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Abstract

Abstract

This PhD thesis presents a novel second order accurate direct Arbitrary-La-
grangian-Eulerian (ALE) Finite Volume scheme for nonlinear hyperbolic sys-
tems, written both in conservative and non-conservative form, whose peculiar-
ity is the nonconforming motion of interfaces. Moreover it has been coupled
together with specifically designed path-conservative well balanced (WB) tech-
niques and angular momentum preserving (AMC) strategies. The obtained
result is a method able to preserve many of the physical properties of the sys-
tem: besides being conservative for mass, momentum and total energy, also
any known steady equilibrium of the studied system can be exactly maintained
up to machine precision. Perturbations around such equilibrium solutions are
resolved with high accuracy and minimal dissipation on moving contact dis-
continuities even for very long computational times.

The core of our ALE scheme is the use of a space-time conservation formula-
tion in the construction of the final Finite Volume scheme: the governing PDE
system is rewritten at the aid of the space-time divergence operator and then
a fully discrete one-step discretization is obtained by integrating over a set of
closed space-time control volumes. In order to avoid the typical mesh distortion
caused by shear flows in Lagrangian-type methods, we adopt a nonconform-
ing treatment of sliding interfaces, which requires the dynamical insertion or
deletion of nodes and edges, and produces hanging nodes and space-time faces
shared between more than two cells. In this way, the elements on both sides of
the shear wave can move with a different velocity, without producing highly dis-
torted elements, the mesh quality remains high and, as a direct consequence,
also the time step remains almost constant in time, even for highly sheared
vortex flows. Moreover, due to the space-time conservation formulation, the
geometric conservation law (GCL) is automatically satisfied by construction,
even on moving nonconforming meshes.

Our nonconforming ALE scheme is especially well suited for modeling in po-
lar coordinates vortical flows affected by strong differential rotation: in partic-
ular, the novel combination with the well balancing make it possible to obtain
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Abstract

great results for challenging astronomical phenomena as the rotating Keple-
rian disk. Indeed, we have formulated a new HLL-type and a novel Osher-type
flux that are both able to guarantee the well balancing in a gas cloud rotating
around a central object, maintaining up to machine precision the equilibrium
between pressure gradient, centrifugal force and gravity force that character-
izes the stationary solutions of the Euler equations with gravity. To the best
knowledge of the author this work is original for various reasons: it is the first
time that the little dissipative Osher scheme is modified in order to be well bal-
anced for non trivial equilibria, and it is the first time that WB is coupled with
ALE for the Euler equations with gravity; moreover the use of a well balanced
Osher scheme joint with the Lagrangian framework allows, for the first time
within a Finite Volume method, to maintain exactly even moving equilibria.

In addition, the introduced techniques demonstrate a wide range of appli-
cability from steady vortex flows in shallow water equations to complex free
surface flows in two-phase models. In the last case, studied on fixed Carte-
sian grids, the new well balanced methods have been implemented in parallel
exploiting a GPU -based platform and reaching the very high efficiency of ten
million of volumes processed per seconds.

Finally, in the case of vortical flows we propose a preliminary analysis on how
to increase the accuracy of the method by exploiting the redundant conserva-
tion law that can be written for the angular momentum, as proposed in [56].
Indeed, an easy manipulation of the Euler equations allows to write its addi-
tional conservation law: clearly it does not add any supplementary information
from the analytical point of view, but from a numerical point of view it provides
extra information in particular in the case of rotating systems. We present both
a master-slave approach, to deduce a posteriori a more precise approximation
of the velocity, and some coupled approaches to investigate how the entire
process can take advantage from considering directly the angular momentum
during the computation within a strong coupling with other variables.

A large set of different numerical tests has been carried out in order to check
the accuracy and the robustness of the new methods for both smooth and
discontinuous problems, close and far away from the equilibrium, in one and
two space dimensions. Many of the presented results show a great enhancement
with respect to the state of the art.
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1 Introduction

The development of new reliable and effective numerical methods for solving
hyperbolic partial differential equations (PDEs) has become a central discipline
in present-day computational science. Indeed, the variety and broad applicabil-
ity of hyperbolic equations cover a wide range of interesting phenomena, from
environmental, geological and electromagnetic problems to blood flow in the hu-
man circulation system, as well as computational fluid dynamics, seismic wave
propagation and astrophysical applications, including magnetized plasma flows
and even general relativity. And, since exact analytical solutions are rarely
available, a continuously increasing interest is focused on numerical strategies
able to model such complex situations.

In particular, the Finite Volume (FV) method has been the most used ap-
proach to discretize hyperbolic equations in the last decades. The main idea
consists in replacing the continuous problem given by the PDEs on a domain Ω
by a finite set of discrete values, which represent the average of the considered
physical quantities on each portion, called indeed control volume, of a partition
of Ω. These averages are then evolved in time through the integral form of
the governing equations and a specific numerical flux function that resolves
the discontinuities at the interfaces between two control volumes. From its
introduction, that dates back before 1960 with the seminal works of Godunov,
Lax, Von Neumann, Richtmyer and Wendroff [86, 104, 105, 160], until today
many improvements have been proposed in order to adapt the method to any
specific situation and increase its overall accuracy and efficiency. Between the
mayor enhancements, which would be impossible to list all here, I would like to
recall those that have been the starting point for the research presented in this
PhD thesis: first of all the overcoming of the Godunov theorem (which states
that linear monotone schemes for hyperbolic PDE are at most of order one)
that has led to significant progress on high order schemes both on structured
and unstructured grids in any dimension of space; secondly, the introduction
and developments of the complex Lagrangian framework that allows to reduce
the errors due to convective terms paying the price of a more complex moving
mesh, whose quality is often very difficult to control; and finally, the growing
success of the well balanced techniques which increment the power of resolution
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1 Introduction

of the method close to steady state solutions.
This work focuses on the development of numerical methods able to maintain

exactly even at discrete level many of the physical properties of the studied hy-
perbolic systems, with a particular interest for vortical flows. With this aim we
have developed a completely new class of well balanced Arbitrary-Lagrangian-
Eulerian Finite Volume schemes on moving nonconforming meshes. In this
chapter, after having introduced the basic notation in Section 1.1, we recall the
state of the art on Lagrangian-type methods (Section 1.2), on path-conservative
well balance techniques (Section 1.3), and on vortical flows (Section 1.4). Fi-
nally, Section 1.5 provides a summary of the PhD thesis.

1.1 Finite volume schemes for nonlinear hyperbolic systems

We consider here a very general formulation of the governing equations in order
to model a wide class of physical phenomena, namely all the ones which are
governed by equations that can be cast into the following form,

∂Q

∂t
+∇ · F(Q) + B(Q) · ∇Q = S(Q), x ∈ Ω(t) ⊂ Rd, t ∈ R+

0 . (1.1)

In this system, x is the spatial position vector, d = [1, 2, 3] denotes the num-
ber of space dimensions, t represents the time, and Ω(t) is the computa-
tional domain at time t. Q(x, t) = (q1(x, t), q2(x, t), . . . , qν(x, t)) is the vec-
tor of the conserved variables defined in the space of the admissible states
ΩQ ⊂ Rν , F(Q) = (f(Q),g(Q),h(Q)) is the nonlinear flux tensor, B(Q) =
(B1(Q),B2(Q),B3(Q)) is a matrix collecting the non-conservative terms, and
S(Q) represents a nonlinear algebraic source term. The system (1.1) can also
be written in the following quasi-linear form

∂Q

∂t
+ A(Q) · ∇Q = S(Q), x ∈ Ω(t) ⊂ Rd, t ∈ R+

0 , (1.2)

with the system matrix A(Q) = ∂F/∂Q + B(Q). The system is hyperbolic if
for any normal direction n 6= 0 the matrix A(Q) ·n has ν real eigenvalues and
a full set of ν linearly independent eigenvectors for all Q ∈ ΩQ. PDE systems
like (1.1) include as particular cases systems of conservation laws (B = 0,
S = 0), systems of conservation laws with source terms or balance laws (B =
0), and even non-conservative hyperbolic systems (B 6= 0). They appear
in many different physical models: in particular, in this thesis we will take
into account the shallow water equations, the Euler equations of gas dynamics

20



1.1 Finite volume schemes for nonlinear hyperbolic systems

with and without gravity and a simplification of the Baer Nunziato models for
compressible multi-phase flows.

In order to compute a numerical solution of (1.1) one can use a Finite Volume
scheme. To do so, one has to introduced a discretization of the domain Ω at
time tn done with a total number NE of elements Tni i = 1, . . . , NE , called
spatial control volumes, with volume |Tni |. Then (1.1) is integrated in space
over each Tni and in time from tn to the next time step tn+1 = tn + ∆t∫ tn+1

tn

∫
Tni

∂Q

∂t
dxdt+

∫ tn+1

tn

∫
Tni

∇·F(Q)+B(Q)·∇Q dxdt =

∫ tn+1

tn

∫
Tni

S(Q) dxdt.

(1.3)
For this introductory part of the thesis we restrict ourselves to the case B = 0.
The case B 6= 0 will be introduced in Section 1.3 and developed in Chapters 3-
5. Now, by applying the Gauss theorem, the volume integral of the flux can be
rewritten as a surface integral∫ tn+1

tn

∫
Tni

∂Q

∂t
dxdt+

∫ tn+1

tn

∫
∂Tnij

F(Q) · nij dxdt =

∫ tn+1

tn

∫
Tni

S(Q) dxdt, (1.4)

where ∂Tnij represents the boundary between Tni and its Voronoi neighbors
Tnj ∈ Vni , nij the outward-pointing unit normal vector, and |∂Tnij | the area of
the boundary. Fundamental definitions in this context are those of the cell-
average at time tn

Qn
i =

1

|Tni |

∫
Tni

Q(x, tn)dx, (1.5)

and of the time-averaged flux at the boundary ∂Tnij

Fnij · nij =
1

∆t

∫ tn+1

tn
|∂Tnij |F(Q(x|∂Tnij , t

n)) · nij dt. (1.6)

By substituting (1.5) and (1.6) into (1.4) the following exact relation can be
derived

Qn+1
i = Qn

i −
∆t

|Tni |
∑

Tnj ∈V
n
i

|∂Tnij |Fnij · nij . (1.7)

So far, no numerical scheme has been introduced yet and the exact solution of
(1.1) satisfies also (1.7) exactly, but in this context it is in general impossible
to compute (1.6) exactly because Q(x|∂Tnij , t

n) could be not available. Hence,
the main ingredient in order to construct a Finite Volume scheme is to define
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1 Introduction

the numerical flux function at the interface Fnij · nij as function of the cell
averages Qn

i and Qn
j , since in the Finite Volume framework only the cell-

averaged solution is known. And for this last reason also the approximation
of the boundary values Q(x|∂Tnij , t

n) plays an important role in the structure

of the method: the procedure through which Q(x|∂Tnij , t
n) is obtained is called

reconstruction step.

Defining and improving the numerical fluxes and the reconstruction step,
together with many other enhancements, make the history of the Finite Volume
methods: from the first works of Godunov in d = 1 and B = 0 up to very recent
researches. For a general and complete introduction to the topic, in particular
for the theoretical framework, we refer to the classical books of Toro [150],
LeVeque [107], Hirsch [92, 93], Kroner [100] and Godlewski Raviart [85]. Here
we recall only some fundamental stages, giving the theoretical framework, in
particular basic concepts on existence and uniqueness of weak solutions in the
case of Riemann problems, as known.

Godunov was the first that suggested to obtain the numerical fluxes by solv-
ing Riemann problems at each interface, in order to resolve the discontinuities.
Early work was about the exact solution of the Riemann problem [54, 86];
then a large number of approximate Riemann solvers were developed, such
as the linearized Riemann solver of Roe [138], the HLL and HLLE Riemann
solvers [78, 91] and the local Lax-Friedrichs (LLF) solver proposed by Ru-
sanov [140]. While the above-mentioned HLL schemes are very robust, they
smear out contact discontinuities. An improvement was made by Einfeldt and
Munz in [79] with the introduction of the HLLEM Riemann solver, where the
intermediate state was assumed piecewise linear instead of piecewise constant.
Another well-known improvement of the original HLL scheme is due to Toro et
al. in [152] with the design of the HLLC Riemann solvers that use an enhanced
wave model that is able to capture also the intermediate contact wave. In [127]
Osher et al. introduced a class of approximate Riemann solvers based on path
integrals, where the paths were obtained by an approximation of the solution of
the Riemann problem by rarefaction fans. A simpler and more general version
of the Osher flux has recently been forwarded by Dumbser and Toro in [74,75].
All those one-dimensional Riemann solvers can be used even in two and three-
dimensional problems, where the discontinuities are resolved at each boundary
of the control volume along the normal direction.

For what concerns the reconstruction step, the simplest solution consists in
supposing Q(x, t) piecewise constant with value Qn

i within each cell, so that
the boundary values Q(x|−∂Tnij , t

n) and Q(x|+∂Tnij , t
n) coincide respectively with
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1.1 Finite volume schemes for nonlinear hyperbolic systems

Qn
i and Qn

j . Note that Q(x|−∂Tnij , t
n) represents the values at the left of the

interface, i.e. seen from Qn
i , and Q(x|+∂Tnij , t

n) represents the values at the right

of the interface, i.e. seen from Qn
i . This choice leads to first order methods. In

order to design higher order schemes, a reconstruction operator in space and
time is needed in such a way to recover from the cell average of Tni and of
its neighbors Vni more accurate values at the interface. Since linear monotone
schemes are at most of order one, as stated by the Godunov theorem [86], a first
contribution for the improvement of the order of accuracy has been provided
by the class of second order accurate TVD schemes, which adopts a linear re-
construction in space and time, like the MUSCL scheme of van Leer [156] and
has to be used together with a limiter such as the minmod function in one
dimension, or the Barth and Jespersen limiter [11] in two dimensions. If more
than second order of accuracy is required one can adopts the nonlinear ENO
reconstructions on unstructured grids introduced in [1, 145] as well as WENO
reconstructions [82,94,143], which provide a nonlinear high order accurate and
non-oscillatory spatial reconstruction. Then a suitable time stepping technique
has to be used to guarantee the final order of accuracy. The Runge-Kutta meth-
ods, that perform a multi-stage time-integration, represent the most popular
method to evolve the numerical solution from the current time level tn to the
next time level tn+1. But, in recent years a valid alternative was proposed
by Toro et al., who developed the ADER approach [8, 35, 67, 72, 123, 148, 149],
which is one-step fully discrete and of arbitrary order of accuracy in space and
time.

All the literature cited above provides a useful introduction to classical Finite
Volume schemes in particular in the case of balance laws, i.e. B = 0, and
within an Eulerian framework, where the flow is observed in a fixed reference
system which does neither change nor move in time. Although this provides
effective tools it is not always enough: for example non-conservative terms
need a specific treatment just to guarantee that a weak discontinuous solution
is well-defined, where instead the errors due to nonlinear convective terms need
a different approach to be considerably reduced. For the former case one can
adopt a path-conservative approach (see Section 1.3) and for the latter it is
more convenient to study the problem from a Lagrangian point of view (see
Section 1.2).
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1.2 Lagrangian-type methods on moving meshes

Lagrangian-type Finite Volume schemes are characterized by a moving compu-
tational mesh: at each time step the new position of all the nodes is recomputed
according to a prescribed mesh velocity, which generally is chosen as close as
possible to the local fluid velocity. In the Lagrangian description of the fluid
the nonlinear convective terms disappear and Lagrangian schemes exhibit vir-
tually no numerical dissipation at contact waves and material interfaces. So
the aim of these methods is to reduce the numerical dissipation errors due to
the convective terms, hence to capture contact discontinuities sharply and to
precisely identify and track material interfaces. Among the different variants,
that will be briefly recalled here, I would like to underline the role of the direct
Arbitrary-Lagrangian-Eulerian (ALE) schemes. In this case the mesh velocity
can be chosen in an arbitrary way, so usually it is chosen close to the fluid veloc-
ity, but the fact that it can be slightly modified allows first, some flexibility in
the mesh motion reducing the mesh distortion, second let us perform the rezon-
ing before the computation of the numerical flux, so that the remapping stage
is no more needed, and finally it naturally extends to complex unstructured
meshes and to slide lines treatment.

Lagrangian schemes were already of interest in the 1950 when John von
Neumann and Richtmyer were working on the one-dimensional case [160], then
Wilkins proposed a two-dimensional extension in 1964, see [161]. For a general
review one can refer to [13]. A first natural approach, since the fluid velocity is
required at each node and at each time step, is a staggered discretization, where
the momentum is defined at the grid vertexes and all the other flow variables
are defined at the cell center. Despite some drawbacks of the initial version
of staggered Lagrangian schemes, which was not conservative and which pro-
duced some spurious modes in the numerical solution, it was widely used in the
last forty years and many improvements have been made in the meantime; for
further details one can refer to the papers of Caramana and Shashkov [32, 33]
and of Loubère at al. [111,112]. Moreover, examples on general polygonal grids
have been presented in [113]. An alternative consists in a conservative cell-
centered discretization, which was first introduced by Godunov in [86]. An
early application of conservative cell-centered Godunov-type schemes to the
compressible Euler equations of gas dynamics in a Lagrangian framework on
moving grids was provided by Munz in [124], using Roe-type and HLL-type
approximate Riemann solvers. In many recent papers, see for example De-
sprés et al. [34,57,58] and Maire et al. [114–117], the conservative cell-centered
Godunov-type approach is used both with structured and unstructured mov-
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ing grids and in two and three space dimensions, respectively. Successively
also better than second-order accurate schemes were introduced: high order of
accuracy in space was first achieved by Cheng and Shu [49, 109] by means of
a nonlinear ENO reconstruction, and high order in time was obtained either
by the use of Runge-Kutta type methods or by adapting the ADER-WENO
schemes to the Lagrangian framework, see for example Dumbser et al. [77]
and Cheng and Toro [50]. Recent work on high order Lagrangian discontin-
uous Galerkin finite element methods can be found in the papers of Vilar et
al. [157–159], Yu et al. [108] and Boscheri and Dumbser [24], while high or-
der Lagrangian continuous finite elements have been studied by Scovazzi et
al. [126,142] and Dobrev and Rieben et al. [61–63].

For all the cell-centered methods an important step is the computation of the
fluid velocity at the nodes, since this information is not directly available in the
scheme, but it has to be extrapolated from the adjacent cells. To obtain these
values three different types of node solvers can be employed. The simplest one
is that proposed in the above mentioned papers by Cheng and Shu [49, 109],
somehow employed also in this work, where the node velocity is obtained as
arithmetic average among the near states; another possibility, suggested by
Després et al. (GLACE scheme) [34] and Maire (EUCCLHYD scheme) [114],
is to solve multiple one-dimensional half-Riemann problems around a vertex,
in order to get an approximate solution of the multi-dimensional (generalized)
Riemann problem at the node; the most recent method introduced by Balsara
et al. [5–7, 9] consists in solving approximately a multidimensional Riemann
problem at the nodes, using a new family of genuinely multidimensional HLL-
type Riemann solvers. They are all compared with each other within a high-
order ADER-WENO ALE scheme in the recent paper of Boscheri et al. [26].

Although all these different schemes are widely used, especially to describe
compressible multi-material flows, a common problem that affects all Lagrangian
methods is the severe mesh distortion or the mesh tangling that happens in the
presence of shear flows and that may even destroy the computation. Hence, all
Lagrangian methods must be in general combined with an algorithm to (locally)
rezone the mesh at least from time to time and to remap the solution from the
old mesh to the new mesh in a conservative manner. Lagrangian remesh and
remap ALE schemes are very popular and some recent work on that topic can
be found in [16, 19, 30, 103, 162]. Extensions of the remesh-remap approach to
better than second-order of accuracy can be found in [18, 110]. In contrast to
indirect ALE schemes (purely Lagrangian phase, remesh and subsequent remap
phase) there are the so-called direct ALE schemes, where the local rezoning is
performed before the computation of the numerical fluxes, hence changing di-
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rectly the chosen mesh velocity of the ALE approach, see for example [21–23]
for recent work in that direction based on high order ADER-WENO schemes.
Moreover, when dealing with shear flows at material interfaces in realistic ap-
plications, see e.g. [101], a special treatment of slide lines may be required.
The introduction of slide lines goes back to an idea of Wilkins [161], succes-
sively studied and refined by Caramana [31], Barlow et al. [10] and Loubère at
al. [102]; the main ideas adopted in their papers regard the subdivision of the
nodes at the interface in master and slave nodes and the study of the forces
between the two sides of the slide lines. Another very interesting approach
to slide lines was presented by Clair et al. in [51, 52] and by Del Pino et al.
in [17, 134]. In [32] a staggered Lagrangian code has been presented, where
the internal interfaces are handled with a special type of boundary condition.
A very original solution to the problem of shear flows in Lagrangian simula-
tions has been recently proposed by Springel in [146], where the connectivity
of the moving mesh is dynamically regenerated via a moving unstructured but
conforming Voronoi tessellation of the domain.

At this point we also would like to refer to some recent works on high order
Eulerian and ALE schemes on moving meshes with time-accurate local time
stepping (LTS) presented in [27,47,66], where each element is allowed to run at
its own optimal local time step according to a local CFL stability condition. The
resulting algorithms use a conforming grid in space, but naturally produce a
nonconforming mesh in time. Therefore, the new nonconforming ALE method
presented in this thesis, which produces a nonconforming mesh in both space
and time, is naturally related to some of the ideas forwarded in [27, 66] in the
context of local time stepping.

1.3 Well balanced path-conservative methods

Coming back to the complete system (1.1) with B 6= 0 the main difficulty,
both from the theoretical and the numerical point of view, comes from the
presence of non-conservative products that do not make sense in the standard
framework of distributions when the solution Q develops discontinuities. From
the theoretical point of view, we assume the definition of non-conservative
products as Borel measures given by Dal Maso, Le Floch and Murat in [55].
This definition allows to generalize the classical Rankine-Hugoniot conditions,
which relate the jump of the conserved quantities from a left state QL to a right
state QR across a discontinuity with propagation speed σ, and are fundamental
to give a rigorous definition of the weak solution. The generalized Rankine-
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Hugoniot conditions read

σ (QR −QL)−
∫ 1

0

A(Φ(s,QL,QR))
∂Φ

∂s
ds = 0 (1.8)

so it is clear that they depend on the choice of a family of paths in the phases-
space. Different integration paths result in different jump relations. Note that
in the case when A(Q) is the Jacobian of a flux F, i.e. B = 0, the generalized
Rankine-Hugoniot conditions reduce to the classical ones, independent of the
particular choice of the path.

Starting from this theory, the family of so-called path-conservative methods
has been developed: it is based on a prescribed family of paths and provides
a generalization of standard conservative schemes. The first special case of a
path-conservative scheme has been proposed by Toumi in [153], where he used
a weak formulation of the method of Roe based on the integration along a
particular path. The framework of path-conservative schemes has then been
successively extended and analyzed by Parés [128] and Castro et al. [38, 43] in
the Finite Volume context and by Rhebergen et al. [137] in the discontinuous
Galerkin Finite Element context. The first better than second order accurate
path-conservative schemes on general unstructured meshes in two and three
space dimensions have been published in [71,73,76].

Moreover, by choosing a particular path the method can be made well
balanced that means able to maintain up to machine precision the station-
ary solutions of the considered system. The design of numerical methods
with such a good property is a very active front of research: see, for in-
stance [3, 15, 29, 39, 45, 87–90, 106, 130–132, 135, 136, 147, 151], and the recent
overview on path-conservative well-balanced schemes [36]. It has to be empha-
sized that conventional numerical schemes are in general not able to preserve
such stationary solutions, especially on coarse meshes, although the source term
is discretized in a consistent manner, but consistency alone is not enough to
achieve good results on coarse grids. This leads to erroneous numerical solu-
tions especially when trying to compute small perturbations around the steady
states necessitating the need for very fine meshes. Many recent papers have
been devoted to this topic, in particular we refer to [14,28,48,59,60,98,99,141]
and the references therein, for a complete state of the art.

1.4 Fluid solvers for vortical flows

One of the aims of this thesis is to contribute to a long lasting debate in
computational fluid dynamics which is the enhancement of the accuracy of
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compressible fluid solvers for vortical flows. ALE and well balancing represent
one of the techniques that we have successfully adopted, based on ameliorating
the employed numerical method. However, another strategy consists in playing
directly with the equations formulation. In particular for what concerns the
Euler equations, in the literature one can distinguish two main approaches: the
first one based on vorticity and the second one based on angular momentum.
For a general review on vorticity in standard Finite Volume schemes we refer to
Roe [139] and for the case of Lagrangian methods we mention the seminal work
of Dukowicz and Meltz in [64]. Other references are in the recent contribution
[133]. Concerning angular momentum, we cite the recent results of Després and
Labourasse [56] where the angular momentum is added to the system (with
an initial approach similar to the one we propose in Chapter 6) and treated
with a partial Discontinous Galerkin discretization. In particular, they show
that considering the angular momentum enhances the accuracy of implosion
calculations and minimizes the mesh imprint.

There exists a wide range of applications for which the conservation of an-
gular momentum is an issue. A first example is fluid simulations of the atmo-
sphere around the earth for which the angular momentum of the atmosphere
may interact with the angular momentum of the planet itself, we refer to [125]
for an early work on the theme. A completely different physical problem is
rotation of MHD flows in Tokamaks for which angular preservation is clearly
a fundamental issue. It is addressed in the context of MHD solvers, either full
MHD or reduced MHD, and a general review can be found in [96]. We notice
that Finite Volume techniques are rarely used in the Tokamaks community. On
the other hand Godunov solvers are widely used for astrophysical flows, and
angular momentum is a key feature for an accurate numerical treatment of ro-
tation of stars and planets: many works are devoted to this issue on Cartesian
fixed grids and we quote only on few of them such as [121,144]. In this context,
Käppeli and Mishra have recently proposed a Godunov scheme in the Eulerian
frame to address the issue of angular momentum conservation [97]. A last case
regards the chemical reactions into the combustion chamber of engines [2]: in
this situation the initial stage of turbulent flows is dominated by strong vor-
texes inside the flow and so its study could be improved taking into account
the angular momentum.
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1.5 PhD thesis summary

The main contributions of this PhD thesis are briefly summarized in what
follows.

Direct ALE schemes on moving nonconforming unstructured meshes. In
Chapter 2, we present a novel second-order accurate Arbitrary-Lagrangian-
Eulerian Finite Volume scheme which proposes a new and effective technique
to move the nodes at the interfaces between regions with different characteris-
tics, in order to avoid the typical mesh distortion of Lagrangian-type methods.

In particular, in our new approach the interfaces could be both prescribed a
priori by the user or automatically detected by the algorithm, if the tangential
velocity difference across an element interface is sufficiently large. The new
scheme then subdivides the neighbors of an interface edge into two groups,
each of which has similar properties, namely the left and the right neighbors.
The nodes far away from the shear discontinuity are moved with a standard
node solver, while for those at the interface a new node is inserted in such a
way that the old one moves according to an averaged velocity over the left
neighbors, and the new one slides along the edge according to the average
velocity prescribed by the right group.

We refer to the resulting mesh as nonconforming because each edge can be
shared between more than two elements and a node can lie on an edge not
only at its extremities, i.e. we explicitly allow so-called hanging nodes. This
gives us more flexibility in the grid motion and helps to maintain a high quality
mesh: indeed, the elements on both sides of the shear wave can move with a
different velocity, without producing highly distorted elements. The core of the
proposed method is the local update of all the necessary connectivity tables,
as a consequence of the insertion or the deletion of nodes and edges, and the
computation of the numerical fluxes between the space-time control volumes,
taking in particular into account that the lateral faces can be shared between
more than two elements.

The final ALE finite volume scheme is based directly on a space-time conser-
vation formulation of the governing PDE system integrated over a set of closed
space-time control volume Cni

|Tn+1
i |Qn+1

i = |Tni |Qn
i −

∫
∂Cni

F̃ij ·ñij +

∫
Cni

S ,

where the discontinuities at the interfaces are resolved through an ALE nu-
merical flux function F̃ij ·ñij of Rusanov, Osher or HLL -type. This strategy
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completely avoids the need of an additional remapping stage, hence the new
method is a so-called direct ALE scheme, and automatically satisfies the GCL
condition. Second order of accuracy in space and time is obtained by using a
MUSCL-Hancock strategy, together with a Barth and Jespersen slope limiter
and a time-evolution of the reconstruction polynomials.

A large set of different numerical tests has been carried out in order to
check the accuracy and the robustness of the new method for both smooth and
discontinuous problems. In particular we have compared the results for a steady
vortex in equilibrium solved with a standard conforming ALE method (without
any rezoning technique) and with our new nonconforming ALE scheme, to show
that the new nonconforming scheme is able to avoid mesh distortion even after
very long simulation times, refer to Figure 2.14.

This work is the object of the publication [84], written in collaboration with
Michael Dumbser and Manuel J. Castro, published on Computer & Fluids.

Well balanced path-conservative methods. Chapters 3, 4 and 5 focus on well
balanced path-conservative schemes, i.e. methods appropriate to treat non-
conservative products and able to maintain up to machine precision families of
equilibria of the studied system. These methods are based on the choice of a
path when integrating from a left state to a right one across a discontinuity. In
particular we propose a path Φ which directly exploits the known stationary
solution (and so it is exact on it), and treats in a approximate way only the
fluctuations around the equilibrium

Φ = ΦE + Φf .

The same idea of using an approximate technique only on the fluctuations
appears also in the reconstruction process

qni = QE
i + Pfi ,

where Pfi is a standard reconstruction operator applied only to fluctuations.
This concept was already introduced in [128], [129], [38] and [40]. Based on it,
we have added the following contributions.

We have formulated a new HLL-type and a novel Osher-type numerical flux.
For what concerns the HLL-type well balanced flux we have followed the strat-
egy called identity modification introduced in [40] and [46], modifying the stan-
dard HLL viscosity by substituting the appearing identity matrix with a di-
agonal matrix that vanishes at the equilibrium. It is the first time that this
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strategy is applied to the Euler equations with gravity in polar coordinates and
is inserted in an ALE moving mesh framework.

For what concerns the Osher-type well balanced flux instead, it is already
an innovation from the theoretical point of view in one dimension. To the
knowledge of the authors, it is the first time that the little dissipative path-
conservative Osher scheme proposed by [75] is modified in order to be well
balanced for non trivial equilibria. In particular, starting from its standard
viscosity, which depends on the absolute value of the Jacobian matrix multi-
plied by the jump of the conserved variables at the interface, we have refor-
mulated it in order to exploit directly the well balanced technique used in the
non-dissipative part. The final formulation of our Osher-Romberg viscosity
depends on the sign of the Jacobian matrix and it is directly multiplied by the
discretization of flux and non-conservative terms, computed in strategic points
given by the Romberg quadrature rule (instead of the Gauss rule usually em-
ployed). This strategy is in our opinion of particular interest because it makes
quite automatical the formulation of a well balanced viscosity.

Moreover, the well balanced reconstruction is performed in the ADER con-
text i.e. by evolving the conserved variables directly in space and time (as
already done once in [70]), not using as usual in the well balanced community,
the classical features of Runge-Kutta steps.

The ideas presented in Chapter 3 represent the theoretical foundation of
the paper [83], written in collaboration with Manuel J. Castro and Michael
Dumbser, published on Monthly Notices of the Royal Astronomical Society.

WB ALE for the Euler equations with gravity. Chapter 4 is especially ded-
icated to a very challenging physical problem in computational astrophysics
that is the simulation of rotating gas clouds for very long computational times
and with high accuracy. The physical situation we want to study is described
by the Euler equations of compressible gas dynamics with an externally given
gravitational field generated by a central object. A very important family of
stationary solutions of the governing equations is characterized by the equilib-
rium between pressure gradient, centrifugal force and gravity force. In order to
model with high accuracy and minimal dissipation small perturbations around
those equilibria for a very long period of time we propose to use the well
balanced technique introduced above coupled with our nonconforming ALE
framework. In particular, we work on a non-conservative version of the Euler
equations with gravity in polar coordinates where the source terms are rewrit-
ten via non-conservative products.
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The use of the WB ALE combination solves the main problems connected
with this type of simulation. First, small physical perturbations are not hidden
by spurious numerical oscillations because the employed method is exact up
to machine precision on the equilibrium part even at discrete level. Second,
the Lagrangian context reduces the errors due to convected terms, and finally,
our nonconforming technique allows to preserve a high mesh quality despite the
shear flow due to the differential rotation. From the numerical results presented
in Sections 4.2.6 - 4.2.9 one can appreciate that is really the coupling between
these two techniques that allows to obtain so good results.

We furthermore have provided a thorough comparison of our new numerical
method with the results that can be obtained with the PLUTO code [120] [122],
a well established freely-distributed software for the numerical solution of mixed
hyperbolic/parabolic systems of partial differential equations targeting high
Mach number flows in astrophysical fluid dynamics. This code is based on
finite volumes and therefore is rather close to the scheme proposed in this
thesis: the provided comparison shows the great enhancement introduced by
our novel techniques.

The results presented in Chapters 4 are also part of the publication [83].

WB ALE for the shallow water equations. The same coupled approach is also
applied to shallow water equations in polar coordinates whose source terms are
rewritten via non-conservative products. The equilibria between centrifugal
and gravitational forces are maintained up to machine precision. The immedi-
acy with which the WB ALE combination can be applied to different contexts
proves the general applicability of the introduced method, which is not limited
to one set of equations or one family of equilibria.

The obtained results are part of the publication [84].

Well balancing for a simple two-phase model with GPU parallel implemen-
tation. In Chapter 5 we propose a simple and efficient two-phase interface-
capturing algorithm for the simulation of complex non-hydrostatic free surface
flows. The physical model is given by a special case of the more general Baer-
Nunziato system for compressible multi-phase flows: in particular it does not
neglect accelerations in gravity direction, as it is in the classical shallow wa-
ter system; moreover, the free surface is not necessary given by a single value
function so even complex shapes as those of breaking waves can be captured.
The model was first introduced by Dumbser in [65] and here we solve it in a
well balanced manner and through a GPU parallel implementation.
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The novel well balanced Osher-Romberg scheme assures lower numerical dis-
sipation at the free surface and the preservation of equilibria between air and
water even in the presence of obstacles. Furthermore, the parallel implemen-
tation allows the use of very fine meshes. In particular our parallel algorithm
is composed by three main kernels: the first one for the reconstruction pro-
cedure, the second one to compute the numerical fluxes at the interfaces, and
the third one to evolve the cell averages from the current time step to the next
one. Each kernel automatically subdivides the work between the cores of the
GPU multiprocessors, thanks to the NVIDIA CUDA framework. As in any
parallel implementation, we pay particular attention to not modify the same
data at the same moment. For this reason, the second kernel is additionally
separated into four non intersecting kernels each one working on a subset of
the edges with non intersecting neighbors. The code is further accelerated by
subdividing the data in 2D grids, so that neighbor cells or edges are treated
by the same multiprocessors reducing slow memory accesses.

