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I. Abstract 

The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis in 

cancer cell lines but not in normal cells. This property of TRAIL led to its development as a 

novel cancer drug. However, most primary tumour cells are TRAIL-resistant, yet, they can be 

sensitised by combining TRAIL with other cancer drugs. Kinase inhibitors have emerged as a 

new class of cancer drugs with high therapeutic potential and cancer cell specificity. The aim 

of this thesis was to determine the mechanism of TRAIL apoptosis sensitisation by inhibition 

of certain kinases that are specifically and aberrantly activated in cancer cells. When studying 

the TRAIL-induced phosphorylation of Bid it was discovered in this thesis that this 

phosphorylation was independent of ATM which has previously been described to 

phosphorylate Bid at this specific site. Remarkably, the ATM inhibitor KU-55933 used in this 

context was able to further sensitise HeLa cells to TRAIL-induced apoptosis and could break 

TRAIL resistance of the colon carcinoma cell line DLD1. As the combination of TRAIL and 

KU-55933 might represent a promising treatment option for cancer therapy this study focused 

on investigating the molecular mechanism that leads to TRAIL sensitisation by KU-55933. 

Surprisingly, TRAIL sensitisation by KU-55933 was independent of specific inhibition of 

ATM and, instead, achieved by inhibition of the phosphoinositide 3-kinase (PI3K) p110α 

isoform. Aberrant activation of PI3K α is a frequent tumour-specific alteration in various 

types of cancer including breast and colon carcinoma. It could be demonstrated that TRAIL 

apoptosis sensitisation of TRAIL-resistant DLD1 colon carcinoma cells by KU-55933 or 

PIK75, a specific inhibitor for p110α, required concomitant down-regulation of the cellular 

FLICE-inhibitory protein (cFLIP) and the X-linked Inhibitor of Apoptosis Protein (XIAP). 

Whilst suppression of cFLIP enhanced caspase-8 activation at the TRAIL death-inducing 

signalling complex (DISC), resulting in first cleavage of caspase-3, loss of XIAP enabled 

further cleavage and full activation of caspase-3. These results suggest that the combination of 

TRAIL or other TRAIL receptor agonists with inhibitors of PI3Kα may be an effective new 

strategy in cancer treatment capable of overcoming therapy resistance. 
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1. Introduction 

―One aspect of the cell lineage particularly caught my attention: in addition to the 959 cells 

generated during worm development and found in the adult, another 131 cells are generated 

but are not present in the adult. These cells are absent because they undergo programmed cell 

death‖ - Horvitz: Nobel Prize lecture "Worms, Life and Death," 2002. This simple 

observation about the nematode Caenorhabditis elegans by Robert Horvitz in the 1970‘s 

opened up a new area of research- programmed cell death, which was later coined apoptosis 

by Kerr, Wiley and Currie (Kerr et al., 1972). Over the past decades research identified 

apoptosis as an important regulatory process in development. It has evolved to facilitate tissue 

remodelling and homeostasis and to remove unwanted and potentially dangerous cells from 

an organism (Los, Wesselborg et al. 1999; Vaux and Korsmeyer 1999). Tumour cells are 

characterised by their ability to avoid the normal regulatory mechanisms of cell growth, 

division and death. Classical chemotherapy aims to kill tumour cells by causing DNA 

damage-induced apoptosis. However, as many tumour cells possess mutations in intracellular 

apoptosis-sensing molecules like p53, they are not capable of inducing apoptosis on their own 

and are therefore resistant to chemotherapy. With the discovery of the death receptors the 

opportunity arose to directly trigger apoptosis from the outside of tumour cells, thereby 

circumventing chemotherapeutic resistance. Death receptors belong to the tumour necrosis 

factor (TNF) receptor superfamily, with TNF-Receptor-1, CD95 and TNF-related apoptosis-

inducing ligand (TRAIL)-Receptor (R) 1 and -R2 being the most prominent members. 

Unfortunately early hopes to use TNF or CD95 as anti-tumour therapeutics had to be 

abandoned due to profound toxicity (Creagan et al., 1988; Creaven et al., 1987; Galle et al., 

1995; Ogasawara et al., 1993). In contrast to this TRAIL has been shown to selectively kill 

tumour cells, while sparing normal tissue. This attribute makes TRAIL an attractive drug 

candidate for cancer therapy (Walczak et al., 1999). Although most primary tumour cells 

turned out to be primarily TRAIL-resistant, recent studies evidence that a variety of cancers 

can be sensitised to TRAIL-induced apoptosis upon pre-treatment with chemotherapeutic 

agents or irradiation, while normal cells remain TRAIL-resistant. 
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1.1. Forms of cell death 

Cell death is part of the counterbalance to cell division and determines the overall growth rate 

of a tissue. There are three main forms of cell death, namely necrosis, autophagy and 

apoptosis. These three processes can be distinguished on the basis of the morphological 

changes that occur. 

Necrosis occurs after exposure to high concentrations of detergents, oxidants, ionophores or 

high intensities of pathologic insult (Nicotera et al., 1999). Necrosis is characterised by 

clumps of cells in a tissue that act together. Cells swell; cytoplasmatic granules disintegrate 

rapidly while they give up any metabolic activity. The DNA and cellular constituents start to 

disintegrate in a random, uncontrolled fashion. Subsequently, cells burst, organelles get 

destructed and leak out of the cell. The host tissue reacts by inducing an inflammatory 

reaction that leads to damage of the surrounding tissue (reviewed in Potten, 2004). 

A second process referred to as autophagic cell death has also been proposed to be a form of 

programmed cell death. It is defined as a catabolic process which involves the degradation of 

a cell's own components through the lysosomal machinery resulting in the total destruction of 

the cell. During autophagy, long-lived proteins or whole organelles are sequestered into 

double membrane vesicle referred to as autophagosomes. Autophagy-related genes (atg) are 

required for the formation of these autophagosomes which fuse with lysosomes where the 

contents are enzymatically digested. However, in cells with intact apoptotic machinery, it is 

unclear whether autophagy indeed acts as direct death execution pathway. Autophagic cell 

death has mainly been observed in cells in which the apoptotic machinery was dysfunctional 

or blocked, e.g. caspase-blockage by the use of the caspase-inhibitor zVAD-fmk. Under these 

conditions, autophagic cell death is hallmarked by emerging autophagic vacuoles and the 

early degradation of organelles. Generally autophagy is responsible for the degradation of 

long-lived proteins and is the only known pathway which degrades whole organelles 

(Klionsky and Emr, 2000). It is important to bear in mind that under conditions of nutrient 

deprivation, autophagy is rather thought to act as a survival mechanism. 

In contrast to necrosis, apoptosis is a programmed, genetically controlled, active ATP-

dependent process. It is possible to observe cell shrinkage of a single cell and breaking of cell-

to-cell contacts with neighbouring cells. Cells become round and smaller, so that cytoplasmic 

internal membranes, ribosomes, mitochondria and other organelles are more concentrated in 

http://en.wikipedia.org/wiki/Catabolic
http://en.wikipedia.org/wiki/Lysosome
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the cytoplasm. However, the organelles remain intact and retain their metabolic activity. The 

condensed chromatin generates a crescent shaped area which follows the contour of the 

nuclear membrane. The DNA is cut between the nucleosomes thereby creating fragments of 

multiples of 180 bp in length. These fragments form the characteristic ―DNA ladder‖ of 

apoptotic cells that can be observed in an agarose gel (Cohen and Duke, 1984). The nucleus 

then fragments into pieces and likewise the cell splits into smaller pieces; this is a process 

referred to as blebbing. Blebbing results in the formation of apoptotic bodies which have an 

intact membrane, thus preventing the leakage of cellular contents into the extracellular space. 

Another feature of apoptotic cells is the exposure of phosphatidylserine (PS) on the outer 

plasma membrane which then serves as an important "eat me" signal. Subsequently, these 

cells are phagocytosed by neighbouring cells and macrophages (Fadok et al., 1992). The 

apoptotic body is then digested within the phagosome without induction of an inflammatory 

response. 

Physiologically, apoptosis plays a major role in the removal of cells during developmental 

and differentiation processes, in homoeostasis of tissues and in the immune system. It is also 

very important in the removal of senescent cells and cells with damaging potential (Yin, 

2003). Apoptosis can be induced from inside the cell using the intrinsic pathway or from 

outside the cell, via the extrinsic pathway involving the activation of death receptors. The 

intrinsic pathway is triggered under different stress conditions, e.g. DNA damage, and leads to 

the release of apoptogenic proteins from the mitochondria. This pathway is also referred to as 

―Bcl-2 controlled pathway‖ as it is activated and controlled by members of the Bcl-2 protein 

family (reviewed in Youle and Strasser, 2008). This protein family is introduced in chapter 

1.2.2. The extrinsic pathway is activated when death receptors belonging to the Tumour 

Necrosis factor (TNF)-Receptor superfamily are oligomerised by their cognate ligands. After 

binding of the ligand, the death-inducing signalling complex (DISC) is formed which is 

essential for subsequent signal transduction by intracellular proteins and induction of 

apoptosis. The main players in this respect are cysteine-dependent, aspartate-specific 

proteases (caspases) (see chapter 1.2.1) which cleave a variety of cellular substrates, initiating 

the morphological changes attributed to apoptosis. 
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1.2. Executioners of apoptosis 

1.2.1. Caspases 

Based on his initial observation that 131 cells of the 1090 somatic cells were eliminated 

during development in C. elegans, Robert Horvitz established the importance of caspases in 

apoptosis (Ellis et al., 1991). In a mutagenesis screening he found that the ced-3 gene was 

required for programmed cell death. The protein encoded by the ced-3 gene was a cysteine 

protease with similar properties to the mammalian interleukin-1-beta converting enzyme 

(ICE) (now known as caspase 1) which at the time was the only known caspase (Yuan et al., 

1993). Up to now 14 different homologues have been found in humans. They were termed 

caspases as in cysteine-aspartate specific proteases. Upon apoptosis induction a caspase 

cascade is initiated that leads to cleavage of a variety of cellular substrates, contributing to the 

destruction of the cell and ultimately leading to cell death. Caspases are synthesised as 

inactive pro-enzymes (zymogens). Structurally, caspases are organised into a pro-domain 

region, a large subunit and a small subunit. Upon activation, the large and small subunits are 

released from the pro-enzyme by cleaving an Asp-X bond between the pro-domain and the 

large subunit. Similarly, the large and small subunits are separated via as second cleavage 

between the two domains. Active caspases are generally heterotetrameric, comprising two 

large and two small sub-units. An example of the activation of caspase-3 is depicted in figure 

1.  

Active caspases are able to activate other members of the caspase family which subsequently 

results in the proteolysis of various cellular proteins. Caspases are highly specific proteases 

that cleave their substrates after specific tetrapeptide-motifs (P4-P3-P2-P1). P1 is always an 

aspartate residue. The residue P4 is the most critical in determining the substrate specificity of 

the individual caspase, for example DEVD (Asp-Glu-Val-Asp), is the tetrapeptide that is 

recognised by caspase 3 (Villa et al., 1997).  

 

http://en.wikipedia.org/wiki/Robert_Horvitz
http://en.wikipedia.org/wiki/Mammal
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figure 1. Activation of caspase-3. 

Cleavage at the amino acid position aspartate 175 by initiator caspases leads to autocatalytic 

processing of caspase-3. The prodomain of caspase-3 is cleaved off at aspartate 28. X-linked 

inhibitor of apoptosis protein (XIAP) can block this autoactivation. p32, full length caspase-3; p20, 

large subunit inclusive prodomain; p17, large subunit; p12, small subunit. 

The caspase gene family can be grouped into two major sub-families, namely inflammatory 

caspases (caspases 1, 4, 5, 12L), whose primary role seems to be in cytokine processing, and 

apoptotic caspases (caspases 2, 3, 6, 7, 8, 9, 10) (figure 2). Apoptotic caspases can be further 

subdivided into initiator and effector caspases. Initiator caspases possess long pro-domains 

which either contains a caspase recruitment domain (CARD) (caspases 2 and 9), or a death 

effector domain (DED) (caspases 8 and 10). These pro-domains enable the caspases to 

interact with other proteins that regulate their activation. Activation of initiator caspases 

occurs at multiprotein complexes including the DISC (caspases 8 and 10) (Walczak and Haas, 

2008), the apoptosome (caspase-9) (Riedl and Salvesen, 2007), the inflammasome (caspase-1) 

(Martinon and Tschopp, 2007) and the piddosome (caspase-2) (Tinel and Tschopp, 2004). 

