is additionally striking that immunisation with recombinant NbVAL7 resulted in 

high levels of antigen-specific IgE in naive mice without any prior exposure to the 

parasite. This suggests that the allergenic properties of NbVAL7 are likely to be 

associated with the antigen itself, rather than just being associated with the general 

type 2 response mounted by helminth infection. This resonates with the results from 

the first Na-ASP-2 vaccination trials with healthy volunteers unexposed to hookworm, 

which reported statistically insignificant but consistent trends of IgE levels increasing 

with immunisation boosts and ‘mild to moderate injection site reactions’ of pain, 

swelling, erythema and pruritus (Bethony et al., 2008b). Concerns associated with 

these findings were verified in later trials with individuals previously exposed to 

hookworm (Bethony et al., 2008a). 

 

On the other hand, there are many who support the view that IgE production is a 

double-edged sword which plays an integral part in helminth immunity. In 

vaccination experiments with VAL antigens from H. contortus (Hc24), A. caninum 

(Ac-ASP-1) and Necator americanus (Na-ASP-1), protection from parasite challenge 
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was highly correlated with IgE (Ghosh and Hotez, 1999; Hotez et al., 2003; Kooyman 

et al., 2000). Parasitological and serological surveys in hookworm endemic areas also 

pointed to a correlation between high Na-ASP-2-specific IgE levels and low 

hookworm intensity (Bethony et al., 2005).  It could be possible that IgE production is 

just an effect manifested by repeated exposure to the allergenic VAL antigens, or it 

may be the reason why VAL proteins are protective antigens. Although expulsion of 

GI nematodes are generally antibody-independent, IgE has been linked to the 

weakening of larval and adult worms, which may impair survival and fecundity, as 

well as mast cell responses (Gurish et al., 2004; Pritchard et al., 1995). In 

schistosomiasis, resistance to reinfection is correlated to high IgE levels, which also 

contributes to the killing of larval schistosomes (Hagan, 1993). Immunisation with 

schistosomula-specific monoclonal IgE resulted in elimination of the parasite through 

macrophage action, and IgE has also been shown to mediate eosinophil action in the 

killing of S. mansoni (Gounni et al., 1994; Zhang and Mutapi, 2006). Although IgE 

action could possibly contribute to the protective effects of a vaccine, it may not be an 

absolute requirement, as immunisation with other antigens such as the Ac-MTP1, 

another  L3 secreted protein, also resulted in protection but correlated with IgG2 

rather than IgE levels (Hotez et al., 2003).  

 

It is perhaps not surprising that VAL proteins are allergenic, considering their 

homology to the vespid venom allergen proteins. True to their namesake, these 

proteins are the major allergy-inducing components present in the venom of a range 

of biting insects including bees, yellow jacket wasps, hornets, fire ants, mosquitoes, 

sandflies, tsetse flies, and even snakes (Cantacessi et al., 2009). Structural studies 

have found conserved regions between these proteins which are suggested to 

constitute major B cell epitopes for an IgE response (Henriksen et al., 2001). It is 

possible that these epitopes could also be conserved in the nematode proteins, causing 

hypersensitivity.  

 

Collectively, these data suggest that the VAL antigens, with their tendency to induce 

type 1 hypersensitivity, are not safe for use in vaccination to protect against 

hookworm infection. The Human Hookworm Vaccine Initiative has halted 

vaccination trials for Na-ASP-2 and has moved on to testing new targets (Periago, 

2010). However, Alex Loukas’ group are currently analysing the allergenic epitopes 
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on VAL proteins, in the hopes that the implicated sites can be modified to downplay 

its allergenic properties without compromising its protective effects. If this could be 

achieved, then the VAL antigens, having produced promising results, could still have 

future use in vaccine formulations against helminth parasites. 

       

 

Chapter conclusions  

 

The immunogenicity and protective effects of vaccination with VALs has been 

demonstrated in several systems, although the latter has not been replicated in my 

studies with NbVAL7 produced in E. coli SHuffle. It is clear that the expression of 

soluble, pure and structurally accurate VAL proteins is important, and key to 

producing reliable data on biological functions. Although research on VAL proteins 

as human hookworm vaccine candidates has reached a bottleneck for safety reasons, it 

is still important that the functions of VAL proteins be found. Considering the 

widespread distribution of VAL proteins in parasitic nematodes, elucidating their 

functions may not only improve our understanding of host-parasite interactions, but 

also inform of the design of future vaccination strategies.  
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Chapter 6  
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Secreted proteins form the primary interface between parasite and host, and they are 

important molecules for infection, involved in a range of functions during different 