The results presented in Chapter 5 have been obtained collaborating with
Manuel J. Castro at the University of Malaga (Spain). For this research period
abroad, I was funded through a S-ESR Marie Sklodowska-Curie ITN fellowship
within the project ModCompShock (European Union’s Horizon 2020, grant
agreement no. 642768).

Angular momentum preserving schemes for compressible Euler equations. In
Chapter 6 we investigate the conservation of the angular momentum for the
Euler equations of compressible gas dynamics. We propose a method able
to discretize, besides the standard quantities, i.e. mass, inertial momentum
and energy, the angular momentum w, and we study the positive effects of
considering this adjoint physical variable on the entire system. With respect
to the previous chapters, here we do not work on ameliorating the numerical
scheme (we use basically the one of Chapter 2) but on introducing a new
formulation of the governing equations.

So, first we deduce from the linear momentum equation the conservation law
regarding the angular momentum

∂t (ρw) +∇ ·
(
ρuw + p(x− xc)⊥

)
= 0,

which is redundant from the analytical point of view but extremely interesting
for numerical purposes, especially for vortical flows. Indeed, using a standard
finite volume scheme to solve steady rotational problems the velocity rapidly
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dissipates. So, for long times, even using an high order scheme and a very
fine mesh ||u||L2

→ 0 and consequently w = u ∧ (x − xc) → 0 instead of
maintaining its constant value. While, we have seen that simply adding the
angular momentum equation as slave equation in the system conspicuously
reduces the dissipations, if computing a posteriori ||u||L2

.
Thus, we propose also some coupled approaches, namely a global coupling

and a local coupling, in order to exploit the benefit provided by considering the
conservation law regarding the angular momentum directly during the compu-
tation coupling it with the velocity. The coupling is obtained by noticing that,
chosen a center of rotation xc and an orthonormal basis (er, eθ), the velocity
can be rewritten as the sum of the two components along this basis: we call v
the velocity when written in this way

v = vr + vθ, vr =
1

r2
〈u, (x− xc)〉 (x− xc), vθ = − 1

r2
w(x− xc)

⊥,

In particular if u is a radial field and er lies along the radial direction then
vr is null, which is easy to maintain even at numerical level, since classically
||u||L2

rapidly dissipates. Hence, the correctness of v is strictly connected with
w, and one can suppose that if w is computed in a good way this can produce
even positive effects on ||u||L2

. For this reason we suggest the following global
coupled formulation

∂tρ+∇ · (ρv) = 0,

∂t(ρu) +∇ · (ρu⊗ v) +∇p = 0,

∂t(ρe) +∇ · (ρve+ pv) = 0,

∂t(ρw) +∇ · (ρvw) +∇∧ (p(x− xc)) = 0,

obtaining some encouraging results. However, simple test cases open important
issues in terms of imposition of appropriate boundary conditions and proper
definition of the angular momentum, in particular when the center of rotation
is not known a priori. For this last reason, we introduce a detector able to
reconstruct locally the centers of rotation or of explosion of a generic problem
given its velocity field and its pressure field. This detector provides supple-
mentary information over the studied system and can also be applied for a
convenient definition of the angular momentum. In particular it is used within
the local coupling approach.

Finally, we consider the Kidder test case, emblematic of strong implosion in
stars or for inertial confinement devices, and we show how to add a rotation to
the initial condition.
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The results presented in Chapter 6 have been obtained collaborating with
Bruno Després and Stéphane Del Pino at the Laboratoire Jacques-Louis Lions -
UPMC, Paris (France) and are the object of a submitted publication. For this
research period abroad, I was funded through the Erasmus+ Programme of the
European Union.
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2 Direct ALE Finite Volume schemes on
moving nonconforming meshes

Direct Arbitrary-Lagrangian-Eulerian (ALE) Finite Volume schemes are char-
acterized by a moving computational mesh: at each time step the new position
of all the nodes is recomputed according to a prescribed mesh velocity, and
the solution is evolved in time directly through a space-time conservation for-
mulation of the governing PDE system, without needing of further remapping
stages.

In this chapter we provide a detailed description of our nonconforming ALE
scheme for conservative systems of hyperbolic equations; the non-conservative
case will be treated in the central part of the thesis, see Chapter 4. After having
introduced in Section 2.1 the equations and the complete notation for a very
flexible and general discretization of the two dimensional domain, we prepare
all the necessary geometric information about the so called control volumes in
Section 2.1.1. Then, in Section 2.1.2 we present the space–time reconstruction
operator that provides second order of accuracy to our direct ALE scheme,
which is described in Section 2.1.3. In Section 2.2 we explain how to deal with
the moving nonconforming (hanging) nodes and the corresponding local update
of the connectivity tables.

In Section 2.4 some numerical test problems are presented in order to check
the efficiency and the robustness of the proposed approach in maintaining a
high quality mesh, local and global volume conservation, and in satisfying the
GCL condition. The numerical results presented in this chapter concern the
shallow water equations both in Cartesian coordinates (see Section 2.3.1), and
in polar coordinates (see Section 2.3.2). Other interesting applications will be
shown in Chapter 4 where the nonconforming ALE framework will be coupled
together with a well balancing technique both for studying the shallow water
equations and the Euler equations with gravity.

The algorithm presented here is not necessarily limited to logically straight
slipe lines. In Section 2.5 we therefore show first preliminary results for general,
logically non-straight slide lines.
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2.1 ALE framework on moving nonconforming meshes

We consider here two-dimensional nonlinear hyperbolic systems of conservation
laws, i.e. a subset of (1.1) that can be cast in the following general form

∂Q

∂t
+∇ · F(Q) = S(Q), x ∈ Ω(t) ⊂ R2,Q ∈ ΩQ ⊂ Rν , (2.1)

where x = (x, y) is the spatial position vector, t represents the time, Q =
(q1, q2, . . . , qν) is the vector of conserved variables defined in the space of the
admissible states ΩQ ⊂ Rν , F(Q) = ( f(Q),g(Q) ) is the nonlinear flux tensor,
and S(Q) represents a nonlinear algebraic source term.

To discretize the moving domain, we consider a total number NE of polygonal
elements Tni of area |Tni |, each one with an arbitrary number of vertexes Nv(i),
i = 1, . . . , NE : the union of all these elements results in an unstructured mesh
T nΩ which covers the computational domain Ω(x, tn) = Ωn at the current time
tn and which contains a total number N n

node of nodes and a total number N n
edge

of edges. Note that the number of elements, nodes and edges, as well as the
shape of each element are allowed to change at each time step. Moreover, we
refer to our mesh as nonconforming because each edge can be shared between
more than two elements, and therefore a node can lie on an edge not only at
its extremities, i.e. we explicitly allow so-called hanging nodes. Refer to Figure
2.1 for an example.

In general, with index i we refer to an element Tni , with index j we refer to
one of its neighbors Tnj (which shares with Tni an edge or a vertex depending
on the situation), and with index k we refer to a node. The coordinate of each
node at time tn are denoted by xnk , and V

n
k represents the velocity at which it

is supposed to move, so that its new coordinates at time tn+1 are given from
the following relation

xn+1
k = xnk + ∆tV

n
k , (2.2)

More details on how to obtain V
n
k and xn+1

k will be given in Section 2.2.3.

2.1.1 Nonconforming space–time control volumes

As introduced in Section 1.1, Finite Volume schemes are based on integrating
the governing equation in space over a spatial control volume and then in time,
see (1.3). In the case of our direct ALE scheme the integration is performed
directly over the space–time control volumes, which are constructed as follow.

For each element Tni the new vertex coordinates xn+1
k , k = 1, . . . , Nv(i), are

connected to the old coordinates xn+1
k via straight line segments, yielding a
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1
 → {1,2,3,4}

e
2
 → {3,4,5}

Figure 2.1: Example of a nonconforming mesh that can be treated by our algorithm.
The mesh contains NE = 12 elements: triangles, quadrilaterals and five-sided
polygons. The mesh is nonconforming: note for example edge e1. It is shared
between the elements T1, T2, T3, T5 and on it we can find two intermediate nodes
2, 3 called hanging nodes. A similar situation can be noted for edge e2.

multidimensional space-time control volume Cni = Tni (t) × [tn, tn+1], that in-
volves overall Nv(i) + 2 space-time sub-surfaces. Specifically, the space-time
volume Cni is bounded on the bottom and on the top by the element configura-
tion at the current time level Tni and at the new time level Tn+1

i , respectively,
while it is closed with a total number of Nv(i) lateral space–time surfaces
∂Cnij = ∂Tnij(t) × [tn; tn+1] that are given by the evolution of each edge ∂Tnij
of element Tni within the time step ∆t = tn+1 − tn. Therefore the space-time
volume Cni is bounded by its surface ∂Cni which is given by

∂Cni =

(⋃
j

∂Cnij

)
∪ Tni ∪ Tn+1

i . (2.3)

For a graphical interpretation one can refer to Figure 2.2, where we have re-
ported an example of a control volume and of the parametrization of the lateral
space–time surfaces.

Now, for each control volume we can compute its barycenter and for each
sub–surfaces their areas, normal vectors, and space–time midpoints. The upper
space–time sub–surface Tn+1

i and the lower space–time sub–surface Tni are the
simplest, since they are orthogonal to the time coordinate. The space–time
unit normal vectors are respectively

ñ = (0, 0, 1) and ñ = (0, 0,−1). (2.4)
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M

χ

τ

0

1

1

Figure 2.2: Left. In blue we show the physical space–time control volume Cn1 ob-
tained by connecting via straight line segments each vertex of Tn1 with the corre-

sponding vertex of Tn+1
1 , and its space-time midpoint Mn

1 . In pink we show one
of the lateral surfaces of Cn2 , ∂Cn2,1, together with its space–time midpoint Mn

2,1.

Right. The reference system (χ, τ) adopted for the bilinear parametrization of
the lateral surfaces ∂Cnij .

To compute their areas we can use the shoelace formula or Gauss’s area formula
which is valid for any type of polygonal element

|Tni | =
1

2

∣∣∣∣∣∣xnNv(i)y
n
1 − xn1 ynNv(i) +

Nv(i)−1∑
j=1

(
xnj y

n
j+1 − xnj+1y

n
j

)∣∣∣∣∣∣ , (2.5)

where xnj = (xnj , y
n
j ), j = 1, . . . , Nv(i), are the coordinates of the vertexes of

element Tni numbered in a counterclockwise order. Next, the lateral space–time
surfaces of Cni are parametrized using a set of bilinear basis functions

∂Cnij = x̃ (χ, τ) =

4∑
k=1

βk(χ, τ) x̃nij,k, 0 ≤ χ ≤ 1, 0 ≤ τ ≤ 1, (2.6)

where the x̃nij,k represent the physical space–time coordinates of the four ver-
texes of ∂Cnij (two of them belonging to Tni and the other two being their
evolution in time and belonging to Tn+1

i ), and the βk(χ, τ) functions are de-
fined as follows

β1(χ, τ) = (1− χ)(1− τ), β2(χ, τ) = χ(1− τ),

β3(χ, τ) = χτ, β4(χ, τ) = (1− χ)τ.
(2.7)
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2.1 ALE framework on moving nonconforming meshes

The mapping in time is given by the transformation

t = tn + τ ∆t, τ =
t− tn

∆t
, (2.8)

hence the Jacobian matrix J∂Cnij of the parametrization is

J∂Cnij =

 ~ex ~ey ~et
∂x
∂χ

∂y
∂χ

∂t
∂χ

∂x
∂τ

∂y
∂τ

∂t
∂τ

 =

 ẽ
∂x̃
∂χ
∂x̃
∂τ

 . (2.9)

The space–time unit normal vector ñij can be evaluated computing the nor-
malized cross product between the transformation vectors of the mapping (2.6),
i.e.

|∂Cnij | =
∣∣∣∣∂x̃

∂χ
× ∂x̃

∂τ

∣∣∣∣ , ñij =

(
∂x̃

∂χ
× ∂x̃

∂τ

)
/|∂Cnij |, (2.10)

where |∂Cnij | is the determinant of the Jacobian matrix J∂Cnij and represents
also the area of the lateral surfaces. Moreover, exploiting the parametrization
in (2.6)-(2.8) and choosing χ = 0.5 and τ = 0.5 we recover the coordinates Mn

i,j

of the space–time midpoint of the lateral surfaces. Moreover, the space–time
barycenter Mn

i of each control volume Cni reads

Mn
i =

(
xni + xn+1

i

2
,
tn + tn+1

2

)
,

where the spatial barycenter xni = (xni , y
n
i ) of Tni is given by the explicit formula

xni =
1

6 |Tni |

Nv(i)∑
j=1

(
xnj + xnj+1

) (
xnj y

n
j+1 − xnj+1y

n
j

)
, (2.11)

with the convention that j = Nv(i) + 1 coincides with j = 1.
Finally, let us consider the nonconforming case, i.e. the case when on the

same edge we can find more than the two extreme nodes that means that more
then two control volumes share the same edge. In this case the surface can
be subdivided in sub–surfaces. The treatment of the nonconforming lateral
space–time surfaces basically requires only to repeat the computation of the
necessary geometric information over each sub–surface (the same will hold for
the flux computation, which will be simply split in several parts).

For example, consider the case of ∂Cni,j with the four standard vertexes and
two more hanging nodes on the edges orthogonal to the time coordinate (as
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2 ALE nonconforming

in the middle of Figure 2.3). Then the lateral surface is shared between three
(and not two, as usual) control volumes. However it can be subdivided into
two pieces, each one shared between only two control volumes, which are still
trapezoidal, so each of them can be mapped into the reference element using the
standard map in (2.6), just taking care to select in a correct way the vertexes
of each piece. Hence areas, normal vectors, and space–time midpoints can
be computed exactly as in the conforming case but on each part. Next, we
have to analyze the two extreme situations that happens due to our dynamical
insertion and deletion of nodes. On the left and on the right of Figure 2.3
we have reported these two limiting cases: first, at time tn+1 a new node has
been inserted, which at the previous time tn did not yet exist; or vice-versa,
at time tn+1 a hanging node is merged together with one of the other vertexes
and hence it disappears. In these cases the lateral surfaces can still be divided
into two parts, and even if one of them is triangular it can still be treated
as a degenerate quadrilateral face, so all the computations can be performed,
once again, as above. The coordinates of a hanging node at the moment of
its creation or destruction will be set equal to those of the vertex from which
the hanging node was born, or those of the vertex to whom it was merged,
respectively.

2.1.2 MUSCL type space–time reconstruction

As usual in a classical cell-centered Finite Volume scheme, at the beginning of
each time step tn we dispose of the cell averages Qn

i of the conserved variables
for each spatial control volume Tni , defined as

Qn
i =

1

|Tni |

∫
Tni

Q(x, tn) dx,

as introduced in (1.5). These are the data computed and stored at the previous
time, and which will be used to evolve the solution during the current time step.
To construct a method which is better than first order accurate we cannot
compute the numerical fluxes directly with these piecewise constant data, but
we have to reconstruct for each Tni a piecewise space-time polynomial qh(x, tn),
exploiting the cell averages of the cell and its neighbors, combined with a time-
evolution procedure.

Here, second order of accuracy in space and time is achieved by using the
MUSCL-Hancock strategy that was for the first time proposed by van Leer
in [155] and which is very well explained in [150], slightly adapted to our context
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2.1 ALE framework on moving nonconforming meshes

(a) Insertion of a new node (b) Motion of hanging nodes (c) Fusion of two nodes

Figure 2.3: Suppose that at time tn across the pink and the yellow elements the
tangential fluid velocity changes sharply, as suggested by the arrows; at tn+1 the
pink elements will move in one direction and the yellow ones will move in the
opposite direction. In (a) at time tn we have a conforming mesh, but in order
to avoid a severe mesh distortion in the following time steps we decide to double

the green node An. So at time tn+1 there are both An+1
1 and An+1

2 : An+1
1

is a vertex for the pink elements and An+1
2 is a vertex for the yellow elements.

Moreover An+1
2 is hung to edge en+1. So the blue lateral face of Tni , which has

en and en+1 as bases, is composed by two pieces: the one in light blue which is
trapezoidal and touches elements T1 and T6, and the one in dark blue which is
triangular and touches elements T1 and T4. Note in particular that we need to
compute the flux between T1 and T4 during the interval [tn, tn+1] even if at time
tn they were not in contact. In (b) we show the intermediate situation where a
hanging node slides along an edge. In this case the blue surface is still divided
into two parts and it is shared between three elements T3, T4 and T6, so the
computation of two fluxes will be required. In order to compute the fluxes and
to maintain the second order of accuracy of the entire method the reconstruction
polynomial qh(x, t) will be evaluated at the midpoints of each of the part of the
lateral surface. Finally, in (c) we report the last limiting case: An1 and An2 are

close and at tn+1 will be even closer since they are moving one towards the other,
so we decide to merge them and to restore the conforming and simpler situation,
in particular to avoid that An1 will leave edge en+1 at time tn+1. Eventually

An+1 could be doubled again at tn+2 if the tangential velocity difference across
the interface is sufficiently large.
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2 ALE nonconforming

of a nonconforming moving mesh. For the spatial reconstruction, let us define
a polynomial wh(x, tn) of the form

wh(x, tn) |Tni = wi(x, t
n) = Qn

i +∇Qi(x− xi), x ∈ Tni ,

where xi is the barycenter of cell Tni . We denote by Sni the set of neighbors of
Tni that share a common edge with Tni (the set Sni may change at each time
step). To compute ∇Qi, integral conservation is imposed on each element of
Sni

1

|Tnj |

∫
Tnj

wh(x, tn) dx = Qn
j ∀Tnj ∈ Sni . (2.12)

The above system is in general over-determined, so we add the constraint that
equation (2.12) holds exactly at least for Tni . This is easily satisfied by rewriting
the equations as

1

|Tnj |

∫
Tnj

∇Qi(x− xi) dx = Qn
j −Qn

i ∀Tnj ∈ Sni , (2.13)

then we solve (2.13) via a classical least-squares approach using the normal
equation of (2.13), and we thus obtain the non-limited slope ∇Qi.

To ensure that new extrema are not created in the reconstruction process, we
employ the classical slope limiter function Φi presented by Barth and Jespersen
in [11]. The idea is to find the largest admissible Φi in such a way that

w̃h(x, tn) = Qn
i + Φi∇Qi(x− xi)

satisfies
min
j∈Vni

Qn
j = Qmin

i ≤ w̃h(x, tn) ≤ Qmax
i = max

j∈Vni
Qn
j ,

where Qmax
i and Qmin

i are the componentwise maximum and minimum among
the cell-averages of the set Vni , respectively. The set Vni contains all the vertex
neighbors of Tni and the element Tni itself. Since wh is obtained as a piecewise
linear reconstruction of the data, its extrema occur at the vertices of Tni . Hence,
to compute the limiter for each conserved variable, it suffices to find for all
vertices xj of Tni

Φi,j =


min

(
1,

Qmaxi −Qni
wh,j−Qni

)
, if wh,j −Qn

i > 0

min
(

1,
Qmini −Qni
wh,j−Qni

)
, if wh,j −Qn

i < 0

1 if wh,j −Qn
i = 0.
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2.1 ALE framework on moving nonconforming meshes

with wh,j = wh(xj , t
n) (ratios and inequalities are to be understood component-

wise). Then, the slope limiter is defined as

Φi = min
j

(Φi,j).

Finally, second order of accuracy in time is achieved by an element-local
predictor stage that evolves the reconstructed polynomials wi(x, t

n) within
each element Tni (t) during the time interval [tn, tn+1]. The piecewise space-
time polynomials are denoted by qh(x, t), and are of the form

qh(x, t)|Tni =qi(x, t
n)=Qn

i+Φi∇Qi(x−xi)+∂tQi(t−tn),

x∈Ti(t), t∈ [tn, tn+1].
(2.14)

The value of ∂tQi can be easily recovered through the strong form of the PDE

∂tQ = −fx(Q)− gy(Q) + S(Q), (2.15)

where the r.h.s of (2.15) can be easily computed. Indeed the fields f and g over
Tni are approximated as linear fields

f(x, y) = f0 + f1(x− xi) + f2(y − yi),
g(x, y) = g0 + g1(x− xi) + g2(y − yi),

whose coefficients fi and gi are determined interpolating the values of the fields
computed at the vertices j of Tni , i.e.

f(w̃h(xj , t
n)) and g(w̃h(xj , t

n)), ∀j = 1, . . . , Nv(i).

Then f1 = fx(Q) and g2 = gy(Q). Besides, the source S(Q) is computed at
the barycenter xi of Tni , i.e. S(w̃h(xi, t

n)).

2.1.3 Direct ALE FV scheme

Once qh(x, t) has been computed for each Tni , we are in the position to intro-
duce the one-step space-time Finite Volume scheme. As proposed in 2 [22], the
governing PDE (1.1) is first reformulated in a space–time divergence form as

∇̃ · F̃ = S(Q), (2.16)

with

∇̃ =

(
∂

∂x
,
∂

∂y
,
∂

∂t

)T
, F̃ = (F, Q) = (f , g, Q) , (2.17)
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and it is integrated over each space–time control volume Cni∫
Cni

∇̃ · F̃ dxdt =

∫
Cni

S dxdt. (2.18)

Then, the volume integral of the space-time divergence flux on the l.h.s. can
be rewritten as a surface integral by applying the Gauss theorem∫

∂Cni

F̃ · ñ dS =

∫
Cni

S dxdt, (2.19)

where ñ = (ñx, ñy, ñt) is the outward pointing space–time unit normal vector
on the space–time surface ∂Cni , derived in (2.4) and (2.10). Substituting the
physical boundary fluxes F̃ · ñ with appropriate numerical fluxes leads to
a consistent and conservative Finite Volume discretization. In principle, the
entire structure of the numerical scheme is already given by (2.19).

The final one–step direct ALE Finite Volume scheme is then obtained from
equation (4.4) as

|Tn+1
i |Qn+1

i = |Tni |Qn
i −

∑
j

∫ 1

0

∫ 1

0

|∂Cnij |F̃ij ·ñij dχdτ +

∫
Cni

S(qh) dxdt, (2.20)

where the discontinuity of the solution at the space–time surface ∂Cnij is re-

solved by an ALE numerical flux function F̃ij · ñij , which computes the flux
between two neighbors across the intermediate space–time lateral surface. In
particular when the lateral surface is shared between more than two control
volumes (as shown in Figure 2.3) we have to compute the fluxes across each
sub-surface and sum each contribution. The results presented in this chapter
are obtained using a Rusanov–type or an Osher–type ALE flux; let us introduce
some notation before presenting the fluxes. Let q−h (x, t) be the reconstructed
numerical solution inside the element Cni and q+

h (x, t) be the reconstructed
numerical solution inside one of the neighbors of Tni through ∂Cni,j ; let q−h and
q+
h the values of these polynomials evaluated at the space-time midpoint Mn

i,j

of the considered piece of the lateral surface. Define the ALE Jacobian matrix
w.r.t. the normal direction in space

AV
n(Q) =

(√
ñ2
x + ñ2

y

)[ ∂F

∂Q
· n− (V · n) I

]
, n =

(ñx, ñy)T√
ñ2
x + ñ2

y

, (2.21)

with I representing the identity matrix and V · n denoting the local normal
mesh velocity.
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2.1 ALE framework on moving nonconforming meshes

Then, the expression for the Rusanov flux is given by

F̃ij · ñij =
1

2

(
F̃(q+

h ) + F̃(q−h )
)
· ñij −

1

2
smax

(
q+
h − q−h

)
, (2.22)

where smax is the maximum eigenvalue of AV
n(q+

h ) and AV
n(q−h ).

The Osher–type flux formulation has been proposed in the Eulerian frame-
work in [74] and has been subsequently extended to moving meshes in one and
two space dimensions in [77] and [22], respectively. It is defined as

F̃ij ·ñij =
1

2

(
F̃(q+

h ) + F̃(q−h )
)
· ñij−

1

2

(∫ 1

0

∣∣∣AV
n(Ψ(s))

∣∣∣ds)(q+
h −q−h

)
, (2.23)

where we choose to connect the left and the right state across the discontinuity
using a simple straight–line segment path

Ψ(s) = q−h + s
(
q+
h − q−h

)
, 0 ≤ s ≤ 1. (2.24)

The absolute value of the dissipation matrix in (2.23) is evaluated as usual as

|A| = R|Λ|R−1, |Λ| = diag (|λ1|, |λ2|, ..., |λν |) , (2.25)

where R and R−1 denote, respectively, the right eigenvector matrix and its
inverse of the ALE Jacobian AV

n = ∂F
∂Q
· n− (V · n)I.

Note that the numerical flux is always composed by two parts: a standard
one, given by the fluxes computed at the left and the right of the interface,
and a second one, called numerical viscosity, that stabilizes the method and
depends on the eigenstructure of the Jacobian matrix and on the jump of the
conserved variables at the interface.

In (2.20) the time step ∆t is given by

∆t = CFL min
Tni

di
|λmax,i|

, ∀Tni ∈ Ωn, (2.26)

where CFL is the Courant-Friedrichs-Levy number, di represents the encircle
diameter of element Tni and |λmax,i| is the maximum absolute value of the
eigenvalues computed from the solution Qn

i in Tni . As stated in [150] in Chapter
16, for linear stability in two space dimensions the Courant number must satisfy
CFL ≤ 0.5. Finally, note that in time we have used the upwind flux due to the
causality principle, which naturally leads to the terms |Tni |Qn

i and |Tn+1
i |Qn+1

i

in (2.20).
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Properties

We underline that the integration over a closed space–time control volume,
as done above, automatically satisfies the so-called geometric conservation law
(GCL), since from the Gauss theorem follows∫

∂Cni

ñ dS = 0. (2.27)

The relation between (2.27) and the usual form of the GCL that is typically
employed in the community working on Lagrangian schemes has been estab-
lished in the appendix of [23]. For all the numerical test problems shown later
it has been explicitly verified that property (2.27) holds for all elements and for
all time steps up to machine precision, even on moving nonconforming meshes.
Moreover the scheme is locally and globally conservative for mass and inertial
momentum.

We would like to emphasize that the direct ALE scheme presented here does
in general not lead to a vanishing mass flux across element boundaries, similar
to previous work on direct ALE schemes presented in [22, 23]. The mass flux
is exactly zero only for isolated contact discontinuities moving in uniform flow
when using appropriate Riemann solvers that resolve contact waves, like the
Godunov method, or the Roe, HLLC, HLLEM and Osher flux.

2.2 Nonconforming mesh motion

In this section we focus on the detailed description of the procedure needed to
determine how the computational mesh moves. Indeed, this is a crucial point
in any moving mesh algorithm, because following the fluid exactly with its
own velocity may become sometimes very complex, leading to highly deformed
or degenerate control volumes. Moreover these damaged elements may dras-
tically reduce the admissible time step, which is computed under a classical
CFL stability condition, see (2.26), causing a slowdown or even an interruption
of the algorithm. Many techniques have been developed in order to overcome
this problem, and what we propose here is a novel and effective nonconforming
treatment of the sliding lines, separating two regions with different character-
istics.

In particular, at each time step the algorithm computes the new node posi-
tions through the following intermediate stages. First, the edges along relevant
shear flows are detected (see Section 2.2.2) and the nodes on these edges are
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2.2 Nonconforming mesh motion

marked as problematic. Then the new node positions are computed according
to the type of the considered node, in particular

a) Regular non-hanging nodes that are not in regions of relevant shear flow
(i.e. they have not been marked as problematic) are evolved using a
mass-weighted Cheng and Shu node solver, see (2.31).

b) Regular non-hanging nodes that are in regions of relevant shear flow (i.e.
they have been marked as problematic) are doubled ; their new position is
projected along the nearest interface edge, and they subsequently change
their type from regular non-hanging nodes to hanging nodes (refer to
Section 2.2.4).

c) Hanging nodes on an edge are allowed to slide only along that edge (see
Section 2.2.5), and if they get too close to other nodes, they are merged to-
gether (deleted), eventually changing back their type from hanging nodes
to regular non-hanging nodes (refer to Section 2.2.6).

Associated to b) and c) there is a procedure for updating all the connectivities
of the unstructured mesh: we would like to underline that all these procedures
are done at a local level, so affecting only the neighbors of the considered node
and nothing else.

2.2.1 Connectivity matrices

Since the core of the proposed method is the motion and the changing of the
nonconforming mesh topology in time, we have to know all the connectivities
of the mesh and to maintain them updated. In this way we will have enough
information both to rearrange the mesh after the insertion of a new node, or the
fusion of two existing nodes, and to know all the neighbors of each space–time
lateral surface during the numerical flux computation.

As in the standard conforming case for each element Tni we save the global
numbering of its vertexes V1, . . . , VNv(i) in row i of a matrix called tri in
counterclockwise order, and in matrix Elem2Edge we store the global numbering
of its edges E1, . . . , ENv(i). However, in the nonconforming case, additional
connectivity tables are needed, since more than two elements can share the
same edge and more than two points can belong to it. For each edge Enj ,
we store the elements that share it in row j of matrix Edge2Elem, and all the
nodes that belong to Enj in row j of matrix Edge2Vertex in such a way that the
first two entries of each row contain the endpoints of the corresponding edge.
Then, for each node we memorize the edge to which it belongs in Vertex2Edge
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(both if this node is an endpoint of the edge or an intermediate point) and
the elements for which it is a vertex in Vertex2Elem (note that if a node Ni
belongs to an edge of an element but it is not one of its vertices, that element
will not appear in the row Ni of this last matrix). Moreover, each node has a
label that indicates whether the node is free to move everywhere, if it has been
doubled, or if it is constrained to slide along a particular edge, i.e. if it is a
hanging node.

Besides, we allow our data structures to be completely dynamic in such a
way that nodes and edges can appear and disappear in time: so rows can be
added to our matrices or be nullified, and the information regarding which
global numbering of nodes and edges is currently used is always available.

2.2.2 Shear interface detector

Since the sliding interfaces are not defined a priori by the user, at the beginning
of each time step the algorithm has first to identify along which edges the shear
interfaces lie, and mark the corresponding edges and nodes. Basically an edge
e will be considered at the interface if the tangential velocity difference ∆Ve
across e exceeds a certain threshold value κe. So for each edge we need to
compute ∆Ve and κe.

Given the set of nodes Sne over the edge e, and the set of neighbors Snj of
each node j, the threshold value κe is computed as

κe = min
j∈Sne

κj , with κj = max
i∈Snj

(
αdi
||Ji||

)
, (2.28)

where di is the encircle diameter of element Tni , Ji is the Jacobian of the
transformation that maps element Tni in the corresponding reference element,
the norm is the two-norm of Frobenius divided by

√
2 (other matrix norms

could also be used), and α is chosen in [0, 1] according to the desired sensitivity
of the detector. If the velocity jump at the interface is very large, the value
of α does not matter. Instead, where the velocity field changes smoothly, the
number of interfaces, and as a consequence the number of new nodes, will be
dependent on α. Moreover, in the limit α → +∞ we recover the standard
conforming algorithm.

Once the threshold value has been fixed we loop over all the edges of the mesh:
for each edge e we consider all its neighbors and we compute their tangential
velocity with respect to e. Say, for example, that two elements A = Tna and
B = Tnb with area |Tna | and |Tnb | share the same edge e and their tangential

50



2.2 Nonconforming mesh motion

velocities are v nt,a and v nt,b. If the quantity ∆Ve exceeds κe

∆Ve =

∣∣ v nt,a |Tna | − v nt,b |Tnb |∣∣(
|v nt,a||Tna |+ |v nt,b||Tnb ||+ ε

) ≥ κe, (2.29)

with ε = 10−14 to avoid division by zero, then edge e is marked as an edge at a
shear interface, and the elements A and B are divided into two different groups:
the elements on the left and the ones on the right with respect to this particular
edge e. Afterwards, we also need to find the nodes that have to be doubled and
to separate their Voronoi neighbors (the elements stored in Vertex2Elem) into
two groups. So we loop over the nodes considering the ones which belong to
an interface edge. If in their list of Voronoi neighbors there are elements from
both the sides of the interface, according to the previous subdivision, we mark
them and we separate their Voronoi neighbors into two groups which are stored
in two matrices. Note that the two cycles, the one over the edges and the other
over the nodes, are not nested one into the other, but are run one after the
other.

2.2.3 Node motion

At this point we are able to distinguish between nodes far away from the
interfaces, hanging nodes and nodes which lie at the interface. So we loop over
the nodes and according to their labels we choose what to do. First, consider
a regular non-hanging node k located in a smooth region. We compute its
coordinates at the new time level tn+1 simply by

xn+1
k = xnk + ∆tV

n
k , (2.30)

where V
n
k is obtained using the node solver of Cheng and Shu. Cheng and

Shu introduced a very simple and general formulation for obtaining the final
node velocity, which is chosen to be the arithmetic average velocity among all
the contributions coming from the Voronoi neighbor elements Vnk . Moreover,
following the ideas presented in [26] we take a mass weighted average velocity
among the neighborhood Vnk , that is,

V
n
k =

1

µk

∑
Tnj ∈Vk

µk,jVk,j (2.31)

with
µk =

∑
Tnj ∈Vk

µk,j , µk,j = ρnj |Tnj |. (2.32)
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2 ALE nonconforming

The local weights µk,j , which are the masses of the elements Tnj , are defined
by multiplying the cell averaged value of density ρnj (or water depth hnj for
shallow water flows) with the cell area |Tnj |. The local contributions Vk,j in
a pure Lagrangian context represent the fluid velocity in the jth neighbor of
vertex k, while in the ALE framework they can be obtained either according
to an arbitrary, prescribed mesh velocity function or by the local fluid velocity.

Now let us consider the nodes at the interfaces. The following considerations
are carried out by supposing for the moment that each interface is separated
from the others and lies on a straight line. Even if this is a rigid constraint,
already with this configuration interesting test cases can be studied; a proof of
concept that the extension to the general case of piece-wise linear interfaces is
feasible will be presented in Section 2.5.

2.2.4 Insertion of a new node

The first situation we encounter is a node k that has some of its Voronoi neigh-
bors on the left of the interface, call them left neighbors, Vk,left, and the others
on the right of the same interface, call them right neighbors, Vk,right; these
two sets of neighbors have been provided by the interface detector described
above. We apply the node solver of Cheng and Shu at the two sets of neighbors
obtaining two different new coordinates

x̃n+1
k, left = xnk + ∆t

∑
Tnj ∈Vk,left

µk,j
µk

Vk,j , and x̃n+1
k, right = xnk + ∆t

∑
Tnj ∈Vk,right

µk,j
µk

Vk,j .