Several hypotheses concerning the activation of initiator caspases exist. In the ―induced-
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proximity model‖, recruitment of initiator caspases to the receptor complex by the Fas-

Associated protein with Death Domain (FADD) leads to clustering of initiator caspase 

zymogens resulting in self-activation of the caspases via a cross-proteolysis mechanism 

(Salvesen and Dixit, 1999). In contrast to this the ―proximity-induced dimerisation‖ model 

states that the formation of dimers is the driving force behind activation of initiator caspases. 

The adaptor protein complexes serve to promote dimerisation by increasing the local 

concentration of initiator caspases (Shi, 2004). Dimerisation of the procaspases is crucial for 

initiator caspase activation, even though the processing of the caspases stabilises the active 

dimers. The most recent model by Chao et al. is the ―induced conformation model‖ (Chao et 

al., 2005). In this model the conformation change of the active site of the initiator caspase 

which is attained through direct interaction with the adaptor protein complex is a prerequisite 

for the activation. Most of the studies concerning initiator caspase activation have been 

focused on the activation of caspase-9 at the apoptosome. However, the same molecular 

concepts might also apply for the activation of other initiator caspases at their respective 

activation platforms.  

In contrast to initiator caspases, effector caspases have shorter pro-domains and do not show 

CARD motifs. Therefore, they can only be activated by other caspases. During apoptosis, they 

are cleaved by initiator caspases and can then autoactivate themselves by autocatalytic 

cleavage of their pro-domain. The autocatalytic activation step can be inhibited by inhibitor of 

apoptosis proteins (IAPs). The major task of effector caspases is amplifying the caspase 

cascade (Slee et al., 1999). 
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figure 2. The caspase family. 

All caspases have a similar domain structure comprising a pro-peptide followed by a large (LS) and 

a small subunit (SS). The pro-peptide can vary in length and, can be used to recruit the enzyme to 

activation platforms as in the case of initiator caspases. Two distinct, but structurally related, pro-

peptides have been identified; the death effector domain (DED) and the caspase recruitment domain 

(CARD), which typically facilitate interaction with proteins that contain the same motifs. Not all 

mammalian caspases participate in apoptosis. For example, caspase-1, caspase-4, caspase-5 and 

caspase-12 are involved in the processingand regulation of inflammatory cytokine and are activated 

during innate immune responses. Adapted from Taylor et al.(Taylor et al., 2008). 

Activated caspases are able to cleave hundreds of proteins (Nicholson, 1999). Among them 

are proteins which are involved in all important cellular processes, for instance cell cycle and 

replication, DNA damage and repair, transcription and translation, and signal transduction as 

well as cytoskeletal and structural proteins. Caspase activity can have two different effects: 

destruction of protein and activation of proteins that are important for the process of 

programmed cell death. 
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1.2.2. Bcl-2 family proteins 

Members of the B-cell lymphoma (Bcl-2) family are important regulators of the initiation of 

apoptosis in mammals. They can be grouped into anti-apoptotic members, that inhibit the 

initiation of the death program, and pro-apoptotic members that sense death signals within the 

cell. Bcl-2 is a proto-oncogene and homolog to ced-9 found in C.elegans (Hengartner and 

Horvitz, 1994). A key feature of Bcl-2 family proteins is that they share sequence homology 

in four domains, namely: Bcl-2 homology (BH) 1, BH2, BH3 and BH4. However, not all 

members possess all domains. They can be subdivided according to their domain structure 

and function (figure 3). Proteins that posses all BH domains are classified as anti-apoptotic 

and are required for death repression, e.g. Bcl-2, Bcl-XL, Bcl-W, Mcl-1, Bcl-B and A1. In 

contrast, pro-apoptotic molecules comprise only the domains BH1-BH3 (Bax, Bak and Bok). 

A third divergent class of BH3-only proteins (Bad, Bik, Bid, Hrk, Bim, Bmf, Noxa and Puma) 

has a conserved BH3 domain that can bind and regulate anti-apoptotic BCL-2 proteins to 

promote apoptosis (reviewed in Youle and Strasser, 2008). Simplified, one can say that the 

ratio of pro-apoptotic and anti-apoptotic molecules determines the fate of the cell. An excess 

of anti-apoptotic molecules keeps the cell alive while an excess of pro-apoptotic molecules 

induces apoptosis. The pro-apoptotic family members Bax and Bak are essential for the 

induction of the mitochondrial outer membrane permeabilisation (MOMP) and the subsequent 

release apoptogenic molecules such as cytochrome c and SMAC/DIABLO which leads to 

caspase activation. Anti-apoptotic family members, such as Bcl-2 and Bcl-XL, counteract Bax 

and Bak. Although it is commonly thought that Bax and Bak form pores in the mitochondrial 

membrane, the biochemical nature of these pores and how anti-apoptotic Bcl-2 family 

proteins might regulate them ist still a controversial issue in the field of apoptosis (Chipuk et 

al., 2006). 

BH3-only proteins are pro-apoptotic and function as initial sensors of apoptotic signals that 

emanate from various cellular processes. There are two models concerning the activation of 

Bax and Bak by BH3-only proteins. One model suggests that BH3-only proteins (specifically 

Bim, tBid and Puma) directly activate Bax and Bak (Youle, 2007). However, recent evidence 

indicates that BH3-only proteins de-repress Bax and Bak by direct binding and inhibition of 

Bcl-2 and other anti-apoptotic family (Willis et al., 2007).  
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figure 3. The Bcl-2 family. 

Bcl-2-family proteins have a crucial role in the regulation of apoptosis through their ability to 

control mitochondrial cytochrome c release. The Bcl-2 family comprises three subfamilies that 

contain between one and four Bcl-2 homology (BH) domains. The anti-apoptotic subfamily members 

contain four BH domains. Most members of this subfamily are typically associated with membranes 

and therefore also contain transmembrane domains (TM). The pro-apoptotic subfamily lacks BH4 

domains and promotes apoptosis by forming pores in mitochondrial outer membranes. The BH3-only 

subfamily is a structurally diverse and only displays homology within the small BH3 motif. Adapted 

from Taylor et al. (Taylor et al., 2008). 
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(Valentijn and Gilmore, 2004). Anoikis is a form of apoptosis induced by detachment of cells 

from the extra-cellular matrix. The truncated form of Bid (tBid) is much more powerful in 

terms of apoptosis induction. The cleavage of Bid into tBid by caspase-8 leads to its 

translocation to the mitochondria where it facilitates effective activation of Bax and Bak. 

There are different hypotheses on how tBid leads to the induction of MOMP. A recent study 

suggests that voltage-dependent anion channel (VDAC) 2 is responsible for the recruitment of 

Bax to the mitochondrial membrane which is crucial for tBid-induced MOMP (Roy et al., 

2009). In contrast this other studies show that tBid rather binds to the Bcl-XL which is bound 

to the mitochondrial membrane (Garcia-Saez et al., 2009), potentially displacing it from Bak 

or Bax. A third hypothesis is that tBid interacts with the mitochondrial lipid cardiolipin and 

directly induces pore formation (Petit et al., 2009). 

Besides caspase-8, caspase-10 is recruited to the DISC and is also able to process Bid. It does 

not only create the p15 fragment usually referred to as tBid, but it can also create a shorter 

p13 fragment of tBid by cleaving at the residue D75
 
(Fischer et al., 2006). However, the role 

of this p13 fragment is not understood yet. Bid cannot only be cleaved by caspases but also by 

other proteases, e.g. cathepsins, calpains, and Granzyme B (Barry et al., 2000; Chen et al., 

2001; Cirman et al., 2004). Therefore, it can be considered as a sentinel for death signals 

mediated by proteases. figure 4 shows an overview of the structure of human Bid, its protease 

cleavage sites and other post-translational modifications. Proteolytic cleavage is not the only 

post-translational modification regulating the function of Bid. Zha et al. (2000) reported that 

the amino-terminus of tBid becomes N-myristoylated after having been cleaved by caspase-8. 

The myristoylated form of tBid is considered to be 350 time more potent than the unmodified 

version. In contrast, a negative regulation of the pro-apoptotic activity of Bid is conferred by 

phosphorylation. Casein kinase (CK) I and II have been shown to phosphorylate murine Bid 

at residues T59, S61 and S64 which interferes with the cleavage of Bid by caspase-8 

(Desagher et al., 2001). Of note is that so far this has only been shown in the murine system 

and that residue S61 is not conserved in humans. Therefore, the physiological relevance of 

this mechanism in the human system cannot be assessed. 

For a long time, it has been assumed that Bid only possesses a killing function. However, 

recent studies provide evidence that it also has a proliferative effect (Bai et al., 2005) and that 

it acts as a sensor for DNA damage and introduces cell cycle arrest (Kamer et al., 2005; 

Zinkel et al., 2005). It has been observed that Bid-deficient mouse embryonic fibroblasts 
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(MEFs) enter into the cell cycle in a delayed fashion when mitogenically stimulated compared 

to wild type MEFs (Bai et al., 2005) but the mechanism behind this is still unclear. The 

participation of Bid in cell cycle regulation was discovered when Bid-deficient MEFs were 

exposed to DNA damage. Normally, a proliferating cell arrests in S-phase when exposed to 

DNA damage allowing for repair of damaged DNA before the cells proceed in the cell cycle. 

Interestingly, Zinkel et al. (Zinkel et al., 2005) showed that Bid-deficient MEFs failed to 

accumulate in S-phase, suggesting a role of Bid in the S-G2 cell cycle checkpoint. In this 

context, phosphorylation of Bid at residue S78 in the human and at residues S61
 
and S78 in 

the murine form of Bid by Ataxia telangiectasia mutated (ATM), a kinase that becomes 

activated upon DNA damage, seems to be essential for S-phase arrest. Using a non-

phosphorylatable Bid mutant, Zinkel et al. showed that this mutant was not able to restore the 

S-phase arrest when introduced into Bid-deficient MEFs. In addition, this non-

phosphorylatable Bid mutant rendered cells more susceptible to etoposide-induced apoptosis 

(Kamer et al., 2005). The ability of Bid to induce S-phase arrest when DNA damage occurs 

also suggests that Bid could be a key player in tumourigenesis. Bid deficient-MEFs suffer 

from genomic instability followed by leukemogenesis probably due to the accumulation of 

DNA failures (Zinkel et al., 2005). 

However, the function of Bid with respect to DNA damage is disputed. Kaufmann et al. 

(Kaufmann et al., 2007) created a different strain of Bid-deficient mice on the C57BL/6 

background. These mice did not show the phenotype described by Zinkel et al. (Zinkel et al., 

2005) and no implication of Bid in DNA damage- and stress-induced apoptosis could be 

detected, rendering Bid dispensable for these processes. These contradictory results are most 

likely due to subtle changes in the experimental conditions (Zinkel et al., 2007). 

Another study touching up on this issue claims a dual function for Bid. It could be shown in 

hepatocellular carcinoma cells that Bid sensitises cells to apoptosis when treated with high 

concentrations of etoposide, which cause irreparable DNA damage. In contrast, when cells 

were treated with low doses of etoposide that only cause repairable damage, Bid induced S-

phase arrest (Song et al., 2008a). These findings were further supported in a recent study in 

which low doses of the carcinogen anti-(±)-5-methylchrysene-1,2-diol-3,4-epoxide (5-

MCDE) induced increased apoptosis in Bid
-/-

 MEFs and reconstitution of Bid expression in 

Bid
-/- 

cells could inhibit the increased apoptosis (Luo et al., ,2010). However, the 

phosphorylation status of Bid was not investigated in these studies. 



Introduction 

18 

 

 

figure 4. Schematic overview of the human Bid structure and its posttranslational 

modifications. 

Full length Bid consists of 195 amino acids structured in eight α-helices depicted in blue. One of these 

α-helices constitutes the BH3 domain which is responsible for the interaction with other Bcl-2 family 

members. α -helices 6 and 7 are hydrophobic and are buried inside the full length protein. They are 

potentially responsible for membrane interaction once the protein is cleaved into tBid. Especially the 

loop region of Bid is subjected to posttranslational modifications, it becomes cleaved by different 

proteases (Caspases 8 and 10 and Granzyme B) at two different sites (D60 and D75), myristoylated 

and phosphorylated by CKII and ATM (S78). 