stages of the parasite life cycle including host invasion, immunomodulation and 

survival. The analysis of secreted proteins of N. brasiliensis is an underlying theme to 

this project. The secretion profile of N. brasiliensis has been analysed by 2-DE for the 

first time, and showed that the proteins secreted by the larval and adult stages differs 

not only quantitatively but qualitatively. The composition of adult secreted proteins 

showed higher complexity, with a wide molecular weight range, whereas proteins 

secreted by L3A lie mostly between 15-37 kDa, although a large number of proteins 

were found within this region in relatively smaller quantities. The analysis of larval 

secreted proteins has been of higher interest to our laboratory than those of adults, as 

they are likely to contain factors relevant to parasite infectivity. Studying proteins 

secreted by larvae would thus improve our understanding of possible invasion factors 

and the early establishment of the host-parasite relationship, providing an opportunity 

to design intervention and vaccination strategies which can target worms at the onset 

of infection.  

 

In the absence of a genome sequence, a global proteomic characterisation of all 

proteins in the mixture would be technically challenging. Besides, it is unlikely that 

all secreted proteins will have equal contribution to parasite infectivity. When the 

field-isolated J strain of N. brasiliensis was donated to our laboratory, initial life cycle 

passages revealed that it was noticeably more productive than our laboratory passaged 

W strain. We originally suspected that this was due to greater infectivity, and a 

comparison of larval secreted proteins of the two strains may highlight molecules 

which are important in infectivity. However, comparative analysis of infection 

dynamics showed that the two strains were equally infective, and the difference in 

productivity was attributable to the higher adult fecundity and persistence of the J 

strain. Thus factors affecting parasite fecundity and survival may instead be 

differentially manifested by the two strains at the adult stage. Although not an original 

aim of the project, this was an interesting phenomenon which I sought to further 

analyse. The host response to infection with the two strains was found to be similar in 

mode and magnitude, indicating that factors which regulate the differences in 

infection dynamics were likely to be intrinsic to the worms. This also suggests that the 
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two strains are unlikely to show overt differences in their capacity to modulate the 

host immune response. It is however possible that the two strains could show 

differential capacity to resist host expulsion mechanisms, and thus adult secreted 

proteins of the two strains were assayed for acetylcholinesterase and nucleotide 

metabolising enzyme activities, but the results did not explain the differences in 

infection dynamics. Although some differences were found between the secretion 

profiles of the two strains resolved by 2-DE, we decided that a proteomics project to 

qualify such differences may not be particularly informative. Moreover, since the 

genome sequence of N. brasiliensis was not available, identification of proteins by 

peptide mass fingerprinting (PMF), a technique which compares the mass of enzyme-

cleaved peptide fragments with theoretical peptide masses predicted in databases, was 

an impractical strategy. Thus there would be a need to obtain the actual amino acid 

sequences of the proteins of interest by tandem mass spectrometry and N-terminal 

sequencing, which is a lot more time consuming, and even then the elucidation of 

protein identity was not guaranteed due to the lack of genomic and proteomic data. 

 

Studies on the infection dynamics of the two strains did however provide interesting 

insights as to how laboratory passage may affect the characteristics of a parasite strain. 

Since parasite fecundity and most likely survivorship are compromised after repeated 

high-dose passage, data generated from such laboratory strains may misrepresent 

natural infection and bias epidemiological models. The W strain has therefore been 

replaced with the J strain for parasite work on N. brasiliensis exclusively in our 

laboratory, as it probably more closely represents natural infection.  

 

Activation is an important event central to the infective process which is associated 

with the transition of a parasitic nematode from its free-living phase to its parasitic 

phase. This process depends sensitively on the parasite’s ability to sense and respond 

to host cues appropriately in order to maximise its chances of infection and avoid mis-

activation in the wrong context. I have shown that both thermal and chemical input 

can be important for activation. Notably, a temperature cue at 37°C was sufficient to 

activate larval feeding to over 90% and initiate the synthesis and secretion of proteins 

in N. brasiliensis. Although chemical host cues such as rat serum and rat skin did not 

synergise with the temperature cue to enhance these activities, in chemotactic assays 

N. brasiliensis L3 was found to be attracted to an aqueous fraction of rat skin, which 
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also induced the immediate release of a bolus of pre-synthesised protein, independent 

of temperature. This may suggest that thermal and chemical cues can be processed 

independently of each other, leading to different events during activation. 