(2.33)
We allow this kind of nodes to move only along the interface, so basically
according to their averaged tangential velocity with respect to the interface:
for this reason we need to find the nearest interface edges and to project onto
them the coordinates in (2.33) obtaining thus xn+1

k, left and xn+1
k, right. Call the

nearest interface edges belonging to the left elements e`1 and e`2, and the nearest
interface edges belonging to the right elements er1 and er2 (suppose also that e`,r1

are closer to x̃n+1
k, left than to x̃n+1

k, right, so that xn+1
k, left is obtained by projecting

x̃n+1
k, left onto e`1, and xn+1

k, right by projecting x̃n+1
k, right onto er1). We decide to assign

xn+1
k,left as new coordinate to the old node k

xn+1
k = xn+1

k,left (2.34)
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2.2 Nonconforming mesh motion

and to create a new node with global number knew and coordinates (at time n
and n+ 1)

xnknew
= xnk and xn+1

knew
= xn+1

k, right. (2.35)

The global number knew can be larger than N n
node if all the numbers between

1 and N n
node are currently used, otherwise we choose the first of the unused

numbers (indeed if two nodes have been merged together one of their global
numbers is no more used, see Section 2.2.6).

Now we have to update the connectivity tables taking into account the in-
sertion of this new node. See also Figure 2.4 to follow our construction. First,
in matrix tri we substitute k with knew in all the right elements; moreover,
we consider matrix Vertex2Elem and in row k we leave only the left elements
and we put the others in row knew (because now k is no more a vertex for the
right neighbors). Then we have to deal with the edges: if e`1 = er1 we need to
substitute er1 with a new edge er1new

. In matrix Elem2Edge all the right neigh-
bors change er1 with er1new

, and in matrix Edge2Elem we insert a new row er1new

equal to row er1 (the new edge inherits all the characteristics from the old one).
The same has to be done if e`2 = er2. The endpoints of these new edges are
the endpoints of the substituted edges seen from the right (so basically there is
knew instead of k). The endpoints of the left edges do not change. Besides we
add k as intermediate point in er1 and knew as intermediate point of e`2, (note
that an edge is allowed to have more than one intermediate point). In this
way also matrix Edge2Vertex has been updated. Matrix Vertex2Edge is easily
modified at the same time. Finally, we have to revise the list of neighbors: in
particular the edges that gained an intermediate point (er1 and e`2) gain also
neighbors. In particular the new neighbors of er1 are the left neighbors of e`2
and the new neighbors of e`2 are the right neighbors of er1. This allows us to
update Edge2Elem and Elem2Edge.

At the end we mark with a label the nodes which are intermediate for an
edge: we call them hanging nodes and they are constrained to move along that
edge. Note that in the case of straight slip-lines no distinction between master
and slave nodes is required, since both will move along the same straight inter-
face. To extend the algorithm to the case of piece-wise linear interfaces, this
distinction is introduced in such a way that only slave nodes will be constrained
to slide along edges, while the master nodes can move freely. For some first
preliminary results concerning the extension to completely general slide lines,
see Section 2.5.
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Figure 2.4: Example of how to double a node. At the top we show the situation
before a nonconforming motion, and at the bottom after the motion and the corre-
sponding update of the connectivity matrices. Precisely at the bottom on the left we
have supposed to move in a nonconforming way only one of the nodes at the interface,
while the realistic motion of all the nodes at the interface is shown on the right. The
black vertical dotted line represents the interface: suppose that the elements on the
left {1, 2, 3, 5} move with velocity v = (0, 2) and the elements on the right {4, 6, 7, 8}
move with velocity v = (0,−2). We want to double vertex number k = 5, so we
insert a new node knew = 11. The nearest interface edges on which we project the

new coordinates of node 5 are e`1 = er1 = 10 and e`2 = er2 = 4. Note that edges e`,r1
are closer to k than to knew. Since the edges from the left and from the right are
equal we create two new edges er1new

= 18 and er2new
= 17. The endpoints of edges

10 and 4 remain untouched. Edge 4 gains an intermediate point, the node 11, and
edge 18 gains the node 5. To better understand we list now the vertexes of each edge
at the end of the updating process (first we write the endpoints and then, if existing,
the intermediate points): e`1 = 10→ {5, 8}, e`2 = 4→ {4, 5, 11}, er1 = 18→ {11, 6, 5}
and er2 = 17 → {4, 11}. Finally, elements {1, 3, 5, 6, 7, 8} maintain the same edge
neighbors, while the neighbors of elements 2 and 4 are augmented: indeed edge 4 has
neighbors {2, 6, 4} and edge 18 has neighbors {4, 5, 2}. Note that the situation on
the right appears to be more complicated only because also nodes 4 and 6 have been
doubled and so the corresponding update of the connectivity matrices has been done.
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2.2 Nonconforming mesh motion

2.2.5 Hanging nodes

Consider a hanging node k which lies on the edge e: it is at the interface
and it is a vertex only of elements lying on one side of the interface, so its
Voronoi neighbors are in the same smooth region. However it is not free to
move everywhere but it must slide along that edge, to avoid creation of holes
or superposition of elements in the mesh.

We apply the averaged node solver of Cheng and Shu among its Voronoi
neighbors, we find its new coordinates x̃n+1

k and we project them over edge
e, obtaining xn+1

k . Now, we compute also the new coordinates of the other
points over edge e. If two of them are sufficiently close, we decide to merge
them (see Section 2.2.6), otherwise the computed coordinates xn+1

k are the
new coordinates of such a node and no update of the connectivity matrices is
required.

2.2.6 Fusion of two existing nodes

Suppose we computed the new coordinates at time tn+1 of all the nodes ki over
the same edge e denoted by xn+1

ki
, which are assumed to be already projected

onto the straight line spanned by edge e. If the new coordinates of two of
them, say k1 and k2, are too close, we decide to merge them. Moreover, if one
intermediate node of edge e falls outside the edge, we decide to merge it with
the closest endpoint of the edge. Since the loop over the nodes is carried out
according to the increasing global numbering of the nodes, we decide to remove
the node with the largest global number (we call it dead node, kdn) because
we have not worked with it yet, and to maintain the one with the smallest
global numbering (call it fusion node, kfn) assigning to it as new coordinates
the average between xn+1

k1
and xn+1

k2

xn+1
kfn

=
xn+1
k1

+ xn+1
k2

2
. (2.36)

We assign the same coordinates also to the dead node

xn+1
kdn

=
xn+1
k1

+ xn+1
k2

2
. (2.37)

Now, we need to update the connectivity tables. See also Figure 2.5 to
follow our construction. This process is somehow more complicated than the
nodes splitting. Indeed when we insert a new node at time tn+1 we only add
information without losing anything about the previous time step, and even if
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Figure 2.5: Example of how to merge two existing nodes. The black dotted line
represents the interface: suppose that the elements on the left {1, 3, 10} move
with positive velocity and the elements on the right {5, 7, 8} move with negative
velocity. On the left we show the situation at time tn and on the right at time
tn+1. Nodes 6 and 15 at tn+1 will be so close that we decide to merge them (as in
the previous example, for the sake of clarity, we present on the right the situation
after the fusion of only two nodes). We maintain the smallest global number
so kfn = 6 and we remove kdn = 15. In triNew elements {5, 7, 8} substitute
kdn = 15 with kfn = 6. Note that in tri nothing changes, so some elements
refer to node 6 and some other to node 15, but everything works because at time

tn+1 they have the same new coordinates xn+1
kdn

= xn+1
kfn

and at the successive

time step tn+2 tri will no longer exist because it will be overwritten by triNew.
In row kfn of matrix Vertex2ElemNew there are listed elements {1, 3, 5, 7, 8, 10},
while row kdn is empty. In row kfn of matrix Vertex2EdgeNew there are edges
{1, 3, 6, 12, 13, 18, 25, 26}, while row kdn is empty. List Edge[dn-fn] contains
edges {18, 25} and list Elem[dn-fn] contains elements {8, 10}. Knowing these
lists we can update matrices Edge2ElemNew because we remove element 8 from
the neighbor of edge 18 and element 10 from the neighbors of edge 25. In this
case even if we removed the segment 6, 15 no edge becomes equal so we do not
need to merge edges neither to update Elem2EdgeNew.

it is true that the right neighbors of a doubled node k change their node k with
a new one knew, we can dispose of all its reference simply by giving to knew at
time tn the same coordinates of k, see also (2.33). On the contrary, when we
remove a node we lose all the reference to it, reference that, only for time tn+1,
we still need during the computation of the interface fluxes in the Finite Volume
scheme (it is for this reason that in (2.37) we have assigned the coordinates
xn+1
kdn

even to the dead node). So we decide to duplicate some of the connectivity
tables, creating triNew, Elem2EdgeNew, Edge2ElemNew, Edge2VertexNew, and
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2.3 Shallow water equations

Vertex2ElemNew. During the insertion procedure we modify in the same way
both the old and the new matrices, while during the fusion we modify only
the new matrices. Hence we can use the old ones in the Finite Volume scheme,
because they store all the needed information (for example they refer both to
the dead and the fusion node which have the same coordinates at the new time
tn+1), while when we advance in time, to tn+2, we maintain updated only the
new ones because the information about two previous time steps are no longer
necessary and so we can overwrite the old connectivity matrices with the new
ones.

First, in matrix triNew we substitute kdn with kfn in all the neighbors of the
dead node; moreover, we consider matrix Vertex2ElemNew, in row kfn we put
both the neighbors of the dead and the fusion node and we nullify row kdn. We
do the same with matrix Vertex2EdgeNew: we nullify row kdn and we put in row
kfn all the edges that contain kfn or kdn. Then all the edges that contain kdn

substitute it with kfn (in matrix Edge2VertexNew), whereas the edges with both
kdn and kfn (that we memorize in a list Edge[dn-fn]) remove kdn. We note that
merging kdn and kfn we are removing the segment in between, so we look for the
edges that contain it (listed in Edge[dn-fn]) and its neighbor elements that we
list in Elem[dn-fn]. We update now matrix Edge2ElemNew because the edges in
Edge[dn-fn] have no more one of the neighbors in Elem[dn-fn]. Afterward we
check if the absence of this segment makes some edges in Edge[dn-fn] equal:
in this case we remove one of them (the one with the largest global number)
and we update correspondingly the new connectivity matrices. Besides we
modify the labels telling us if a node is hung to some edges and which nodes
and edges are currently existing. This last step prevents us to work again with
disappeared nodes and allows us to reuse their global numbering when we want
to insert a new node or a new edge.

2.3 Shallow water equations

In the next Section, we will solve a large set of numerical tests in order to
validate the presented nonconforming direct ALE scheme. The robustness of
the method is checked both on smooth and discontinuous problems related to
the shallow water equations written both in Cartesian and in polar coordinates.
These equations are briefly recalled here.
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2 ALE nonconforming

2.3.1 Cartesian coordinates

We consider the shallow water equations with flat bottom topography, which
can be cast into form (2.1) with

Q =

 h

hu

hv

, f =

 hu

hu2 + 1
2
gh2

huv

, g =

 hv

huv

hv2 + 1
2
gh2

, (2.38)

where the variables h, u and v are respectively the water depth, the velocity in
x−direction, and the velocity in y−direction. The term p = 1

2
gh2 denotes the

averaged pressure force along the water depth (normalized with the fluid den-
sity ρ), where g is the gravity acceleration along the vertical direction. Since
the shallow water equations are derived from depth-integrating the incompress-
ible Navier-Stokes equations assuming that the horizontal length scale is much
larger than the vertical one, the vertical pressure is assumed to be hydrostatic.

The Jacobian matrices, necessary for the computation of the ALE Jacobian
matrix in (2.21), are

∂f

∂Q
=

 0 1 0

a2 − u2 2u 0

−uv v u

, ∂g

∂Q
=

 0 0 1

−uv v u

a2 − v2 0 2v

 . (2.39)

where a =
√
gh.

2.3.2 Polar coordinates

We recover here the formulation of the shallow water equations in polar coor-
dinates. Consider the usual relation between polar (r, ϕ) and Cartesian (x, y)
coordinates

x = r cosϕ , and y = r sinϕ , (2.40)

and the corresponding relations for the derivatives

∂

∂x
= cosϕ

∂

∂r
− sinϕ

r

∂

∂ϕ
, and

∂

∂y
= sinϕ

∂

∂r
+

cosϕ

r

∂

∂ϕ
(2.41)

and let ur and uϕ be respectively the radial and the tangential component of
the velocity, linked to u and v by

u = cosϕur − sinϕuϕ, v = sinϕur + cosϕuϕ . (2.42)
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2.3 Shallow water equations

Now by substituting into (2.38) the expressions given in (2.42) and (2.41), after
some calculations, we derive a new set of hyperbolic equations

∂rh
∂t

+ ∂rhur
∂r

+
∂huϕ
∂ϕ

= 0,

∂rhur
∂t

+ ∂
∂r

(
rhu2

r + 1
2
grh2

)
+

∂huruϕ
∂ϕ

= hu2
ϕ + 1

2
gh2,

∂rhuϕ
∂t

+
∂rhuruϕ

∂r
+ ∂

∂ϕ

(
hu2

ϕ + 1
2
gh2
)

= −huruϕ,

(2.43)

which, however, does not yet fit into the form (2.1), since the fluxes in the
above system depend explicitly on the spatial coordinate r (i.e. the system is
not autonomous). Thus, we add to the system the trivial equation,

∂r

∂t
= 0, (2.44)

obtaining finally

∂rh
∂t

+ ∂rhur
∂r

+
∂huϕ
∂ϕ

= 0,

∂rhur
∂t

+ ∂
∂r

(
rhu2

r + 1
2
grh2

)
+

∂huruϕ
∂ϕ

= hu2
ϕ + 1

2
gh2,

∂rhuϕ
∂t

+
∂rhuruϕ

∂r
+ ∂

∂ϕ

(
hu2

ϕ + 1
2
gh2
)

= −huruϕ,
∂r
∂t

= 0.

(2.45)

The vector of the conserved variables, the nonlinear flux, and the source can
now be written as

Q=


rh

rhur
rhuϕ
r

, f =


rhur

rhu2
r + 1

2
grh2

rhuruϕ
0

, g=


huϕ
huruϕ

hu2
ϕ + 1

2
gh2

0

, S=


0

vhu2
ϕ + 1

2
gh2

−huruϕ
0

.
(2.46)

and the Jacobian matrices, necessary for the computation of the ALE Jacobian
matrix in (2.21), are

∂f

∂Q
=


0 1 0 0

−u2
r+gh 2ur 0 − 1

2
gh2

−uruϕ uϕ ur 0

0 0 0 0

, ∂g

∂Q
=


0 0 1

r
−huϕ

r

−uruϕ
r

uϕ
r

ur
r

−huruϕ
r

−u
2
ϕ

r
+g h

r
0

2uϕ
r
−hu

2
ϕ

r
−g h

2

r

0 0 0 0

.
(2.47)
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2.4 Numerical results

The test cases presented in this chapter are carried out by supposing straight
slip lines and using either the Rusanov or the Osher type flux; the value of α
in (2.28) is always taken equal to α = 1 unless otherwise specified, and the
CFL number is chosen as CFL= 0.3. Furthermore, the order of convergence is
verified first fixing for the mesh motion an arbitrary velocity, then in the case
of a steady vortex in equilibrium using the local fluid velocity.

2.4.1 Sanity checks: pure sliding

The numerical examples reported in this section are sanity checks testing the
ability of the method to detect and maintain straight slip-line interfaces.

First, we consider the shallow water equations (2.38), with initial computa-
tional domain given by Ω(t0) = [−2, 2]×[0, 4] and the following initial condition

Q(x, 0) =

{
(1, 0,−2) if x ≤ 0,

(1, 0, 2) if x > 0,
(2.48)

which also coincides with the exact solution at any time. We impose wall
boundary conditions on the left and on the right side of the domain, respec-
tively, whereas at the top and at the bottom of the domain we impose trans-
missive boundary conditions. In Figure 2.6 we show the numerical results over
a triangular mesh and then over a mixed mesh composed of both, triangular
and quadrilateral elements. The chosen mesh velocity coincides exactly with
the fluid velocity, as in a pure Lagrangian context. At each time step we have
verified that the total water volume is conserved up to machine precision both
locally and globally and that relation (2.27), the GCL, is verified also up to
machine precision.

Next, we consider as initial condition

Q(x, 0) = (1, 0, 0.5 floor (2x)) , −2 ≤ x ≤ 2, (2.49)

with floor(x) = bxc denoting the lower Gauss bracket, and we run our algorithm
until a final time t = 0.7 with different threshold values, see (2.28), in such a way
that there will be a different number of interfaces along which nodes have to be
doubled and merged in time. The discretization of the computational domain
is reported in Figure 2.7. Also in this case we reach the exact solution (that
is the initial condition translated in the motion direction), the total volume
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(f) mesh at t = 1.1

Figure 2.6: Slide lines test case with initial condition as in equation (2.48). The
mesh is moved with the local fluid velocity, which at x = 0 is discontinuous: so
nodes over there are handled in a nonconforming way. At the top we show the
results obtained employing a triangular mesh and at the bottom using a mesh
made of both triangular and quadrilateral elements. We report the mesh at three
different computational times: note that the computational domain can also be
split in two non connected parts. The level of the water, the total area and the
total volume are conserved at any time step, and the solution coincides with the
exact one up to machine precision.

of water is conserved and relation (2.27) is verified up to machine precision at
each time step and on each element.

Finally, we want to show that the interface can be along any straight line
(provided that edges lie over this line): we take as initial condition

Q(x, 0) =

{
(1,−1, 1) if x+ y − 2 ≤ 0,

(1, 1,−1) if x+ y − 2 > 0,
(2.50)

and in Figure 2.8 we report the computational domain at different times. Again,
the numerical solution matches the exact one and as expected, the total volume
is conserved and equation (2.27) is satisfied up to machine precision.
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(b) final mesh with α = 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

0

1

2

3

4

5

(c) final mesh with α = 0.4

Figure 2.7: Slide lines test case with initial condition as in equation (2.49). We start
with a conforming quadrilateral mesh; using a value of α = 1 in (2.28) we obtain
only two slip-lines (at x = 0 and x = 0.5), whereas using α = 0.4, which makes
the detector more strict, the mesh slides along each straight line where the fluid
velocity changes.
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(a) initial mesh t = 0
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(b) mesh at t = 0.35
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Figure 2.8: Oblique slide line. We show the discretization of the computational
domain at three different times. The corresponding numerical solution matches
the exact one.

2.4.2 Periodic boundary conditions

The tests reported in the previous section can be run also by imposing periodic
boundary conditions on the top and at the bottom of the computational do-
main. In Figure 2.9 we show the discretization of the computational domain at
time t = 100.2 for the initial conditions in (2.48) and in (2.49). We would like
to underline that no distortion of the mesh elements appears even after a very
long computational time, and as a direct consequence the time steps remain
almost constant during the computation. As always in this type of test cases
the volume conservation holds and the numerical solution is equal to the exact
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Figure 2.9: Slide lines with periodic boundary conditions. We report the final com-
putational domain at time t = 100.2 corresponding to the initial condition in
(2.48) on the left, and the one corresponding to the initial condition in (2.49)
on the right. No distortion of the computational domain appears neither at the
interfaces, and the numerical solution coincides with the exact one.

one up to machine precision.

2.4.3 Riemann problem

Let us now consider as initial condition a Riemann problem with a discontinuity
in the water level

Q(x, 0) =

{
(1, 0, 0) if x ≤ 0,

(0.5, 0, 0) if x > 0,
(2.51)

that originates a left-traveling rarefaction fan and a right-moving shock wave.
We decided to move the mesh with an arbitrary mesh velocity function

V = ( 0, 0.5 floor (2x) ) − 2 ≤ x ≤ 2,

in order to check the robustness of the algorithm also in the presence of disconti-
nuities. We impose periodic boundary conditions on the top and on the bottom
of the square, and wall boundary conditions on the left and on the right. The
final discretization of the computational domain together with the comparison
between the numerical and the exact solution are depicted in Figure 2.10 both
for the first order accurate scheme (i.e. without the MUSCL-Hancock strategy
for the reconstruction) and the second order accurate scheme.
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Figure 2.10: Riemann problem with an arbitrary mesh velocity. Taking α = 0.4 in
(2.28) the algorithm identifies 7 interfaces which are then handled in a noncon-
forming way. In the figure we report the final discretization of the computational
domain, and the comparison between the exact solution and the numerical solu-
tions obtained with our nonconforming method showing first order results (left),
second order results (center) and the mesh at the final time (right).
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Figure 2.11: Comparison of the exact solution for the quantity c with the numerical
solution obtained on moving nonconforming meshes. The results obtained with
the first order algorithm are shown on the left, while those obtained with the
second order MUSCL-Hancock method are presented in the center. The com-
parison is done at time t = 0.5 taking a cut of the profile of c corresponding to
y = 2. On the right we show the discretization of the computational domain at
time t = 0.5.

2.4.4 Convergence test

To verify the order of convergence of the proposed method we study the passive
transport of a quantity c, that at time t = 0 is taken equal to a Gaussian profile
and then will be passively transported in the direction of the fluid flow without
changing its shape. The PDE system describing this situation is obtained
from the standard shallow water equations (2.38) with the addition of the
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2.4 Numerical results

Table 2.1: Numerical convergence results for the passive transport of a Gaussian
profile on moving nonconforming meshes. The error norms refer to the variable c
at time t = 0.5. On the left we report the result for the first order method (i.e.
without using the MUSCL-Hancock reconstruction procedure) and on the right
using the second order accurate scheme.

O1 O2

mesh points h(Ω(tf )) εL2 O(L2) mesh points h(Ω(tf )) εL2 O(L2)

12 × 12 1.95E-01 1.44E-01 - 12 × 12 1.95E-01 4.96E-02 -

24 × 24 9.78E-02 7.58E-02 0.93 24 × 24 9.78E-02 1.23E-02 2.02

40 × 40 5.88E-02 4.69E-02 0.94 40 × 40 5.88E-02 4.24E-03 2.10

80 × 80 2.95E-02 2.41E-02 0.97 80 × 80 2.95E-02 1.01E-03 2.09

120× 120 1.98E-02 1.62E-02 0.99 120× 120 1.98E-02 4.51E-04 2.01

concentration c of a passive tracer,

Q=


h

hu

hv

hc

, f =


hu

hu2 + 1
2
gh2

huv

huc

, g=


hv

huv

hv2 + 1
2
gh2

hvc

. (2.52)

We fix the following initial condition

Q(x, 0) =

(
1, u, 0, 1 + e

−0.5 (x2+ (y− 0.5 p)2)
0.52

)
, −2 ≤ x ≤ 2, 0 ≤ y ≤ p,

(2.53)
where we use a fluid velocity of u = 1 and where we have taken the period
p = 4. The mesh is moved with the velocity

V = (0, 0.5 floor (x)) − 2 ≤ x ≤ 2, (2.54)

according to the ALE framework, where the mesh velocity can be chosen ar-
bitrarily. We prescribed periodic boundary conditions on the upper and lower
side of the rectangular domain, and wall boundary conditions on the left and
right sides. Since the exact solution is known (Q(x, t) = Q(x−ut, 0)) and it is
smooth, we can verify the order of convergence of our method. In Table 2.1 we
report the order of convergence of the basic first order Finite Volume method,
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2 ALE nonconforming

and of its second order extension that uses the MUSCL-Hancock strategy for
the reconstruction procedure in space and time. Moreover, in Figure 2.11 we
compare the numerical solution for the variable c with the profile of the exact
solution and we show the mesh at the final time.

2.4.5 Steady vortex in equilibrium

To show that our method is also robust enough for vortex flows, we simulate the
case of a steady vortex in equilibrium and we will compare the results obtained
with our nonconforming method with a standard conforming algorithm (with-
out any rezoning technique) looking at the differences after long simulation
times.

Consider the shallow water in polar coordinates (2.46) and the following
initial condition

h(r, ϕ, 0)=1− 1

2g
e−(r2−1), ur(r, ϕ, 0)=0, uϕ(r, ϕ, 0)=re−

1
2

(r2−1), (2.55)

which is a stationary solution, and so coincides with the exact solution at
any time. We performe our test both with the Osher-type and the Rusanov-
type fluxes and with a mesh made of triangles, quadrilaterals or both. The
considered computational domain is Ω(r, ϕ) = [0.2, 2] × [0, 2π] which is easily
mapped into the annulus with radius [0.2, 2]. Indeed the choice of considering
the shallow water equations in polar coordinates allows us to study the vortex
over a rectangular domain with periodic boundary conditions (at ϕ = 0 and
ϕ = 2π) instead of dealing with circles. At r = 0.2 and r = 2 we impose
reflective boundary conditions. In particular using the polar coordinates the
detected shear interfaces lie over straight lines and so they are perfectly handled
by our algorithm. The images presented in this section are then obtained by
mapping back our results to Cartesian coordinates, as shown in Figure 2.12.

First, Table 2.2 confirms the designed order of convergence of our algorithm
in multiple situations: so primarily we can say that the mesh motion does not
affect the standard order of convergence of the MUSCL-Hancock strategy and
moreover this shows once again that the numerical flux computation, even at
the nonconforming interfaces, is carried out correctly. The numerical solution
at t = 15 is compared with the analytical one in Figure 2.13.

Then we compare the results with a standard conforming method. First, let
us underline that when the velocity changes even within the same element the
only way to overcome the mesh distortion would be to split the element itself.
For this reason, where the velocity field changes smoothly and as a consequence
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Figure 2.12: Domain discretization at time t = 15. On the left we report the grid in
polar coordinates where the shear discontinuities lie over straight lines. On the
right the corresponding grid in Cartesian coordinates.
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Figure 2.13: Comparison between analytical solution and second-order accurate nu-
merical results for the water level h (left) and the tangential component of the
velocity uϕ (right), with ϕ = 2π and r ∈ [0.2, 2].

the shear flow affects all the vertexes of the same element, at a certain time
the mesh will become invalid even in the nonconforming case. This would
not happen if the velocity field were uniform within each element, i.e. if each
element moved all its vertexes with the same velocity, e.g. the velocity of the
barycenter. The main difference between the new nonconforming algorithm and
a conventional conforming method is the final time at which the computation
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Figure 2.14: Steady vortex in equilibrium. We compared the behavior of a standard
conforming algorithm (without any rezoning technique) and of our new noncon-
forming method. Using the conforming algorithm the elements are deformed in
a very short time, the time step is heavily reduced and hence the computation
is slower. On the contrary, the nonconforming slide lines introduced by our
scheme are able to maintain a good shape of each element and an almost con-
stant time step for a long computational time. Indeed only at time t = 90 some
elements with r → 0 are deformed because of the presence of shear inside the
elements, which could be remedied only by subdividing the elements themselves
or by removing them.

stops due to an invalid mesh, and the time step restriction that depends on the
smallest encircle diameter of the elements.

In Table 2.3 we report the employed number of time steps and their dimension
for different kinds of meshes and at different times. We remark that a larger
value of ∆t decreases the required number of time steps and in this way also
the total amount of computational time. The last results of each group refer
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Table 2.2: Numerical convergence results for the steady vortex in equilibrium using
nonconforming meshes. In the left table we report the results obtained on a
quadrilateral mesh using the Osher type flux. For the results on the right we have
employed a triangular mesh and the Rusanov type flux. The error refers to the
difference between the computed water level h and the exact one at time tf = 0.5.

O2, Osher flux, quadrilateral elements O2, Rusanov flux, triangular elements

mesh points h(Ω(tf )) εL2 O(L2) mesh points h(Ω(tf )) εL2 O(L2)

12 × 12 2.33E-01 1.36E-03 - 20 × 20 7.18E-02 5.97E-04 -

24 × 24 1.17E-01 3.42E-04 1.99 30 × 30 5.21E-02 2.54E-04 2.11

32 × 32 8.74E-02 1.94E-04 1.97 40 × 40 3.91E-02 1.43E-04 2.01

44 × 44 6.36E-02 1.03E-04 1.98 55 × 55 2.84E-02 7.76E-05 1.91

60 × 60 4.66E-02 5.57E-05 1.99 60 × 60 2.60E-02 6.58E-05 1.91

to the moment at which the algorithm breaks due to an invalid mesh: one can
easily see that the nonconforming method is able to run almost eight times
longer than a conventional ALE method on conforming grids. Finally, looking
at Figure 2.14 one can appreciate that the conforming method destroys the
mesh immediately and then breaks, whereas the new nonconforming algorithm
maintains a high quality mesh for a very long time, even with a very coarse
mesh.

2.5 Proof of concepts: general slide lines

All test problems shown before were limited to logically straight slide lines.
However, there is no intrinsic limitation to logically straight slide lines in our
algorithm, since the integral space-time conservation form (4.4) of the conser-
vation law is valid for arbitrary closed space-time control volumes. This simple,
elegant but at the same time very powerful formulation allows also to dynam-
ically add and remove elements or to change their type during the simulation
in a consistent manner that respects the GCL as well as local and global con-
servation. All these features are trivially built in by construction, due to the
integral formulation on closed space-time control volumes. In Figure 2.15 we
show examples of space-time control volumes that result when elements change
type or when elements are dynamically added and removed during a simula-
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Table 2.3: In this table we report the number of time steps n necessary to reach
the time t and the dimension of the time step ∆t at that time. We used three
different meshes with NE total number of elements (triangles or quadrilaterals).
The results are obtained by applying a standard conforming method and our new
nonconforming algorithm. Looking at the bold data one can see that with almost
the same number of time steps one reaches a simulation time that is twice as
large with the nonconforming algorithm compared to a classical conforming one.
Besides the final simulation time that can be reached before obtaining an invalid
mesh is almost 8 times larger.

NE → 216 264 300

conforming algorithm

t n ∆t t n ∆t t n ∆t

1 110 9.58E-03 1 180 5.40E-03 1 180 5.71E-03

8 1163 4.13E-03 8 2180 2.52E-03 10 2071 3.11E-03

12 2370 2.70E-03 12 4035 1.89E-03 15 4098 2.04E-03

stop at→ 15.3 3773 2.06E-03 15.5 6072 1.54E-03 17 5190 1.78E-03

nonconforming algorithm

1 110 9.58E-03 1 180 5.82E-03 1 175 5.68E-03

8 851 9.50E-03 8 1410 5.52E-03 10 1720 5.92E-03

30 3175 9.30E-03 30 6033 4.06E-03 15 2565 5.94E-03

60 7757 4.90E-03 60 15010 2.84E-03 80 15979 3.34E-03

stop at→ 119 26430 2.24E-03 129 35791 1.94E-03 132 36275 2.13E-03

tion. For logically non-straight slide lines, it is necessary to divide elements
and nodes into masters and slaves, where the master elements maintain their
number of nodes, while the slave elements must in general change their element
type during the sliding process. Also note that master nodes are free to move
anywhere, while slave nodes must slide along the master edges. Furthermore,
small elements need to be removed if they lead to excessively small time steps
due to the CFL condition.

We now repeat the same shallow water vortex test problem as described
in the previous section, but using the PDE in Cartesian coordinates. This
leads to logically non-straight slide lines. The comparison between the classical
conforming moving mesh algorithm and our new nonconforming approach is
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shown in Fig. 2.16 and Table 2.4. We observe the improved mesh quality and
time step size compared to the classical conforming approach, in particular
when the moving nonconforming mesh is combined with the removal of small
elements. The obtained results look promising and justify further research in
this direction in the future.

Figure 2.15: Dynamic change of element type (left), element removal (center) and
element insertion (right) between time tn and time tn+1. Nodes and element

Tni at time tn are highlighted in blue, nodes and element Tn+1
i at time tn+1

are colored in red.

Table 2.4: Time step size for three different moving mesh algorithms. The main
improvement is achieved when using a nonconforming algorithm combined with
small element removal. This allows to maintain reasonable time steps also for
longer simulation times.

Time step size

time conforming nonconforming nonconforming +
element removal

0.3 3.8E-3 3.2E-3 3.2E-2
0.6 3.6E-3 2.1E-3 2.1E-3
1.0 1.9E-3 9.0E-4 1.2E-3
1.3 5.8E-4 1.2E-4 1.4E-3
1.7 - - 1.4E-3
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Figure 2.16: Isolated vortex in Cartesian coordinates. Classical conforming algo-
rithm without any rezoning technique (top). Moving mesh obtained with the
new nonconforming algorithm at different times (center) without small element
removal. Moving nonconforming mesh with small element removal (bottom),
which allows to control the time step size and to maintain a better mesh quality.
The nonconforming algorithms used here use logically non-straight slide lines.
The sliding edges are automatically detected based on the tangential velocity
difference.
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Well balanced path-conservative
methods

This central part of the thesis is dedicated to the presentation of a completely
new family of well balanced (WB) path-conservative schemes, able to maintain
up to machine precision the equilibrium solutions of the studied system and to
drastically increase the power of resolutions on small perturbations that may
appear around those equilibria. To the best knowledge of the author this work
is original for various reasons: it is the first time that the little dissipative
Osher scheme is modified in order to be well balanced for nontrivial equilibria
on moving meshes, and it is the first time that WB is coupled with ALE for
the Euler equations with gravity; moreover the use of a well balanced Osher
scheme joint with the Lagrangian framework allows, for the first time within a
Finite Volume method, to maintain exactly even moving equilibria. This topic
is covered in the next three chapters.

In Chapter 3, we concentrate on the one-dimensional case. In Section 3.1 we
recall the basic notions on well balanced path-conservative schemes introduced
by Dal Maso et al. [119] and Parés et al. [128] [37]. Then we have decided to
detail our novel well balanced scheme in the particular case of the Euler equa-
tions of gas dynamics with gravity in polar coordinates, which are recovered in
Section 3.2. Indeed, the method is based on very general and powerful funding
concepts, but some computations differ from system to system and depend on
the family of equilibria that has to be maintained, so in order to present all its
specific features we have to introduce a concrete case. However, it is easy to
reproduce the same reasoning for other systems following the presented line,
as it is done for shallow water equations and a reduced compressible two-phase
flow model in Chapters 4 and 5.

Moreover, the Euler equations with gravity represent a very interesting and
highly challenging case of study. They allow to explore complex astrophysical
phenomena as the rotating Keplerian disk : it is characterized by a family of
steady equilibria between pressure gradient, centrifugal force and gravity force
and by a high shear flow due to the differential rotation in the disk. In or-
der to model with high accuracy and minimal dissipation small perturbations
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around those equilibria for very long period of times we propose to use a well
balanced method coupled with our nonconforming ALE framework. This cou-
pling is presented in Section 4.1, together with a large set of numerical test
cases in Section 4.2 that witnesses the power of resolution of our method both
close and far away from the equilibria. Besides, a comparison with not well
balanced schemes or not Lagrangian-type methods show the superiority of the
proposed scheme with respect to the state of the art, demonstrated also by
the comparison with the PLUTO code (a well established software targeting
astrophysical simulations); we would like to emphasize the excellent quality of
the results obtained in Chapter 4. Then we conclude by showing that the same
coupling between ALE and WB can be applied to the shallow water equations,
refer to Section 4.3.