1.3. Apoptosis-induction by TRAIL 

1.3.1. The TRAIL/TRAIL-receptor system  

TRAIL is expressed as a type II transmembrane protein consisting of 281 amino acids in 

human. It consists of a short intracellular N-terminus and a long extracellular receptor binding 

domain. Similar to TNF or CD95L, TRAIL can be cleaved off the membrane to form a 

soluble trimer which is stabilised by cysteine residues that are coordinated by a zinc ion 

(Hymowitz et al., 1999). Noteworthy, unlike CD95L and TNF, which are cleaved off by 

metalloproteases, soluble TRAIL is generated by the action of cysteine proteases (Mariani and 

Krammer, 1998). It is assumed that membrane bound TRAIL has greater cytotoxic potential 

than the soluble form as has recently been shown for CD95L (LA et al., 2009). 
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TRAIL was identified in a screen based on sequence homology with CD95L (Pitti et al., 

1996; Wiley et al., 1995). However, instead of binding to CD95, TRAIL has been shown to 

bind to five different receptors in humans TRAIL-R1 (DR4, TNFRSF10A), TRAIL-R2 (DR5, 

TNFRSF10B, Killer, TRICK2), TRAIL-R3 (DcR1, TRID), TRAIL-R4 (DcR2) and 

Osteoprotegerin (OPG), which form a rather complex receptor system unique within the 

TNF-R superfamily (figure 5). All five receptors share the typical cysteine rich domain 

(CRD) structure, but only TRAIL-R1 and TRAIL-R2 are capable of transmitting the apoptotic 

signal to the cell‘s inside because they are the only classical death receptors containing the 

intracellular death domain (DD) (Pan et al., 1997a; Pan et al., 1997b; Screaton et al., 1997; 

Sheridan et al., 1997; Walczak et al., 1997; Wu et al., 1997). Both receptors are characterised 

by the presence of two cysteine rich repeats (CRRs) in their extracellular parts facilitating 

TRAIL binding. It is still not completely understood why two apoptosis-inducing TRAIL 

receptors are expressed in humans though only one receptor is sufficient to induce apoptosis 

in a variety of tumour cell lines following TRAIL application (Sprick et al., 2002). Thus, there 

has to be a differential function of TRAIL-R1 and TRAIL-R2, respectively, which remains to 

be elucidated.  

Although TRAIL-R3 (Degli-Esposti et al., 1997b) and TRAIL-R4 (Degli-Esposti et al., 

1997a) are highly homologous in their extracellular domains to their apoptosis-inducing 

counterparts, they are unable to induce apoptosis due to a complete or partial lack of the DD, 

respectively. TRAIL-R3 and -R4 are generally referred to as decoy-receptors. However, a 

decoy-function has so far only been demonstrated in an overexpression system, whereas 

evidence in a more physiological setting is still missing. Merino et al. (Merino et al., 2006) 

showed for the first time that the two receptors might use different mechanism to inhibit 

TRAIL-induced apoptosis. On the one hand, TRAIL-R3 titrates TRAIL within lipid rafts, 

therefore blocking TRAIL-induced cell death by competition. On the other hand, a TRAIL-

dependent interaction of TRAIL-R4 with TRAIL-R2 might result in impaired formation of a 

death receptor-signalling complex, accompanied by reduced levels of caspase-8 activation, 

the main executor of apoptosis (Merino et al., 2006). However, as these studies were not 

performed under physiological expression levels, more studies are required to demonstrate 

that the role of TRAIL-R3 and TRAIL-R4 is more ―regulatory‖ than ―decoy‖. Accordingly, 

although all TRAIL-receptors are widely expressed within normal as well as malignant cell 

types, the expression of TRAIL-R3 and TRAIL-R4 does not correlate with the sensitivity of a 
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given cell towards TRAIL-induced apoptosis. Thus, the mechanism of TRAIL-restricted 

apoptosis of tumour cells remains elusive. 

OPG is the fifth, rather low-affinity receptor for TRAIL (Emery et al., 1998; Truneh et al., 

2000), whose function is linked to bone metabolism. Upon binding to Receptor Activator of 

NF-κB ligand (RANKL), another member of the TNF-superfamily, OPG competitively 

inhibits the RANKL-RANK interaction, thereby suppressing osteoclast formation. 

Surprisingly, not only TRAIL, but also its receptors are widely spread through human tissues, 

including spleen, thymus, peripheral blood lymphocytes, prostate, testis, ovary, uterus and 

multiple tissues along the gastrointestinal tract as has been shown on mRNA level (Walczak 

et al., 1997; Wiley et al., 1995). Thus, in contrast to the CD95 system, which is controlled by 

tight expression of CD95L, the control point for TRAIL-induced apoptosis does not seem to 

refer to the transcriptional level, but rather the level of surface expression. However, it 

remains to be elucidated how TRAIL-R surface expression is indeed regulated on protein 

level.  

The murine TRAIL-R system differs profoundly from the human TRAIL-R system. In mice 

there is only one apoptosis-inducing receptor, referred to as TRAIL-R (mDR5, murine killer-

MK). It cannot be regarded as an ortholog of one of the human TRAIL-Rs as it exhibits 

similar sequence homology to both human TRAIL-Rs (76% and 79% sequence identity for 

TRAIL-R1 and TRAIL-R2, respectively) (Wu et al., 1999). The other murine receptor, 

mDcR1 and the splice variants mDcR2L and mDcR2S, have not been studied yet, besides 

their identification in a clustered locus (Schneider et al., 2003). These receptors are only 

distantly related to human receptors because they possess a different CRD structure. 

Potentially they exert similar functions as human TRAIL-R3 and TRAIL-R4. 
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figure 5. The TRAIL/TRAIL-R system in humans.  

Trimerised TRAIL can bind to five different receptors. Of them, only TRAIL-R1 and TRAIL-R2 can 

induce apoptosis because they contain a DD. TRAIL-R3 and TRAIL-R4 cannot induce apoptosis as 

they lack the DD or have a truncated DD, respectively. The soluble receptor OPG can also bind to 

TRAIL but with rather low affinity (Cordier et al., 2009). 

1.3.2. TRAIL-receptor signalling 

Apoptosis is a tightly controlled process regulated by a complex signal machinery with a 

variety of check-points at several levels of signalling (figure 6). Binding of membrane-bound 

or soluble TRAIL to its two death-inducing receptors TRAIL-R1 and TRAIL-R2 induces 

receptor oligomerisation, thereby bringing the intracellular DDs of the receptors into close 

proximity. Protein crystallography experiments suggested TRAIL to bind as a trimer to pre-

assembled receptor complexes that are connected via their pre-ligand binding-assembly 

domain (PLAD), which themselves are not yet capable of transmitting a death signal (Chan et 
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al., 2000). However, once TRAIL is bound to this pre-assembled receptor complex, 

juxtaposition of the DDs creates a structure referred to as death-inducing signalling complex 

(DISC), to which a variety of adaptor and signalling molecules is recruited. Among them is 

FADD, which binds via its DD to the DD of the TRAIL-receptor. Subsequently, pro-caspase-

8 and -10 are recruited to the DISC upon interaction of the death-effector domain (DED) of 

FADD with the DED of these caspases. While caspase-8 is essential in the induction of 

apoptosis, the role of caspase-10 in this process remains controversial. Sprick et al. 

demonstrated that although caspase-10 is recruited to the DISC by FADD, it is not required 

for apoptosis induction and unable to functionally substitute for caspase-8 (Sprick et al., 

2002). Thus, one might suggest that caspase-10 possesses alternative functions in apoptosis 

induction, for instance in diversifying the apoptotic signal.  

Assembly of the DISC creates a structure allowing for auto-catalytic cleavage of caspases, 

thereby producing active caspase-8 and -10. To promote the apoptotic process following pro-

caspase-8 (and -10) cleavage, pro-caspase-3 is activated in a two-step mechanism. Initially, 

active caspase-8 separates the large from the small subunit. However, to become fully 

activated, caspase-3 has to remove its pro-domain during an autocatalytic maturation step. 

Once activated, it cleaves a variety of cellular proteins, including Poly(ADP-ribose) 

polymerase (PARP), lamins and cytokeratins. Furthermore, it inactivates ICAD, the inhibitor 

of Caspase Activated DNase (CAD). Thus, CAD is no longer restrained by ICAD, but able to 

enter the nucleus and to fragment the DNA, thereby producing the ―DNA ladder‖ 

characteristic for apoptotic cells.  

TRAIL-receptor cross-linking is also able to activate the BH3-only protein Bid, which is 

cleaved by receptor-activated caspase-8 (and -10) into truncated Bid (tBid). tBid then 

translocates to the mitochondria to induce the release of pro-apoptotic factors via Bax and 

Bak. Thus, Bid forms a bridge connecting the extracellular and intracellular pathways. Due to 

increased permeability of the outer membrane and a breach in mitochondrial integrity, 

cytochrome c and other pro-apoptotic molecules are released. Together with Apaf-1 and pro-

caspase-9, cytochrome c forms a structure referred to as apoptosome (Baliga and Kumar, 

2003). Like caspase-8, apoptosome-activated caspase-9 is also able to activate pro-caspase-3. 

Once caspase-3 is activated, it will not only cleave its target proteins, but also new pro-

caspase-9 molecules that in turn further activate pro-caspase-3. This positive feedback loop 

ensures apoptosis to be inevitably carried out.  
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figure 6. The TRAIL-apoptosis pathway.  

The TRAIL signal is initiated by binding of the ligand to the respective receptor, TRAIL-R1 and /or 

TRAIL-R2. The receptors trimerise and recruit several intracellular adaptor molecules like FADD, 

cFLIP and procaspases 8 and 10, which are autocatalytically activated and from the DISC. Active 

caspases 8 and 10 either directly cleave effector caspase-3 or involve the mitochondrial apoptosis 

paythway via processing of Bid into tBid. tBid activates Bax/Bak, which are usually blocked by Bcl-2, 

Bcl-XL or Mcl-1, to release cytochrome c and SMAC/DIABLO from the mitochondrial intermembrane 

space. Cytochrome c binds Apaf-1 and forms the apoptosome together with caspase-9 which in turn 

activates caspase-3. SMAC/DIABLO further facilitates apoptosis by binding to XIAP that usually 

blocks caspase-3 maturation (Cordier et al., 2009). 

Depending on the need of the intrinsic apoptotic pathway to undergo death receptor induced 

apoptosis, cells can be classified as type I and type II cells, respectively. Type I cells are 

characterised by low expression of XIAP, the inhibitor of caspase-3, which allows for the 

direct activation of caspase-3 activation by caspase-8. In contrast, XIAP levels in type II cells 

are high. Thus, these cells additionally require the mitochondrial amplification loop to 

efficiently activate effector caspases to undergo apoptosis (Jost et al., 2009). 
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The apoptotic signal is regulated at several stages. Due to the presence of two DEDs, the 

cellular FLICE-like inhibitory protein (cFLIP) competes with caspase-8 for the binding to 

FADD (Krueger et al., 2001). Displacement of caspase-8 from the DISC prevents the 

initiation of a caspase cascade responsible for apoptosis transmission. The amount of cFLIP 

within a cell inversely correlates with the amount of caspases that are activated at the DISC 

and therefore with the decision whether apoptosis is induced. Three splice variants of cFLIP 

are reported referred to as cFLIPL, cFLIPs and cFLIPR (Golks et al., 2005). Comprising two 

DEDs and an additional C-terminal caspase domain, cFLIPL closely resembles caspase-8 in 

its overall structural organisation. However, due to the lack of a critical cysteine residue 

within the active centre, cFLIPL does not possess proteolytic activity. Whereas cFLIPS and 

cFLIPR already inhibit the recruitment of pro-caspase-8 to the DISC, cFLIPL rather interferes 

with the full maturation of DISC-recruited pro-caspase-8. However interestingly, a 

heterodimer of caspase-8 and cFLIPL has been shown to possess stronger caspase-8 activity 

than a homodimer of solely caspase-8 in a cell free system (Micheau et al., 2002). Also 

possessing a pro-apoptotic activity in this context, the role of cFLIPL might be more complex 

than initially assumed. 

Other proteins inhibiting the apoptotic process are the cellular inhibitor of apoptosis proteins 

(IAPs) (Salvesen and Duckett, 2002). As already mentioned, XIAP is the most prominent 

member that is known to prevent the activation of caspase-3 and -9 by direct interaction 

(Riedl et al., 2001). XIAP blocks the removal of the inhibitory pro-domain of caspase-3, 

therefore inhibiting its complete maturation. Alternatively, XIAP is also able to catalyse its 

ubiquitination, therefore leading to its proteasomal degradation (Vaux and Silke, 2005). Other 

members of the IAP family are cIAP1, cIAP2 and survivin. However their role in TRAIL-

induced apoptosis is not completely understood. The activity of IAPs themselves is in turn 

controlled by another set of proteins that antagonise their function. Once released from the 

mitochondrial inter-membrane space, the pro-apoptotic SMAC/DIABLO protein interacts and 

sequesters XIAP, thereby removing it from caspase-3 and -9. Caspase-3 can then be auto-

catalytically cleaved, therefore allowing apoptosis to proceed. 

Taken together, apoptosis is a complex, highly regulated process that is influenced by a 

variety of pro- as well as anti-apoptotic proteins. While caspases are the main executors of 

apoptosis, intracellular factors like anti-apoptotic Bcl-2 family members, cFLIP and IAPs are 

able to reduce the sensitivity of a given cell towards apoptosis. It is therefore not surprising 
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that many tumour cells overexpress these inhibitory molecules or down-regulate pro-apoptotic 

Bcl-2 proteins. In many cancers, the balance of anti- and pro-apoptotic effectors is shifted in 

favour of the former, indicating that cells continue to replicate in spite of being damaged. 