Furthermore, such protein release is likely to be important for parasite invasion, like 

the hydrolytic enzymes involved in skin penetration (Hotez et al., 1990; Salter et al., 

2000; Williamson et al., 2006). However, recent evidence has shown that the 

protective responses which lead to immune attrition of N. brasiliensis occurs 

primarily at the lungs (Harvie et al., 2010), suggesting that vaccination strategies for 

hookworms may be better to focus instead on stimulating protective immune 

responses at this site. 

 

Proteins secreted by activated larvae were found to be highly immunogenic during 

infection, indicating that they are recognised by the host immune system and may 

possibly contribute to host immunity. It is particularly noteworthy that out of 

approximately 90 protein spots resolved by 2-DE, only 8 of them reacted with 

immune serum from infected rats. Moreover, the strength of reactivity was not 

correlated with the quantity of protein. This differential recognition suggests that such 

proteins may have particular significance in immunity to nematodes, which would be 

interesting for further studies to test if they may be protective antigens. 

Immunoblotting has been the method of choice in sampling for immunogenicity, and 

has been successful in elucidating a number of antigens protective to parasitic 

nematodes (Knox, 2000). However, serum antibody reactivity may not always be 

indicative of an ability to induce protective responses, especially since antibody 

responses generally do not play a large part in nematode immunity (Else and Grencis, 

1996). Alternative methods to identify antigens associated with protective immunity 

may focus on cellular reactivity, such as T cell Westerns (Haig et al., 1989; Knox, 

2000), or use antibody probes collected at the local sites of infection such as the 

mucosal surface or the draining lymph nodes.  

 

The effect of RELMs on chemotaxis and feeding in N. brasiliensis was investigated, 

since there has been evidence which suggested that such activities were inhibited by 

RELMβ in parasitic nematodes (Artis et al., 2004; Herbert et al., 2009). In particular, 

it was interesting that RELMβ, a molecule whose cellular distribution suggest that it 

could only affect adult worms of the intestinal stage (Steppan et al., 2001), has been 
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reported to inhibit the chemotactic responses of larvae. In my experiments such 

inhibition of chemotaxis was not demonstrated in N. brasiliensis L3, nor was feeding 

in either L3 or adults. Considering that a host deficiency in RELMβ result in a 

decreased ability to clear adult worms from the host intestines (Herbert et al., 2009), 

its specific role in nematode immunity should be further examined.   

 

The discovery of VAL proteins in N. brasiliensis provided an opportunity to test the 

efficacy of a secreted protein as a vaccination candidate. It was an initial aim to use a 

protein secreted at the larval stage for vaccination, and NbVAL7 was chosen since it 

was identified in L3A-secreted proteins through Western blot analysis. Although it 

was found that NbVAL7 was immunogenic during infection, immunisation with the 

recombinant protein produced in E. coli SHuffle cells did not protect mice from a 

challenge infection. These results were however complicated by the question of 

whether the recombinant proteins were correctly folded. Due to their high cysteine 

content, it has been noted by several laboratory groups that correct protein folding is a 

particular challenge for this family of proteins (Hotez et al., 2003). The role of 

glycosylation on the function and protective properties of VALs are also unclear. 

Thus a focus on the production of recombinants which are comparable to the native 

protein in structure and post-translation modifications should be the priority before 

further experimentation on VAL proteins. Achieving this, the interpretation of 

functional and immunological data can be carried out with less ambiguity. 

Considering that the eight variants of NbVALs show differences in stage-specific 

expression, it would be interesting if their functions could be compared.  

 

The discovery that NbVAL7 and NbVAL4 elicit antigen-specific IgE production and 

Type 1 hypersensitivity indicates that these proteins may not be suitable as vaccine 

candidates due to safety reasons. The demonstration that VAL-specific IgE can be 

induced without exposure to the parasite also suggests that the allergenic properties lie 

within the molecule itself. These results raise doubts about the suitability of VALs as 

vaccine components caused by the hypersensitivity reactions observed during the 

vaccination trials in humans (Bethony et al., 2008a; Bethony et al., 2008b). I have 

also shown that IgE specific to adult and larval secreted proteins were prominently 

produced during infection with N. brasiliensis, and this additionally highlight the 
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potential safety concerns which should be kept in mind when selecting nematode 

secreted proteins as candidates for vaccination.  

 

In conclusion, this project has taken a broad approach in answering specific questions 

regarding secreted proteins in N. brasiliensis, with relevance to parasite infectivity 

and immunity. This project also improved our understanding of nematode secretions, 

particularly at the larval stage, as research efforts from other groups which study 

nematode secreted proteins have mostly focused on the adult stage. More detailed 

functional studies of larval secreted proteins will not only assist in development of 

anti-nematode vaccines, but should also yield valuable information on the processes 

involved in invasion and infection of the mammalian host. 
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