In Chapter 5, we concentrate ourselves on a simple compressible two-phase
model for complex free surface flows. The model is derived from the Baer
Nunziato system and results to be more accurate than standard shallow water
equations both for the initial stages of dambreaks, because it does not neglect
vertical accelerations, and for breaking waves, because the free surface, given
by the volume fraction, is not constraint to be necessarily a single value func-
tion. This three-equation model was first introduced by Dumbser in [65]. The
novelties presented in this thesis consist first in a well balanced treatment of
the source terms, in order to preserve exactly equilibria between air and water
even in the presence of obstacles; and second in a parallel implementation ex-
ploiting a GPU -based platform that allows very high computational efficiency
on fine meshes.

To conclude, we would like to focus the attention on the key idea for the
construction of our well balanced scheme: the introduction of a path which
directly exploits the known stationary solution (and so it is exact on it), and
treats in a approximate way only the fluctuations around the equilibrium, see
equation (4.40). The same idea of using an approximate technique only on the
fluctuations appears even in the reconstruction process, see equation (3.66)-
(3.68). This simple idea can guide to the understanding of the method.
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3 Well balancing: one dimensional case

3.1 General framework

For the numerical approximation of the a one dimensional system, the spatial
domain is discretized by N fixed intervals Tni = Ii = [xi−1/2, xi+1/2] of regular
size ∆x = xi+1/2 − xi−1/2, i = 1, . . . , N . As a standard Finite Volume scheme,
a path-conservative scheme is obtained first by integrating the governing PDE
(1.1) in space and time obtaining (1.3). After that, instead of introducing the
time-averaged flux as in (1.6), following [128] and [41] we write the scheme as
follows

dQi

dt
(t) =− ∆t

∆x

(
D+

i−1
2

(
q−
i− 1

2
(t),q+

i− 1
2
(t)
)

+ D−
i+1

2

(
q−
i+ 1

2
(t),q+

i+ 1
2
(t)
))

− ∆t

∆x

x
i+1

2∫
x
i− 1

2

∂

∂x
f (qi(x, t)) dr

− ∆t

∆x

x
i+1

2∫
x
i− 1

2

B1 (qi(x, t))
∂

∂x
(qi(x, t)) dr.

(3.1)

In the scheme, qi(x, t) is the approximation of the conserved variables inside
cell Ii at time t, computed via a reconstruction operator from the conserved
variables in Ii and its neighbors, while q+

i− 1
2

(t) = qi(xi−1/2, t) and q−
i+ 1

2

(t) =

qi(xi+1/2, t) denote the evaluation of qi(x, t) at the left and right boundaries
of cell Ii. According to the above reference, D±

i+ 1
2

is defined as follows

D±
i+ 1

2

(
q−
i+ 1

2
,q+

i+ 1
2

)
=

1

2

(
f(q+

i+ 1
2
)− f(q−

i+ 1
2
) +

Bi+ 1
2

(
q+

i+ 1
2
− q−

i+ 1
2

)
± Vi+ 1

2

(
q+

i+ 1
2
− q−

i+ 1
2

))
,

(3.2)
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3 Well balancing: one dimensional case

where f(q) is the physical flux, Bi+ 1
2

(
q+

i+ 1
2

− q−
i+ 1

2

)
is the discretization of

the non-conservative terms and Vi+ 1
2

(
q+

i+ 1
2

− q−
i+ 1

2

)
is the viscosity term, that

characterizes the method. In (3.2), the dependency on t has been dropped for

simplicity. Bi+ 1
2

(
q+

i+ 1
2

− q−
i+ 1

2

)
and Vi+ 1

2

(
q+

i+ 1
2

− q−
i+ 1

2

)
have to be defined

in terms of a family of paths Φ(s; q−
i+ 1

2

,q+

i+ 1
2

), s ∈ [0, 1]. In this work the

family of paths will be chosen so that a class of stationary solutions could be
preserved.

The scheme as written in (3.1) is similar to the wave-propagation formulation
proposed by LeVeque in [106] for standard conservative systems. We refer the
reader interested in the complete theoretical framework of path-conservative
schemes to the very detailed paper of Parés [128], especially to Chapter 3
where the classical Finite Volume scheme is first rewritten in terms of distri-
butions and then generalized to non-conservatives products. In particular it is
shown that the terms D±

i+ 1
2

allow to decompose the punctual masses placed

at the interface in such a way that D−
i+ 1

2

contributes to cell Ii and D+

i+ 1
2

to

cell Ii+1, leading to the key definition (see equation (3.7)) for resolving the
discontinuities at the interface. Moreover we refer to [55] for the definition of
the non-conservative products as Borel measure.

For the sake of clarity let us now recall some definitions, taken from the
above references.

Definition 3.1.1 (Family of paths). A family of paths in Ω ⊂ Rd is a locally
Lipschitz map

Φ : [0, 1]× Ω× Ω 7→ Ω, (3.3)

such that

i. Φ(0; QL,QR) = QL, Φ(1; QL,QR) = QR, Φ(s; Q,Q) = Q, for any QL,
QR, Q ∈ Ω;

ii. for every arbitrary bounded set O ⊂ Ω, there exists a constant k such that∣∣∣∣∂Φ

∂s
(s; QL,QR)

∣∣∣∣ ≤ k |QR −QL| , (3.4)

for any QL,QR ∈ O and almost every s ∈ [0, 1];

iii. for every bounded set O ⊂ Ω, there exists a constant K such that∣∣∣∣∂Φ

∂s

(
s; Q1

L,Q
1
R

)
− ∂Φ

∂s

(
s; Q2

L,Q
2
R

)∣∣∣∣≤K(∣∣Q1
L−Q2

L

∣∣+∣∣Q1
R−Q2

R

∣∣) , (3.5)
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3.1 General framework

for any Q1
L, Q1

R, Q2
L, Q2

R ∈ O and almost every s ∈ [0, 1].

Definition 3.1.2 (Path-conservative). Given a family of path Φ, a numerical
scheme is said to be Φ−conservative or path-conservative if it can be written
under the form (3.1) with

D±(Q,Q) = 0 ∀Q ∈ Ω, (3.6)

and

D−(QL,QR)+D+(QL,QR) =

∫ 1

0

A(Φ(s; QL,QR))
∂Φ

∂s
(s; QL,QR)ds, (3.7)

for every QL, QR ∈ Ω.

Note that, in the case of a one dimensional system i.e. (1.1) with g,h = 0 and
B2,3 = 0, we can rewrite equation (3.7) as

D−(QL,QR)+D+(QL,QR)= f(QR)− f(QL) + BLR(QR −QL), (3.8)

where

BLR(QR −QL) =

∫ 1

0

B1(Φ(s; QL,QR))
∂Φ

∂s
(s; QL,QR)ds. (3.9)

Definition 3.1.3 (Well balance). Let Γ be the set of all the integral curves
gamma of a linearly degenerate field of A(Q) such that the corresponding eigen-
values vanishes on Γ. Given a curve γ ∈ Γ, a numerical scheme

Qn+1
i = Qn

i +
∆t

∆x
H(Qn

i−q, . . . ,Q
n
i+p) (3.10)

is said to be exactly well balanced for γ if, given any C1 function x ∈ (α, β)
⊂ R 7→ Q(x) ∈ Ω such that

Q(x) ∈ γ, ∀x ∈ (α, β), (3.11)

and p+ q + 1 points in (α, β) such that x−q ≤ ... ≤ xp, then

H(Q(x−q), . . . ,Q(xp)) = 0. (3.12)

Proposition 3.1.4. A first order path-conservative scheme is exactly well bal-
anced for a curve γ ∈ Γ if and only if

D±(QL,QR) = 0, ∀ QL,QR ∈ γ. (3.13)
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3 Well balancing: one dimensional case

Proposition 3.1.5. A reconstruction operator P is said to be exactly well
balanced for a curve γ ∈ Γ if, given a sequence {Qi} ∈ γ, it satisfies

P(x,Qi−l, . . . ,Qi+r) ∈ γ ∀x ∈ [xi− 1
2
, xi+ 1

2
], (3.14)

for every i.

Proposition 3.1.6. The numerical scheme in (3.1) is exactly well balanced for
a curve γ ∈ Γ if both the underlying first order scheme and the reconstruction
operator are exactly well-balanced for γ.

This part was to introduce the basic notions on well balanced path-conserva-
tive schemes for general systems. From now on, we will focus on a specific set
of equations and on a family of equilibria. However, we would like to underline
once again that all the methods we will propose, for example in Section 3.3
in the particular case of the Euler equations with gravity in polar coordinates,
are based on very general and powerful concepts so that they can be easily
extended to other systems. This will be shown by studying both the shallow
water equations in Section 4.3, and a two-phase model in Section 5.2, following
always the same key ideas.

3.2 Euler equations with gravity

The Euler equations of compressible gas dynamics with an externally given
gravitational field allow to study problems in computational astrophysics con-
nected with the rotation of gas clouds around a central object. In particular,
we are interested in situations close to equilibrium solutions and affected by
strong shear flows. What we propose is to use the nonconforming ALE tech-
nique presented in the previous chapter in order to maintain a good quality
mesh despite the differential rotation, and a well balanced method in order to
preserve exactly the steady states and to reduce the numerical errors close to
them. But in order to apply these two techniques coupled together we have first
to recover a suitable formulation of the equations.

In this section we present the classical Cartesian form of the Euler equations
with gravity (Section 3.2.1), than we rewrite them in polar coordinates (Sec-
tion 3.2.2) so that the nonconforming ALE can be used in the more simple case
of straight slip lines. And finally, in Section 3.2.3 we eliminate the algebraic
source terms, which would make the equilibria preservation very difficult, by
introducing some non-conservative products. This last non-conservative for-
mulation (3.23) represents a very useful framework for applying our new well
balanced techniques.
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3.2 Euler equations with gravity

3.2.1 Cartesian coordinates

The Euler equations with gravity in two space dimensions represent a strongly
hyperbolic system of equations that can be cast in the form of balance laws,
by taking in (1.1)

Q =


ρ

ρux

ρuy

ρE

, f(Q) =


ρux

ρu2
x + p

ρuxuy

ux(ρE + p)

, g(Q) =


ρuy

ρuxuy

ρu2
y + p

uy(ρE + p)

,

B(Q) = 0, S(Q) =


0

− cosϕρ Gms
r2

− sinϕρ Gms
r2

−(ux cosϕ + uy sinϕ )ρGms
r2

.
(3.15)

Here ρ is the density, ux and uy are respectively the velocities along the x and
y directions, r =

√
x2 + y2, ϕ = arctan(y/x), E is the specific total energy

(excluding the gravitational energy), ms is the mass of the central object, G is
the gravitational constant and the pressure p is given by

p = (γ − 1)

(
ρE − 1

2
ρ
(
u2
x + u2

y

))
, γ =

cp
cv

> 1, (3.16)

where γ is the ratio of the specific heats at constant pressure and at constant
volume, and which is supposed to be constant.

3.2.2 Polar coordinates

Now we are interested in studying rotational phenomena affected by sheared
vortex flows, so we decide to rewrite the Euler equations in polar coordinates
(r, ϕ). We follow the same procedure of Section 2.3.2. To shorten the notation,
from now on when referring to the Euler equations in polar coordinates, we
denote the radial velocity ur by u, and the angular velocity uϕ by v. The
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3 Well balancing: one dimensional case

resulting hyperbolic system still takes the form (1.1) with

Q =



rρ

rρu

rρv

rρE

r


, f(Q) =



rρu

rρu2 + rp

rρuv

ru(ρE + p)

0


, g(Q)=



ρv

ρuv

ρv2 + p

v(ρE + p)

0


,

B(Q) = 0, S(Q) =



0

− ρGms
r

+ p+ ρv2

− ρuv
− ρuGms

r

0


.

(3.17)

Note that the system is written in terms of conserved variables, which is made
possible by the insertion of an additional trivial equation as in (2.44)

∂r

∂t
= 0, (3.18)

which implies that the radius r is both a coordinate and a conserved variable.

3.2.3 Non-conservative formulation and equilibrium solutions

The aim of our work is to construct a Finite Volume scheme that is second
order accurate in general situations, and, at the same time, can solve exactly
(i.e. up to machine precision) a class of stationary solutions given by

ρ = ρ(r), u = 0,
∂v

∂ϕ
= 0. (3.19)

Looking at the second equation in (3.17) and at the equilibrium constraints in
(3.19), we notice that equilibria should balance the pressure and gravitational
forces. More precisely

∂rp

∂r
= −ρ

(
Gms

r
− v2

)
+ p. (3.20)

This relation has to be achieved also at the discrete level in order to preserve
these stationary solutions. In standard Finite Volume schemes, fluxes and
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3.2 Euler equations with gravity

sources are typically discretized in different ways and therefore, the balancing
between them is usually lost. In order to construct a numerical scheme that
exactly preserves those stationary solutions, here we first rewrite the equations
in the following way, where both, pressure and gravitational forces (3.20) are
treated as non-conservative terms. Thus, by exploiting some trivial equalities
as

∂rp

∂r
= p+ r

∂p

∂r
and

∂r

∂r
= 1, (3.21)

the forces in (3.20) can be rearranged as

r
∂p

∂r
+

(
ρ
Gms

r
− ρv2

)
∂r

∂r
= 0, (3.22)

and finally the Euler equations with gravity in polar coordinates can be cast
in form (1.1) with non trivial non-conservative terms and with zero algebraic
source term as

Q =



rρ

rρu

rρv

rρE

r


, f(Q) =



rρu

rρu2

rρuv

ru(ρE + p)

0


, g(Q) =



ρv

ρuv

ρv2 + p

v(ρE + p)

0


,

S(Q)=0, B(Q)·∇Q=



0

r ∂p
∂r

+
(
ρGms

r
− ρv2

)
∂r
∂r

(ρuv) ∂r
∂r

ρuGms
r

∂r
∂r

0


,

(3.23)
i.e.

B1 =



0 0 0 0 0

r ∂p
∂q1

r ∂p
∂q2

r ∂p
∂q3

r ∂p
∂q4

r ∂p
∂q5

+ρGms
r
−ρv2

0 0 0 0 ρuv

0 0 0 0 ρuGms
r

0 0 0 0 0


,

B2 = 0,

(3.24)
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3 Well balancing: one dimensional case

where qi, i = 1, . . . , 5 denotes the i-th component of vector Q. Notice that it
is possible to write the source terms as non-conservative products thanks to
the introduction of the coordinate r also as conserved variables (see the added
equation in (3.18)), which is the typical strategy adopted in [44,87–90].

3.3 WB for the Euler equations with gravity

In this section we focus on the one dimensional version of the previous system
(3.23), i.e. g and B2 are not considered, and we achieve an exact balancing in
the radial direction r (we use r instead of x to indicate the spatial domain).
Then in Section 4.1, we will extend the method to two space dimensions and
moving nonconforming meshes. In both cases the key point of our new numer-
ical method is the discretization of the terms in (3.22).

The rest of this section is organized as follows: we start by proposing two
different first order well balanced schemes, the first one is named as Osher-
Romberg scheme, and the second one is a well balanced HLL scheme. Next
we propose a second order scheme constructed using the previous first order
schemes in combination with a second order well balanced reconstruction op-
erator.

3.3.1 First order well balanced schemes

Let us remark first, that the scheme (3.1) reduces to

dQi

dt
(t)=−∆t

∆r

(
D+

i−1
2

(
q−
i− 1

2
(t),q+

i− 1
2
(t)
)

+ D−
i+1

2

(
q−
i+ 1

2
(t),q+

i+ 1
2
(t)
))
, (3.25)

if qi(r, t) = Qi(t) is constant within each cell, for every time t and coincides
with the cell average Qi(t). The time derivative is discretized by the first order
explicit Euler method. Thus, the resulting scheme will be first order accurate
in space and time. Moreover, q−

i+ 1
2

= qi = Qi and q+

i+ 1
2

= qi+1 = Qi+1.

Therefore, to determine the numerical scheme we should define Bi+1/2(qi+1 − qi)
and Vi+ 1

2
(qi+1 − qi). In order to define Bi+1/2 (qi+1 − qi), a family of paths

should be prescribed, so that the resulting scheme is well balanced for (3.19)-
(3.20). Note that if the standard segment path is prescribed, that is

Φ(s; qi,qi+1) = qi + s(qi+1 − qi), (3.26)

then, the resulting scheme is not well balanced for our set of stationary solu-
tions.
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3.3 WB for the Euler equations with gravity

Here we propose the following family of paths. Let ΦE(s,QE
i ,Q

E
i+1) be a

reparametrization of a stationary solution given by (3.19)-(3.20) that connects
the state QE

i with QE
i+1, where QE

i is the cell average of the given stationary
solution in the cell Ii. Note that in the case of first and second order schemes
QE
i could be approximated by the evaluation of the stationary solution at the

center of the cell. Then we define Φ(s; qi,qi+1) as follows

Φ(s; qi,qi+1) = ΦE(s; QE
i ,Q

E
i+1) + Φf (s; qfi ,q

f
i+1), (3.27)

where qfi = qi −QE
i and qfi+1 = qi+1 −QE

i+1 and

Φf (s; qfi ,q
f
i+1) = qfi + s(qfi+1 − qfi ). (3.28)

That is, Φf is a segment path on the fluctuations with respect to a given
stationary solution. With this choice, it is clear that if qi and qi+1 lie on the
same stationary solution satisfying (3.19)-(3.20), then qfi = qfi+1 = 0 and Φ

reduces to ΦE . In such situations we have that f(qi+1) = f(qi) = 0 and

Bi+ 1
2
(qi+1 − qi) =

∫ 1

0

B1(ΦE(s,qi,qi+1))
∂ΦE

∂s
(s; qi,qi+1)ds=0. (3.29)

Therefore
f(qi+1)− f(qi) + Bi+1/2(qi+1 − qi) = 0. (3.30)

For the sake of simplicity, in the following we will use the notation Φ(s) instead
of Φ(s; qi,qi+1) when there is no confusion.

Let us now define Bi+1/2(qi+1 − qi) in the general case, where qi+1 and qi
do not lie on a stationary solution. In this case we have that

Bi+1/2(qi+1 − qi) =
(
b
i+1/2
1 b

i+1/2
2 b

i+1/2
3 b

i+1/2
4 b

i+1/2
5

)T
. (3.31)

It is clear from the definition of B1 that

b
i+1/2
1 = b

i+1/2
5 = 0, (3.32)

b
i+1/2
2 =

∫ 1

0

Φr(s)
∂Φp
∂s

(s) + Φ(rρ)(s)Φζr (s)
∂Φr
∂s

(s)ds, (3.33)

where Φr(s) = Φr(s; ri, ri+1) = ri + s(ri+1 − ri), Φp(s) = ΦEp (s) + Φfp(s),

Φ(rρ)(s)(s) = ΦE(rρ)(s) + Φf(rρ)(s) and, finally, Φζr (s) = ΦEζr (s) + Φfζr (s) where

ζr(r) =

(
Gms

r2
− v2

r

)
, with ζ(r) =

∫
ζr(r)dr. (3.34)
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3 Well balancing: one dimensional case

Taking into account that∫ 1

0

Φr(s)
∂ΦEp
∂s

(s) + ΦE(rρ)(s)Φ
E
ζr (s)

∂Φr
∂s

(s)ds = 0, (3.35)

b
i+1/2
2 can be rewritten as follows:

b
i+1/2
2 =

∫ 1

0

Φr(s)
∂Φfp
∂s

(s)ds

+

∫ 1

0

(
ΦE(rρ)(s)Φ

f
ζr

(s) + Φf(rρ)(s)Φζr(s)
)∂Φr
∂s

(s)ds.

(3.36)

Note that,
∂Φfp
∂s

(s) = pfi+1−p
f
i and ∂Φr

∂s
(s) = ri+1−ri = ∆ri+1/2. Observe that

in uniform meshes ∆ri+1/2 = ∆r. With the previous notation b
i+1/2
2 reduces

to

b
i+1/2
2 = ri+1/2∆pfi+1/2

+

(∫ 1

0

(
ΦE(rρ)(s)Φ

f
ζr

(s)+Φf(rρ)(s)Φζr(s)
)
ds

)
∆ri+1/2,

(3.37)

where ri+1/2 =
ri+ri+1

2
and ∆pfi+1/2 = pfi+1 − pfi . In general, the integral

term could be difficult to compute, therefore we propose to use a numerical
quadrature formula. Here the mid-point rule is used. In this case, we define
b
i+1/2
2 as follows:

b
i+1/2
2 =

(
(rρ)Ei+1/2(ζr)

f
i+1/2+(rρ)fi+1/2(ζr)i+1/2

)
∆ri+1/2

+ ri+1/2∆pfi+1/2, (3.38)

where

(rρ)Ei+1/2 = ΦE(rρ)(1/2), (ζr)
f
i+1/2 =

(ζfr )i + (ζfr )i+1

2
, (3.39)

(rρ)fi+1/2 =
(rρ)fi + (rρ)fi+1

2
, and (ζr)i+1/2 = Φζr (1/2). (3.40)

It is clear from the definition that b
i+1/2
2 = 0 if qi and qi+1 lie on the same

stationary solution as ∆pfi+1/2 = 0, (rρ)fi+1/2 = 0 and (ζr)
f
i+1/2 = 0. Finally,
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3.3 WB for the Euler equations with gravity

terms b
i+1/2
3 and b

i+1/2
4 could be approximated in the same way. Neverthe-

less, as those terms explicitly depend on u and we are interested in preserving
equilibria with u = 0, a simpler approach can be used. Thus, b

i+1/2
3 is defined

as

b
i+1/2
3 =

(rρu)i+1/2

ri+1/2

vi+1/2∆ri+1/2, (3.41)

where

(rρu)i+1/2 =
(rρu)i + (rρu)i+1

2
, vi+1/2 =

vi + vi+1

2
, (3.42)

and b
i+1/2
4 as

b
i+1/2
4 = (rρu)i+1/2

Gms

r2
i+1/2

∆ri+1/2. (3.43)

Note that both terms vanish when u = 0.

As pointed in [128] and in Proposition 3.1.4, a sufficient condition for a first
order path-conservative scheme to be well balanced is that D±i+1/2 (qi,qi+1) =
0, if qi and qi+1 lie on the same stationary solution. Therefore, with the
previous choice of paths, D±i+1/2 = 0 if Vi+1/2(qi+1 − qi) = 0. In the next
paragraph we are going to present two different schemes defined in terms of
two different viscosity, both of them verifying that Vi+1/2(qi+1 − qi) = 0 for
stationary solutions (3.19)-(3.20).

3.3.1.1 Osher-Romberg scheme

A path-conservative Osher-type scheme following [42,74,75] can be cast in form
(3.2) with V(qi+1 − qi) being defined as follows

Vi+1/2(qi+1 − qi) =

∫ 1

0

|A (Φ(s))| ∂sΦ(s)ds, 0 ≤ s ≤ 1, (3.44)

with |A| = R|Λ|R−1 being the usual definition of the matrix absolute value
operator given in terms of the right eigenvector matrix R, its inverse R−1 and
the diagonal matrix of the absolute values of the eigenvalues |Λ| = diag (|λ1|,
|λ2|, ..., |λν |). For the numerical approximation of the viscosity matrix, first
we notice that it can be written as

Vi+1/2(qi+1 − qi) =

∫ 1

0

sign (A (Φ(s))) A (Φ(s)) ∂sΦ(s)ds, (3.45)
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3 Well balancing: one dimensional case

with sign(A) = R sign(Λ)R−1 and sign(Λ) the diagonal matrix containing the
signs of all eigenvalues of A. Then, we approximate the previous expression by
a quadrature formula as follows:

Vi+1/2(qi+1 − qi) =

l∑
j=1

ωjsign (A(Φ(sj)) A(Φ(sj))∂sΦ(sj). (3.46)

Now, we propose to approximate A(Φ(sj))∂sΦ(sj) by the following expression:

A(Φ(sj))∂sΦ(sj) ≈
AΦj

2εj
(Φ(sj + εj)− Φ(sj − εj)) , (3.47)

where AΦj = A(Φ(sj−εj),Φ(sj+εj)) is a Roe-matrix associated to the system
(see [128] for details), that is a matrix satisfying

AΦj (Φ(sj + εj)− Φ(sj − εj)) = f(Φ(sj + εj))− f(Φ(sj − εj))
+BΦj (Φ(sj + εj)− Φ(sj − εj)) ,

(3.48)

where BΦj (Φ(sj + εj)− Φ(sj − εj)) is defined as in the previous section using
the states Φ(sj−ε) and Φ(sj+ε). Therefore, the viscosity term reads as follows

Vi+1/2(qi+1 − qi) =

l∑
j=1

ωjsign (A(Φ(sj))
Rj
2εj

, (3.49)

where

Rj = f(Φ(sj + εj))− f(Φ(sj − εj))
+BΦj (Φ(sj + εj)− Φ(sj − εj)) . (3.50)

Note that if qi and qi+1 lie on the same stationary solution we have Φ(s) =
ΦE(s) and Rj = 0, j = 1, . . . , l and Vi+1/2(qi+1 − qi) vanishes. Therefore,
the numerical scheme (3.25) with (3.2), where Bi+1/2(qi+1 − qi) is defined as
(3.31), (3.32), (5.19), (3.41) and (3.43) and Vi+1/2(qi+1 − qi) is defined by
(3.49) is exactly well balanced for stationary solutions given by (3.19)-(3.20).

Here we propose the Romberg method with l = 3 and

s1 = 1/4, s2 = 3/4, s3 = 1/2,

ω1 = 2/3, ω2 = 2/3, ω3 = −1/3,

ε1 = 1/4, ε2 = 1/4, ε3 = 1/2.

(3.51)
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3.3 WB for the Euler equations with gravity

With this choice, the viscosity term Vi+1/2(qi+1 − qi) of the Osher-Romberg
method reads as follows

Vi+1/2(qi+1 − qi) =

4

3
sign(A(Φ(1/4)))

(
f(Φ(1/2))− f(qi) + Bi+1/4 (Φ(1/2)− qi)

)
4

3
sign(A(Φ(3/4)))

(
f(qi+1)− f(Φ(1/2)) + Bi+3/4 (qi+1 − Φ(1/2))

)
− 1

3
sign(A(Φ(1/2)))

(
f(qi+1)− f(qi) + Bi+1/2 (qi+1 − qi))

)
.

(3.52)

Note that the major drawback in the previous expression is that the complete
eigenstructure of the matrix A(Q) is required since sign(A) = R sign(Λ) R−1.
However, on the other hand, the Osher-Romberg method is very little dissipa-
tive and is stable under the standard CFL condition.

We would like to underline that, without a well balanced way of treating the
viscosity, the entire scheme will lose the property of preserving equilibria up to
machine precision; instead this choice of the viscosity term guarantees the well
balancing and moreover does it in a automatic way, so that it can be easily
applied to other systems of equations and family of equilibria.

3.3.1.2 HLL scheme

Following [46], the standard HLL scheme can be written in the form (3.25)
with (3.2), where the numerical viscosity term is given by

Vi+1/2(qi+1 − qi) = α0
i+1/2Ii+1/2(qi+1 − qi) + α1

i+1/2Ri+1/2, (3.53)

where Ii+1/2 is the identity matrix,

Ri+1/2 = f(qi+1)− f(qi) + Bi+1/2(qi+1 − qi) (3.54)

and

α0
i+1/2 =

SRi+1/2|SLi+1/2| − SLi+1/2|SRi+1/2|
SRi+1/2 − SLi+1/2

, α1
i+1/2 =

|SRi+1/2|− |SLi+1/2|
SRi+1/2 − SLi+1/2

(3.55)

being SLi+1/2 and SRi+1/2 respectively the minimum and the maximum of the
wave speeds of the Riemann problem associated to states qi and qi+1. In
particular to compute SLi+1/2 we recover the eigenvalues associated to qi and
qi+qi+1

2
and we consider the minimum value, similarly to compute SRi+1/2 we
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3 Well balancing: one dimensional case

take the maximum of the eigenvalues associated to
qi+qi+1

2
and qi+1. It is clear

that Vi+1/2(qi+1−qi) does not vanish if qi+1 and qi lie on a stationary solution:
Ri+1/2 vanishes, but it is not the case for the term α0

i+1/2Ii+1/2(qi+1 − qi).
Here, we follow the ideas described in [40] and [46] to modify the viscosity

term such that the resulting scheme is exactly well balanced for the stationary
solutions (3.19)-(3.20). In particular Ii+1/2(qi+1 − qi), will be replaced by

Ĩi+1/2(qi+1 − qi) that vanishes when a stationary solution is considered. Here

we consider the following expression for Ĩi+1/2(qi+1 − qi)

Ĩi+1/2(qi+1 − qi) =



b
i+1/2
2

(
ρ
γp

)
i+1/2

∆ (rρu)i+1/2

b
i+1/2
2

(
ρ
γp

)
i+1/2

(v)i+1/2

b
i+1/2
2

(
ρ
γp

)
i+1/2

(z)i+1/2

0


(3.56)

where b
i+1/2
2 is given in (5.19),

(
ρ
γp

)
i+1/2

=
ρi+1+ρi

γ(pi+1+pi)
, ∆ (rρu)i+1/2 = (rρu)i+1

−(rρu)i, (v)i+1/2 =
vi+1+vi

2
, (z)i+1/2 =

zi+1+zi
2

, being z=∂(ru(ρE+p))
∂q2

. Follow-

ing [40] and [46] Ĩi+1/2(qi+1−qi) is obtained as follows: we start by computing
the eigenstructure of the extended Jacobian matrix A at the equilibrium

A(Q) =


0 1 0 0 0

r ∂p
∂q1

0 r ∂p
∂q3

r ∂p
∂q4

ρGms
r

+ ρv2

0 v 0 0 0

0 ∂(ru(ρE+p))
∂q2

0 0 0

0 0 0 0 0

 . (3.57)

In this situation the eigenstructure is easy to be computed: let R the matrix
of the right-eigenvectors and Λ = diag(λ1, λ2, . . . , λ5) the diagonal matrix of
the eigenvalues of (3.57). In particular we have

Λ = diag

(
ρu+

√
γρp

ρ
,
ρu−√γρp

ρ
, u, u, 0

)
, with u = 0. (3.58)

Then Ĩi+1/2(qi+1 − qi) is given by

Ĩi+1/2(qi+1 − qi) = Ri+1/2Λ̃(Ri+1/2)−1(qi+1 − qi), (3.59)
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3.3 WB for the Euler equations with gravity

where

Λ̃ =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 . (3.60)

Note that Λ̃ is a diagonal matrix composed with 0 and 1, where the 0 elements
correspond to the zero eigenvalues at the stationary solution. The final expres-
sion (3.56) is obtained considering the following relation that it is derived from
(3.9)

ri+1/2

((
∂p

∂q1

)
i+1/2

∆q1,i+1/2 +

(
∂p

∂q3

)
i+1/2

∆q3,i+1/2

+

(
∂p

∂q4

)
i+1/2

∆q4,i+1/2 +

(
ρ
Gms

r2
− ρv2

r

)
i+1/2

∆ri+1/2

)
= b

i+1/2
2 .

(3.61)
We underline once again that this identity modification allows the viscosity to
vanish at the equilibria, so that the scheme is exactly well balanced. Finally, we
would like to note that a similar HLL scheme could also be obtained within the
framework of path-conservative HLLEM methods recently proposed by [68],
in which according to [79] the intermediate HLL state is assumed to be linear
rather than constant.

3.3.2 2nd order well balanced reconstruction

Let us recall the numerical scheme presented in (3.1) considering the space-time
conservation form of the PDE

Qn+1
i = Qn

i −
∆t

∆r

(
D+

i−1
2

(
qn

+,−
i− 1

2

,qn
+,+

i− 1
2

)
+ D−

i+1
2

(
qn

+,−
i+ 1

2

,qn
+,+

i+ 1
2

))
− ∆t

∆r

∫ r
i+1

2

r
i− 1

2

∂

∂r
f
(
qn

+

i (r)
)
dr

− ∆t

∆r

∫ r
i+1

2

r
i− 1

2

B1

(
qn

+

i (r)
) ∂

∂r

(
qn

+

i (r)
)
dr,

(3.62)

where qni (r, t) is the approximation of the conserved variables inside cell Ii

at time tn, qn
+,+

i− 1
2

(t) = qni (ri−1/2, t
n+1/2) and qn

+−
i+ 1

2

(t) = qni (ri+1/2, t
n+1/2),
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3 Well balancing: one dimensional case

that is the evaluation of qni (r, t) at the two boundaries of cell Ii at the time-
midpoint of [tn, tn+1]. We would like to underline that in order to obtain a
second order scheme qni should be a second order reconstruction of the cell
averages Qn

i−1,Q
n
i ,Q

n
i+1.

According to [128], [38] and Proposition 3.1.6, scheme (3.62) is well balanced
if both, the underlying first order scheme and the reconstruction operator are
well balanced, and all the integrals that appear in (3.62) are computed ex-
actly. Therefore, in order to define a second order scheme, a second order well
balanced reconstruction operator should be defined.

The most popular way to define a second order reconstruction operator is
based on the MUSCL method introduced by van Leer in [156] joint with the
minmod limiter. He proposed to reconstruct qni using a linear polynomial in
space and time as follows

Pni (r, t) = Qn
i +

∆Qn
i

∆r
(r − ri) + ∂tQ

n
i (t− tn), (3.63)

where

∆Qn
i = minmod

(
∆Qn

i−1/2,∆Qn
i+1/2

)
(3.64)

with ∆Qn
i−1/2 = Qn

i −Qn
i−1, ∆Qn

i+1/2 = Qn
i+1 −Qn

i and

minmod(a, b) =


0, if ab ≤ 0

a, if |a| < |b|
b, if |a| ≥ |b|.

(3.65)

It is clear that the standard MUSCL method is only well balanced for linear
stationary solutions, which is not the case here. In this work we therefore follow
the strategy proposed in [37], where the reconstruction operator is defined
as a combination of a smooth stationary solution together with a standard
reconstruction operator to reconstruct the fluctuations with respect to the given
stationary solution, that is

qni (r, t) = QE
i (r) + Pfi (r, t), r ∈ Ii, t ∈ [tn, tn+1], (3.66)

where Pfi (r, t) is the standard MUSCL reconstruction operator applied to the
fluctuations around the stationary solution at every cell of the stencil. Thus,
if we define

Qf,n
i = Qn

i −QE
i, Qf,n

i−1 = Qn
i−1−QE

i−1, Qf,n
i+1 = Qn

i+1−QE
i+1, (3.67)
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3.3 WB for the Euler equations with gravity

then, Pfi (r, t) is defined as follows:

Pf,ni (r, t) = Qf,n
i +

∆Qf,n
i

∆r
(r − ri) + ∂tQ

n
i (t− tn), (3.68)

where

∆Qf,n
i = minmod

(
∆Qf,n

i−1/2,∆Qf,n
i+1/2

)
(3.69)

with

∆Qf,n
i−1/2 = Qf,n

i −Qf,n
i−1, ∆Qf,n

i+1/2 = Qf,n
i+1 −Qf,n

i . (3.70)

Note that we have replaced ∂tQ
f,n
i (t−tn) by ∂tQ

n
i (t−tn) in (3.68) as ∂tQ

E
i = 0.