Although the molecules so far detected in the TRAIL-receptor DISC are similar to those of 

the CD95 DISC, the biological outcome of the action of both molecules is extremely diverse. 

While systemic CD95 stimulation also kills normal cells including hepatocytes, TRAIL 

specifically eliminates malignantly transformed cells without damaging healthy tissue. 

Therefore, it is highly likely that the receptor composition of these two systems has to differ 

in some way. Thus, new studies are required to explicitly compare both receptor complexes 

following stimulation in order to detect novel factors that are only present in one of the two 

systems and might therefore explain for the difference in functional outcome. 

1.4. The physiological role of TRAIL 

Over the last decade several TRAIL
-/-

 and TRAIL-R
-/- 

mice have been developed by different 

groups. The first TRAIL-deficient mice were developed by two groups in parallel in 2002 

(Cretney et al., 2002; Sedger et al., 2002). In both studies mice were viable, fertile and had no 

obvious phenotype except for an enlarged thymus. Therefore, a role for TRAIL in 

development could be excluded. The same holds true for TRAIL-R
-/-

 mice. To date three 

different groups have generated TRAIL-R deficient mice which showed enhanced innate 

immune responses (Diehl et al., 2004), defects in radiation-induced apoptosis (Finnberg et al., 

2005) and increased susceptibility to lymph node metastasis (Grosse-Wilde et al., 2008). 

By now TRAIL
-/- 

mice are commercially available and many studies investigating their 

phenotype have been carried out. Many of them found that TRAIL plays a role in innate and 

adaptive immune responses and in infectious and autoimmune diseases, which might not be 

surprising as TRAIL and TRAIL-Rs are expressed on a variety of immune cells. In close 

relation to this TRAIL was also found to have an immune surveillance function against 

tumours and metastases. Furthermore, triggered by the debate about liver toxicity of certain 

TRAIL-preparations, the role of TRAIL in liver disease has been studied.  

Noteworthy, TRAIL has also been shown to bind to OPG, an osteoblast-secreted decoy 

receptor that functions as a negative regulator of bone resorption (Emery et al., 1998). As 
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TRAIL and TRAIL-R knockout mice do not show a bone phenotype, the physiological 

importance of the TRAIL-OPG interaction is still elusive. 

1.4.1. TRAIL in the immune system 

Stimulation-induced expression of TRAIL was found on the surface of cells from the innate 

as well as the adaptive immune system. TRAIL has been shown to be up-regulated upon 

antigen–receptor engagement, stimulation of Toll-like receptors and exposure to interferons 

(INFs). For example TRAIL up-regulation on monoctyes and macrophages is triggered by 

Lipopolysaccharides (LPS), INF-β and INF-γ, which has also been shown to be responsible 

for the up-regulation of TRAIL on the surface of dendritic cells and natural killer cells 

(Ehrlich et al., 2003; Halaas et al., 2000). 

TRAIL in innate immune cells 

TRAIL has an important effector function in NK cell-induced killing of target cells. This has 

initially been shown in vitro, where NK-mediated killing of tumour cells could only be 

ablated when TRAIL was neutralised in combination with CD95L and perforin (Kayagaki et 

al., 1999c). Later on this finding could also be confirmed in an in vivo setting. Takeda et al. 

(Takeda et al., 2001) used a metastasis model to show that reduction of the tumour burden 

was greatly dependent on INF-induced up-regulation of TRAIL. Although induction via 

INF-γ is a prerequisite for TRAIL expression on NK cells in adult mice, a small 

subpopulation exists that constitutively expresses TRAIL. This subpopulation has been shown 

to mainly consist of immature NK cells. These cells are most likely a remainder form earlier 

stages in life as high TRAIL expression can be found in fetal and neonatal mice, due to an 

autocrine production of INF-γ (Takeda et al., 2005). 

Similarly, a subset of dendritic cells (DCs) which produces INF-γ has been identified which is 

hallmarked by high TRAIL expression levels (Chan et al., 2006; Taieb et al., 2006). 

TRAIL in infectious diseases  

One decade ago, it has been discovered that TRAIL plays a role in viral infections. It was 

noticed that virus infected cells were rendered more TRAIL-sensitive, e.g. usually TRAIL-

resistant fibroblasts were sensitised to TRAIL after infection with human cytomegalovirus 

(Sedger et al., 1999). Accordingly, Sato et al. (Sato et al., 2001) showed two years later that 

the blockage of NK cell derived TRAIL increased viral titers ultimately leading to an earlier 
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death of encephalomyocarditis virus infected mice. One study using TRAIL-R knock-out 

mice investigated the response of TRAIL to different pathogens, not only viruses (Diehl et al., 

2004). Absence of TRAIL-R only influenced the response to virus infection (murine 

cytomegalovirus) but not to other pathogens. Surprisingly, TRAIL-receptor deficient mice 

were more resistant to virus infection than the wild type mice. As TRAIL seems to be 

necessary for the clearance of virus infected cells, this finding seems counterintuitive. 

Interestingly, murine cytomegalovirus infection led to increased serum levels of Interleukin 

(IL)-12 and IFN-γ in TRAIL-R -/- mice, possibly produced by DCs, macrophages and NK 

cells. Thus, TRAIL-R might be a negative regulator of innate immune responses by 

influencing antigen presenting cells (Diehl et al., 2004). 

TRAIL in T cells 

Similar to NK cells, TRAIL is absent on naïve T cells but can be induced by different stimuli, 

e.g. anti-CD3 (Jeremias et al., 1998), type I INFs (Kayagaki et al., 1999a), LPS, 

phytohemagglutinin (PHA) and IL-2 (Ehrlich et al., 2003). TRAIL contributes to the 

cytotoxic activity of T lymphocytes as shown for CD4
+
 cells (Kayagaki et al., 1999b) and 

CD8
+
 T cells, which can kill virus infected cells via TRAIL (Mirandola et al., 2004). In this 

context, TRAIL-R deficient mice also had more severe influenza infections due to a decreased 

CD8
+
 T-cell mediated killing (Brincks et al., 2008). 

Additionally, the TRAIL/TRAIL-R system may also play a role in the homeostasis of a 

particular subset of CD8
+

 T cells. ―Helpless‖ CD8
+

 T cells are primed in the absence of CD4
+

 

T cells and are unable to undergo a second round of clonal expansion upon restimulation with 

their cognate antigen (Shedlock et al., 2003). As TRAIL deficient ―helpless‖ CD8
+ 

T cells can 

still expand a second time, this effect was thought to be mediated via TRAIL. Thus, the 

absence of CD4
+
 T cells results in short-lived antigen-specific CD8

+
 T cells and defective 

secondary CD8
+
 T cell responses because of TRAIL-mediated apoptosis (Janssen et al., 

2005). By now, IL-15 has been identified as a mediator of CD4
+
 help for CD8

+
 T cell 

longevity and avoidance of TRAIL-mediated apoptosis by down-regulating pro-apoptotic Bax 

and increasing anti-apoptotic Bcl-XL in CD8
+
 T cells (Oh et al., 2008). A third study went 

one step further and showed that the induction of tolerance by apoptotic cells was mediated by 

CD8
+
 suppressor T cells with a ―helpless phenotype‖(Griffith et al., 2007b). Hence, animals 

deficient in TRAIL were resistant to tolerance induction by apoptotic cells. 
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However, the role of TRAIL in the homeostasis of helpless CD8
+
 is heavily contested. Two 

independent studies could not reproduce the results and claim that helpless CD8
+
 T cells still 

proliferate, but in a delayed fashion (Badovinac et al., 2006; Sacks and Bevan, 2008). 

Another role for TRAIL in T cells might be regulating Th1 versus Th2 cell responses. Th1 

cells have been shown to up-regulate CD95L upon stimulation with anti-CD3 in vitro, 

whereas Th2 cells rather seem to up-regulate TRAIL. These Th2 cells also are more TRAIL-

resistant than their Th1 counterparts (Roberts et al., 2003; Zhang et al., 2003). The cause for 

this might be an up-regulation of cFLIP also induced by the treatment with anti-CD3. In a 

model for allergic airway disease TRAIL
-/-

 mice showed an ameliorated disease outcome. 

TRAIL deficiency led to decreased homing of Th2 cells to the airways and as a result, to 

decreased release of Th2 cytokines, which in turn induce allergy (Weckmann et al., 2007). 

This could be caused by TRAIL-mediated apoptosis induction of Th1 cells leading to a 

stronger Th2 response. Therefore, blocking TRAIL in the airway of asthma patients might be 

a treatment approach for asthma. 

1.4.2. TRAIL in liver disease 

As already mentioned earlier, immature NK cells express TRAIL in the liver. TRAIL 

receptors become up-regulated in various liver diseases, among them Hepatitis B virus, 

Hepatitis C virus or cirrhosis conditions that are hallmarked by increased apoptosis and 

chronic inflammation. This might contribute to the liver damage caused by TRAIL which has 

been observed in vivo in different hepatitis models (reviewed in Herr et al., 2007).  

The first indication that TRAIL plays a role in hepatitis was a result of the studies by Zheng et 

al. (Zheng et al., 2004). In their study they were able to show that TRAIL deficient mice were 

resistant to Concanavalin A- induced and Listeria cytogenes- induced hepatitis.  

These findings were corroborated by another study, which addressed CD95L-induced 

hepatitis (Corazza et al., 2006). In this model hepatitis was induced using the CD95-antibody 

Jo-2. Wild type mice died within hours after administration of the antibody due to hepatocyte 

death and liver failure. Although it was widely believed that this death was mainly dependent 

on TNF, this study now showed that TRAIL might contribute to Jo-2-induced death of 

hepatocytes. For some TRAIL-deficient mice, death was only delayed by 1–2 hours, but 43 % 
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of TRAIL-deficient mice survived over 24 hours. These data suggest that TRAIL facilitates 

CD95L-induced liver damage and thereby enhances CD95L-induced lethality.  

In a bile duct ligated mouse model, which mimics cholestasis (the retention of bile fluid in the 

liver) and is achieved by a surgical block of the bile duct, hepatocytes have been shown to 

become TRAIL-sensitive to endogenous TRAIL present on NK cells (Kahraman et al., 2008). 

Furthermore, using a model a viral hepatitis that more resembles physiological conditions, it 

was found that adenoviral application of TRAIL induced hepatitis, however, only when cells 

have been infected with adenovirus before (Mundt et al., 2003). In a second study the same 

group investigated patient samples and found that TRAIL was up-regulated in Hepatitis C 

patients. The expression of TRAIL in virally infected livers induced hepatic steatosis (the 

deposition of fatty acids in the liver) and apoptosis (Mundt et al., 2005). Furthermore, liver 

slices of HCV-infected organs and from livers suffering from steatosis were shown to be 

killed by different preparations of TRAIL. 

The concept of TRAIL being a mediator of liver disease raises concerns about the clinical 

application of TRAIL-receptor targeting drugs. Profound liver toxicity in mice has hampered 

the use of CD95L in the clinics (Ogasawara et al., 1993). So far TRAIL has been administered 

safely in mice and non-human primates and is also well tolerated in clinical trials (discussed 

in detail in section 1.6.3 ). However, there is a debate about toxicity of TRAIL for hepatocytes 

which might greatly depend on the TRAIL-preparation and on the models system used. 

Taking all of this into account, in case TRAIL-induced liver toxicity turns out to be a 

clinically relevant issue, patients should be investigated for liver diseases prior to treatment 

with TRAIL and might have to be excluded when they present liver diseases.  

1.4.3. TRAIL in autoimmunity 

Autoimmune diseases develop as a result of inappropriate immune responses to self-antigens. 

Although TRAIL-R
-/-

 and TRAIL
-/-

 mice do not develop spontaneous autoimmune diseases, 

the induction of autoimmunity showed strong effects in TRAIL
-/-

 mice in different 

autoimmune models: collagen-induced arthritis (Song et al., 2000), diabetes I (Lamhamedi-

Cherradi et al., 2003), experimental autoimmune encephalomyelitis (EAE) (Cretney et al., 

2005) and experimental autoimmune thyroiditis (EAT) (Wang et al., 2005). For example, BL6 
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wild type mice were resistant to collagen-induced arthritis, whereas TRAIL
-/- 

mice readily 

developed the disease. 