It is clear from its construction that the reconstruction operator is exactly well
balanced, and it is second order accurate for non-stationary solutions as QE(r)
is a smooth stationary solution. The term ∂tQ

n
i indicates the time derivative

of Q and it can be computed using a discrete version of the governing equation

∂tQ
n
i = −

f(qn,−i+1/2)− f(qn,+i−1/2)

∆r
−
Bi(qn,−i+1/2 − qn,+i−1/2)

∆r
,

qn,∓i±1/2 = qi(x
∓
i±1/2, t

n),

(3.71)

where the fluxes have been approximated by a central finite difference with
respect to the cell center ri, and Bi(qn,−i+1/2 − qn,+i−1/2) is obtained in the same

way of (3.31),(5.19),(3.41),(3.43), where by replacing for example qi and qi+1

by qn,−i+1/2 and qn,+i−1/2 respectively, and using as central value the cell average
one obtains

Bi(qn,−i+1/2 − qn,+i−1/2)

∆r
=
(
bi1 b

i
2 b

i
3 b

i
4 b

i
5

)T
with

bi1 = bi5 = 0, bi3 = ρiuivi, bi4 = ρiui
Gms

ri
,

bi2 = ri
(
pf,n,−i+1/2 − p

f,n,+
i−1/2

)
+
(
riρ

E
i (ζr)

f
i + riρ

f
i (ζr)i

)
.

(3.72)

The last ingredient for a second order scheme is the computation of the
integrals in (3.62): the first one can be computed exactly

ri+1/2∫
ri−1/2

∂

∂r
f (qi(r, t)) dr = f(qn

+,−
i+1/2)− f(qn

+,+
i−1/2). (3.73)
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3 Well balancing: one dimensional case

Note that this first integral vanishes for stationary solutions with u = 0. The
second integral is more sophisticated, and it is not easy to compute it exactly,
except in some particular situations. Therefore we will use a quadrature for-
mula to approximate this integral, but this must be done carefully to maintain
the well balanced property of the scheme: effectively, a wrong choice in the
quadrature formula will destroy all the work we have done up to now in order
to define a well balanced scheme. Here we proceed as follows: first we express
the particular form of the reconstruction operator: qni (x, t) = QE

i (x)+Pfi (x, t)
and we use the fact that∫ ri+1/2

ri−1/2

B1(QE
i (r))

∂QE
i (r)

∂r
dr = 0. (3.74)

Here, we only show the details for the second component of∫ ri+1/2

ri−1/2

B1(qni (r))
∂qni (r)

∂r
dr, (3.75)

i.e. ∫ ri+1/2

ri−1/2

r

[
∂p

∂r
+ ρ

(
Gms

r2
− v2

r

)]
dr

=

∫ ri+1/2

ri−1/2

r

[
∂(pE + pf )

∂r
+
(
ρE + ρf

)(
ζE + ζf

)
r

]
dr

=

∫ ri+1/2

ri−1/2

r
∂pf

∂r
+ rρEζfr + rρfζrdr.

(3.76)

Now, the mid-point quadrature formula is used to ensure second order accuracy
obtaining that∫ ri+1/2

ri−1/2

r

[
∂p

∂r
+ ρ

(
Gms

r2
− v2

r

)]
dr

≈ ∆r

[
ri
(

∆pf
)
i

+
(
rρE

)
i

(
ζfr

)
i

+
(
rρf
)
i

(ζr)i

]
,

where
(

∆pf
)
i

=
pf,−i+1/2 − p

f,+
i−1/2

∆r
,

(ζr)i =
Gms

r2
i

− v2
i

ri
, (ζfr )i =

vE
2

i

ri
− v2

i

ri
.

(3.77)
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3.4 Numerical results

It is clear that this approximation is second order accurate and, moreover,
will vanish for stationary solutions (3.19)-(3.20). For the third and fourth
component we could perform the same procedure, but, again, as both trivially
vanish when u = 0, we could use directly the mid-point rule.

Finally, note that r±i+1/2 = ri+1/2 and therefore ∆ri+1/2 = 0. Therefore

Bi+1/2(qn
+,+

i+ 1
2

− qn
+,−
i+ 1

2

) reduces to

Bi+1/2(qn
+,+

i+ 1
2

− qn
+,−
i+ 1

2

) = (0, b
i+1/2
2 , 0, 0, 0)T

where
b
i+1/2
2 = ri+1/2∆pfi+1/2 = ri+1/2

(
pf,+i+1/2 − p

f,−
i+1/2

)
.

3.4 Numerical results

First of all, we show the ability of both schemes to preserve a wide class of
stationary solutions of the Euler equations with gravity of the form (3.19)-
(3.20); we also report the convergence tables for some smooth solutions. Then,
we test both methods with a classical Riemann problem: this show that our
methods are able to deal with situations far from the equilibrium, hence they
do not fall into the case of perturbation methods. And finally, we study their
behavior in capturing small perturbations around the equilibrium.

3.4.1 Stationary solutions with constant pressure

Simple, but non trivial, stationary solutions of the Euler equations can be
obtained by considering velocities as in (3.19) and a constant pressure p. It is
easy to verify that under these conditions for any density profile the velocity
in the angular direction v must satisfy

v =

√
GmS

r
, (3.78)

while u = 0. For the numerical simulations we consider a spatial domain
r ∈ [1, 2], G = 1, ms = 1, γ = 1.4, p = 1 and two density profiles:

ρ1 = r, (3.79)

ρ2 =

{
1, if r < 1.5

0.1, if r ≥ 1.5.
(3.80)
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3 Well balancing: one dimensional case

Table 3.1: Constant pressure equilibrium. The following results show the capability
of the schemes to preserve equilibria both for a hierarchy of meshes for a fixed
time t = 1 (on the left) and for a fixed mesh (N = 64 cells) and for increasing
computational times. The table on the top refers to the L1-norm error between
the continuous ρ1 profile and the table on the bottom refers to the discontinuous
ρ2 profile. Data have been obtained using either the Osher or HLL flux (and no
significant differences have been noticed).

tend = 1 N = 64

N Eρ - Osher time Eρ - Osher

64 9.54E-17 1 9.54E-17

128 9.54E-17 2 2.36E-16

256 6.49E-16 5 8.85E-16

512 6.23E-16 10 1.67E-15

1024 1.21E-15 50 6.24E-17

tend = 1 N = 64

N Eρ - HLL time Eρ - HLL

64 8.45E-18 1 8.45E-18

128 1.38E-16 2 1.19E-17

256 5.54E-16 5 6.71E-16

512 2.64E-15 10 2.42E-15

1024 5.05E-16 50 1.13E-13

In Table 3.1 we report the errors between the exact equilibrium and the
numerical solution obtained with both schemes using a hierarchy of meshes and
long term time integration. We can notice that all the errors are of the order of
machine precision and no significant differences can be noticed between the two
fluxes. Moreover the method is perfectly well balanced both with continuous
and discontinuous density profiles, as expected.

3.4.2 General equilibrium

Using the equilibrium relation between the pressure and the gravitational forces
in (3.20) and ζ given by (3.34), we obtain another class of stationary solutions
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3.4 Numerical results

Table 3.2: General equilibrium. L1-norm error for the density between the exact and
the numerical solution. On the left we have the error for different meshes at t = 1
and on the right we show the error for a given mesh (N = 64 cells) for different
computational times.

tend = 1 N = 64

N Eρ - OSHER time Eρ - HLL

64 6.28E-15 1 5.03E-15

128 1.17E-14 2 1.01E-14

256 1.70E-14 5 2.65E-14

512 2.15E-14 10 7.21E-14

1024 3.19E-14 50 3.07E-12

of the Euler equations

ρ = ρ0e
−ζ(r), p = ρ+ p0, v =

√
r

(
Gms

r2
− ζr

)
. (3.81)

We have applied both schemes to two different choices of ζ obtaining always a
well balanced result. Table 3.2 shows the L1-norm error for the density between
the equilibrium and the numerical solution in the case

ζ = kr, k = −1, ρ = ρ0e
−kr, ρ0 = 1, p = ρ+ p0, p0 = 1. (3.82)

Again, both methods are able to exactly preserve these non-trivial equilibria.

3.4.3 Order of convergence

To study numerically the order of convergence of both schemes we have con-
sidered the following equilibrium situation

ρ = 1, u = 0, p = 1, v =

√
r

(
Gms

r2
− ζr

)
, (3.83)

and at the initial time, we have added a small perturbation (with a Gaussian
profile) to the velocity field

ũ = u+ 10−5exp

(
−0.5 (r − 1.5)2

0.01

)
,

ṽ = v + 10−5exp

(
−0.5 (r − 1.5)2

0.01

)
.

(3.84)
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3 Well balancing: one dimensional case

Table 3.3: Perturbation around a stationary solution. The reference solution has
been obtained with the second order Osher-type scheme over 213 cells. L1-norm
errors for ρ at time t = 0.1 are shown: on the left we report the result obtained
using the Osher-type flux and on the right using the HLL-type flux.

Osher O2 HLL O2

N ε(ρ) O(L1) N ε(ρ) O(L1)

16 1.59E-07 - 16 1.16E-07 -

32 3.82E-08 2.06 32 2.90E-08 2.01

64 9.50E-09 2.00 64 7.22E-09 2.00

128 2.31E-09 2.04 128 1.77E-09 2.03

256 5.72E-10 2.01 256 4.44E-10 1.99

512 1.45E-10 1.97 512 1.14E-10 1.96

We have computed a reference solution using our method with the Osher-type
flux over a fine mesh (N = 213 = 8192 ). In Table 3.3 we report the L1

norm errors for the density ρ with respect to our reference solution and both
numerical schemes achieve second order of convergence.

3.4.4 Riemann Problem

To show that our method is accurate even far away from an equilibrium, we
consider as initial condition a classical Riemann problem with non-vanishing
angular velocity

ρL = 1.0, uL = 0, vL =

√
Gms

r
, pL = 1.0, r = r, 1 ≤ r ≤ 4.5,

ρR = 0.1, uR = 0, vR =

√
Gms

r
, pR = 0.1, r = r, 4.5 < r ≤ 8,

and we compute the solution by employing the schemes set up to preserve the
equilibrium in (3.80). We report the results obtained with the first and second
order scheme and with the HLL and Osher-type flux in Figure (3.1). Note that
both schemes produce quite similar results.
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Figure 3.1: Riemann problem at final time tf = 1. On the top the density and
velocity profiles obtained using the HLL scheme and on the bottom the profiles
obtained with the Osher-type flux. We have employed two meshes: a coarse one
with N = 64 elements and a fine one with N = 512 elements. Moreover, we have
compared the first and second order schemes.

3.4.5 Evolution of perturbations

Following the idea presented in [99] we have tried to study small perturbations
around the equilibrium. We have considered a density profile as in (3.79) and
we have imposed a periodic perturbation on the velocity u through the left
boundary conditions, by imposing

u0 = A sin

(
6

2πtn

tf

)
, tf = 1. (3.85)

Two situations are analyzed. First we consider a big perturbation, with A =
10−2 and we simulate the evolution using the second order well balanced HLL
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3 Well balancing: one dimensional case

Figure 3.2: Error in the L1 norm between a reference solution and the numerical
solutions computed with the well balanced HLL method and a second order non
well balanced scheme. Well balanced and non well balanced methods perform
equally well for large perturbations, while well balanced schemes perform signif-
icantly better for the small perturbation problem.

scheme and a standard second order HLL scheme using a hierarchy of grids
with increasing number of cells. A reference solution computed with the second
order well balanced HLL method is also considered using a fine grid composed
of N = 2048 cells. Figure (3.2) shows the errors for the different meshes. Note
that in this case no big differences are visible between the well balanced and
not well balanced schemes as the perturbations are so large so that shocks
are quickly generated and the solution is far away from the stationary profile.
The situation changed significantly when a small perturbation is considered
(A = 10−5). In that case the well balanced method performs much better than
the non well balanced scheme on the finer grid, as shown in Figure (3.2).
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4 Well balancing: coupling with nonconforming
ALE

Now, we extend our well balanced method to the two dimensional ALE con-
text on moving nonconforming meshes. In particular, the scheme will inherit
the well balanced property of the previous one-dimensional scheme in the ra-
dial direction and the addition of some constraints on the mesh structure will
guarantee the well balancing in the angular direction. The extension concerns
first the Euler equations of gas dynamics with gravity, see Section 4.1; a large
number of numerical test are presented in Section 4.2. Then we consider the
shallow water equations (in Section 4.3) and in particular the steady vortex
test case already introduced in Section 2.4.5. One can appreciate as the same
basic ideas can be applied to a different set of equations and of equilibrium
solutions.

4.1 WB ALE for the Euler equations with gravity

Consider the Euler equations of gas dynamics with gravity in the two dimen-
sional non-conservative form stated in (3.23). This section is organized as
follows: first, we revisit the moving domain discretization introduced in Sec-
tion 2.1 by specifying the required shape of the elements and the mesh velocity.
Next, we derive the one-step path-conservative ALE scheme that extends to
the non-conservative case (2.20), and we explain where the 1D well balanced
techniques are employed in order to guarantee the well balancing of the scheme
even in a two dimensional moving mesh framework.

4.1.1 Domain discretization and mesh constraints

To discretize the moving domain, we consider a nonconforming mesh T nΩ as in
Section 2.1, but with a fixed total number NE = N × M of elements that
we suppose to be all quadrilaterals.

These elements should satisfy the following conditions:
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4 Well balancing: coupling with nonconforming ALE

i. their barycenters should be aligned along straight lines with r = ri =
const, i=1, . . . N ,

ii. the two bounding edges of each element in radial direction must be aligned
with r = ri±1/2 = const, i=1, . . . N+1,

iii. the other two bounding edges must be parallel between them.

For example a Cartesian grid satisfies these conditions, but we could accept
even something more general (which allows us to move the computational do-
main). See Figure 4.1 for a general mesh that satisfies the above constraints. In
Section 4.1.2.1 these choices will be justified. We emphasize that our numerical
scheme works for completely general unstructured and nonconforming moving
meshes, but it will be well balanced only if the mesh satisfies these special
conditions. Indeed a general well balanced scheme for completely unstructured
meshes is more difficult to be achieved, since the considered equilibria have
v 6= 0, which implies that g 6= 0 (recall that instead f = 0). This does not
mean that it is impossible, but it will be the object of another work, because
the above conditions do not appear to us as restrictive for our scopes.

We have decided to couple the well balanced techniques with a Lagrangian-
type method in order to reduce the errors due to the advection. And our
nonconforming ALE algorithm results to be particularly well suited for this
situation, where the gas at the equilibrium is advected with a known equilib-
rium velocity field V(x) =

(
uE(x), vE(x)

)
which reads

uE(x) = 0, vE(x) =

√
r

(
Gms

r2
− ζr

)
. (4.1)

Note that the a priori knowledge of the velocity field significantly simplifies
the application of an ALE scheme: indeed, we can move the nodes following
directly the exact equilibrium velocity, which is not affected by any physical or
numerical perturbation. The node velocity V

n
k of (2.31) can be obtained by

choosing
Vk,j = V(xnj ),

being xj the barycenter of element Tnj . This allows us to control the movement
of the mesh avoiding the violation of the above conditions: indeed the radial
component of V

n
k will be always zero, hence nodes will slide along straight lines

with r = const where the edges lie. Besides, since the barycenters are placed on
the straight lines with r = ri, all nodes lying on the same edge will move with
the same velocity maintaining the parallelism constraint between the edges.
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4.1 WB ALE for the Euler equations with gravity
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Figure 4.1: Example of a mesh that allows a well balanced treatment of the fluxes.
Each element has two vertical edges and the other two are parallel between them.
Besides the vertical edges lie on straight lines and the barycenters are aligned
along r = ri. Moreover the domain is periodic so that ϕ = 0 coincides with
ϕ = 2π.

Furthermore, the presence of slide lines clearly requires a special approach
to preserve a high level of grid quality during the mesh motion, and this is
automatically provided by our nonconforming treatment of the interfaces, in
addition simplified by the fact that their position is a priori known: r = const.

4.1.2 Well balanced direct ALE scheme

In order to obtain a space-time formulation of a direct path-conservative ALE
scheme, as proposed in [69], the governing PDE (1.1) is first reformulated in a
space-time divergence form as

∇̃ · F̃(Q) + B̃(Q) · ∇̃Q = S(Q), ∇̃ = (∂r, ∂ϕ, ∂t)
T (4.2)

with

F̃ = (F, Q)T = (f , g, Q)T , B̃ = (B,0)T = (B1,0,0)T , and S = 0,
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4 Well balancing: coupling with nonconforming ALE

and it is then integrated over the space-time control volume Cni∫
Cni

(
∇̃ · F̃(Q) + B̃(Q) · ∇̃Q

)
dxdt = 0 . (4.3)

Now, the space-time volume integral of ∇̃ · F̃(Q) can be rewritten using the
Gauss theorem as ∫

∂Cni

F̃ · ñ +

∫
Cni

B̃ · ∇̃Q = 0, (4.4)

where ñ = (ñr, ñϕ, ñt) is the outward pointing space-time unit normal vector
on the space-time surface ∂Cni . Taking into account the jump of B̃ at the
interfaces, the final high order ALE one-step Finite Volume scheme is then
obtained from equation (4.4) as

|Tn+1
i |Qn+1

i = |Tni |Qn
i −

∑
j

∫ 1

0

∫ 1

0

|∂Cnij | D̃ij · ñijdχdτ

−
∫
Cni

B̃(qni ) · ∇̃qni dxdt

(4.5)

where qni (x, t) is a well balanced second order reconstruction of the conserved
variables Q inside cell Tni at time tn, and the discontinuity of the solution at the
space-time sub–face ∂Cnij is resolved by a well balanced path-conservative ALE

flux D̃ij · ñij , which accounts for the jump in the discrete solution between two
neighbors across the intermediate space-time lateral surface. This generalizes
the ALE scheme introduced in (2.20) for conservative systems to the non-
conservative case. Recall that when the lateral surface is shared between more
than two control volumes we have to compute the flux across each sub-piece
and sum each contribution.

4.1.2.1 Well balanced ALE numerical flux function

The core of the well balanced method in (4.5) is the design of the well balanced
space-time flux function. Its final expression will be

D̃ij · ñij =
1

2

(
F̃(q+) + F̃(q−) + Bij

(
q+ − q−

))
· ñij

−1

2
Vij
(
q+ − q−

)
,

(4.6)

where q− is the value of the reconstructed numerical solution inside the element
Cni evaluated at the space-time midpoint Mn

i,j of the lateral surface ∂Cnij , and
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4.1 WB ALE for the Euler equations with gravity

q+ is the evaluation at the same point of the reconstructed numerical solution
inside the neighbor Cnj at ∂Cnij . Besides, generalizing the notation introduced

in Section 3.1, F̃ is the physical flux, the term Bij
(
q+ − q−

)
represents a well

balanced way to write the non-conservative products, and Vi+ 1
2

(
q+ − q−

)
is

the viscosity term.

As already pointed out, according to [128] (summarized in Definition 3.1.2
and Proposition 3.1.4), the numerical flux should satisfy the following proper-
ties

D̃ij(Q,Q) · ñij = 0 ∀Q ∈ Ω, and (4.7)

D̃ij(q
−,q+) · ñij =

∫ 1

0

AV
n

(
Φ(s; q−,q+)

) ∂Φ

∂s
(s; q−,q+)ds, (4.8)

where, due to the ALE framework,

AV
n(Q) =

√
ñ2
r+ñ2

ϕ

((
∂F

∂Q
+ B

)
·n−(V·n) I

)
,

n = (nr, nϕ) =
(ñr, ñϕ)T√
ñ2
r + ñ2

ϕ

,

(4.9)

with I representing the identity matrix and V · n denoting the local normal
mesh velocity.

We explain now how to discretize Bij and Vij in (4.6) in a well balanced way.
Here we perform our reasoning edge–by–edge and we distinguish two situations:
the first one across the vertical edges, which evolving in time originate a surface
orthogonal to the radial direction, easier to be treated, and the second one
across the other two parallel edges (see the constraints stated at the beginning
of Section 4.1.1). For the sake of clarity, in Appendix A we present the proof
that our scheme is well balanced taking into account a single element.

First of all, it is easy to see that the flux across the lateral surfaces evolved
from the vertical edges coincides with the one dimensional flux. Indeed, in this
case, n = (nr, 0), V = (0, v) and so V ·n = 0. Hence AV

n(Q) = Jf (Q) +B1(Q)
which coincides with the one dimensional Jacobian. So we can discretize Bij
as stated in (3.31)-(5.19)-(3.41)-(3.43), and Vij by using the Osher-Romberg
method (3.52) or the modified HLL scheme as described in Section 3.3.1.2.
Therefore the scheme is well balanced in the radial direction and second order
accurate provided that the reconstruction qni and the integrals in (4.5) are
computed in a well balanced manner and with second order of accuracy (see
Section 4.1.2.2).
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4 Well balancing: coupling with nonconforming ALE

For what concerns the flux through the other two surfaces (see Point (iii) of
Section 4.1.1) let us first state the following remark.

Remark 4.1.1. Given an element Tni consider its two edges which are parallel
between them but not vertical. Their evolution in time originates two parallel
surfaces with the same areas and opposite normal vectors. Moreover call Tj1
and Tj2 the two neighbors of Ti through these edges. Since the barycenters of
Ti, Tj1 and Tj2 are aligned on the same vertical line, i.e. their r-coordinate is
the same, the equilibrium values QE

i , QE
j1 and QE

j2 coincide.

Now let us rewrite (4.9) as

AV
n(Q) =

√
ñ2
r+ñ2

ϕ ((Jf + B1)nr + Jgnϕ − (V·n) I ) . (4.10)

and (4.8) as

D̃ij(q
−,q+)·ñij =

√
ñ2
r+ñ2

ϕ

∫ 1

0

((Jf + B1)nr+Jgnϕ−(V·n) I )Φ(s)
∂Φ

∂s
(s)ds.

(4.11)
Thus, by exploiting the linearity of the integral, we can give the discretization
of D̃ij · ñij in (4.6) as the sum of the following contributions

D̃ij · ñij =
1

2

(
f(q+) + f(q−) + Bij

(
q+ − q−

))
ñr

+
1

2

(
g(q+) + g(q−)

)
ñϕ

+
1

2

(
q+ + q−

)
ñt −

1

2
Vij
(
q+ − q−

)
.

(4.12)

Note that, whereas the discretization of F̃ and of Bij can be splitted, the same
cannot be done automatically for the viscosity Vij , whose expression depends
on the chosen method (Osher-Romberg, HLL or others).

The expression in (4.12) results to be well balanced, provided that a well
balanced expression for Vij is given. Indeed the first row coincides with the
one dimensional flux along the radial direction for which Bij is given by (3.31)-
(5.19)-(3.41)-(3.43) that are well balanced. With regards to the second line we
know that in general it is not zero evaluated at the equilibrium because, as
already pointed out at the beginning of the section, g is not zero evaluated at
the equilibrium. But, if we consider, together with the flux between Ti and
Tj1 , also the flux between T1 and Tj2 and we sum them up, we can see that all
the values at the equilibrium cancel exactly, thanks to the properties stated in
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4.1 WB ALE for the Euler equations with gravity

Remark 4.1.1, that follows from the geometrical constraints we have imposed
on our mesh. Finally, the same argument shows that also the third line goes
to zero when q− = QEi and q+ = QEj1,j2 .

Viscosity term

To end with the formulation of the well balanced ALE flux (4.6) across this
second kind of surfaces, we have to provide an expression for the viscosity
Vij(q+ − q−) which vanishes on stationary solutions (3.19)-(3.20).

First of all, it is easy to generalize the Osher-Romberg scheme introduced
in Section 3.3.1.1. Indeed in the two dimensional ALE context the viscosity
matrix introduced in (3.44) can be written as

Vij(q+ − q−) =

∫ 1

0

∣∣∣AV
n(Q) (Φ(s))

∣∣∣ ∂sΦ(s), 0 ≤ s ≤ 1. (4.13)

Following the same reasoning of Section 3.3.1.1 we get the following expression

Vij(q+ − q−) =

l∑
j=1

ωjsign
(
AV

n(Φ(sj)
) Rj

2εj
, (4.14)

where
Rj = F̃(Φ(sj + εj))− F̃(Φ(sj − εj))

+ B̃Φj (Φ(sj + εj)− Φ(sj − εj))
(4.15)

is discretized as explained in the 1D case above and the Romberg quadrature
formula with l = 3 is still used. Hence, if qni and qni+1 lie on the same stationary
solution Φ(s) = ΦE(s) and Rj = 0, j = 1, . . . , l. Thus, the extension to two
dimensions of the Osher-Romberg scheme results to be straightforward. The
only drawback is that the complete eigenstructure of the extended Jacobian
matrix AV

n should be computed, which could be costly in particular when edges
are not parallel to the axis (we underline that AV

n does not enjoy the property
of rotational invariance that characterizes the Euler equations in Cartesian
coordinates). As counter part, the method is very little dissipative and allows
us to obtain very good results in convective transport problems.

The generalization of the HLL scheme is simpler. equation (3.53) can be
rewritten in two dimensions as

Vij(q+ − q−) = α0
ijIij(q

+ − q−) + α1
ijRij , (4.16)

where Iij is the identity matrix,

Rij = F(qi+1)− F(qi) + Bij(q+ − q−) (4.17)
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4 Well balancing: coupling with nonconforming ALE

(which can be discretized as described in Section 4.1.2.1 to maintain the well
balanced properties), and α0,1

ij can be computed as in (3.55) being SL and SR

the minimum and the maximum eigenvalues of AV
n(qni,i+1).

For the same reasons stated in Section 3.3.1.2, Iij must be replaced by a
matrix that vanishes when a stationary solution is considered. In particular we
choose the following identity modification

Ĩij = Ĩi+1/2 nr + Inϕ, (4.18)

where Ĩi+1/2 is given by (3.56), which we already know to vanish for stationary
solutions. Moreover it follows from Remark 4.1.1 that when nϕ 6= 0 the term
Inϕ cancels at the equilibrium (by considering the two contributions of the
neighbors Tj1 and Tj2 of Ti).

4.1.2.2 2nd order well balanced reconstruction

The missing ingredient for (4.5) to be well balanced up to second order is the
definition of a second order well balanced reconstruction operator. As in the one
dimensional case we are going to employ a combination of a smooth stationary
solution together with the standard MUSCL method, hence our reconstruction
will be of the form

qni (x, t) = QE
i (x, t) + Pfi (x, t), x ∈ Cni , (4.19)

where, as in Section 3.3.2, Pfi (x, t) is the standard MUSCL method applied
in order to reconstruct the fluctuations with respect to the given stationary
solution computed for all the neighbors Tnj of Tni as

Qf,n
j = Qn

j −QE,n
j . (4.20)

The expression of the reconstruction operator is

Pf,ni (x, t) = Qf,n
i + Φi∇Qf,n

i (x− xi) + ∂tQ
n
i (t− tn), (4.21)

where xi is the barycenter of cell Tni . To compute ∇Qf,ni we use the standard
MUSCL method (see [156]) together with the Barth and Jespersen limiter
(see [11]), as described in Section 2.1.2. We would like to remark that the
employed methods are standard, the novelty is in the fact that both are applied
only to the fluctuations.
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4.2 Numerical results

Finally, the term ∂tQ
n
i indicates the time derivative of Q and it can be

computed using a discrete version of the governing equation

∂tQ
n
i = (Jf + B1)|xi∂rQ(xi) + Jg|xi ∂ϕQ(xi), (4.22)

evaluated at the barycenter xi of Tni . In particular the gradient of the con-
served variables must be expressed as the gradient of the equilibrium plus the
previously computed gradient of the fluctuation, i.e.

∇Q = ∇QE
i +∇Qf

i = ∇QE
i +∇Qf,n

i , (4.23)

in order to preserve the well balancing.
The same idea of (4.23) can be exploited in order to rewrite∫

Cni

B̃(qni ) · ∇̃qni dxdt, (4.24)

where, as in Section 3.3.2, the equilibrium terms cancel and the remaining
terms all contain fluctuations. So the integral can be computed through the
mid-point quadrature rule which is second order accurate on the fluctuations
without affecting the equilibrium.

4.2 Numerical results

4.2.1 Equilibrium preservation

First of all we want to show the accuracy of our scheme in preserving some
equilibrium of interest. We consider a discontinuous equilibrium

ρ = 1, if r < rm, ρ = 0.1, if r ≥ rm,

u = 0, v =

√
Gms

r
, p = 1,

(4.25)

with rm = 1.5, G = 1, ms = 1, over the computational domain [r, ϕ] ∈
[1, 2] × [0, 2π]. In Figure 4.2 we depict the density profile at the equilibrium
and in Table 4.1 we report the maximum error, committed using the HLL flux,
with respect to the exact solution after long computational times over a coarse
mesh, both for order 1 and 2. The equilibrium results to be perfectly preserved.

Then we consider a hydrostatic equilibrium without tangential velocity, so
that the gravity force is perfectly balanced with the pressure gradient. The
initial data is given by

ρ = 1, u = (u, v) = 0, P = 1/r, G = ms = 1. (4.26)
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4 Well balancing: coupling with nonconforming ALE

Table 4.1: Maximum error between the exact and the numerical density obtained
with the first and the second order well balanced methods (using the HLL flux).
We underline that similar results have been obtained using the Osher-Romberg
flux and that the same precision is achieved for the velocities.

points 20× 40
time O1 O2
10 7.32E-13 4.20E-13

40 2.83E-12 8.18E-12

80 3.92E-12 1.72E-11

100 2.25E-12 1.99E-11

We consider a computational domain [r, ϕ] ∈ [1, 2]× [0, 2π] covered by a coarse
mesh of 20×40 elements. In Table 4.2 we show the error between the analytical
solution and our numerical solution obtained with the second order Osher-
Romberg scheme. Since the scheme is exactly well balanced the errors are
maintained at the order of machine precision for very long computational times.
Similar results are also achieved with our well balanced HLL-type flux.

X
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Discontinous equilibrium

Figure 4.2: Discontinous density profile for the equilibrium solution considered in
the test case of Section 4.2.1.
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4.2 Numerical results

Table 4.2: Hydrostatic equilibrium. Maximum error in L∞ norm between the exact
solution and the numerical results for density, velocity and pressure at different
times. The values refer to the second order Osher-Romberg ALE scheme, but
similar results have been obtained at first order and with the HLL-type flux.

time Eρ Eu Ev EP

1 7.77E-15 3.29E-16 3.95E-16 3.33E-16

10 1.60E-14 3.16E-16 1.05E-15 3.33E-16

40 2.66E-14 3.58E-16 1.37E-15 3.33E-16

80 3.02E-13 1.30E-13 4.98E-14 3.87E-14

4.2.2 Order of convergence

To study numerically the order of convergence of our method we consider a
smooth isentropic vortex, similar to the one proposed in [95]. The initial con-
dition in polar coordinates is given by

ρ = 1 + δρ, u = 0, v = δv, P = 1 + δP,

δv = r
ε

2π
e

1−r2
2 , δT = − (γ − 1)ε

2

8γπ
e1−r2 ,

δP = (1 + δT )
1

γ−1 − 1, δρ = (1 + δT )
γ
γ−1 − 1,

(4.27)

with ε = 5, G = 0, ms = 0 and γ = 1.4 and the computational domain defined
as [r, ϕ] = [1, 2] × [0, 2π]. The final time is tf = 1. Our new scheme is able to
preserve this equilibrium up to machine precision if we impose the above initial
data (4.27) also as the equilibrium profile to be preserved. However, it is also
possible to impose a different equilibrium profile to be maintained, e.g. the one
given by (4.25). In this way, equilibrium and initial condition are not close one
to the other so the method comes back to its standard order of convergence,
i.e. second order. Refer to Table 4.3 and Figure 4.3 for the numerical results,
which confirm that our scheme is indeed second order accurate away from
the prescribed equilibrium profile. Finally, we would like to remark that we are
working with a moving nonconforming grid. In Figure 4.4 we report an example
of the final mesh configuration obtained with our Osher-Romberg scheme.
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4 Well balancing: coupling with nonconforming ALE

Table 4.3: Order of convergence, isentropic vortex. We report the results obtained
with our second order accurate well-balanced Osher-Romberg ALE scheme. The
mesh size h is computed as the maximum incircle diameter of the elements of
the final mesh. The errors refer to the L1 norm of the difference between our
numerical solution and the exact one. The last column refers to the setting where
the initial data (4.27) are also imposed as the smooth known equilibrium to be
maintained, hence in this case the scheme is accurate up to machine precision.
The other results are for the setting where the code is used to evolve a different
equilibrium profile (4.25) that does not coincide with the initial data (4.27), so
that we can show its formal order of accuracy.

mesh size h Eρ, eq. (4.25) O(L1) Eρ, eq. (4.27)

5.59E-2 1.48E-4 - 1.86E-14

2.80E-2 3.60E-5 2.04 1.45E-13

1.86E-2 1.58E-5 2.03 4.78E-13

1.40E-2 8.85E-6 2.02 5.36E-13

4.2.3 Riemann problem

To show the correctness of our method also in the presence of shock waves we
solve a classical Riemann problem with non-vanishing angular velocity using
both the well balanced HLL and Osher-Romberg ALE schemes. We consider
the computational domain [r, ϕ] = [1, 4] × [0, 2π] and we impose the following
initial conditions

ρ = 1, if r < rm, ρ = 0.1, if r ≥ rm,

u = 0, v =
√
Gms/r,

p = 1, if r < rm, p = 0.1, if r ≥ rm,
(4.28)

with rm = 2.5. The results at the final computational time tf = 0.5 are shown
in Figure 4.5 where we report a cut along ϕ = π/2 and a comparison with a
one-dimensional reference solution computed on a fine grid using 1024 elements.
We note a good agreement between the numerical solution obtained with the
well balanced ALE scheme on moving non-conforming meshes and the refer-
ence solution also in this case where the solution is far from any equilibrium.
Moreover we show the order of convergence of our method with respect to the
reference solution in Figure 4.6: obviously it cannot reach order two because
of the presence of shocks. However, the observed convergence order is higher
than one.
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Figure 4.3: Order of convergence, isentropic vortex for imposed equilibrium (eq.)
given by (4.25), i.e. different from the initial data of the isentropic vortex (4.27).
We report the L1 error norm of the density obtained with our well-balanced
Osher-Romberg and HLL ALE schemes. The dashed lines represent the theoret-
ical slopes of order one and two, respectively.
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Figure 4.4: Isentropic vortex, final mesh. We report the final mesh configuration at
time tf = 1 obtained with our Osher-Romberg scheme in the case of a very coarse
mesh of 10× 20 elements so that the nonconforming motion is clearly visible.
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Figure 4.5: Riemann problem in a 2D domain. The test heave been carried out over
two meshes: the first one, M1, with 64× 20 control volumes and the second one,
M2, with 256×40 control volumes. The reported results have been obtained using
the well balanced HLL scheme with first and second order of accuracy. On the left
we report the results for the density and on the right for the velocity at the final
time tf = 0.5. The graphs have been obtained as a 1D cut along ϕ = π/2. One
can observe that the second order scheme captures the discontinuities sharply.
The results are compared against a reference solution obtained with our second
order well balanced HLL scheme in one space dimension with N = 1024.

4.2.4 Noh shock test

The Noh shock test consists of a circular infinite strength shock propagating
out from the origin. We have chosen this test case to prove that our method can
deal also with highly supersonic flows, low pressure atmospheres and shocks of
infinite strength. Consider a gas with γ = 5/3 initialized with density ρ = 1,
radial velocity u = −1, tangential velocity v = 0, and pressure P = 10−6 as an
approximation to zero pressure. The shock wave propagates with speed 1/3.
The exact solution inside the shock region, i.e. r ≤ t

3
, is given by the following

relations
ρ = 16, P = 16/3, u = 0, v = 0, (4.29)

and outside the shock region, i.e. r > t
3
, by

ρ = 1 +
t

r
, P = 0, u = −1, v = 0. (4.30)

We consider an initial domain [r, ϕ] ∈ [0, 1] × [0, π/2]. We impose periodic
boundary conditions on ϕ = 0 = π/2, and we exploit the exact solution to
impose the boundary conditions at r = 0 and on the moving outer boundary.

The presented results have been obtained with the HLL-type scheme. First
we have considered the Eulerian case, hence we have imposed a zero mesh
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Figure 4.6: Convergence results. Left: we refer to the Riemann problem (4.28) and
compare the results obtained with our WB ALE HLL code with a fine grid
reference solution. Right: we refer to the Noh shock test of Section 4.2.4 and
we compare our results with the exact solution. Note that the L1 norm of our
numerical errors are depicted with squares and is compared with the theoretical
slopes of order one and two (dotted lines), respectively. It is evident that the
method is better than first order accurate even in presence of shocks.

velocity. The results at time tf = 1.2 obtained with the second order scheme
are shown in Figure 4.7. Then we have employed the ALE framework moving
the mesh with the local fluid velocity. Due to the absence of shear flow, the mesh
remains conforming. The results obtained with the moving mesh are shown in
Figure 4.8, where the well-known wall heating problem is visible. Apart from
the wall heating, in both the cases the method shows a good agreement with
the exact solution. For what concerns the convergence performances of our
code refer to Figure 4.6.

4.2.5 Comparison with the PLUTO code

For the following test cases that concern Keplerian discs, we compare the re-
sults obtained with our new second order well balanced Osher-Romberg scheme
with the results one can obtain with the PLUTO code. PLUTO is a freely-
distributed software for the numerical solution of mixed hyperbolic/parabolic
systems of partial differential equations (conservation laws) targeting high
Mach number flows in astrophysical fluid dynamics. The code has been sys-
tematically checked against several benchmarks available in the literature in
the papers [120] and [122], using fixed uniform and AMR grids. It provides a
multi-physics and multi-algorithm modular environment, where one can choose
the Newtonian description for the fluid motion (HD option) and add a potential
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Figure 4.7: Noh shock test. We show the numerical results obtained with our second
order HLL-type flux at time tf = 1.2 on three fixed grids with respectively 50×10,
100×10 and 200×20 elements. In the figure the density profile ρ has been depicted
along the radial direction r, compared with the exact solution.
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Figure 4.8: Noh shock test. We show the density profile (left) and the final mesh
(center) obtained with the second order ALE HLL-type scheme at time tf = 0.6,
using a moving grid of 100× 10 elements. On the right we compare the density
profile along the radial direction r with the exact solution for three different
meshes with respectively 50× 10, 100× 10 and 200× 20 elements.

Φ = −Gm
r

to the right hand side by setting the option BODY FORCE equal to
POTENTIAL. In this way one can study (3.15) within this code. Then we select
POLAR GEOMETRY and we do not activate any other options.

The modular structure allows us to choose between different numerical fluxes,
limiters, spatial reconstructions and time integrators. In particular, we have
selected a little dissipative setting by imposing LIMITER equal to MC LIM (the
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monotonized central difference limiter), or sometimes equal to MINMOD LIM (the
classical minmod limiter), and using the Roe solver as numerical flux. Then
we have compared our second order scheme with both a second order configu-
ration of PLUTO (with LINEAR reconstruction in space and RK2 in time) and a
third order configuration (with WENO3 reconstruction in space and RK3 in time).
Finally, for the comparison we set the number of elements in PLUTO either
equal to the number of elements used for our scheme, or we double it in each
dimension.

We remark that within PLUTO special care is taken for the treatment of
source and pressure terms when a polar (cylindrical or spherical) geometry is
chosen, because in those cases the equations are discretized in angular momen-
tum conserving form and pressure terms are treated separately. For this reason
the results are more accurate than those obtained with standard finite volume
techniques.

4.2.6 Mass transport in a Keplerian disc

Let us consider a steady state solution of the Euler equations with gravity which
satisfies the constraints in (3.19)-(3.20) and with a constant density profile,

ρE = 1, uE = 0, vE =

√
Gms

r
, p = 1, (4.31)

over the computational domain [r, ϕ] ∈ [1, 2] × [0, 2π]. At the initial time, we
perturb this equilibrium solution by imposing a higher density ρ = 2 within
the disc defined in Cartesian coordinates as (x− 1.5)2 + y2 ≤ (0.15)2.

The expected result is the transport of this density fluctuation (contact dis-
continuity) at different velocities which are bigger at the interior and smaller
at the exterior, without any dissipation. The velocity and the pressure field
should remain constant in time, according to the equilibrium solution. In Fig-
ure 4.9 we compare the results obtained with different numerical methods with
the exact solution: Eulerian and ALE schemes coupled or not with the well
balanced Osher Romberg scheme. As expected, the Eulerian scheme is very
dissipative, even when coupled with our new well balanced technique. The
dissipation is evident in the angular direction, since the radial velocity in this
problem is zero and the Osher scheme is a complete Riemann solver that is
able to resolve steady contact waves exactly. The ALE scheme, without well
balancing does not dissipate too much in the angular direction, but if it is not
coupled with a proper well balanced technique, some spurious velocity oscilla-
tions appear which lead to unphysical dissipation in the radial direction and
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4 Well balancing: coupling with nonconforming ALE

Figure 4.9: We compare the exact solution with the numerical solutions obtained
with different methods at times t = 2.5 (top-left), t = 5 (top-right), t = 10 (bottom-
left), t = 30 (bottom-right). For all the cases the employed numerical flux is an Osher-
type flux. The Lagrangian algorithms show their ability in reducing the viscosity
along the angular direction. The well balanced methods do not diffuse the quantities
in the radial direction. When coupled together (top-right of each square) we obtain
a result very close to the exact solution (top-left of each square). We want to remark
that in the well balanced ALE case (top-right of each square), the quantity with
higher density remains in the same cells in which it is confined at the initial time
since the method is very little diffusive in any direction and the differential rotation
is treated in a nonconforming way. Moreover, only the well balanced ALE scheme is
able to maintain the concentration of the higher density gas.
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Figure 4.10: Results obtained with PLUTO, using the Roe solver combined with
the mc lim limiter, linear reconstruction in space and RK2 in time on a grid
of 30 × 350 elements. One can observe that the results are more dissipative
compared to those shown in Fig. 4.9.
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Figure 4.11: Results obtained with PLUTO, using the Roe solver, a third order
WENO reconstruction in space combined with the mc lim limiter and a third
order RK3 time integrator on a grid of 60× 700 elements.

which also produce some oscillations on the density profiles, which are evident
even for short computational times.

The coupling between the two techniques reduces the dissipation both in the
radial and in the angular directions. In our computations we have observed that
for this test problem the error in the pressure and in the velocity field was always
of the order of machine precision, since the advection of a contact discontinuity
does not affect the equilibrium of pressure and velocity. We emphasize that
this property of conserving even moving equilibria (density is not constant in
time here) is anything else than trivial to achieve and to the best knowledge
of the authors, the scheme presented here is the first Finite Volume method
to achieve it. Referring to Table 4.4, one can notice that indeed the precision
achieved by our code on angular velocity and pressure is of the order of machine
precision (even at time t = 30), where instead this is not the case for various
PLUTO configurations.

Finally, we report the results obtained with PLUTO by selecting the con-
figuration setting described in Section 4.2.5 with the MC LIM. First, in Figure
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4 Well balancing: coupling with nonconforming ALE

Table 4.4: The results shown in this table testify that our code is able to maintain up
to machine precision even moving equilibria. Indeed for the test cases presented
both in Section 4.2.6 and Section 4.2.7 the L1 norm of the difference between the
numerical solution computed with our WB ALE Osher Romberg scheme and the
exact stationary profiles of angular velocity v and pressure P , at the respective
final times (t = 30 and t = 15), is of the order of machine precision. The other
two lines refer to the results obtained with PLUTO both with second and third
order of accuracy.

Test Section 4.2.6 Test Section 4.2.7

Method Elem ||v−vE ||L1 ||P−PE ||L1 ||v−vE ||L1 ||P−PE ||L1

WB ALE Osher-R. 100×200 2.17E-12 7.19E-14 2.13E-12 6.36E-14

PLUTO O2 minmod 100×200 5.56E-7 2.36E-6 5.44E-7 9.89E-6

PLUTO O3 mc lim 200×400 1.30E-7 5.28E-7 1.49E-7 2.44E-6

4.10 we use the described second order method and 30× 350 elements. Then,
in Figure 4.11 we use the third order method and 60 × 700 elements. In both
the cases the density is dissipated faster than with our method: this shows
that it is not a finer grid or a higher order of accuracy that can solve this type
of problem, but a very specific treatment of the equilibrium together with the
Lagrangian framework proposed in this paper.

4.2.7 Keplerian disc with density perturbations

For this test we have considered the equilibrium profile in (4.31) and we have
added a periodic perturbation over the density profile as follows

ρ = ρE +A sin(k1ϕ)(0.25− |rm − r|), r ∈ [r1, r2] (4.32)

with A = 0.5, k1 = 12, r1 = 1.25, r2 = 1.75, rm = 1.5. The goal of the
this test is to show that our well balanced ALE scheme is able to maintain
the equilibrium pressure and velocity exactly and that the numerical method
does not generate any spurious numerical perturbations of pressure and ve-
locity that would usually lead to Kelvin-Helmholtz type flow instabilities for
density fluctuations combined with shear flow as in the above setup. In Fig-
ure 4.12 we show the evolution of the perturbations at different times. They
are properly transported with different velocities with only very little numerical
dissipation. As in the previous case we stress that the velocity and pressure
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Figure 4.12: Evolution of periodic density perturbations in an equilibrium disc ob-
tained with the well balanced ALE scheme with Osher-Romberg flux. The
perturbations are perfectly convected (with an inner velocity bigger than the
outer one), and no spurious Kelvin-Helmholtz instabilities are generated, even
after long computational times.

Figure 4.13: Method comparison at time t = 15. The first image is obtained with
our code and 50 × 500 elements. The second and the third one with PLUTO
using 50 × 500 elements and respectively a second order scheme with mc lim
limiter and a third order scheme with minmod lim limiter. The last image is
obtained with the third order version of PLUTO using mc lim and 100× 1000
elements. All images are drawn with the same color map. Even if the results
are similar, one can notice that to obtain the same resolution of our code we
need the third order version of PLUTO and a finer mesh.

remain at the equilibrium solution up to machine accuracy throughout the en-
tire simulation. No spurious Kelvin-Helmhotz instabilities are generated, since
the equilibrium pressure and velocity are exactly maintained for arbitrary long
simulation times.

Finally, we compare our result at time t = 15 with the results obtained
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4 Well balancing: coupling with nonconforming ALE

Figure 4.14: Kelvin-Helmholtz instabilities I. In the panel we show the evolution of
the imposed periodic perturbations at different times. The results have been
obtained with our second order well balanced ALE Osher-Romberg scheme over
a grid with 100× 200 control volumes.

with PLUTO, refer to Figure 4.13. For the visualization we have always used
the software Tecplot and the same colormap; even if the results look similar,
one can notice that to obtain the same resolution of our code (left image of
the panel) we need the third order version of PLUTO and a finer mesh (last
image of the panel). We stress that our code maintains u and P up to machine
precision, whereas PLUTO produces standard numerical errors, see Table 4.4.

4.2.8 Keplerian disc with Kelvin-Helmholtz instabilities I

Let us consider an equilibrium solution which satisfies the equilibrium con-
straints in (3.19)-(3.20) so that

ρE = ρ0 + ρ1tanh
(r − rm

σ

)
, uE = 0, vE =

√
Gms

r
, pE = 1, (4.33)

with G = 1, ms = 1, ρ0 = 1, ρ1 = 0.25, rm = 1.5 and σ = 0.01. It shows
a steep gradient in the density for r → 1.5. We consider as computational
domain a ring sector with radius r ∈ [1, 2] and ϕ ∈ [0, π/2]. For the boundary
conditions we exploit the exact solution when r = 1, 2, and we impose periodic
boundary conditions for ϕ = 0, π/2.

As confirmed by the previous tests, our well balanced ALE scheme is able to
maintain the equilibrium up to machine precision for very long computational

120



4.2 Numerical results

ALE-WB EUL-WB ALE - noWB

Figure 4.15: Kelvin-Helmholtz instabilities I. In the panel we show the obtained
solution for the density profile at time t = 17.5 (first row) and time t = 25
(second row). The results presented in the first column have been obtained
using the Osher-Romberg well balanced ALE scheme. The ones in the second
column have been obtained using a zero velocity mesh (Eulerian case) and
the well balanced Osher-Romberg scheme. The third column is obtained with
a standard nonconforming ALE scheme (i.e. using the ALE Osher type flux
without well balancing). One can apreciate that it is really the coupling between
the ALE and the well balancing that allows to achieve this high resolution.

times. So we can study with high accuracy the evolution of the perturba-
tions over the density, the radial velocities and the pressure prescribed by the
following initial condition

ρ = ρE +Aρ0 sin(kϕ)exp
(
− (r−rm)2

s

)
,

u = uE +A sin(kϕ)exp
(
− (r−rm)2

s

)
, v = vE ,

p = pE +A sin(kϕ)exp
(
− (r−rm)2

s

)
,

(4.34)

with A = 0.1, k = 8, s = 0.005. The computational results are depicted in Fig-
ure 4.14. In particular, for this flow configuration with physical perturbations
in all flow quantities we observe the appearance of Kelvin-Helmholtz instabil-
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Figure 4.16: Kelvin-Helmholtz instabilities I. Method comparison at time t = 37.5.
The first image is obtained with our code and 100× 200 elements. The second
and the third one with PLUTO, 100 × 200 elements and respectively a second
order scheme with mc lim limiter and a third order scheme and minmod lim
limiter. The last image is obtained with the third order version of PLUTO
using mc lim and 200×400 elements. All images are drawn with the same color
map.

ities and a very good resolution of the developing vortices, which is achieved
thanks to the ALE technique and despite the rather coarse mesh of 100× 200
elements used here.

Moreover we have compared our well balanced ALE scheme with a well bal-
anced Eulerian method on a fixed grid, which appears to be quite diffusive, and
a not well balanced ALE scheme, which produces visible spurious oscillations
in the density profile. The results are presented in Figure 4.15 and, once again,
they show that it is indeed the coupling between the well balanced techniques
and the moving mesh framework that allows to achieve a high resolution on
small perturbations around an equilibrium solution for very long computational
times.

We also compare our numerical results at time t = 37.5 with those obtained
by PLUTO, see Figure 4.16. In order to obtain the same accuracy of our new
second order well balanced Osher Romberg ALE scheme (left image of the
panel) one needs the third order version of PLUTO on a finer mesh (last image
of the panel).

4.2.9 Keplerian disc with Kelvin-Helmholtz instabilities II

We finally consider another equilibrium solution which satisfies the equilibrium
constraints in (3.19)-(3.20) and which reads

ρE = r, uE = 0, vE =

√
Gms

r
, pE = 1, (4.35)
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Figure 4.17: Kelvin-Helmholtz instabilities II. In the panel we show the evolution of
the imposed periodic perturbations at different times. The results have been
obtained with our second order Osher-Romberg scheme over a grid with 100×
200 control volumes.

with G = 1, ms = 1 and rm = 1.5. With respect to the previous example,
here the density profile is linear. However, also in this example we expect the
Kelvin-Helmholtz instabilities to arise if some perturbations are added to the
stationary profile. The computational domain and the boundary conditions are
chosen as before. The initial condition used in this test problem reads

ρ = ρE +A sin(kϕ)exp
(
− (r−rm)2

s

)
,

u = uE +A sin(kϕ)exp
(
− (r−rm)2

s

)
, v = vE ,

p = pE +A sin(kϕ)exp
(
− (r−rm)2

s

)
,

(4.36)

with A = 0.1, k = 8, s = 0.005, i.e. we are again solving a problem that is
close to an equilibrium and therefore difficult to solve with standard numerical
techniques that are not well balanced. The computational results are depicted
in Figure 4.17. Again we observe the appearance of Kelvin-Helmholtz insta-
bilities that are well resolved also on a rather coarse mesh, without any visible
spurious numerical oscillations. Finally, we compare once again our code with
results obtained with PLUTO, refer to Figure 4.18. A similar resolution of the
vortices is obtained with our second order code and the third order version of
PLUTO with a finer mesh (refer to Section 4.2.5 for the details on the PLUTO
configuration we have chosen). In this case we want to underline also that
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Figure 4.18: Kelvin-Helmholtz instabilities II. Method comparison at time t = 25
(first row) and at time t = 40 (second row). The first images are obtained with
our code and 100× 200 elements. The second and the third ones with PLUTO,
100× 200 elements and using respectively a second order (mc lim) and a third
order (minmod lim) scheme. The last images are obtained with PLUTO using
a third order scheme (mc lim) and 200 × 400 elements. All images are drawn
with the same color map. The vortices have a similar resolution in the leftmost
and rightmost images.

our code avoids other oscillations that instead can be noticed in the images
obtained with PLUTO.

4.3 WB ALE for the shallow water equations

Coming back to the steady vortex test case presented in Section 4.3 we know
that our method is able to maintain a high quality mesh even in the case of
strong shear flows, to preserve the physical properties of the system (mass, mo-
mentum, energy) for very long computational times, and that it is very little
dissipative for contact discontinuities. In this section we want to extend the
algorithm in such a way that in addition it can preserve also exactly certain
relevant and non-trivial equilibrium solutions. In particular, our interest is fo-
cused on the shallow water equations in polar coordinates given by (2.46), and
to stationary solutions characterized by the equilibrium between the centrifugal
and the gravitational forces. Since the two forces appear one in the flux and
the other one in the source term, it is difficult to maintain the exact balancing
until they are discretized with different techniques. So once again (as in Sec-
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tion 3.2.3), we rewrite the source terms via non-conservative products so that
all the terms connected with the equilibrium could be treated together. By
adding as auxiliary variables the radius r and the bottom topography b such
that the free surface is η(r, ϕ) = b+ h(r, ϕ), our equations can be cast in form
(1.1) with

Q=


rh

rhur
rhuϕ
rb

r

, f =


rhur
rhu2

r

rhuruϕ
0

0

, g=


huϕ
huruϕ

hu2
ϕ + 1

2
gh2

0

0

,

S=0, B1 · ∇Q=


0

grh ∂η
∂r
− hu2

ϕ
∂r
∂r

huruϕ
∂r
∂r

0

0

, B2 · ∇Q = 0

(4.37)

4.3.1 First order WB ALE scheme

In what follows we explain how to adapt the first order Osher-Romberg scheme
proposed for the Euler equations to (4.37), in particular with the aim of pre-
serving equilibrium solutions such that

ur = 0,
∂ur
∂ϕ

=
∂uϕ
∂ϕ

=
∂η

∂ϕ
= 0, and

∂η

∂r
=
u2
ϕ

gr
. (4.38)

For the domain discretization let us consider the same setting introduced in
Section 4.1.1, and for the basic form of a path-conservative ALE scheme refer
to (4.5). The core of the scheme is the design of the well balanced space-time
flux function, whose final expression is

D̃ij · ñij =
1

2

(
F̃(q+) + F̃(q−) + Bij

(
q+ − q−

))
· ñij

−1

2
Vij
(
q+ − q−

)
,

(4.39)

with the same notation of Section 4.1.2.1. We can also follow the same rea-
soning of Section 4.1.2.1 regarding the well balancing in the angular direction
and Sections 3.3.1.1 - 4.1.2.1 for the Osher-Romberg viscosity term. So the
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4 Well balancing: coupling with nonconforming ALE

missing ingredients for the first order scheme are the well balanced path and
the definition of Bij(q+ − q−).

Here we propose a family of paths that is connected to the known equilibrium
profiles for the free surface η and the angular velocity uϕ, whereas for the other
variables the segment path is sufficient (because they assume simple profiles
at the equilibrium). Let ΦE(s; q−E ,q

+
E) be a reparametrization of a stationary

solution given by (4.38) that connects the two equilibrium states q−E with q+
E ,

then we define Φ(s; q−,q+) as follows

Φ(s; q−,q+) = ΦE(s; q−E ,q
+
E) + Φf (s; q−f ,q

+
f ), (4.40)

where q−f = q− − q−E and q+
f = q+ − q+

E and

Φf (s; q−f ,q
+
f ) = q−f + s(q+

f − q−f ).

That is Φf is a segment path on the fluctuations with respect to a stationary
solution. With this choice, it is clear that if q− and q+ lie on the same sta-
tionary solution satisfying (4.38), then q−f = q+

f = 0 and Φ, reduces to ΦE . In

such situation we have that f(q+) = f(q−) = 0 and

Bij(q+ − q−) =

∫ 1

0

B1(Φ(s; q−,q+)) ñr
∂ΦE

∂s
(s; q−,q+)ds = 0.

Therefore
f(q+)− f(q−) + Bij

(
q+ − q−

)
= 0.

Let us now define Bij
(
q+ − q−

)
in the general case, where q+ and q− do

not lie on a stationary solution. In such case we have that

Bij
(
q+ − q−

)
=
(
bij1 , b

ij
2 , b

ij
3 , b

ij
4 , b

ij
5

)T
. (4.41)

It is clear from the definition of B that bij1 = bij4 = bij5 = 0. What is interesting
is the discretization of the second term that can be rewritten as(

grh
∂η

∂r
− hu2

ϕ
∂r

∂r

)
ñr =

(
grh

∂η

∂r
− grh

[∫
u2
ϕ

rg
dr ±

∫
u2
ϕ,E

rg
dr

]
r

)
ñr,

(4.42)
where uϕ,E is any known profile for the angular velocity at the equilibrium;

moreover call ζ(r) a primitive of
u2
ϕ,E

rg
, i.e. ζ(r) =

∫ u2
ϕ,E

rg
dr . In this way we

obtain that

bij2 =

∫ 1

0

(
gΦrh(s)

∂Φη(s)

∂s
− gΦrh(s)

ΦA(s)

rg

∂Φr(s)

∂s

)
ñr ds,
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4.3 WB ALE for the shallow water equations

where for variables r and rh we can employ a standard segment path to connect
the left and the right states

Φr(s) = Φr(s; r
−, r+) = r− + s (r+ − r−),

Φrh(s) = Φrh(s; (rh)−, (rh)+) = (rh)− + s ((rh)+ − (rh)−).

Instead, following the idea in (4.40) and considering the terms in (4.42) we
define

ΦA(s) = ΦA(s;u−ϕ , u
+
ϕ ) = ΦEζr (s) +

Φfuϕ(s)

rg
(4.43)

which exploits the reparametrization of ζ(r) at the equilibrium and approxi-
mates with a segment path the fluctuations of the angular velocity

Φfuϕ(s) = Φfuϕ(s;u−ϕ,f , u
+
ϕ,f ) =

1

rg

(
u−ϕ,f + s (u+

ϕ,f − u
−
ϕ,f )

)
.

A similar approach is used for Φη(s) defined as

Φη(s) = Φη(s; η−, η+) = ΦEη (s) + Φfη(s).

Taking into account that∫ 1

0

(
gΦrh(s)

∂ΦEη (s)

∂s
− gΦrh(s)

ΦEζr (s)

rg

∂Φr(s)

∂s

)
ñr ds = 0,

bij2 could be rewritten as follows

bij2 =

∫ 1

0

(
gΦrh(s)

∂Φfη(s)

∂s
− gΦrh(s)

Φfuϕ(s)

rg

∂Φr(s)

∂s

)
ñr ds. (4.44)

Note that

∂Φfη(s)

∂s
= η+

f − η
−
f = ∆ηf and

∂Φr(s)

∂s
= r+ − r− = ∆r,

therefore bij2 reduces to

bij2 =

 g (rh)ij ∆ηf − g (rh)ij

(
u2
ϕ − (uEϕ )2

rg

)
ij

∆r

 ñr

where we have employed the mid point rule to approximate the integrals and
the following notation holds (·)ij = (·i + ·j)/2. Finally, term bij3 could be
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4 Well balancing: coupling with nonconforming ALE

approximated in the same way. Nevertheless, as this terms explicitly depends
on ur and we are interested to preserve equilibria with ur = 0, a more simple
approach could be used. Thus, bij3 could be defined as

bij3 =
(

(rhur)ij (uϕ)ij ∆r
)
ñr , (4.45)

which vanishes when ur = 0. For any other detail of the scheme one can
refer to the previous sections and adapt the method introduced for the Euler
equations to this new context. Indeed the method is very general and easy to
be generalized to different sets of equations and equilibria.

4.4 Numerical results

In this section, first we want to show that the well balanced method works in
general situations and not only close to the equilibria of the system. In this
way, it will be clear that it can be applied in any context without corrupting the
standard characteristics of the scheme, and it will perform better than classical
schemes when near to a prescribed equilibrium. Then, we will see that the
coupling between our nonconforming techniques with the well balanced strategy
allow us to study the vortex flow of Section 2.4.5 even for longer periods of time.

4.4.1 Riemann problem

To show the correctness of our method in the presence of shocks we solve a clas-
sical Riemann problem with our well balanced Osher-Romberg ALE scheme.
We consider the system of equation in (2.46), and as computational domain
[r, ϕ] = [1, 5]× [0, 2π]. We impose the following initial conditions{

h = 1, if r < rm, h = 0.125, if r ≥ rm,
ur = uϕ = 0

(4.46)

with rm = 3. The results at the final computational time tf = 0.4 are shown
in Figure 4.19, where we report a cut along ϕ = π/4. The method, even if it is
set up to preserve the smooth stationary profile described in Section 2.4.5, con-
verges properly to the reference solution of this problem, despite the presence
of discontinuities.
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Figure 4.19: Comparison between the exact and the numerical solution for the Rie-
mann problem. The numerical solution is obtained with the well balanced
scheme of order one with two different meshes (a coarser and a finer one). On
the left we show the water level h and on the right the radial velocity ur for
r ∈ [1, 5] at a fixed angle ϕ = π

4
.

4.4.2 Steady vortex in equilibrium

Test A. Let us consider again the test case of Section 2.4.5, with the ini-
tial condition of (2.55). The coupling between our novel nonconforming ALE
scheme together with the well balanced techniques gives us, even after a very
long computational time, a good mesh quality (see Figure 4.20) and a numer-
ical solution equal to the exact one up to machine precision (refer to Table
4.5).

Note that we have employed a mesh of squares with the constraints that in-
terfaces lie over straight lines with constant radius. This automatically implies
that each square of the mesh has two edges parallel to the ϕ−axis: over this
kind of edges the g component of the flux does not play any role, and so the
method is well balanced simply because the f component of the flux is zero for
stationary vortex-type solutions and (4.41) has been proved to be discretized
in the correct way. The other two edges are parallel between them, so at the
equilibrium, fluxes through them cancel.
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Figure 4.20: Stationary vortex in equilibrium obtained with well-balanced ALE
schemes on moving nonconforming meshes. The mesh is shown at time t = 200.
On the left we report the grid in polar coordinates where the shear disconti-
nuities lie over straight lines. On the right the corresponding grid is shown in
Cartesian coordinates.

Test B. Moreover, to show that the method is able to preserve any known
stationary solution that satisfies the constraint in (4.38), we have performed a
similar test but starting from a different stationary condition

h(r, ϕ, 0) =
r2

2g
, ur(r, ϕ, 0) = 0, uϕ(r, ϕ, 0) = r, (4.47)

over the same computational domain Ω(r, ϕ) = [0.2, 2] × [0, 2π]. Even in this
case the numerical solution remains close to the exact one up to machine pre-
cision for very long times, as also shown in Table 4.5.
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4.4 Numerical results

Table 4.5: Stationary vortex in equilibrium. Maximum error on the water level h
between the exact and the numerical solution obtained with the first order well
balanced nonconforming ALE method. In the left column we show the error for
Test A with finer and finer meshes with a fixed final time, in the central column
we choose a coarse mesh and show the error for longer and longer times. In the
right column, the results for Test B are shown.

Test A Test B

tend = 10 points 16× 8 points 16× 8

points error time error time error

12× 6 1.42E-14 10 1.28E-14 10 2.11E-13

16× 8 1.28E-14 50 3.74E-14 100 4.84E-13

24× 12 3.04E-14 150 4.02E-14 150 3.25E-13

36× 18 6.68E-14 200 4.88E-14 200 2.62E-13
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5 Well balancing: GPU Parallel implementation

In this chapter we apply our well balanced techniques to a simplified compress-
ible two-phase model for complex non-hydrostatic free surface flows. The well
balancing guarantees the preservation of equilibrium solutions between air and
water even on coarse meshes and in the presence of obstacles. Moreover a very
efficient parallel implementation on a GPU-based platform ensures high per-
formances on very fine grids, necessary to capture all the details of complex
breaking waves.

Here, we first introduce in Section 5.1 our physical model given by a special
case of the more general Baer-Nunziato system for compressible multi-phase
flows. Then in Section 5.2-5.3 we present our well balanced scheme in the
particular case of a Cartesian mesh and of a parallel implementation in CUDA.
Finally, in Section 5.4 we show our numerical results and we exhibit the high
efficiency of our code.

5.1 Physical model for complex free surface flow

We propose a simple and efficient two-phase interface-capturing algorithm for
the simulation of complex non-hydrostatic free surface flows. The physical
model is given by a special case of the more general Baer-Nunziato model for
compressible multi-phase flows, which was introduced for the first time by Baer
and Nunziato in [4]. This system does not adopt the classical assumptions of
the shallow water equations, so it does not neglect the vertical accelerations
and the resulting pressure distribution. In this way it results to be remarkably
more accurate to model phenomena as breaking waves, drops, or the initial
stages of dambreak flows, where vertical acceleration plays an important role.

In this section we present the physical model starting from the original Baer-
Nunziato system and introducing some appropriate simplifications that allow
us to reduce the number of equations from seven to three, as was done for
the first time by Dumbser in [65]. Then we rewrite the source terms via non-
conservative products.

133



5 Well balancing: GPU Parallel implementation

The original Baer-Nunziato system with gravity effects reads

∂t (α1ρ1) +∇ · (α1ρ1u1) = 0

∂t (α1ρ1u1) +∇ · (α1 (ρ1u1 ⊗ u1 + p1I)) = pI∇α1 + α1ρ1g

∂t (α1ρ1E1) +∇ · (α1u1 (ρ1E1 + p1)) = −pI∂tα1

∂t (α2ρ2) +∇ · (α2ρ2u2) = 0

∂t (α2ρ2u2) +∇ · (α2 (ρ2u2 ⊗ u2 + p2I)) = pI∇α2 + α2ρ2g

∂t (α2ρ2E2) +∇ · (α2u2 (ρ2E2 + p2)) = −pI∂tα2

∂tα1 + uI · ∇α1 = 0,

(5.1)

where αj is the volume fraction of phase number j with α1 + α2 = 1, ρj is
the fluid mass density, uj = (uj , vj) the velocity vector, pj the pressure and
ρjEj the total energy per mass unit of phase number j, respectively. Moreover,
g = (0,−g) is the vector of gravity acceleration, g = 9.81. The model must be
closed by the equations of state (EOS) for each phase that link the pressure pj
to the density and the internal energy, and furthermore the model requires a
proper choice of the interface velocity uI and the interface pressure pI . Baer
and Nunziato proposed the following choice

pI = p2, and uI = u1, (5.2)

which we also use here.
As explained in details in [65], the three-equation model we will study is based

on the following simplifications. The first assumption is that all pressures are
relative pressures with respect to the atmospheric reference pressure p0, hence
we can define p0 = 0. Second, the gas surrounding the liquid is supposed to
remain always at atmospheric reference conditions, i.e. the gas pressure is

p2 = p0 = 0 = const, (5.3)

which is a standard assumption for free surface flows in fluid mechanics, see
for example [154]. It is based on the fact that for low Mach number flows
the pressure fluctuations p0 are approximately proportional to ρu2 according
to Bernoulli’s law and since the liquid density is several orders of magnitude
larger than the density of the gas (ρ1 � ρ2) the pressure fluctuations of the
gas phase are much smaller than the pressure fluctuations in the liquid phase
(p′2 � p′1). We therefore can neglect all evolution equations related to the
gas phase j = 2. Furthermore, according to (5.2)-(5.3) the interface pressure
automatically results pI = p2 = p0 = 0. This is consistent with the usual

134



5.1 Physical model for complex free surface flow

standard assumption for free surface flows, where, at the free surface of the
liquid, atmospheric reference pressure boundary conditions are imposed. Also
the choice of the interface velocity uI = u1 according to (5.2) is consistent,
since the interface will obviously propagate with the speed of the liquid phase.
Third, the pressure of the liquid is computed by the Tait equation of state [12]:
the key idea is that according to the first assumption it yields a relative pressure
with respect to the atmospheric reference pressure (p0 = 0). We therefore have

p1 = k0

((
ρ1

ρ0

)γ
− 1

)
, (5.4)

where k0 is a constant that governs the compressibility of the fluid and hence
the speed of sound, ρ1 is the liquid density, ρ0 is the liquid reference density
at atmospheric standard conditions and γ is a parameter that is used to fit the
EOS with experimental data. Since the EOS (5.4) does not depend explicitly
on the internal energy, also the liquid energy equation can be dropped.

So, we obtain the following reduced three-equation model
∂t (αρ) +∇ · (αρu) = 0

∂t (αρu) +∇ · (α (ρu⊗ u + pI)) = αρg

∂tα+ u · ∇α = 0,

(5.5)

where the index has been dropped to simplify the notation. We work in a two-
dimensional framework x = (x, z) where z indicates the gravity direction. We
underline that the free surface here is captured automatically by the volume
fraction function α which is evolved in time by the last equation (advection
equation) and allows us to distinguish between the portion of the domain oc-
cupied by the liquid Ω`, with α ∼ 1, and the one occupied by the gas Ωa, with
α ∼ 0.