At first the role of TRAIL in autoimmunity was attributed to a function in thymic negative 

selection (Lamhamedi-Cherradi et al., 2003). It was proposed that TRAIL-R 
-/-

 mice failed to 

delete self-reactive T-cells. However, it is now widely accepted that the TRAIL-TRAIL-R 

system does not have a function in central tolerance. TRAIL is not expressed on dendritic and 

epithelial cells in the thymus, which are the major mediators of negative selection in the 

thymus (Tanaka et al., 1993). Furthermore, Cretney et al. (Cretney et al., 2005) failed to 

identify a role
 
for TRAIL in an acute model of peptide antigen-specific negative

 
selection 

using a T cell receptor (TCR) transgenic system as well as antibody-mediated
 
TCR/CD3 

ligation in vitro and in vivo. These results combined with the fact that aged TRAIL
-/-

 mice 

showed no signs of autoimmunity, strongly indicate that intrathymic negative selection occurs 

normally in the absence of TRAIL-signalling. Therefore, the mechanism, how TRAIL 

influences autoimmunity, has yet to be determined. 

1.4.4. TRAIL in tumourigenesis 

After the discovery that TRAIL efficiently kills tumour cells, many groups set out to 

investigate the influence of TRAIL on tumourigenesis, using TRAIL- and TRAIL-R deficient 

mice or TRAIL-blocking antibodies. Although many studies have been conducted to date, 

they did not yield a conclusive picture after all.  

The first indication that TRAIL may suppress tumour growth already showed in the initial 

TRAIL knockout study by Sedger et al. (1999), which demonstrated that a syngenic tumour 

transplant of a B cell lymphoma line grew much faster in the absence of endogenous TRAIL. 

In line with this, tumour growth of other syngenic tumour cell lines, e.g. the mammary 

carcinoma cell line 4T1 or the renal cell line Renca, was elevated in TRAIL
-/-

 mice or after the 

treatment with TRAIL-blocking antibodies (Cretney et al., 2002; Takeda et al., 2001). 

Noteworthy, metastasis formation of Renca cells was affected in TRAIL
-/-

 mice. These mice 

showed enhanced formation of metastasis in the liver but not in the lung, which might be due 

to the constitutive expression of TRAIL on NK cells in the liver mentioned earlier. Taken 

together, endogenous TRAIL was repeatedly shown to have an effect on tumour growth and 

metastasis formation in transplanted tumour models.  
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In contrast to this, the situation in autochthonous tumour models is not very clear. TRAIL
-/-

 

and TRAIL-R
-/-

 mice do not develop spontaneous tumours at an early age. Only one study 

detected an increased formation of lymphoma in TRAIL
-/-

 mice at a later stage in life (300-

500 days after birth) (Zerafa et al., 2005). Especially, disseminated cancers like lymphoma, 

which reflect the situation of injected cell lines, seem to be affected by the loss of TRAIL. For 

instance, Eμ-myc induced formation of lymphoma was increased in TRAIL-R mice. 

(Finnberg et al., 2005). Similarly, loss of TRAIL promoted lymphoma formation induced by 

p53 heterozygocity. 

In solid tumours models the role of TRAIL remains unclear. Zerafa et al. (2005) detected an 

increased incidence of sarcoma in p53
+/-

 mice. Furthermore, in a chemically induced tumour 

model using MCA (methylcholanthrene) TRAIL
-/-

 mice suffered from enhanced formation of 

fibrosarcoma (Cretney et al., 2002). In contrast to this, Finnberg et al. (2005) failed to observe 

a significant difference in diethylnitrosamine (DEN)-induced hepatocarcinogenesis. In all 

other studies conducted in epithelial tumour models TRAIL consistently did not play a role in 

the development of primary tumours. No difference was found between wild type mice and 

TRAIL-R or TRAIL deficient mice concerning the formation of intestinal tumours (Yue et al., 

2005) or Her2/neu driven mammary carcinoma, respectively (Zerafa et al., 2005). 

Furthermore, in the chemically induced DMBA/TPA model, which mimics multiple steps in 

skin tumourgenesis, no significant increases in papilloma or carcinoma could be detected 

(Grosse-Wilde et al., 2008). Instead this study for the first time described TRAIL as a specific 

suppressor of lymph node metastasis in an autochthonous model in which primary tumour 

formation was not influenced by the absence of TRAIL. It is still elusive whether this specific 

metastasis suppressor function of TRAIL-R is confined to metastases in lymphoid organs, and 

which type(s) of cells are responsible for the TRAIL-mediated effect. If the tumour 

suppressor function of TRAIL also applies to other types of metastasis, this function of 

TRAIL could be exploited therapeutically in anti-metastatic therapies. 

1.5.  Sensitivity and resistance to TRAIL-induced apoptosis 

In contrast to systemic treatment with CD95L or TNF, TRAIL selectively induces apoptosis 

in about 50% of tumour cell lines while leaving normal cells unharmed (Ashkenazi et al., 

1999; Walczak et al., 1999). This key discovery opened up the possibility to use TRAIL as 

anti-cancer drug. However, recent studies revealed that most primary tumour cells are TRAIL 

resistant in the first place. Yet, many of these primary cancer cells can be sensitised to 
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TRAIL-induced apoptosis by combinational treatment with chemotherapeutics or irradiation. 

To be able to treat cancer efficiently it is hence crucial to understand the mechanisms 

underlying TRAIL-resistance.  

1.5.1. Resistance mechanisms 

Looking at TRAIL–R signalling, resistance to TRAIL can occur at different levels of the 

signalling cascade: at the level of TRAIL-Receptors, at the DISC level, at the mitochondria, at 

the level of caspase-3 activation or at any other step in the pathway that is required for 

TRAIL-induced apoptosis. 

First of all the expression of the apoptosis-inducing receptors themselves can be down-

regulated (Horak et al., 2005b). Accordingly, TRAIL-R1 expression was reported very low in 

some cells, e.g. in ovarian cancer which coincides with TRAIL-resistance. Low expression 

was caused by hypermethylation of the TRAIL-R1 promoter. Hence, resistance could be 

overcome by treatment with demethylating agent that restored TRAIL-R1 expression (Horak 

et al., 2005a). Noteworthy, a down-regulation of one of the apoptosis-inducing TRAIL-Rs 

must not necessarily result in resistance, e.g. in systems in which TRAIL apoptosis signal is 

mainly transmitted via the other TRAIL-R as has been reported for the ovarian cancer cell line 

A2780 (Saulle et al., 2007). In addition to the regulation of the two death-inducing TRAIL-

Rs, TRAIL-R3 and TRAIL-R4 can also be regulated. As mentioned in section 1.3.1 their 

decoy function is still a matter of debate. TRAIL-R3 has be shown to be over-expressed in 

many TRAIL-resistant primary tumours from the gastrointestinal tract (Sheikh et al., 1999), 

however, others studies report the opposite, a down-regulation of TRAIL-R3 in aggressive 

prostate cancer (Hornstein et al., 2008). Furthermore, recently several studies have shown that 

elevated expression of OPG, the soluble TRAIL-receptor, can account for TRAIL-resistance 

by interacting with TRAIL and preventing it to bind to TRAIL-R1 and R2 (De Toni et al., 

2008; Patino-Garcia et al., 2009; Rachner et al., 2009). 

One step further down in the TRAIL-signalling cascade, resistance conferred at the DISC 

levels seems to be regulated by cFLIP and caspase-8 levels. For instance in highly malignant 

human neuroblastoma or neural stem and progenitor cells, resistance to TRAIL was reported 

to correlate with silenced caspase-8 expression (Hopkins-Donaldson et al., 2000; Ricci-

Vitiani et al., 2004). Elevated cFLIP could be observed in 40% of human ovarian carcinoma 

samples. In many cases a knockdown of cFLIP is sufficient to restore TRAIL sensitivity. 
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Furthermore, high levels of PED/PEA-15, an anti-apoptotic factor recruited to the DISC 

which is predominantly expressed in the central nervous system, particularly in astrocytes, 

were shown to confer TRAIL-resistance in neural stem and progenitor cells (Ricci-Vitiani et 

al., 2004). 

On the mitochondrial level over-expression of anti-apoptotic Bcl-2 family members like Bcl-2 

and Bcl-XL and Mcl-1 blocks the disruption of the mitochondria and has often been shown to 

confer TRAIL-resistance (Barnhart et al., 2003; Fulda et al., 2002; Taniai et al., 2004).  

As already mentioned in section 1.3.2, IAPs inhibit the activation of caspases. Consequently, 

over-expression of XIAP induces TRAIL-resistance (Makhov et al., 2008) . In this scenario, 

SMAC/DIABLO released from the mitochondria is not able to antagonize XIAP and facilitate 

activation of caspases (Micheau and Merino, 2004). 

Taken together, resistance to TRAIL can occur at every step of TRAIL apoptosis pathway and 

some tumour cells use a combination of different resistance mechanisms to evade TRAIL-

induced apoptosis (Vogler et al., 2008). To devise treatments that overcome multiple 

mechanisms of resistance will be crucial for the success of TRAIL-based therapy in the 

future. 

1.5.2. Non-apoptotic signalling of TRAIL 

Intriguingly, TRAIL does not only induce apoptosis, but triggers proliferation, migration and 

invasion of tumour cells that are resistant to TRAIL-induced apoptosis. Already in the initial 

characterisation of TRAIL-R it was discovered that TRAIL can induce activation of nuclear 

factor 'kappa-light-chain-enhancer' of activated B-cells (NF-κB), a major pro-inflammatory 

transcription factor (Wajant, 2004). This activation of NF-κB was initially thought to only 

negatively regulate TRAIL-signalling. Later on it was shown that TRAIL-induced tumour cell 

migration and invasion of apoptosis resistant cholangiocarcinoma cells was dependent on the 

activation of NF-κB by TRAIL (Ishimura et al., 2006). Furthermore, TRAIL-induced survival 

and proliferation in TRAIL-resistant Jurkat cells was dependent on the presence of the 

receptor interacting protein-1 (RIP1) (Ehrhardt et al., 2003). RIP1 is well described in its role 

in TNF-signalling. There, it facilitates the activation of NF-κB by activating the inhibitor of 

κB kinase (IKK) complex. RIP1 has been reported to be recruited to the TRAIL DISC and 

might be the link between the TRAIL DISC and NF-κB activation. RIP1-deficient fibroblasts 
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show no IKK activation upon TRAIL stimulation (Lin et al., 2000). Non-apoptotic signalling 

of TRAIL has been proposed to be mediated by a secondary intracellular signalling complex, 

which consists of the DISC components FADD and caspase-8 but also RIP1, TNF-receptor 

associated factor-2 (TRAF2) and IKKγ. This complex can not only trigger activation of 

NF-κB but also c-Jun N-terminal kinase (JNK) and p38 (Varfolomeev et al., 2005). 

But also other survival pathways seem to be triggered by TRAIL, namely the extracellular 

regulated kinase (ERK) pathway and the phosphoinositide 3-kinases (PI3K) pathway. TRAIL-

resistant glioma cells proliferate after TRAIL treatment which correlates with increased ERK 

phosphorylation (Vilimanovich and Bumbasirevic, 2008). The authors of this study claimed 

that this ERK activation is dependent on cFLIP, as a knockdown of cFLIP reduced ERK 

phosphorylation. However it might also be possible that a knockdown of cFLIP tips the scale 

towards apoptosis induction and in turn there is less non-apoptotic signalling going on in the 

cell. Interestingly, only very low amounts of TRAIL (100 pg/ml) are sufficient to trigger 

TRAIL-induced ERK phosphorylation in human vascular smooth muscle cells which also 

induced migration and proliferation (Secchiero et al., 2004). This concentration is comparable 

to soluble TRAIL in the human plasma and was also sufficient to promote migration of 

human bone marrow multipotent stromal cells which could be blocked by pre-treatment with 

pharmacological inhibitors of the ERK1/2 pathway (Secchiero et al., 2008). In parallel to 

ERK activation TRAIL caused survival and proliferation of primary human vascular 

endothelial cells by activating AKT, also referred to as Protein kinase B (PKB). Conversely, 

treatment of TRAIL-resistant glioma cells with migration inhibitors not only stopped 

migration but also sensitised these to TRAIL-induced apoptosis, which correlated with a loss 

of phosphorylation of AKT (Joy et al., 2003). These finding suggest that a crosstalk between 

TRAIL-signalling and signalling usually responsible for survival and migration exists.  

The significance of non-apoptotic signalling of TRAIL has also been confirmed in vivo. In 

model of liver metastasis using orthotopically transplanted human pancreatic ductal 

adenocarcinoma cells Trauzold et al. (Trauzold et al., 2006) observed a dramatic increase in 

metastatic spread following TRAIL treatment. The fact that the TRAIL signal can be rerouted 

from apoptosis into pro-survival or migration signalling might also explain why tumours do 

not lose expression of TRAIL-Rs to evade apoptosis.  
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Taken together, these findings suggest that TRAIL can induce a diverse range of effects 

besides inducing apoptosis. One has to bear in mind that these functions of TRAIL under 

certain conditions might alter the outcome of TRAIL-based anti-cancer therapies. 

1.5.3. Sensitisation to TRAIL-induced apoptosis 

As already mentioned, TRAIL as a single agent is not able to induce apoptosis in most 

primary tumour cells. Fortunately, encouraging results have been obtained showing that the 

additional use of other anti-cancer drugs sensitises tumour cells to the effects of TRAIL. The 

synergistic effect of cytotoxic agents and TRAIL is believed to be mainly due to changes on 

the transcriptional levels of proteins important for the TRAIL pathway (Cretney et al., 2006; 

Wajant et al., 2002). Many studies suggest that changes on the receptor level, e.g. up-

regulation of TRAIL-R1 and TRAIL-R2, are already sufficient for the observed sensitising 

effect. Though up-regulation may correlate with the sensitising effect observed, it is not 

necessarily the cause, e.g. combinatorial treatment with 5-FU or bortezomib leads to an up-

regulation of TRAIL-R1 and -R2 (Koschny et al., 2007a). However, this change on the 

receptor level was not the only factor contributing to the sensitisation. Sensitising agents 

rather generally shift the threshold of tumour cells for apoptosis. They do so by down-

regulating anti-apoptotic molecules like IAPs, cFLIP, Bcl-2, Bcl-XL and Mcl-1 and by up-

regulating pro-apoptotic molecules including death receptors, caspase-8, FADD, Bak or Bax 

(Held and Schulze-Osthoff, 2001; Kelley and Ashkenazi, 2004; Mitsiades et al., 2002). 

For a safe use of a combinatorial therapy, it is important that preferentially tumour cells 

become sensitised to TRAIL-induced apoptosis while normal cells remain resistant. So far, 

only very high doses of the frequently applied chemotherapeutic cisplatin or the proteasome 

inhibitor bortezomib were shown to induce toxicity in primary human hepatocytes at day 4 of 

in vitro culture (Ganten et al., 2005). However, the concentration of bortezomib was about 40 

times higher than actually needed for TRAIL-sensitisation of tumour cells. Thus, 

combinational treatment of TRAIL and in combination with another drug might open up a 

therapeutic window for treatment of tumour patients without severe toxicity. Noteworthy, data 

obtained with different proteasome inhibitor show that each combination has to be assessed 

carefully, even though the sensitisers belong to the same class of cytotoxic agents. In this 

respect, normal primary human keratinocytes were sensitised to TRAIL even with low 

concentrations of the proteasome inhibitor MG-115 (Leverkus et al., 2003).  



Introduction 

36 

 

Apart from classical chemotherapeutic drugs like actinomycin D (Zisman et al., 2001), 

cisplatin and carboplatin (Mizutani et al., 2001) and irradiation (Maduro et al., 2008) new 

classes of anti-cancer drugs have been successfully applied as a means to sensitise to TRAIL. 

Among them are: proteasome inhibitors, Histone deacetylase inhibitors (HDACi), SMAC 

mimetics, BH3 mimetics and kinase inhibitors. 

Proteasome inhibitor like bortezomib or MG-115 already mentioned above have a direct anti-

cancer effect and have been found to sensitise a wide range of tumour cells to TRAIL 

(reviewed in Sayers and Murphy, 2006). Treatment of tumour cells with bortezomib results in 

multiple biological effects including inhibition of the cell cycle, inhibition of NF-κB 

activation, changes in cell adherence and increased apoptosis. They have also been shown to 

sensitise cells to TRAIL-induced apoptosis by shifting the ratio of cFLIP, caspase-8 and 

FADD at the TRAIL-DISC leading to an increased DISC formation and apoptotic signal 

transduction independently of NF-κB (Ganten et al., 2005). Furthermore, proteasome 

inhibition has also been shown to reduce XIAP levels in keratinocytes (Leverkus et al., 2003). 

Another class of sensitising agents are histone deacetylase inhibitors. They have been reported 

to lead to enhanced FADD recruitment to the DISC (Inoue et al., 2009) and to increase 

expression of TRAIL-Rs and other pro-apoptotic molecules (Caspase-8, Bax, Bak) whilst 

down-regulating anti-apoptotic factor (cFLIP, XIAP, Survivin) (Guo et al., 2004). However, 

the mechanism behind HDACi-dependent sensitisation to TRAIL-induced apoptosis is still 

unclear. The combination of TRAIL and HDACi efficiently induces apoptosis in hepatoma 

cell lines (Schuchmann et al., 2006), primary AML and CCL cells (Inoue et al., 2004; 

MacFarlane et al., 2005; Nebbioso et al., 2005), while primary human hepatocytes, normal 

peripheral mononuclear blood cells and myeloid progenitors remain unharmed.  

SMAC mimetics and BH3 mimetics are the results of rational drug design. As the name 

implies SMAC mimetics have been designed to mimic the structure of SMAC and inhibit the 

action of IAPs. SMAC mimetics have in vitro and in vivo anti-tumour activity whilst 

remaining non-toxic for untransformed cells (Wu et al., 2007). Smac mimetics potently 

synergise with TRAIL to kill tumour cell lines (Dai et al., 2009; Li et al., 2004) and have 

already been successfully applied to sensitise primary ovarian carcinoma cells to TRAIL 

(Petrucci et al., 2007). BH3 mimetics are small molecules that mimic BH3-only proteins by 

binding to and inhibiting pro-survival members of the Bcl-2 family. The best charactersed 
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BH3 mimetic is ABT-737, generated by Abbott Laboratories through a combination of NMR-

based screening, parallel synthesis and structure-based design (Oltersdorf et al., 2005). 

ABT-737 synergised with TRAIL in several cancer types, including those expressing high 

levels of Mcl-1 in vitro and in vivo (Mason et al., 2008; Song et al., 2008b; Tagscherer et al., 

2008). 

Taken together, these pre-clinical data point towards a great potential of combinational 

treatment in cancer therapy. However, there is still a need for systematic research to 

understand the principles under which conditions transformed cells but not normal cells 

become sensitised to TRAIL to further refine TRAIL-based cancer therapeutic approaches. 

Sensitisation by kinase inhibition 

Kinases are the main mediators of survival signalling and transmit growth and survival signals 

into the cells. Deregulated survival signalling, e.g. through activating mutations of kinases has 

been shown to drive tumourigenesis. Over the last decade, kinase inhibitors have emerged as 

novel class of targeted cancer therapeutics with more than 10,000 patent applications in the 

US alone since 2001 (Akritopoulou-Zanze and Hajduk, 2009). They have revolutionised the 

treatment of a particular group of diseases, e.g. chronic myeloid leukaemia or gastrointestinal 

stromal tumours where kinase inhibitors have achieved multi-year increases in survival 

(Druker et al., 2001; Heinrich et al., 2003). These diseases are driven by a singly oncogenic 

kinase. In contrast to this kinase inhibitors have been least effective in cancers with high 

mortality rates, such as prostate cancer, lung cancer, colorectal cancer and pancreatic cancer. 

Identifications of markers for patients that are likely to respond to the given kinase inhibitor 

will be crucial to improve the results of kinase inhibitor based therapy, as has already been 

shown for KRAS mutations in advanced colorectal cancer (Karapetis et al., 2008).  

To date, three different strategies exist to design kinase inhibitors which are selective for a 

certain kinase (reviewed in Fedorov et al., 2010). The most prevalently used approach for the 

development of selective inhibitors is by targeting the ATP binding site of the kinase in 

question. The ATP binding site is situated in the deep cleft between the two catalytic domains 

and can be targeted by low molecular weight inhibitors. The ATP-bindings site is rigid and 

also well conserved within the kinase family adding to the difficulty to design selective ATP-

competitive inhibitors. However, using the ever growing toolkit of chemical design strategies, 

very potent and selective ATP-competitive kinase inhibitors have been generated (Zhang et 
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al., 2009).  In contrast to ATP-competitive inhibitors which target the active state of kinases, a 

second approach targets kinases in their inactive state. This strategy profits from a larger 

diversity of conformations and therefore greater possibilities to design selective inhibitors. 

For example, the Bcr-Abl inhibitor Imatinib targets an additional large cavity adjacent to the 

ATP binding site which is only accessible in the inactive state (Liu and Gray, 2006). The third 

type of inhibitors inhibits by allosteric mechanisms or by competition with regulatory 

elements. So far only a few examples have been reported, among them the compound GNF-2 

which inhibits Bcr-Abl via an allosteric non-ATP competitive mechanism (Adrian et al., 

2006).   

Many kinase inhibitors have been successfully applied as sensitisers to TRAIL-induced 

apoptosis. In general, kinases whose inhibition sensitises to TRAIL-induced apoptosis can be 

clustered into different groups: kinases involved in the regulation of cell cycle, kinases that 

are involved in JAK/STAT signalling, and kinases that have been implicated in TRAIL-non-

apoptotic signalling pathways, namely ERK, PI3/AKT. 

CKII has been implicated in cell cycle control and already been mentioned in section 1.2.2, as 

phosphorylation of Bid by CKII inhibits cleavage by caspase-8 (Desagher et al., 2001). 

Therefore, it is not surprising, that CKII inhibition has been reported to sensitise to TRAIL-

induced apoptosis (Kim et al., 2008). However, not only phosphorylation of Bid seems to be 

affected but also enhanced DISC activity (Izeradjene et al., 2005) and down-regulation of 

cFLIP have been reported upon CKII inhibition with the inhibitor DRB (Llobet et al., 2008). 

Other than CKII, inhibition of Aurora kinase B and Cyclin-Dependent Kinase 4, which are 

also involved in cell cycle regulation, has been reported to sensitise to TRAIL via up-

regulation of TRAIL-R2 (Li et al., 2009) and down-regulation of survivin, respectively 

(Retzer-Lidl et al., 2007). However, the exact link, how inhibition of cell cycle regulation 

induces these changes has not yet been established. 

Another signalling pathway that seems to confer TRAIL resistance is the JAK/STAT 

signalling pathway. It takes part in the regulation of cellular responses to cytokines and 

growth factors. An overview of JAK/STAT signalling is depicted in figure 7.  

http://en.wikipedia.org/wiki/Cytokine
http://en.wikipedia.org/wiki/Growth_factor
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figure 7. Overview of the JAK-STAT signalling pathway. 

JAKs have tyrosine kinase activity and bind to the intracellular part of cytokine receptors. The 

binding of the ligand to the receptor triggers activation of JAKs. They phosphorylate tyrosine 

residues on the receptor and create sites for interaction with proteins that contain phosphotyrosine-

binding SH2 domain. STATs possessing SH2 domains are capable of binding these phosphotyrosine 

residues and are recruited to the receptors where they are phosphorylated by JAKs. These 

phosphotyrosines then act as docking sites for SH2 domains of other STATs, leading to their 

dimerisation. Activated STAT dimers translocate to the nucleus and activate transcription of their 

target genes. 

Employing Janus kinases (JAKs) or and Signal Transducers and Activators of Transcription 

(STATs), the pathway transduces the signal carried by these extracellular polypeptides to the 

cell nucleus, where activated STAT proteins modify gene expression. Inhibition of JAK2 with 

the inhibitor AG490 augmented TRAIL-induced apoptosis and led to a down-regulation of 

XIAP and survivin in hepatoma cells (Fuke et al., 2007). JAK2 is responsible for activation of 

STAT3. Consequently, inhibition of STAT3 with a STAT3 inhibitor peptide also led to 

sensitisation (Kusaba et al., 2007). STATs were originally discovered as targets of JAK, but it 

has now become apparent that certain stimuli can also activate them independently of JAKs. 

Accordingly, dephosphorylation of STAT3 by inhibition of ATM using the inhibitor 

KU-55933 has been shown to sensitise to TRAIL in melanoma cells (Ivanov et al., 2009). 

Sensitisation was further increased by radiation and correlated with up-regulation of TRAIL-

R2 and down-regulation of cFLIP. Noteworthy, blockage of tumour-cell-derived Interleukin-4 
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(IL-4) has also been shown to sensitise to TRAIL in cancer cells from different tissue origins 

(Todaro et al., 2008). As IL-4 has been reported to stimulate JAK/STAT signalling (Rolling et 

al., 1996), inhibition of the JAK/STAT pathway might be the underlying mechanism for IL-4 

mediated sensitisation to TRAIL. 

The ERK pathway has been shown to be essential for TRAIL-non apoptotic signalling 

(section 1.5.2).  

 

figure 8. Overview of the ERK pathway. 

Receptor tyrosine kinases (RTKs) such as the epidermal- growth-factor-receptor (EGFR) are 

activated by extracellular ligands. Binding of the ligand activates the tyrosine kinase activity of the 

receptor and it becomes auto-phosphorylated on its tyrosine residues. Adaptor proteins such as 

GRB2 which contain SH2 domains bind to the phosphotyrosine residues of the activated receptor. 