An important family of equilibria of (5.11) consists in the water at rest
solution given by

u = 0, α = const, (5.6)

and density and pressure obtained through the momentum equation in z−direction
as follows

∂p

∂z
=

∂

∂z
k0

((
ρ(z)

ρ0

)
− 1

)
= −ρ(z)g, (5.7)

which for the particular case γ = 1 and ρ(0) = ρ0 gives the simple solution

ρ(z) = ρ0exp

(
−gρ0

k0
z

)
, (5.8)
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and hence the pressure distribution

p(z) = k0

(
exp

(
−gρ0

k0
z

)
− 1

)
. (5.9)

To be able to preserve the equilibrium (5.7), that involves both terms in the
flux and in the source, we need to rewrite all the involved terms in such a way
that they could be treated together, so we add z as conserved variables through
the following trivial equation

∂z

∂t
= 0, (5.10)

and we obtain our final non-conservative system

∂t (αρ) +∇ · (αρu) = 0

∂t (αρu) + ∂
∂x

(
αρu2 + αp

)
+ ∂

∂z
(αρuv) = 0

∂t (αρv) + ∂
∂x

(αρuv) + ∂
∂z

(
αρv2

)
+ ∂

∂z
(αp) + αρg ∂z

∂z
= 0

∂tα+ u · ∇α = 0,

∂tz = 0,

(5.11)

which can be cast in the general form (1.1) with

Q=


αρ

αρu

αρv

α

z

, f =


αρu

αρu2 + αp

αρuv

0

0

, g=


αρv

αρuv

αρv2

0

0

,

B1 · ∇Q=


0

0

0

u ∂α
∂x

0

, B2 · ∇Q=


0

0
∂αp
∂z

+ αρg ∂z
∂z

v ∂α
∂z

0

, S=0.

(5.12)

5.2 Well balancing

We solve the three-equation two-phase model (5.11) with our second order well
balanced path-conservative Osher-Romberg method on a structured grid. We
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remark that in this way we can preserve the equilibria for long times, which is,
up to our knowledge, a novelty with respect to the literature.

In order to clarify how the Osher-Romberg scheme, already presented in
details in Section 3.3.1.1, can be applied even in this context we have to specify
the chosen path and the computation of the non trivial elements of Bij in (4.6).
For everything else (viscosity and second order reconstruction) one can follow
the line given in Chapter 3-4.

The choice of the path is done as in (4.40) by summing up two parts: a
reparametrization of the equilibrium profile (5.6)-(5.8)-(5.9) plus a segment
path over the fluctuations.

For what concern the discretization of the non-conservative terms Bij(qj−qi)
we have only three non null components

Bij(q+ − q−) = (0, 0, 0, bx4 , 0)nx +
(
0, 0, bz3, b

4
z, 0
)
nz. (5.13)

The terms bx4 and bz4 can be written in a very easy way as

bx4 = uij∆α, bz4 = vij∆α, (5.14)

where ∆α = αj−αi and we propose to use the Roe average velocity to compute
uij and vij

uij =
ui
√
ρi + uj

√
ρj

√
ρi +

√
ρj

, vij =
vi
√
ρi + vj

√
ρj

√
ρi +

√
ρj

. (5.15)

The above expressions are so easy thank to the equilibrium constraint (5.6)
that ensure bx4 = bz4 = 0 when qi and qj lie on the same stationary solution.
Finally let us recover bz3 which verifies

bz3 =

∫ 1

0

∂Φα(s)

∂s

∂Φp(s)

∂s
+ Φα(s)Φρ(s)g

∂Φz(s)

∂s
ds, (5.16)

where Φz(s) = Φz(s; zi, zj) = zi + s(zj − zi), Φα,ρ,p(s) = ΦEα,ρ,p(s) + Φfα,ρ,p(s)
respectively. Taking into account that

bz3 =

∫ 1

0

∂ΦEα (s)

∂s

∂ΦEp (s)

∂s
+ ΦEα (s)ΦEρ (s)g

∂Φz(s)

∂s
ds = 0 (5.17)

bz3 can be rewritten as follows

bz3 =

∫ 1

0

(
∂ΦEα (s)

∂s

∂Φfp(s)

∂s
+
∂Φfα(s)

∂s

∂ΦEp (s)

∂s
+
∂Φfα(s)

∂s

∂Φfp(s)

∂s

)
ds

+

∫ 1

0

(
ΦEα (s)Φfρ(s) + Φfα(s)ΦEρ (s) + Φfα(s)Φfρ(s)

)
g
∂Φz(s)

∂s
ds.

(5.18)
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In general, the integral term could be difficult to compute, therefore we propose
to use a numerical quadrature formula. Here the mid-point rule is used. In
this case, we define bz3 as follows

bz3 = ∆αEij∆p
f
ij + ∆αfij∆p

E
ij + ∆αfij∆p

f
ij

+
(
αEijρ

f
ij + αfijρ

E
ij + αfijρ

f
ij

)
g∆zij , (5.19)

where

∆pE,fij = pE,fj − pE,fi ,∆αE,fij = αE,fj − αE,fi ,∆zij = zj − zi

αE,fij =
αE,fi + αE,fij

2
, and ρE,fij =

ρE,fi + ρE,fij

2
.

(5.20)

It is clear from the definition that bz3 = 0 if qi and qj lie on the same stationary
solution because all the fluctuation terms are zero.

For completeness we recover here the expression of the extended Jacobians
whose eigenstructure is needed in the Osher-Romberg viscosity (3.49)

A1 =
∂f

∂Q
+ B1 =


0 1 0 0 0

c2 − u2 2u 0 p− ρc2 0

−uv v u 0 0

0 0 0 u 0

0 0 0 0 0

,

A2 =
∂g

∂Q
+ B2 =


0 0 1 0 0

−uv v u 0 0

c2 − v2 0 2v p− ρc2 αρg

0 0 0 v 0

0 0 0 0 0

,
(5.21)

where the speed of sound c is defined as

c2 =
∂p

∂ρ
=
γk0

ρ0

(
ρ

ρ0

)γ−1

(5.22)

In particular for α = 0 we lose the hyperbolicity (it can be shown by computing
the eigenvectors, see [65]), so we always choose the initial conditions for the
volume fraction α as

α(x, 0) =

{
1− ε, if x ∈ Ωl

ε, if x ∈ Ωa
(5.23)
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where ε > 0 is a small parameter.

To conclude, we point out that in order to avoid wasting computational time
we use the second order version of the code only wherever α > 10ε otherwise,
i.e. in pure gas cells, we switch to the first order method.

5.3 CUDA

The introduced system is particularly well suited to simulate breaking waves
and dambreak problems, since the physical model is complete and the employed
numerical method is of high order and exactly well-balanced for relevant equi-
librium solutions. However to capture all the details of a complex free surface
flow we need also a very fine mesh. Thus, in order to increase the effective-
ness of our method, we have decided for a parallel implementation, choosing
in particular a GPU-based platform that is even faster than parallel codes run
on CPU.

The NVIDIA’s CUDA (Compute Unified Device Architecture) framework
is a hardware and software platform that allows to easily exploit the NVIDIA
GPUs and parallelize many costly algorithms. We refer to the recent book [118]
for a complete introduction to CUDA for Scientific Computing. The images
of this section are indeed courtesy of its authors. Here we limit ourselves to a
small introduction and to some notes on our specific implementation.

According to the CUDA framework, a GPU is viewed as part of a comput-
ing device, with their own Dynamic Random Access (DRAM) memory, which
works as a coprocessor for a host which includes the CPU and its (DRAM)
memory, see Figure 5.1. It is possible to copy data from the host DRAM mem-
ory (linked to CPU) to the DRAM memory of the device (linked to GPU) and
viceversa.

The CUDA framework assumes a unified architectural view of the GPU
where a GPU is formed by many multiprocessors, each one having multiple
cores (see Figure 5.2). At any clock cycle, each core of the multiprocessor
executes the same instruction, but operates on different data. The data which
are processed in each multiprocessor can be stored in the global memory, that
can be shared by all execution units but is slower than the other type of memory
i.e. registers and shared memory which belong respectively to each core and
each multiprocessor.

The multiprocessors of a GPU are specialized in the parallel execution of
a huge number of CUDA threads. A CUDA thread represents a sequential
computational task which executes an instance of a function and is executed
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Figure 5.1: GPU device: coprocessor for the host system.

Figure 5.2: CUDA hardware model.

logically in parallel with respect to other CUDA threads (associated to the
same function but operating on different data) on the cores of a GPU mul-
tiprocessor (see Figure 5.3). To specify the function to be executed by each
thread on the GPU, the programmer must define a special C function, called
CUDA kernel. A CUDA kernel is called from the CPU and is executed on the
GPU by each CUDA thread. When a kernel is launched, every thread executes
the same function but the processed data depend on the value of several built-
in variables which identify the position of each particular thread, from which
one can deduce for example the element or the edge on which the thread is
operating. According to the data structure the threads are organized in a 1D,
2D or 3D grids, see Figure 5.4. In this way data referring to neighbors cells
in the physical problem will be grouped together even during the computation
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Figure 5.3: Execution of multiple CUDA threads associated with the same kernel.

contributing in accelerating the algorithm, since the interactions between neigh-
bors are frequent and the proximity of the data reduces the memory accesses.

5.3.1 Notes on our implementation

Our algorithm is composed by three main kernel functions. The first one is used
to reconstruct the polynomial representing the conserved variables inside each
cell. Data are organized in a 2D grid and each thread works on one element of
the mesh.

The second one is used to solve the Riemann problem at each interface, i.e.
each edge of the mesh. We compute the numerical flux between two elements
across an edge: the obtained quantity should be added (with different signs) to
each of the two elements. As in any parallel implementation, it is important to
guarantee that there are no superpositions, i.e. that we do not modify at the
same time the same element. So we cannot simply launch the kernel function
indiscriminately on all the edges at the same time: because each element has 4
edges and so many possibilities of superpositions. To overcome this problem the
idea consists simply in subdividing the edges in four groups. Since the mesh is
Cartesian we can distinguish the edges between vertical and horizontal ones and
we can number each group incrementally form left to right and from the bottom
up. The four groups are then obtained by considering: the vertical edges
with odd numbering, the vertical edges with even numbering, the horizontal
edges with odd numbering, the horizontal edges with even numbering. So the
computation of the flux at the interfaces is subdivided into four kernel functions
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5 Well balancing: GPU Parallel implementation

Figure 5.4: Structure of a CUDA Program. A kernel is a function to be executed by
each thread (represented by the curved arrow). According to the data structure
the threads are organized in a 1D, 2D or 3D grid.

each one operating on a non intersecting set of data.

The third kernel function is organized as the first one and is used to update
the solution in each cell from time tn to time tn+1 summing up all the flux
contributions.

5.4 Numerical Results

The numerical results presented here demonstrate that our method preserves
the equilibria up to machine precision, that solves dambreak problems more
accurately than shallow water in the first instances after the break, and that
it is very efficient on fine meshes.
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Figure 5.5: Density distribution at the equilibrium. Left: only water (α = 1) with
hydrostatic pressure distribution. Middle and right discontinuous α, interface
water-air without (middle) and with (right) an obstacle. Velocity v = 0.

5.4.1 Equilibria

First of all, we have considered an equilibrium profile characterized by (5.6)-
(5.8)-(5.9), with k0 = 107, ρ0 = 1 and γ = 1 on a domain Ω = [−0.5, 0.5]× [0, 1]
in three different contexts.

a) In the first case the domain is totally covered by the liquid Ω` = Ω and
α = 1.

b) In the second case we consider both air and water, more precisely Ω` =
[−0.5, 0.5] × [0, 0.5] with α = 0.999 and Ωa = [−0.5, 0.5] × [0.5, 1] with
α = 0.001.

c) The third case coincides with the second one with the insertion of an
obstacle in [−0.125, 0.125]× [0, 0.25].

The equilibrium profiles are shown in Figure 5.5. Our scheme preserves the
equilibria up to machine precision: in Table 5.1 we report the maximum error
between our numerical results, in the three cases, and the exact solution for
what concerns the absolute value of the velocity (in order to compare the results
with [65]); Machine precision is reached also on all the other quantities.

5.4.2 Dambreak

A very typical application for shallow water-type models is the so-called dam-
break. It consists of the sudden collapse/removal of a vertical wall that sep-
arates two different piecewise constant states of water from each other. Since
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Table 5.1: Maximum error between the numerical and the exact solution for the
modulus of the velocity in the three considered cases. Equilibria are maintained
up to machine precision for very long times.

time ||u||∞
1 3.2E-12 7.4E-14 5.1E-13

10 3.2E-12 8.0E-14 3.0E-12

100 3.3E-12 8.0E-14 3.3E-12

1000 3.4E-12 8.1E-14 3.4E-12

in the initial stages of dambreak flows, the classical shallow water assumption
of small vertical velocities and accelerations does not hold, it is of interest to
apply our more complete model to this well-studied phenomenon.

We consider the classical dambreak over a dry bed. We take a compu-
tational domain Ω = [−50, 50] × [0, 4] covered with a very fine Cartesian
mesh of 3 · 106 elements. At the initial time t = 0 the liquid is contained
in Ω` = [−50, 0]× [0, 1.4618]. The constants that characterize the problem are
chosen to be k0 = 6.37 · 105, ρ0 = 1000 and γ = 1 (in this way the Mach
number is M = 0.3 with a maximum expected velocity |u| = 7.57). The initial
velocity is u = 0 everywhere, and the initial hydrostatic pressure and density
distributions in Ω` are given by

p(x, 0) = ρ0g(z0(x)− z),

ρ(x, 0) = ρ0

(
ρ0g(z0(x)− z) + k0

k0

)(1/γ)

,
(5.24)

where z0(x) is the initial vertical position of the free surface as function of
x. In the air we impose p(x, 0) = 0, and ρ(x, 0) = ρ0 = 1000. The bound-
ary conditions are reflective wall on the left, bottom and right border of the
computational domain and transmissive boundaries on the top.

The results presented in Figure 5.6 clearly show the superiority of our more
complete model with respect to the classical shallow water assumptions. And
after longer times the two methods perform equally well, which guarantees the
reliability of our scheme both for short and long times.
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Figure 5.6: Dambreak problem. We compare our numerical results (water in yellow
and air in blu) with a reference solution taken from Dumbser [65] in red, and
the solution obtained using the shallow water model in green. On the left we
show the results at time t = 0.5 and on the right the results at time t = 5. It is
clear that at short time our method fits better the results with respect to shallow
water and at longer times they perfectly agree. We have imposed that water
corresponds to α ≥ 0.5 and air to α < 0.5; with different threshold values one
obtain very similar results.

5.4.3 Dambreak and impact against a vertical wall

The last test problem we want to show consists of a dambreak flow with succes-
sive impact against a vertical wall, which leads to the reflection of the incident
wave and successive wave breaking. The setup of this test case is taken from [81]
and [53]; the results could be compared also with [65]. The computational do-
main is Ω = [0, 3.2]× [0, 1.8] with reflective boundaries on all the sided a part
from the top where we impose transmissive boundary conditions. At t = 0 the
liquid occupies Ω` = [0, 1.2]× [0.6], and density and pressure distributions are
given once again by (5.24). We set k0 = 2.62 · 105 that gives a Mach number
M = 0.3, and we cover the domain with a mesh of 8 · 105 elements. The nu-
merical results are depicted in Figure 5.8. This test shows the capability of our
scheme to capture complex free surface flows as those produced by breaking
waves. In particular, since the free surface interface is given by the volume
fraction α it is not constraint to be necessarily a a single-valued function as it
is in standard shallow water context.

Efficiency

In order to prove the efficiency of our implementation we have run this test
up to the final time tf = 1 on finer and finer meshes using as graphics card a
GeForce Titan Black, with the double precision performance option enabled.
The number of volumes processed per seconds with respect to the total number
of processed volumes is reported in Figure 5.7: we have reached the order of
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Figure 5.7: Impact against a vertical wall: efficiency. In the figure we show the
number of volumes processed per seconds when employing finer and finer meshes
to solve the dambreak problem of Section 5.4.3 up to a final time tf = 1. (Note
that with nVol on the x-axis we refer to the number of elements of the mesh
multiplied by the number of timesteps.)

ten millions of volumes processed per second.
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5.4 Numerical Results

Figure 5.8: Impact against a vertical wall at different times. In the figure we depict
the value of α which goes from α ∼ 0 (blue) i.e. air, to α ∼ 1 (yellow) i.e. liquid.
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6 Angular Momentum preserving schemes for
the compressible Euler equations

What we propose here is to exploit in various ways the redundant conserva-
tion law that can be written for the angular momentum, in order to increase
the accuracy of the final results. Our study is based on considering an aug-
mented Euler system of equations where we take into account both the inertial
momentum conservation law as well as the angular momentum conservation
law.

We present here three different formulations: the master-slave approach,
the global-coupling and the local-coupling. In the master-slave approach we
propose a straightforward discretization of the augmented system, where the
angular momentum will have no influence on the other conserved variables. In
the global-coupling the angular momentum is strongly coupled with the entire
system: in this case we will assume the a priori knowledge of a fixed center
of rotation. Finally, for the local-coupling we will explore a solution in which
the rotation center varies locally. In these three approaches the number of
conserved variables is ν = 5 whereas for the initial Euler system ν = 4.

The validation of the algorithms will be performed with three different types
of test problems. The first one is standard and is used to compare the results
for the three approaches (master-slave approach, global-coupling and local-
coupling). It is a solid body rotation of a gas with constant density. Density
and velocity have been chosen in such a way that also the angular momentum
is constant. As computational domain we consider a ring centered in the origin
with radius r ∈ [1, 2] and the initial condition, that corresponds also to the
stationary analytical solution, is the following

ρ = 1, u =

(
−y

x2 + y2
,

x

x2 + y2

)
, p = − 1

2(x2 + y2)
+ 1, w = 1. (6.1)

In Table 6.1 with this test, we illustrate the interest of solving the angular
momentum within an augmented system. The second type of test is made of
variants of the first one, to illustrate specific features of the different methods.
The third test problem is a generalization of the Kidder test problem [20] which
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Table 6.1: In the central column (without Angular Momentum Conservation – with-
out AMC) we report the error in L2 norm between the analytical value of the
angular momentum and the one obtained at later times by computing a posteriori
w = u ∧ (x − xc), by solving a system of size ν = 4. The errors reported in
the right column (with AMC ) are obtained with the master-slave approach (see
Section 6.2), by solving an augmented system of size ν = 5. We have employed
a mesh of 1600 elements and both a method of order 1 and 2. This simple test
proves that post-processing may generate important errors with respect to a direct
computation of an augmented system.

without AMC (ν = 4) with AMC (ν = 5, master-slave)

time order 1 order 2 order 1 order 2

1 3.2 5.1E-3 2.6E-16 1.6E-16

5 7.2 3.0E-2 1.0E-15 8.2E-16

10 9.4 5.3E-2 2.1E-15 1.7E-15

20 - 1.0E-1 3.7e-15 3.2E-15

is emblematic of strong implosion in stars or inertial confinement fusion devices.
In our study we extend the physics considered in the standard Kidder problem
by adding non-zero angular velocity. To our knowledge, this new analytical
solution in cylindrical coordinates which combines compression and rotation is
original with respect to the literature.

The rest of the chapter is organized as follows. First in Section 6.1, we
introduce the augmented system of equations. In Section 6.2 we introduce
the master-slave formulation. Section 6.3 is devoted to the global-coupling
algorithm. The principles of a center-detector are introduced in Section 6.4.
Next, Section 6.5 is devoted to the local-coupling method. The coupling with
the ALE techniques is investigated in Section 6.6. In Section 6.7, we study a
modified Kidder problem with rotation, whose derivation details are given in
the Appendix B.
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6.1 Augmented Euler equations

6.1 Augmented Euler equations

Let us recall the standard Euler equations of compressible gas dynamics in two
dimensions of space which represent a hyperbolic system

∂tρ+∇ · (ρu) = 0,

∂t (ρu) +∇ · (ρu⊗ u) +∇p = 0,

∂t (ρe) +∇ · (ρue+ pu) = 0.

(6.2)

Here ρ is the density, u = (u1, u2) is the velocity, e is the total energy density
and p the pressure. For a perfect gas one has

p = (γ − 1)

(
ρe− 1

2
ρ ||u||2

)
, γ =

cp
cv

> 1, (6.3)

where γ is the ratio between heats at constant pressure and volume, which is
taken to be constant. In particular, we underline that the system states ν = 4
conservation laws: one for the mass, two for the inertial momentum and the last
for the energy. In any direction defined by the unit vector n, (6.2) admits four
eigenvalues: un− c, un, un+ c, un, where c denotes the sound speed c =

√
γp/ρ

and un = u · n. From now on, for the sake of clarity, we detail everything in
2D, but most of the ideas are general and can be easily extended to 3D.

By choosing arbitrarily a special center point xc = (xc, yc) the angular mo-
mentum can be defined as

w = u ∧ (x− xc), where ∧ denotes the vector product. (6.4)

Note that xc = 0 is a possible choice and it is adopted when the center of
rotation of the studied system is unique and known for any time. For the other
cases we will describe a technique to determine it. Straightaway, a redundant
conservation law for the angular momentum can be easily derived from the
equations of the inertial momentum, by computing

(y − yc)
(
∂t(ρu1) + ∂x(ρu2

1 + p) + ∂y(ρu1u2)
)
−

(x− xc)
(
∂t(ρu2) + ∂x(ρu1u2) + ∂y(ρu2

2 + p)
)
,

(6.5)

from which we obtain

∂t (ρw) +∇ ·
(
ρuw + p(x− xc)⊥

)
= 0. (6.6)

It is clear that, from an analytical point of view, this equation does not add any
supplementary information to the system, since it is directly derived from the

151



6 Angular Momentum preserving schemes

other ones. But from a numerical point of view it provides extra information
in particular in the case of rotating systems.

Thus one can define the augmented 2D Euler system as
∂tρ+∇ · (ρu) = 0

∂t(ρu) +∇ · (ρu⊗ u) +∇p = 0

∂t(ρe) +∇ · (ρue+ pu) = 0

∂t(ρw) +∇ ·
(
ρwu + p(x− xc)⊥

)
= 0.

(6.7)

The system is still hyperbolic with an extra eigenvalue equal to un.
In Sections 6.2, 6.3 and 6.5 we will reformulate this system in order to ob-

tain numerical methods with different characteristics. All these augmented
formulations can be cast in the form

∂Q

∂t
+∇ · F(Q,x) = S(Q), x ∈ Ω(t) ⊂ R2, Q(t,x) ∈ Rν , (6.8)

a special case of (1.1) where in particular the flux F(Q,x) depends both on Q
and on the position x. They will be automatically discretized thanks to our
up to second order accurate direct ALE PDE solver presented in Chapter 2.
The ALE context allows us to first employ a zero velocity mesh in order to
investigate what happens in the Eulerian framework; we will switch to a moving
domain in Section 6.6.

6.2 Master-slave approach

The first method we propose consists simply in discretizing (6.7) by setting

Q :=


ρ

ρu

ρe

ρw

 and F(Q,x) :=


ρu

ρu⊗ u + Ip

ρue+ pu

ρwu + p(x− xc)⊥


in (6.8) and use our general code. We refer to the fifth equation as slave
because the Euler equations are solved independently, then angular momentum
equation is computed a posteriori. This is regrettable because the benefits of
angular momentum preservation cannot be seen by the other physical variables.
However, by construction we automatically obtain the conservation in L1 norm
of w as adjoint variable. See Table 6.2 for some numerical results.
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Figure 6.1: We consider the solid body rotation described in (6.1) and the master-
slave formulation. We have used order one and a mesh of 1600 elements. On the
left we show that the L2 norm of the angular momentum remains stable for long
times during the computation. However the L2 norm of the velocity is rapidly
dissipated and so the error grows. This means that with this formulation the
velocity cannot enjoy any positive effects of including w in the system.

We would like to underline that the value assumed by w evolved through
its conservation law may be different from the exact one and from the one
computed a posteriori as u∧ (x−xc): indeed the evolution of u and w are not
linked in the master-slave formulation. For this reason the exact conservation
of the total angular momentum does not imply directly an improvement on
the final results. So, to measure the impact of our modified methods on the
simulations we consider the following quantities

||w−w0||L2
=

√√√√NE∑
i=1

|Ti| (wi−w0,i)2, ||u−u0||L2
=

√√√√NE∑
i=1

|Ti| ||ui−u0,i||2.

(6.9)
The first one tells us if the value assumed by the variable w adjoint to the
system coincides with the initial value, and the second quantity is an indicator
of the effects of w on the entire system, in particular on the velocity. This
choice is moreover justified by the fact that our tests are based on stationary
solutions so the initial values coincide also with the exact ones.

In Figure 6.1 we show the values of the quantities in (6.9) for the test case
(6.1) at different times. Even if the angular momentum is perfectly maintained,
the velocity cannot enjoy any positive effects of including w in the system.
Therefore, in Section 6.3 we propose a coupled formulation in such a way that
the behavior of w and u are linked together. Before presenting the second
approach which couples strongly the angular momentum and the rest of the
variables, we describe the test cases that will be used to analyze our methods.
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Table 6.2: In this table we report the error in L1 norm between the total angular
momentum at the beginning of the simulation and after different times. The errors
refer to three different test cases: test 1 refers to the solid body rotation described
in (6.1), in test 2 the isentropic vortex of (6.10) is taken into account, and finally,
in the third one we refer to the four vortexes test case described in (6.11). The
results show clearly the exact conservation of the angular momentum obtained
with the master-slave approach both with order 1 and 2.

test 1 test 2 test 3

time order 1 order 2 order 1 order 2 order 1 order 2

1 2.6E-16 1.6E-16 9.5E-14 7.3E-14 5.5E-16 7.3E-16

5 1.0E-15 8.2E-16 1.5E-14 6.7E-14 1.6E-15 1.1E-15

10 2.1E-15 1.7E-15 3.6E-15 7.9E-14 1.1E-14 7.2E-16

20 3.7E-15 3.2E-15 1.0E-13 8.9E-14 2.1E-14 1.2E-16

Isentropic vortex tests for Master-Slave

We consider a single isentropic vortex over a ring centered in the origin with
radius r ∈ [1, 2]. The initial stationary condition is given by

ρ(r) =

[
1− (γ − 1)β2

8γπ2
e(1−r2)

] 1
γ−1

,

u(r) =
β

2π
e

(
1−r2

2

) (
−y, x

)
, p(r) = ρ(r)γ , w = u ∧ x,

(6.10)

with r = ||x||, β = 5, γ = 7/5. See Figure 6.2 for the density and w profiles. In
this case the center of rotation is obviously defined and coincides with the origin.
A more complex example consists in considering four isentropic vortexes cen-
tered respectively in C1 = (2.5, 2.5), C2 = (−2.5, 2.5), C3 = (−2.5,−2.5), C4 =
(2.5,−2.5). The computational domain is a square [−5, 5] × [5, 5]. The initial
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Figure 6.2: Density (left) and angular momentum (right) profiles for the single isen-
tropic vortex stationary solution (6.10).

stationary condition is given by (6.10) with in particular

r =


||x− C1|| if x ≥ 0, and y ≥ 0

||x− C2|| if x < 0, and y ≥ 0

||x− C3|| if x < 0, and y < 0

||x− C4|| if x ≤ 0, and y < 0

,

u =


β
2π
e

(
1−r2

2

) (
−y, x

)
, if xy ≥ 0

β
2π
e

(
1−r2

2

) (
y,−x

)
, if xy < 0

.

(6.11)

See Figure 6.3 for the density and w profiles.

For all test problems presented in this chapter, unless otherwise specified,
the reflective wall boundary conditions are implemented by assigning a state
at the wall boundary which solves the inverse Riemann problem at the element
interface such that the normal velocity u · n vanishes at the interface. A first
order version of the code is employed in order to compare the three different
approaches, in such a way to avoid the effects of reconstruction procedures and
boundary conditions in the analysis. Finally, test (6.1) and (6.10) are run with
a mesh of 1600 elements, whereas for (6.11) we use a mesh of 6400 elements.
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Figure 6.3: Density (left) and angular momentum (right) profiles for the four isen-
tropic vortexes stationary solution (6.11).

6.3 Global-coupling

In order to exploit the angular momentum preservation, we propose a coupled
approach which we call global-coupling, referring with the term global to a fixed
global center of rotation and in opposition to the local-coupling approach which
will be proposed in Section 6.5. The global-coupling is obtained by rewriting
the Euler system as follows

∂tρ+∇ · (ρv) = 0,

∂t(ρu) +∇ · (ρu⊗ v) +∇p = 0,

∂t(ρe) +∇ · (ρve+ pv) = 0,

∂t(ρw) +∇ · (ρvw) +∇∧ (p(x− xc)) = 0,

(6.12)

where

v = vr + vθ, vr =
1

r2
〈u, (x− xc)〉 (x− xc), vθ = − 1

r2
w(x− xc)

⊥,

rer = x− xc, r = ||x− xc||, eθ = e⊥r ,

e = ε+
1

2
‖vr‖2 +

1

2r2
w2,

p = (γ − 1)

(
ρe− 1

2
ρ

(
||vr||2 +

1

r2
w2

))
.

(6.13)
The system remains hyperbolic with an adjoint eigenvalue equal to un. More-
over we propose to compute the eigenvalues using v instead of u. Obviously,
on the continuous level, one has v = u.
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This formulation is obtained by noticing that, chosen a center of rotation and
an orthonormal basis (er, eθ), the velocity can be rewritten as the sum of the
two components along this basis: we call v the velocity when written in this
way. In particular if u is a radial field and er lies along the radial direction then
vr is null, which is easy to maintain even at numerical level, since classically
||u||L2

rapidly dissipates. Hence, the correctness of v strictly depends on the
preservation of w. Therefore, being able to conserve w, the expected results of
employing this formulation are the following:

a) The error on v, computed a posteriori using (6.13), should be less than
the error on u, for this reason we introduce another indicator to measure
the precision of the results

||v − v0||L2
=

√√√√NE∑
i=1

|Ti| ||vi − v0,i||2, with v0 = u0.

b) The use of v, instead of u, in (6.12) should reduce the error even on
||u− u0||L2

with respect to the master-slave approach.

On the other side the application of (6.12) is not trivial. First, appropriate
boundary conditions should be defined for v, w and x and moreover the center
of rotation should be known. As previously, the numerical method is built
using our general solver by defining

Q :=


ρ

ρu

ρe

ρw

 and F(Q,x) :=


ρv

ρu⊗ v + Ip

ρve+ pv

ρvw + p(x− xc)⊥


in (6.8).

Numerical results for Global-Coupling

We have applied the global-coupling to the test case (6.1) and to (6.10). In these
two cases the center of rotation is known and coincides with the origin. However
the treatment of boundary condition is complex. Consider a boundary element i
and call j its phantom neighbor. An easy definition consists in considering again
the reflective boundary condition and moreover to set wj = wi, xj = xi, and
finally recovering v through (6.13). This setting guarantees the conservation of
||w||L1 . Also ||v − v0||L2

is significantly reduced with respect to ||u− u0||L2
.
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Figure 6.4: Consider the solid body rotation (6.1) and the global-coupling with stan-
dard reflective boundary conditions. In the middle we report the ||u− u0||L2

ob-

tained with the global-coupling where we cannot appreciate an improving with
respect to the master-slave approach (left). But instead the ||v − v0||L2

(right)

is greatly reduced with respect to ||u− u0||L2
.
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Figure 6.5: Consider the isentropic vortex in (6.10) and the global-coupling with
standard reflective boundary conditions. In the middle we report the ||u− u0||L2

obtained with the global-coupling where we cannot appreciate an improving with
respect to the master-slave approach (left). But instead the ||v − v0||L2

(right)

is greatly reduced with respect to ||u− u0||L2
.

Unfortunately, no positive effects can be registered on ||u− u0||L2
with respect

to the master-slave approach whose error is actually slightly increased. Refer
to Figure 6.4 and 6.5 for the numerical results.

Another possible choice for the boundary condition consists in imposing the
exact solution in the phantom element j, setting in particular xj equal to the
barycenter of j. Strictly speaking we lose the conservation, but only because
there is an exchange with the exterior. With this choice the performance on
||u− u0||L2

is highly increased and at the same time ||v − v0||L2
grows slowly.

Refer to Figure 6.6 and 6.7 for the numerical results.

These two test cases witness the potential of this formulation despite some
intrinsic defects. For example, trying to apply the same scheme to the four
vortexes test case (6.11) would not improve the results, since the center of
rotation, even if it is known, is not unique. With this motivation we propose the
local-coupling approach where multiple centers of rotation can be considered
at the same time. At first, we propose a way to detect locally the center of
rotation in the following paragraph.
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Figure 6.6: Consider the solid body rotation (6.1) and the global-coupling with
the boundary conditions that exploit the exact solution. We first notice the
great improving on ||u− u0||L2

and as counterpart only a small worsening on

||v − v0||L2
.
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Figure 6.7: Consider the isentropic vortex in (6.10) and the global-coupling with
the boundary conditions that exploit the exact solution. We first notice the
great improving on ||u− u0||L2

and as counterpart only a small worsening on

||v − v0||L2
.

6.4 Center-Detector

Let us consider a velocity field u(x) whose value is locally given at the barycen-
ter of each control volume Tni ∈ TΩ at any time step n. It can be described by
the following relation

u(x) = ω(r)(x− xc)⊥ + ϕ(r)(x− xc), (6.14)

where xc is the center of rotation of the field, r is the distance from the center,
ω(r) represents the angular velocity and ϕ(r) the expansion coefficient.

The aim of this section is to propose a method able to reconstruct the center
xc and the values of ω(r) and ϕ(r), given local information about the velocity
field u(x) and a radial pressure field p = p(r). To fix the notation, let us
consider an element Ti and its neighbors: let L(Ti) the set of neighbors of Ti

159



6 Angular Momentum preserving schemes

Figure 6.8: The element Ti and its neighbors Tki i = 1, 2, . . . , 7, i.e. Tk1 , Tk2 , . . . ,
Tk7 ∈ L(Tj).

that shares with Ti an edge, and V(Ti) the set of neighbors of Ti that shares
with Ti a vertex. The barycenter of an element Ti is denoted by xi. All
the quantities evaluated at the midpoint between two elements Ti and Tk will
be denoted by a star, namely x∗i,k,u

∗
i,k, r

∗
i,k, and for the sake of simplicity by

x∗,u∗, r∗ when there is no confusion. Refer to Figure 6.8 for the notation. The
core of the procedure is given by the following proposition.