GRB2 then binds to the guanine nucleotide exchange factor SOS. When the GRB2-SOS complex binds 

to phosphorylated RTKs, SOS is activated and promotes the removal of GDP from Ras. Ras can then 

bind GTP and becomes active. Activated Ras activates the protein kinase activity of RAF kinase. RAF 

kinase phosphorylates and activates MEK. MEK in turn phosphorylates and activates ERK. ERK then 

regulates the activity of several transcription factors and affects translation. 
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It is a complex signal transduction pathway that couples intracellular responses to the binding 

of growth factors to cell surface receptors, it controls transcription and regulates the cell 

cycle. Activation of MAPK/ERK promotes cell division in many cell types. An overview of 

the basic pathway is depicted in the figure 8. Several studies have observed a sensitisation of 

cells to TRAIL upon inhibition of the MAPK/ERK pathway mostly using the MEK inhibitors 

U0126 (Grosse-Wilde et al., 2008) or PD98059 (Lee et al., 2005; Lee et al., 2006). Inhibition 

of the MAPK/ERK pathway affected the expression of cFLIP, XIAP and Bcl-2. 

Arguably, the most important pathway when it comes to TRAIL-sensitisation is the 

PI3K/AKT pathway (figure 9). Three major classes of PI3Ks exist in humans but only the 

class IA subgroup has been linked to cancer so far. The class IA PI3K are heterodimers and 

consist of a regulatory subunit (p85 family) and p110 subunit. There are 4 different isoforms 

of the p110 subunit, namely: α, β, γ and δ. In normal tissues p110α and p110β are 

ubiquitously expressed, whereas expression of p110γ and p110δ is mostly restricted to 

leukocytes. Cancer-specific mutations of the α-subunit occur in diverse tumours with 

frequencies up to 30 % (Samuels et al., 2004). In contrast to this no cancer-specific mutations 

have been identified in the other three isoforms. However, over-expression of the non-α 

isoforms induced oncogenic transformation in vitro. Furthermore, the β-isoform is expressed 

at high levels in colon and bladder carcinoma and the δ-isoform in glioblastoma and acute 

myeloid leukemia (reviewed in Vogt et al., 2007).  

Active class IA PI3Ks are capable of phosphorylating phosphatidylinositol(4,5)-bisphosphate 

(PIP2) to generate phosphatidylinositol(3,4,5)-trisphosphate (PIP3) (reviewed in Shaw and 

Cantley, 2006). In addition to being activated by RTKs, p110 can also bind directly to Ras 

which also triggers PI3K activation. PIP3 recruits AKT to the plasma membrane. AKT is then 

activated by two phosphorylation events; phosphoinositide dependent Kinase (PDK) 1 is also 

recruited via PIP3 and phosphorylates AKT at residue T308. The identity of PDK2 who 

phosphorylates AKT at the second activating phosphorylation site S473 remains 

controversial, several kinases have been implicated in acting as PDK2s among them mTOR, 

DNA-dependent protein kinase (DNA-PK) and ATM (reviewed in Dong and Liu, 2005). 

Active AKT controls cell survival, cell cycle, cell growth and metabolism through 

phosphorylation of a plethora of substrates. It blocks apoptosis at different stages of the 

TRAIL-receptor pathway either directly by phosphorylation or indirectly by inducing gene 

transcription or translation via different downstream effectors. 

http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Growth_factor
http://en.wikipedia.org/wiki/Cell_(biology)
http://en.wikipedia.org/wiki/Receptor_(biochemistry)
http://en.wikipedia.org/wiki/Cell_division
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figure 9. Overview of the PI3K/AKT pathway.  

The catalytic subunits of class I PI3K can be activated by upstream receptors, e.g. RTKs. PI3K 

catalysis the generation of PIP3 from PIP2. This can be reversed by the action of lipid phosphatase 

PTEN. PIP3 recruits AKT and PDK1. PDK1 activates AKT via phosphorylation. A second kinase 

referred to as PDK2 also phosphorylates AKT which is necessary for complete activation of AKT 

which controls cell survival, cell cycle, cell growth and metabolism through phosphorylation of a 

plethora of substrates (of which the most important ones in the context of this thesis are depicted in 

the figure). Adapted from Shaw et al. (Shaw and Cantley, 2006). 

Directly regulated are for example: Caspase-9, which is inactivated by phosphorylation at 

residue S196 by AKT (Cardone et al., 1998), Bad, whose phosphorylation by AKT keeps it in 

the cytosol sequestered by 14-3-3 (Datta et al., 1997) and Ped/PEA-15, whose anti-apoptotic 

action is stabilised after phosphorylation by AKT (Trencia et al., 2003). Indirectly regulated 

are different members of the Bcl-2 family and IAPs. Considering this, it is not very surprising 

that inhibitors of AKT such as tribicine or perifosine sensitise to TRAIL-induced apoptosis 

(Shrader et al., 2007; Tazzari et al., 2008). In line with this inhibition of kinases upstream of 

AKT, such as PI3K by Wortmannin and LY294002 (Seol et al., 2005), and EGFR by gefinitib 

(Shrader et al., 2007) also induced TRAIL sensitisation. Depending on the cellular system, a 
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down-regulation of cFLIP, XIAP, cIAP1, cIAP2, surviving, Bcl-2, Mcl-1 has been reported to 

correlate with inhibition of the PI3K/AKT pathway (Alladina et al., 2005; Kim et al., 2004; 

Panka et al., 2001; Wang et al., 2008). Also inhibition of other kinases could ultimately be 

linked back to inhibition of the PI3K/AKT pathway. In this respect sensitisation of leukaemia 

cells to TRAIL by inhibition of DNA-PK by the inhibitor DMNB was shown to be mediated 

via AKT (Kim et al., 2009). The same applies for Protein Kinase C ε (PKCε) which has been 

reported in a number of studies to confer TRAIL-resistance (Felber et al., 2007; Shankar et 

al., 2008; Shinohara et al., 2001). The most recent study by Shankar et al. (2008) suggest that 

sensitisation to TRAIL by inhibition of PKCε is mediated downstream via an inhibition of 

AKT. Intriguingly, also the TRAIL-sensitising effect of the proteasome inhibitor bortezomib 

can also at least partly be attributed to inhibition of the PI3K/AKT pathway (Chen et al., 

2008). Furthermore, physiological processes like heat shock or detachment have been shown 

to augment TRAIL-induced apoptosis dependent on the down-regulation of PI3K/AKT 

signalling (Lane et al., 2008; Pespeni et al., 2007). Also microRNAs which have been recently 

discovered as class of post-transcriptional genetic regulators, seem to influence TRAIL 

sensitivity via influencing the PI3K/AKT pathway. microRNA-221 & 222 regulate TRAIL 

resistance and enhance tumourigenicity through PTEN down-regulation (Garofalo et al., 

2009). 

Taking all this into consideration, inhibition of PI3K/AKT pathway is a promising approach 

for a successful application in combination to TRAIL. Several inhibitors of the PI3K/AKT 

pathway are in clinical trials at the moment an overview of which is given in table 1. So far, 

the efficacy and toxicity of TRAIL in combination with PI3K/AKT inhibitors has not been 

tested in vivo, but considering the apparent synergy between inhibition of this pathway and 

stimulators of the TRAIL pathway, it seems to be only a matter of time for this combination 

to be studied in further preclinical and clinical investigations. 

Sorafenib is a positive example of a kinase inhibitor that has already made it into the clinic as 

a novel therapeutic for the treatment of advanced renal cell carcinoma and advanced primary 

liver cancer. Sorafenib is a multikinase inhibitor. It has been designed to inhibit the ERK 

pathway but later studies showed that it also targets vascular endothelial growth factor 

receptors (VEGFR)-2 and -3 which are upstream of PI3K/AKT. Therefore Sorafenib inhibits 

both of the important survival pathways (Wilhelm et al., 2004). A number of studies show the 

http://en.wikipedia.org/wiki/Renal_cell_carcinoma
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synergism between TRAIL and Sorafenib (Ricci et al., 2007) and this combination is already 

in clinical trials. 

 

Table 1: PI3K/AKT pathway inhibitors in clinical development for cancer treatment 

(Engelman, 2009). 

Inhibitor Company Phase of clinical trial 

PI3K inhibitors   

XL147 Exelixis Phase I 

PX866 Oncothyreon Phase I 

GCD0941 Genentech/Piramed/Roche Phase I 

BKM120 Novartis Phase I 

CAL101 Calistoga Pharmaceuticals  Phase I 

AKT inhibitors   

Perifosine Keryx Phase I/II 

GSK690693 GSK Phase I 

VQD002 Vioquest Phase I 

MKK2206 Merck Phase I 

 

1.6. TRAIL as a therapeutic agent 

Currently, several companies pursue TRAIL-R-targeted therapies in clinical trials using 

TRAIL-R agonists alone or in combination with other anti-cancer therapeutics. This chapter 

will introduce a variety of TRAIL-R agonists developed so far, discuss new approaches 

invented to improve the targeting of TRAIL-R agonists to the tumour site and will summarise 

the available data about their effects on primary tumours in vitro and in clinical trials. 

1.6.1. TRAIL-Receptor agonists and their toxicities  

In order to trigger the TRAIL-mediated apoptotic pathway soluble recombinant versions of 

TRAIL as well as agonistic antibodies targeting TRAIL-R1 and TRAIL-R2, respectively can 

be applied. Ideally, these agonists should on the one hand have high anti-tumour activity, but 

at the same time low toxicity for normal cells to ensure a safe and efficient application as anti-

cancer drug in the clinics. 



Introduction 

45 

 

Agonistic TRAIL-R specific monoclonal antibodies 

It is still a matter of debate whether TRAIL-R3 and TRAIL-R4 truly act as decoy receptors 

and whether their overexpression protects cancer cells from TRAIL-induced apoptosis 

(Buchsbaum et al., 2006). However, to overcome a potential safeguarding effect of TRAIL-

R3 and -R4, agonistic monoclonal antibodies specifically targeting TRAIL-R1 or -R2 have 

been developed in the hopes of gaining a more effective anti-tumour effect. Additionally, 

these monoclonal antibodies have an increased half-life (14-21 days) when compared to 

recombinant forms of TRAIL (about 30 min in non-human primates). However, one has to 

bear in mind that these benefits might potentially come along with a higher toxicity for 

normal cells. 

The TRAIL-R2-specific antibody TRA-8 for instance has been reported to kill leukaemia 

cells, astrocytoma and engrafted breast cells while sparing normal human astrocytes, B and T 

cells as wells as primary human hepatocytes (Buchsbaum et al., 2003; Ichikawa et al., 2001).  

Due to the formation of higher order complexes and the recruitment and activation of innate 

immune cells, additional cross-linking of TRAIL-R-specific antibodies by Fc-receptor-

expressing immune cells can lead to a higher efficiency in the anti-tumour response (Takeda 

et al., 2004). A combination of TRAIL-R-specific antibodies with CD40- and 4-1BB-specific 

antibodies was able to completely eradicate syngenic tumours without any observed toxicity 

in mice (Uno et al., 2006). In this model, anti-TRAIL-R antibodies on the one hand kill 

TRAIL-sensitive tumour cells and on the other hand recruit Fc-receptor expressing cells such 

as DCs and macrophages via the constant region of the antibody. These antigen-presenting 

cells (APCs) subsequently engulf the apoptotic tumour cells, process tumour antigens and 

present them to surrounding T cells. Concomitant stimulation with anti-CD40 and anti-4-1BB 

antibodies induces further APC activation in order to efficiently stimulate surrounding 

cytotoxic T cells. Being properly activated, CTLs are then able to kill the TRAIL-resistant 

tumour burden expressing tumour-associated antigens.  

Yet again, besides leading to increased anti-tumour responses, cross-linking of TRAIL-R 

specific antibodies may also result in higher toxicity for normal cells, including primary 

human hepatocytes (Mori et al., 2004). Furthermore, it has to be considered that TRAIL-

receptor targeting therapies employing TRAIL-R specific antibodies carry the risk of 
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developing uncontrolled autoimmune responses. The Fc-Part of the antibody may bind to 

appropriate Fc-receptors of APCs thereby leading to their activation. 