Proposition 6.4.1. Let

ϕ∗i,k =

〈
ui − u∗i,k,xi − x∗i,k

〉
‖xi − x∗i,k‖2

, ω∗i,k =

〈
ui − u∗i,k,

(
xi − x∗i,k

)⊥〉
‖xi − x∗i,k‖2

.

be a local approximation of the angular velocity and of the expansion factor
valid in a neighborhood of element Ti and its neighbor Tk ∈ V(Ti). Then the
following first order approximations hold

ω∗i,k = ω (ri) + ω′ (ri) r
∗
〈

x∗ − xc

r∗
,

xi − xk
‖xi − xk‖

〉2

+O (h) , (6.15)

ϕ∗i,k = ϕ (ri) + ϕ′ (ri) r
∗
〈

x∗ − xc

r∗
,

xi − xk
‖xi − xk‖

〉2

+O (h) , (6.16)
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6.4 Center-Detector

where h is the characteristic dimension of the elements.

Proof. We present here the proof of (6.15), the proof of (6.16) can be obtained
following the same procedure. From (6.14) the following equalities can be
deduced〈

ui−u∗, (xi−x∗)⊥
〉

=
〈
ω(ri) (xi−xc)⊥− ω(r∗) (x∗−xc)⊥, (xi−x∗)⊥

〉
=
〈
ω(ri)(xi−x∗)⊥+ (ω(ri)−ω(r∗)) (x∗−xc)⊥, (xi−x∗)⊥

〉
= ω(ri) ‖xi−x∗‖2 + (ω(ri)−ω(r∗)) 〈x∗ − xc,xi − x∗〉

=

(
ω(ri)+

ω(ri)−ω(r∗)

‖xi−x∗‖22
r∗
〈
x∗−xc

r∗
,xi−x∗

〉)
‖xi−x∗‖22 .

(6.17)
By introducing a Taylor approximation we have that

ω(ri)− ω(r∗) = ω′(ri)

〈
x∗ − xc

r∗
,xi − x∗

〉
+O(h2),

and so by substituting this last expression in (6.17) we finally obtain〈
ui−u∗, (xi−x∗)

⊥
〉

=

(
ω(ri)+ω′(ri)r

∗
〈

x∗−xc

r∗
,

xi−x∗

‖xi−x∗‖

〉2)
‖xi−x∗‖22+O(h3),

(6.18)

and dividing the two members by ‖xi − x∗‖22 we easily recover (6.15).

The quantity 〈
x∗ − xc

r∗
,

xi − xk
‖xi − xk‖

〉
(6.19)

can be obtained without explicitly knowing the center xc but exploiting the
radial pressure field, characterizing any flux subject to a rotation or an expan-
sion.

Proposition 6.4.2. Let p = p(r) be a radial pressure field then

pi − p∗ =
p′(r∗)

r∗

〈
x∗ − xc,

xi − xk
‖xi − xk‖

〉
+O

(
h2) , (6.20)

where pi = p(xi) and p∗ = p(x∗ik), with Tk a neighbor of Ti .
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6 Angular Momentum preserving schemes

Proof. The relation can be easily obtained as a Taylor expansion of p which
has been supposed to depend only on r.

Equation (6.20) can be rewritten as

pi − p∗ = λ

〈
x∗ − xc

r∗
,

xi − xk
‖xi − xk‖

〉
+O

(
h2) , (6.21)

with

λ = ‖x∗ − xc‖
p′(r∗)

r∗
.

To simplify the notation, we remark that the two vectors in (6.19) and (6.20)
are unit vectors, hence we call µ the angle between the center of rotation xc

and x∗, α = cosµ, β = sinµ, and θk the angle between xi and xk. Now in
order to obtain (6.19) for the element Ti by exploiting (6.21) we propose to
find α and β such that minimize∑

k∈L(Ti)

∣∣λ (α cos θkj + β sin θk
)
− ξk

∣∣ , with ξk =
pi − pk
xi − xk

. (6.22)

Then, the two unknowns ω(ri) and ω′(ri) in (6.15) can be recovered by ex-
ploiting the values of ω∗i,k obtained from all the neighbors of Ti and by another
minimization procedure. So, finally we have to solve

ω(ri), ω
′(ri) = arg min

z1,z2

∑
k∈V(T〉)

∣∣∣∣∣z1 + z2

〈
x∗i,k − xc

r∗i,k
,

xi − xk
‖xi − xk‖

〉2

− ω∗i,k

∣∣∣∣∣
2

= arg min
z1,z2

∑
k∈V(T〉)

∣∣∣∣∣z1 + z2

〈[
cosµ

sinµ

]
,

[
cos θk
sin θk

]〉2

− ω∗i,k

∣∣∣∣∣
2

= arg min
z1,z2

∑
k∈V(T〉)

∣∣z1 + z2 (cosµ cos θk + sinµ sin θk)2 − ω∗i,k
∣∣2

= arg min
z1,z2

∑
k∈V(T〉)

∣∣z1 + z2 cos2(µ− θk)− ω∗i,k
∣∣2 .

(6.23)

Proposition 6.4.3. The uniqueness of the least square solution of (6.23) is
guaranteed if and only if the number of neighbors Tk ∈ V(Ti) with different θk
is greater or equal than 5.
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6.4 Center-Detector

Proof. Relation (6.23) can be rewritten as

ω(ri), ω
′(ri) = arg min

z∈R2

‖Az − b‖2

with

A =


1 cos2(µ− θk1)

1 cos2(µ− θk2)
...

...

1 cos2(µ− θkm)

, z =

[
z1

z2

]
, b =


ω∗k1
ω∗k2

...

ω∗km

 , m = #V(Ti), (6.24)

which has a unique solution if and only if rank(A) is maximal, i.e. it is equal
to two. Thus, to ensure the uniqueness, we need that at least two elements Tkj
and Tk` ∈ V(Ti) are such that

cos2(µ− θkj ) 6= cos2(µ− θk`),

which implies

µ− θki 6=

{
± (µ− θk`)
± (µ− θk`) + π

→ θki 6=


θk`
θk` + π

2µ− θk`
2µ− θk` + π

. (6.25)

It is clear that if #V(Ti) ≤ 4 the angles θk could be exactly linked by the
relations in (6.25). Then we need at least 5 neighbors along 5 different directions
to ensure that rank(A) = 2.

Remark 6.4.4. The condition given by Proposition 6.4.3 is in general not
restrictive and always verified by any Delaunay triangulation and any structured
grid. However, this tells us that the elements in L(Ti) are not enough to ensure
the uniqueness of the solution, and so we really need to consider the set of all
the neighbors V(Ti).

Let us resume the fundamental steps of the algorithm: first one compute α
and β through (6.22), then it is possible to recover ω(ri), ω

′(ri) with (6.23) and
finally the center xc can be obtained through (6.14), (6.15) and (6.16).
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6 Angular Momentum preserving schemes

6.5 Local-coupling

As already noticed, we are interested in studying problems where the center of
rotation could be unknown or there could be more than a center, so we propose
a second coupled approach, that we will call local-coupling. The advantage of
such a formulation is the possibility of defining a different center of rotation
for each element of the mesh. In this way we can treat both problems with
multiple known rotation centers and even situations for which the center is a
priori unknown but only approximated from each element, and hence affected
by numerical errors. In the latter case, we shall use the local center-detector
proposed in the previous section.

The difference with respect to the previous case lies in the flux computation
which is done at a local level. We propose to rewrite Euler system as follows

∂tρ+∇ · (ρv∗) = 0,

∂t(ρu) +∇ · (ρu⊗ v∗) +∇p = 0,

∂t(ρe) +∇ · (ρv∗e+ pv∗) = 0,

∂t(ρw) +∇ · (ρv∗w) +∇∧ (p(x− x∗)) = 0,

(6.26)

where
w = u ∧ x, w∗ = w − u ∧ x∗

e∗ =
x− x∗

r∗
, r∗ = ‖x− x∗‖,

v∗ = (u, e∗)e∗ − w∗

r∗
e∗
⊥
.

(6.27)

x∗ is the local center of rotation. In this later case, the numerical method is
defined by writing

Q :=


ρ

ρu

ρe

ρw

 and F(Q,x) :=


ρv∗

ρu⊗ v∗ + Ip

ρv∗e+ pv∗

ρv∗w + p(x− x∗)⊥


in (6.8). Notice that if x∗ coincides with a unique rotation center the local-
coupling method coincides with the global one.

In practical applications, x∗ is defined on the edges of the mesh (to compute
the numerical fluxes). Logically x∗ is different at any edge of the mesh. Another
possible choice, when computing the flux between the elements i and k through
the edge `ik, consists in taking x∗ equal to the midpoint of `ik. With this
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6.5 Local-coupling

choice the method is stable, but not significant improvements can be achieved
on ||u− u0||L2

.

Numerical results for Local-Coupling

We can test the algorithm on our test (6.1). Our procedure results to be quite
accurate in computing the center especially when the data (i.e. pressure and
velocity fields) are well discretized. Moreover we can couple our detector with
the local-coupling method. Let us call xc,i the approximation of the center
obtained through our procedure considering an element Ti and when computing
the flux between Ti and Tj choose x∗ = x∗ij as

x∗ij =
xc,i + xc,j

2
.

In Figure 6.9 we compare the quantities ||u− u0||L2
obtained with the three

methods we have proposed on the solid body rotation test case (6.1). This
example shows that the local-coupling method, that employs only an approx-
imation of the center, gives results similar to the global-coupling procedure
that instead makes use of the exact center. Similar numerical results can be
obtained by considering the isentropic vortex test case, see Figure 6.10.

6.5.1 Numerical criteria for general cases

In practical implementation, it does not make sense to consider the center
detected by all the elements: because some of them could be affected by a
shock in the velocity field, by an almost constant pressure, by a field which is
not perfectly radial or by a mesh configuration particularly ill conditioned with
respect to the angle of rotation µ.

For all these reasons we propose here some numerical criteria to understand
when the center detected by our algorithm could be considered as a good ap-
proximation of the exact one.

First of all, we can accept a result only when the pressure field in the neigh-
borhood of the element has really a radial shape. So we will first exclude the
elements across which pressure differences are too small (i.e. less that 10−8 for
example). Moreover, since the detection method is first order accurate, and
from (6.20) we know that α and β should be approximate with an error of the
order of O(h2), if the minimization procedure is affected by an error greater
than

c1h
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Figure 6.9: Consider the test case (6.1). Top left master-slave approach. Top right
global-coupling. Bottom local-coupling with center-detector. This example shows
that the local-coupling, which employs only an approximation of the center, gives
results similar to the global-coupling procedure that makes use of the exact center.

we will exclude these elements. Indeed, we deduce from an high variation on
the estimate of α and β a non radial pressure field in the neighborhood of the
considered element.

The second limitation is connected with the least squares procedure described
in (6.23). Even in this case we know the expected order of accuracy in the
computations of ω and ω′, which is of order of O(h). We decide to exclude
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Figure 6.10: Consider the isentropic vortex in (6.10) and the local-coupling with
center-detector. Even on this example this approximated procedure gives us a
reduction in the velocity dissipation.
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all the elements for which the residuum of the least squares exceeds a certain
value of the form of

c2h.

In this way we exclude the element for which matrix A in (6.24) is ill condi-
tioned.

Last, recover the center by exploiting (6.14) could be a very difficult task
because it requires to invert a matrix whose determinant is proportional to
Λ = ω2+ϕ2. If Λ is to small, its inverse will be too big and the final computation
is ill conditioned. For this reason we will exclude from the computation all
elements for which

Λ < c3h.

While no limitations are required if the pressure and the velocity fields are radial
and well approximated, in more complex test cases the choice of c1, c2, c3 can
be relevant and not trivial.

By considering the four vortexes test case (6.11) we have verified that our de-
tector (without the application of the previous criteria) fails in all the elements
where the velocity field is too small to detect a radial field, in the elements too
close to the rotation center or in the diagonal direction where the mesh con-
figuration is particularly ill conditioned. So in Table 6.3 we report the results
obtained by applying the numerical criteria described above: by eliminating
the elements which are not suited for our detector the algorithm maintains a
good precision in the determination of the center.

However its coupling with the local method does not give an improving on
the computation of the velocities: indeed for all the elements from which the
center cannot be computed the choice of x∗ is not clear and even the boundary
conditions for x∗ and w∗ need a more sophisticated investigation. In particular
choosing x∗ equal to the midpoint when the center is not known does not
increase the quality of the results with respect to not consider w.

6.6 Coupling with ALE techniques

We underline that all the test cases presented up to now are run with a zero
mesh velocity. The coupling with the ALE techniques is not trivial: again
because of the boundary conditions of the adjoint quantities x, w,v but even
because of the standard distortion problems of considering a moving domain.
However, taking into account the test case (6.1) and imposing the boundary
conditions through the exact solution we can see that the global formulation
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Figure 6.11: Four vortexes test case (6.11). The black points represent the barycen-
ter of the elements for which our center-detector fails. The white areas show
the location of the elements for which our detector computes the center with a
good precision at different times.
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6.7 A Kidder problem with rotation

Table 6.3: Four vortexes test case (6.11). We have applied our detector with the nu-
merical criteria described in 6.5.1 choosing in particular c1 = 6, c2 = 10, c3 = 0.1.
In the table we report the percentage of active elements and the mean error in
the computation of the center obtained with a Cartesian mesh with character-
istic mesh size equal to 0.125 at two different times. By mean error we mean∑
i∈active elements ||xc,i−xc||

# active elements
. The error are of the order of the mesh size, as ex-

pected.

time active elements error

0 37% 0.15

1.2 33% 0.18
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Figure 6.12: Consider the solid body rotation (6.1) with boundary condition given
by the exact solution. We compare the results obtained with the master-slave
approach with a zero velocity mesh (left) and the global-coupling formulation in
the ALE framework (middle and right). We can notice that even in the complex
situation of a moving mesh the global-coupling allows a better preservation of
the velocity norm.

allows a better preservation of the velocity norm even in this context at least
for small times, refer to Figure 6.12.

6.7 A Kidder problem with rotation

A solution depending on three coefficients ρ > 0, α ≥ 0 and R0 > 0 reads ρ0(R) = ρ
(
R2

R2
0

+ α
)
,

p0(R) = p̂
(
R2

R2
0

+ α
)2

, p̂ = 1
4
ρ
R2

0
τ̂2

=
(
1 + ω2τ2

)
1
4
ρ
R2

0
τ2
.

(6.28)

The full derivation is in the Appendix B. The other initial data are uθ(R) =
ωR and ur(R) = 0. This solution is very similar to the Kidder solution for
ω = 0, but the pressure is premultiplied by the constant factor 1 + ω2τ2 to
counterbalance the centrifugal force created by the angular solid body rotation.
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Table 6.4: Kidder with rotation test case at the final time tf = 0.6τ with zero mesh
velocity. We report the L2 norm of the error over ρ, u and w with respect to the
exact solution ρ, u, w.

mesh master-slave approach global-coupling approach

h ||ρ− ρ||L2
||u− u||L2

||w − w||L2
||ρ− ρ||L2

||u− u||L2
||w − w||L2

2.03E-04 4.15E-2 4.82E-1 7.79E-1 6.26E-2 6.96E-1 9.48E-1

9.50E-05 2.77E-2 2.99E-1 4.97E-1 3.81E-2 4.30E-1 6.09E-1

For our test case we have chosen R2 = 1, R1 = 0.9, ρ2 = 2 and ρ1 = 1.
This corresponds to a focusing time of τ ' 0.21794 and we run the simulation
until tf = 0.6τ . The initial angular velocity is ω = τ−1 so that the pressure is,
with respect to the classical Kidder solution, multiplied by a constant factor 2.
The boundary conditions are imposed by prescribing the outer exact value of
density, velocity and pressure.

In Figure 6.14 we report the density and the angular momentum contours
of our numerical solution (obtained with the master-slave approach) compared
with the analytical one.

Moreover, in Table 6.4 we report the errors over the density, the velocity and
the angular momentum obtained both with the master-slave and the global-
coupling approaches. We underline that the results obtained with the global-
coupling do not improve the overall quality because in this test case the velocity
field has a non null radial component: so even if the angular component is
approximated through the angular momentum, no positive effects can be seen
on the radial component. However this does not prevent the convergence of
the method.

Finally, we have performed the same test moving the mesh with the fluid ve-
locity. In particular the Cheng and Shu node solver [49,109] has been employed
to compute the velocity of each node of the mesh. We report our numerical re-
sults, obtained both with the master-slave and the global-coupling approaches,
in Figure 6.14 and in Table 6.5.
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6.7 A Kidder problem with rotation

Figure 6.13: Kidder with rotation test case at the final time tf = 0.6τ with an
Eulerian scheme. We compare the numerical solution (left) with the analytical
one (right), considering the density profile (top) and the angular momentum
(bottom). The numerical results have been obtained with the first order master-
slave approach and a mesh with 6280 quadrilateral elements.

Table 6.5: Kidder with rotation test case at the final time tf = 0.6τ with the ALE
code. We report the L2 norm of the error over ρ, u and w with respect to the
exact solution ρ, u, w.

mesh master-slave approach global-coupling approach

h (t=0) ||ρ− ρ||L2
||u− u||L2

||w − w||L2
||ρ− ρ||L2

||u− u||L2
||w − w||L2

2.03E-04 4.11E-2 2.18E-1 1.90E-1 3.82E-2 5.09E-1 4.27E-1

9.50E-05 2.12E-2 1.78E-1 9.63E-2 2.56E-2 3.75E-1 3.09E-1
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Figure 6.14: Kidder with rotation test case at the final time tf = 0.6τ with the
ALE scheme. We compare the numerical solution (left) with the analytical
one (right), considering the density profile (top) and the angular momentum
(bottom). The numerical results have been obtained with the first order master-
slave approach and a mesh of 6280 quadrilateral elements.
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Figure 6.15: Initial and final mesh relative to the Kidder with rotation test case
performed with the ALE code presented in Chapter 2 on a coarse mesh, with
Rusanov-type numerical flux and without nonconforming sliding lines.
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7 Conclusions and outlooks

To conclude, I would like to underline that the research presented in this thesis
is based on three powerful founding concepts. First the space time conservation
formulation of the governing PDEs which naturally applies to the novel moving
nonconforming ALE framework; second the idea to treat the nonconservative
products in a well balanced way by directly employing the steady equilibrium
in the path construction; finally the exploitation of an adjoint conservation law,
namely the angular momentum conservation law, to increase the accuracy of
the entire system. These original ideas have been applied in different contexts
and coupled together obtaining promising results that justify further research
in many directions.

In particular the introduced nonconforming ALE techniques enables the res-
olution even of complex shear flows with differential rotations in an effective
and accurate way. It is noteworthy to stress again that standard conform-
ing Lagrangian schemes will crash after finite times for any vortex flow with
differential rotation due to mesh tangling. Moreover the reduced dissipation
characterizing the Lagrangian methods, together with the high mesh quality
provided by the nonconforming treatment of sliding lines, and the increased
accuracy near the equilibria given by the well balanced techniques, allow us
to obtain significant improvements compared to the existing state of the art.
The major benefits are achieved with our new class of schemes when studying
physical phenomena that arise close to stationary solutions, where standard
discretizations would hide the flow physics with spurious oscillations and ex-
cessive numerical dissipation.

Future research will consider an extension to three space dimensions as well
as to more general classes of stationary solutions and an automatic detector of
the equilibrium profiles in order to extend our method to situations in which
the equilibrium is not known exactly a priori. With respect to the two-phase
model for example, an automatic detection of the water level of equilibrium
could be used to restore the water at rest solution after a dambreak.

Furthermore, based on the high order path-conservative methods introduced
in [80] we intend to use the algorithms developed in this thesis in order to design
exactly well balanced schemes for gravity driven equilibrium flows in general
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relativity, where the use of well balanced methods appears to be still rather
unknown. We also plan to increase the order of accuracy of the presented
method by extending the Lagrangian ADER-WENO and ADER-DG schemes
proposed in [23,25,27] to moving nonconforming unstructured meshes in a well
balanced manner. Finally, we envisage to remove the mesh constraints and
design a well balanced scheme for completely general moving nonconforming
unstructured meshes.

For what concerns the angular momentum preserving schemes, the conserva-
tion of the angular momentum is guaranteed by solving the augmented system
for all the studied test cases. Moreover, we have presented some test cases where
the preservation of the angular momentum allows also to maintain good veloc-
ity profiles for long times, better than the one obtained with standard methods.
Despite the good results achieved with simple test cases on symmetric domains
we consider this work only as starting point. Indeed the extension to more
complex situations and further exploitation of our center detector would need
supplementary investigations.
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A Proof of well balancing for a general element
in 2D

In this section we recall the first order ALE one-step finite volume scheme in
two space dimensions for the Euler Equations with gravity, and we show that
our formulation is well balanced for each element of a mesh that satisfies the
constraints stated at the beginning of Section 4.1.1.

Consider a generic element I and its neighbors Ji, i = 1, . . . 6, respectively
through the edges Γj , i = 1, . . . , 6, as depicted in Figure A.1. As derived in
Section 4.1.2 our first order ALE scheme can be written as

|Tn+1
I |Qn+1

I = |TnI |Qn
I −
∑
Ji

∫ 1

0

∫ 1

0

|∂CnI,Ji| D̃I,Ji · ñI,Ji dχdτ (A.1)

and a sufficient condition to be well balanced is that∑
Ji

∫ 1

0

∫ 1

0

|∂CnI,Ji | D̃I,Ji · ñI,Ji dχdτ = 0 (A.2)

when evaluated on equilibrium states.
Note that Γ3,4,5,6 are parallel to the radial direction so the normal vectors are

ñ = (nr, 0, 0), hence the flux across these edges is exactly the 1D flux, which
has already been proven to be zero when evaluated on stationary solutions.
Therefore (A.2) reduces to∫ 1

0

∫ 1

0

(
|∂CnI,J1| D̃I,J1·ñI,J1 + |∂CnI,J2| D̃I,J2·ñI,J2dχdτ

)
(A.3)

where, since Γ1,2 are parallel and have the same length,

ñI,J2 = −ñI,J1 = (ñr, ñϕ, ñt) and |∂CnI,J2| = |∂C
n
I,J1|, (A.4)

so we can rewrite∫ 1

0

∫ 1

0

|∂CnI,J1|
(
D̃I,J1·ñI,J1 − D̃I,J2·ñI,J1dχdτ

)
. (A.5)
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I

J2

J1

J3

J4

J5

J6

Γ1

Γ2

Γ3

Γ4

Γ5

Γ6

r = ir = i − 1/2 r = i + 1/2

ϕ

r

Figure A.1: Portion of a general nonconforming mesh that satisfies the constraints
in Section 4.1.1. We consider an element I, and its neighbors Ji, i = 1, . . . 6,
respectively through the edges Γj , i = 1, . . . , 6. In particular Γ1,2 are parallel,
Γ3,4,5,6 lie on vertical straight lines and the barycenter of I, J1 and J2 have the
same r coordinate.

Now, by exploiting (4.12) the integrand can be rewritten as

∣∣∂CnI,J1∣∣
(

1

2

(
f(qEJ1) + f(qEI ) + BI,J1

(
qEJ1 − qEI

))
ñr

+
1

2

(
g(qEJ1)+g(qEI )

)
ñϕ +

1

2

(
qEJ1 +qEI

)
ñt −

1

2
VI,J1

(
qEJ1−qEI

)
−1

2

(
f(qEJ2) + f(qEI ) + BI,J2

(
qEJ1 − qEI

))
ñr

−1

2

(
g(qEJ2)+g(qEI )

)
ñϕ −

1

2

(
qEJ2 +qEI

)
ñt +

1

2
VI,J2

(
qEJ2−qEI

))
.

(A.6)

We already know that the component multiplied by ñr vanishes at the equi-
librium. Moreover, since the barycenter of I, J1, J2 are aligned along the same
vertical straight line r = i,

qEJ2 = qEJ1 , (A.7)
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and so the terms multiplied by ñϕ and ñt cancel between them.
For what concerns the viscosity, in the case of the Osher-Romberg scheme

we refer to (4.14)-(4.15) that proves

VI,Ji
(
qEJi−qEI

)
= 0 (A.8)

provided that the rest of the scheme is well balanced (as we have just proven).
For the HLL-type flux we have

−α0
I,J1

(
Ĩ I+J1

2

nr + Inϕ
)(

qEJ1−qEI

)
− α1

I,J1RI,J1

+α0
I,J2

(
Ĩ I+J2

2

nr + Inϕ
)(

qEJ2−qEI

)
+ α1

I,J2RI,J2
(A.9)

where Ĩ I+Ji
2

vanishes as in the one dimensional case, RI,Ji vanishes because

we have already proven that the rest of the scheme vanishes, and the term
multiplied by nϕ cancels because of (A.7).
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B Implosion of Kidder type with rotation

The Kidder test problem is emblematic of strong implosion in stars or for
inertial confinement devices. Starting from the standard Kidder problem, we
show how to add a rotation to the initial condition. The derivation of the
analytical solution is described using the seminal method of [20]. One starts
with the Euler equations in general dimension d ≥ 1

Dtρ+ ρ∇ · v = 0, Dt = ∂t + v · ∇,
ρDtv +∇p = 0,

Dt(p/ρ
γ) = 0.

For a flow with rotation invariance it can be recast as
Dtρ+ ρr−(d−1)∂r(r

d−1ur) = 0, v = urer + uθeθ,

ρDtur + ∂rp = Fcentrifugal, Fcentrifugal = ρu2
θ/r,

Dt(uθr) = 0, (conservation of angular momentum)

Dt(p/ρ
γ) = 0.

The new feature with respect to the standard Kidder solution is the non zero
angular velocity uθ. One looks for a self-similar solution r = Rf(t) with ur =
Dtr = Rf ′(t) = rf ′(t)f(t)−1.

One gets ρ = ρ0(R)f(t)−d where ρ0(R) is the density at time t = 0. This
can be checked as follows: one has

Dtρ = ∂t|R

(
ρ0(R)f(t)−d

)
= −ρ0(R)df(t)−(d+1)

and

ρr−(d−1)∂r(r
d−1ur) = ρ∂rur+ρ(d−1)r−1ur = ρf ′(t)f(t)−1+ρ(d−1)f ′(t)f(t)−1

= ρdf ′(t)f(t)−1 = ρ0(R)df ′(t)f(t)−(d+1).

By summation, one gets the continuity equation Dtρ+ρr−(d−1)∂r(r
d−1ur) = 0.

The adiabaticity of the flow yields p = p0(r)(ρ/ρ0(R))γ that is p = p0(R)f(t)−γd.
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B Implosion of Kidder type with rotation

Moreover one has the identities
ρDtur = f(t)−dρ0(R)Rf ′′(t),

∂rp = f(t)−1∂Rp = f(t)−(γd+1)p′0(R),

ρu2
θ/r = f(t)−(d+3)ρ0(R)(uθ)0(R)2/R.

The Newton equation ρDtur + ∂rp = ρu2
θ/r is an identity between the above 3

terms. It yields

f(t)−dρ0(R)Rf ′′(t)+f(t)−(γd+1)p′0(R) = f(t)−(d+3)ρ0(R)(uθ)0(R)2/R. (B.1)

As in [20], the solution is seek by separation of variables.
However a preliminary manipulation is necessary because the identity (B.1)

is made with 3 contributions. We equate the power of the terms which are non
differential with respect to f(t) using γd + 1 = d + 3 ⇐⇒ γ = d+2

d
= 2. One

gets
ρ0(R)Rf(t)3f ′′(t) = ρ0(R)w0(R)2/R− p′0(R).

A classical solution [20] by separation of variables of such an equation is f(t) =√
1− t2/τ2 where τ > 0 is a focalization time, so that f(t)3f ′′(t) = −τ−2. It

remains to discuss the reduced equation

p′0(R) = ρ0(R)Rτ−2 + ρ0(R)w0(R)2/R. (B.2)

We decide for convenience of a rigid body rotation which corresponds to w0(R) =
ωR where ω is a given angular velocity. Let us define τ̂−2 = τ−2 + ω2 so that
(B.2) rewrites

p′0(R) = ρ0(R)Rτ̂−2. (B.3)
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methods near low densities. Journal of Computational Physics, 92:273–
295, 1991.
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4.3 Order of convergence, isentropic vortex. We report the results
obtained with our second order accurate well-balanced Osher-
Romberg ALE scheme. The mesh size h is computed as the
maximum incircle diameter of the elements of the final mesh.
The errors refer to the L1 norm of the difference between our
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4.5 Stationary vortex in equilibrium. Maximum error on the water
level h between the exact and the numerical solution obtained
with the first order well balanced nonconforming ALE method.
In the left column we show the error for Test A with finer and
finer meshes with a fixed final time, in the central column we
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times. In the right column, the results for Test B are shown. . 131
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6.2 In this table we report the error in L1 norm between the total
angular momentum at the beginning of the simulation and after
different times. The errors refer to three different test cases: test
1 refers to the solid body rotation described in (6.1), in test 2
the isentropic vortex of (6.10) is taken into account, and finally,
in the third one we refer to the four vortexes test case described
in (6.11). The results show clearly the exact conservation of
the angular momentum obtained with the master-slave approach
both with order 1 and 2. . . . . . . . . . . . . . . . . . . . . . . 154

6.3 Four vortexes test case (6.11). We have applied our detector with
the numerical criteria described in 6.5.1 choosing in particular
c1 = 6, c2 = 10, c3 = 0.1. In the table we report the percentage
of active elements and the mean error in the computation of the
center obtained with a Cartesian mesh with characteristic mesh
size equal to 0.125 at two different times. . . . . . . . . . . . . 169

6.4 Kidder with rotation test case at the final time tf = 0.6τ with
zero mesh velocity. We report the L2 norm of the error over ρ,
u and w with respect to the exact solution ρ, u, w. . . . . . . . 170

6.5 Kidder with rotation test case at the final time tf = 0.6τ with
the ALE code. We report the L2 norm of the error over ρ, u
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2.1 Example of a nonconforming mesh that can be treated by our
algorithm. The mesh contains NE = 12 elements: triangles,
quadrilaterals and five-sided polygons. The mesh is nonconform-
ing: note for example edge e1. It is shared between the elements
T1, T2, T3, T5 and on it we can find two intermediate nodes 2, 3
called hanging nodes. A similar situation can be noted for edge
e2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Left. In blue we show the physical space–time control volume
Cn1 obtained by connecting via straight line segments each vertex
of Tn1 with the corresponding vertex of Tn+1

1 , and its space-time
midpoint Mn

1 . In pink we show one of the lateral surfaces of Cn2 ,
∂Cn2,1, together with its space–time midpoint Mn

2,1. Right. The
reference system (χ, τ) adopted for the bilinear parametrization
of the lateral surfaces ∂Cnij . . . . . . . . . . . . . . . . . . . . . 40

2.3 Example of nonconforming space–time control volumes and non-
conforming space–time lateral surfaces. Three cases are shown:
(a) insertion of a new node; (b) motion of hanging nodes; (c)
fusion of two nodes. . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Example of how to double a node. . . . . . . . . . . . . . . . . 54
2.5 Example of how to merge two existing nodes. . . . . . . . . . . 56
2.6 Slide lines test case with initial condition as in equation (2.48).

The mesh is moved with the local fluid velocity, which at x = 0
is discontinuous: so nodes over there are handled in a noncon-
forming way. At the top we show the results obtained employ-
ing a triangular mesh and at the bottom using a mesh made of
both triangular and quadrilateral elements. We report the mesh
at three different computational times: note that the compu-
tational domain can also be split in two non connected parts.
The level of the water, the total area and the total volume are
conserved at any time step, and the solution coincides with the
exact one up to machine precision. . . . . . . . . . . . . . . . . 61

203



List of Figures

2.7 Slide lines test case with initial condition as in equation (2.49).
We start with a conforming quadrilateral mesh; using a value
of α = 1 in (2.28) we obtain only two slip-lines (at x = 0 and
x = 0.5), whereas using α = 0.4, which makes the detector more
strict, the mesh slides along each straight line where the fluid
velocity changes. . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8 Oblique slide line. We show the discretization of the computa-
tional domain at three different times. The corresponding nu-
merical solution matches the exact one. . . . . . . . . . . . . . 62

2.9 Slide lines with periodic boundary conditions. We report the
final computational domain at time t = 100.2 corresponding to
the initial condition in (2.48) on the left, and the one correspond-
ing to the initial condition in (2.49) on the right. No distortion
of the computational domain appears neither at the interfaces,
and the numerical solution coincides with the exact one. . . . . 63

2.10 Riemann problem with an arbitrary mesh velocity. Taking α =
0.4 in (2.28) the algorithm identifies 7 interfaces which are then
handled in a nonconforming way. In the figure we report the
final discretization of the computational domain, and the com-
parison between the exact solution and the numerical solutions
obtained with our nonconforming method showing first order
results (left), second order results (center) and the mesh at the
final time (right). . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.11 Comparison of the exact solution for the quantity c with the
numerical solution obtained on moving nonconforming meshes.
The results obtained with the first order algorithm are shown
on the left, while those obtained with the second order MUSCL-
Hancock method are presented in the center. The comparison is
done at time t = 0.5 taking a cut of the profile of c correspond-
ing to y = 2. On the right we show the discretization of the
computational domain at time t = 0.5. . . . . . . . . . . . . . 64

2.12 Domain discretization at time t = 15. On the left we report the
grid in polar coordinates where the shear discontinuities lie over
straight lines. On the right the corresponding grid in Cartesian
coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.13 Comparison between analytical solution and second-order accu-
rate numerical results for the water level h (left) and the tan-
gential component of the velocity uϕ (right), with ϕ = 2π and
r ∈ [0.2, 2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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2.14 Steady vortex in equilibrium. We compared the behavior of
a standard conforming algorithm (without any rezoning tech-
nique) and of our new nonconforming method. Using the con-
forming algorithm the elements are deformed in a very short
time, the time step is heavily reduced and hence the computa-
tion is slower. On the contrary, the nonconforming slide lines
introduced by our scheme are able to maintain a good shape
of each element and an almost constant time step for a long
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lows to control the time step size and to maintain a better mesh
quality. The nonconforming algorithms used here use logically
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and velocity profiles obtained using the HLL scheme and on the
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4.1 Example of a mesh that allows a well balanced treatment of the
fluxes. Each element has two vertical edges and the other two are
parallel between them. Besides the vertical edges lie on straight
lines and the barycenters are aligned along r = ri. Moreover the
domain is periodic so that ϕ = 0 coincides with ϕ = 2π. . . . . 101
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4.7 Noh shock test. We show the numerical results obtained with
our second order HLL-type flux at time tf = 1.2 on three fixed
grids with respectively 50× 10, 100× 10 and 200× 20 elements.
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4.12 Evolution of periodic density perturbations in an equilibrium
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4.17 Kelvin-Helmholtz instabilities II. In the panel we show the evo-
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The results have been obtained with our second order Osher-
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5.6 Dambreak problem. We compare our numerical results (water
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