Recombinant TRAIL 

In contrast to TRAIL-R specific antibodies, recombinant forms of TRAIL allow for the 

activation of TRAIL-R1 and TRAIL-R2 at the same time. This might be a promising strategy 

as the expression profile of TRAIL-receptors on tumours is mostly unknown. So far, a variety 

of soluble TRAIL versions has been generated, each encoding the extracellular domain of 

human TRAIL that is amino-terminally fused to an oligomerisation motif, e.g. a poly-histidine 

tag (His-TRAIL) (Pitti et al., 1996), a FLAG-epitope (Schneider, 2000), a leucine zipper 

(Walczak et al., 1999) or an isoleucine zipper motif (Ganten et al., 2006). These additional 

tags improve receptor oligomerisation which is necessary to successfully transmit the death 

signal. Yet again, as has been discussed for TRAIL-R specific antibodies, the ability of 

recombinant TRAIL to form higher-order complexes might coincide with increased toxicity 

for normal cells (Koschny et al., 2007b; Lawrence et al., 2001). 

It seems that two main factors determine TRAIL sensitivity of normal human cells, i.e. the 

form of the recombinant TRAIL used and the model system chosen. Highly oligomerised 

forms of TRAIL, e.g. cross-linked FLAG-TRAIL were reported to induce killing of primary 

human hepatocytes, keratinocytes and astrocytes in some model systems (reviewed in 

Koschny et al., 2007b). However, it is still a matter of debate which of the model systems 

most reliably resembles physiological conditions. The studies by Ganten et al. in primary 

human hepatocytes shed new light on this matter (Ganten et al., 2005). Here, freshly isolated 

primary human hepatocytes at day one of in vitro culture were efficiently killed by highly 

aggregated forms of TRAIL. However, on day four of in vitro culture, on which the 

phenotype of primary human hepatocytes resembles normal liver tissue, the primary human 

hepatocytes turned out to be TRAIL resistant. These results correspond to the ones obtained in 

an elegant in vivo study by Hao et al. in which orthotopically xenotransplanted human liver 

cells in mice did not show toxicity upon treatment with non-tagged TRAIL (Hao et al., 2004). 

Furthermore, application of TRAIL alone or in combination with chemotherapeutics in vivo, 

as has been shown in mice, cynomologues monkeys and chimpanzees did not lead to any 

signs of toxicity (Ashkenazi et al., 1999). However, one has to bear in mind that toxicity 

could potentially occur under certain sensitising conditions like viral hepatitis or in a pro-

inflammatory milieu (Liang et al., 2007; Mundt et al., 2005). A recent study indeed reported 
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toxicity of DATR , a recombinant soluble human TRAIL mutant (DATR) which was explored 

by Chengdu Diao Pharmaceutical Group (Zou et al., ,2010). Rodents and crab-eating 

macaques were used to estimate potential adverse effects of DATR following a single dose 

administration. The median lethal dose (LD50) of intravenous injection to rats and mice was 

determined as 262.0 and 1018.0 mg/kg, respectively. Data suggested that liver, renal and 

haematological systems might be the target effectors of toxic effect induced by DATR. 

However, the dosage is excessively high and does not reflect the concentration which has 

been used in animal models when anti-tumour activity of TRAIL was observed. 

As non-tagged TRAIL shows the lowest toxicity for normal cells in vitro when compared to 

highly oligomerised forms of TRAIL, e.g. His- or FLAG- TRAIL, and nevertheless shows 

considerable killing activity, this form of human soluble TRAIL was chosen for clinical 

development (see below). Studies comparing recombinant version of TRAIL to TRAIL-R 

specific antibodies are still missing today. However, for the CD95 system and TNF-R system 

it is known that the killing potential of the recombinant cognate ligand is superior to the 

respective antibody (Schlosser et al., 2000). Despite having a much lower half-life than 

TRAIL-R-specific antibodies, the same might also apply for recombinant TRAIL. 

Accordingly, Apo2L/TRAIL, which is already in phase II clinical trials has a high anti-tumour 

activity in vivo due to significant tumour penetration (Kelley and Ashkenazi, 2004; Koschny 

et al., 2007a).  

Taking all this into consideration, the data obtained so far suggest TRAIL-R agonists, 

including TRAIL-R specific antibodies and soluble recombinant TRAIL, as promising novel 

biotherapeutic drug for the treatment of cancer. 

1.6.2. Potency of TRAIL in primary tumours 

A variety of studies which investigated the effect of TRAIL on tumour cell lines so far 

yielded very promising results. In contrast to this, the effect in primary tumour cells seems to 

be more diverse. Pre-clinical studies applying TRAIL to freshly isolated human myeloma 

cells show that TRAIL can efficiently induce apoptosis in these otherwise chemotherapy 

resistant cells (Gazitt, 1999; Mitsiades et al., 2001). However, TRAIL could not do so in acute 

lymphoblastic leukaemia, acute myelogenous leukaemia, acute promyelocytic leukaemia and 

in primary B cell acute or chronic lymphocytic leukaemia (Clodi et al., 2000; MacFarlane et 

al., 2002). The factors that determine TRAIL resistance of primary tumour cells could only be 
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revealed for a few cancer types. For example, Riccioni et al. (Riccioni et al., 2005) reported a 

correlation between TRAIL-resistance and the expression of decoy receptors in myeloid 

leukaemia. Furthermore, it could be shown that TRAIL resistance in primary glioblastoma is 

dependent on the expression of the tumour suppressor PTEN (phosphatase and tensin 

homologue deleted on chromosome TEN) and cFLIP (Panner et al., 2005). Expression of wild 

type PTEN and low levels of cFLIP rendered the cells TRAIL-sensitive, whereas the 

expression of mutated PTEN together with high levels cFLIP confers TRAIL resistance. 

However, the expression levels of cFLIP seem to be irrelevant for (oligo) astrocytoma 

specimen (Koschny et al., 2007a) as well as in isolated tumour cells form medullablastoma, 

meningeoma, esthesioneuroblastoma and soft tissue sarcoma, all of which are TRAIL 

resistant (Clayer et al., 2001). Intriguingly, for pancreatic cancer and cholangiocarcinoma 

cells TRAIL treatment has been observed to enhance migration and metastatic spread in vitro 

and in vivo (Ishimura et al., 2006; Trauzold et al., 2006). 

Taken together, as most primary tumour cells – unlike cancer cell lines- are TRAIL-resistant 

and TRAIL treatment was even counterproductive in some cases, the application of TRAIL as 

a single agent needs to be questioned. It is of major importance to carefully characterise the 

tumour specimen with regard to its TRAIL sensitivity prior to treatment in order to be able to 

administer a tailored therapy specific to the patient‘s sensitivity profile. For this purpose, it is 

necessary to develop biomarkers and appropriate sensitivity tests (McCarthy et al., 2005). As 

the expression of O-glycosylating enzymes seems to correlate with TRAIL sensitivity, these 

enzymes might be valuable markers to predict the prospect of success of a TRAIL-based 

therapy (Wagner et al., 2007). The expression of the O-glycosylating enzyme GALNT3 for 

instance correlates with TRAIL sensitivity in colorectal cancer (CRC) and the expression of 

GALNT14 with TRAIL sensitivity in non small cell lung cancer (NSCLC) , pancreatic cancer 

and melanoma cell lines. Thus, specific O-glycosylating enzymes could potentially be used as 

predictive biomarkers for responsiveness to TRAIL-based cancer therapy. 

1.6.3. Clinical development of TRAIL-R agonists (TRAs) 

On the basis of the promising pre-clinical findings concerning TRAIL-R targeting 

approaches, TRAIL receptor agonists (TRAs) are being developed by several companies. The 

progress of one recombinant ligand, one anti-TRAIL-R1, five anti-TRAIL-R2 antibodies and 

a Ad5-TRAIL gene therapy in clinical trials will be summarised.  
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Table 2: summarises the clinical development of TRAs. 

Name  Description Combination Phase  

rhApo2L/TRAIL 

(PRO1762, 

AMG-951) 

 

Recombinant  

TRAIL  

binds to TRAIL-R1 

and TRAIL-R2 

- 

Irinotecan and 

Cetuximab 

Rituximab 

Bevacizumab 

Paclitaxel, 

Carboplatin and 

Bevacizumab (PCB) 

Phase II (NHL, NSCLC) 

Phase I (CRC) 

 

Phase I/II (NHL) 

Phase II (NSCLC) 

PhaseI/II (NSCLC) 

Mapatumumab 

(HGS-ETR1) 

 

Human monoclonal 

antibody targeting 

TRAIL-R1 

 

- 

 

Bortezomib 

Paclitaxel and 

Cisplatin 

Gemcitabin and 

Cisplatin 

Paclitaxel and 

Carboplatin 

Phase II (NHL, CRC, NSCLC, 

MM) 

Phase II (MM) 

Phase I/II (advanced 

solid tumours) 

Phase I/II (advanced 

solid tumours) 

Phase I/II (advanced 

solid tumours) 

Lexatumumab 

(HGS-ETR2) 

 

Human monoclonal 

antibody targeting 

TRAIL-R2 

 

-     

                                     

FOLFIRI 

 

Gemcitabin, 

Pemetrexed und 

Doxorubicin 

Phase I (advanced 

solid tumours) 

Phase Ib (advanced 

solid tumours) 

Phase Ib (advanced 

solid tumours) 

 

CS-1008  

 

Monoclonal 

antibody, humanised 

form of the murine 

TRAIL-R antibody  

TRA-8 

-  

 

 

Gemcitabin 

 

Phase I (advanced 

solid tumors and 

lymphomas) 

Phase Ib (pancreatic cancer) 

LBY135  

 

 

Chimeric 

monoclonal antibody 

targeting TRAIL-R2  

-  

Capecitabin 

Phase I/II 

Phase I (advanced 

solid tumours) 
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Apomab  

 

Human monoclonal 

antibody targeting 

TRAIL-R2 

 

-  

 

Rituximab 

Bevacizumab 

 

Phase II (NHL, 

NSCLC) 

PhaseI/II (NHL) 

PhaseI/II(NSCLC) 

AMG-655  

 

Human monoclonal 

antibody targeting 

TRAIL-R2 

 

 

-  

 

 

mFOLFOX6 and 

Bevacizumab 

Doxorubicin 

Gemcitabin 

Paclitaxel and 

Carboplatin 

Panitumumab 

Phase II (pancreatic cancer, 

NSCLC,CRC, Soft tissue 

sarcoma) 

Phase I/II (CRC) 

 

Phase I/II (soft tissue sarcoma) 

Phase I/II (pancreatic cancer)  

Phase I/II (NSCLC) 

 

Phase I/II (CRC) 

Ad5-TRAIL  Recombinant 

adenoviral TRAIL; 

binds to TRAIL-R1 

und TRAIL-R2 

- Phase I 

 

The first company to develop TRAs was Human Genome Science (HGS). They developed 

two fully humanised monoclonal antibodies activating TRAIL-R1 and -R2, respectively: 

Mapatumumab (HGS-ETR1) and Lexatumumab (HGS-ETR2), which are the most advanced 

TRAs in clinical trials. Both antibodies have been very successful in pre-clinical studies and 

induced apoptosis across a wide range of human tumour cell lines as well as in primary cells 

isolated from solid haematological malignancies. In all studies conducted so far, 

Mapatumumab was generally well tolerated, with the maximum tolerated dose yet to be 

reached. It has yielded stable disease as best clinical response in a phase Ia setting (Tolcher et 

al., 2007). In contrast, phase Ib studies in which Mapatumumab was tested in combination 

with either gemcitabine-cisplatin or paclitaxel-cisplatin have yielded partial responses (28% 

and 23%, respectively) (Chow et al., 2006; Hotte et al., 2005; Hotte et al., 2008). In this case a 

dose limiting toxicity could be observed for one patient. Another study tested Mapatumumab 

in combination with paclitaxel and carboplatin in solid tumours. Mapatumumab was well 

tolerated up to a dosage of 20 mg/kg. Five out of 27 patients showed a partial response and 12 
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patients yielded stable disease (Leong et al., 2009). Mapatumumab‘s activity could also be 

validated in three Phase II studies with patients suffering from Non-Hodgkin‘s lymphoma 

(NHL), CRC, and NSCLC. For NHL, Mapatumumab as a single agent has yielded 3 objective 

clinical responses in patients suffering from NHL (Younes et al., 2005). However, phase II 

studies in CRC (Trarbach et al., ,2010) and NSCLC (Greco et al., 2008) have produced stable 

disease as best response in 32% and 29% of the cases, respectively. The mono-therapy was 

well tolerated with only one drug-related serious adverse event recorded. Another phase II 

study is currently investigating the efficiency and safety of Mapatumumab in combination 

with bortezomib in patients suffering from advanced multiple myeloma (study number: HGS 

1012-C1055). 

The results for Lexatumumab resemble those obtained for Mapatumumab. In phase Ia clinical 

study several patients have reached stable disease with Lexatumumab as a monotherapeutic 

agent, but no response of the tumour has yet been recorded (Patnaik et al., 2006; Plummer et 

al., 2007; Wakelee et al., 2009). In contrast, combinations of Lexatumumab with FOLFIRI or 

doxorubicin were well tolerated and induced tumour shrinkage and partial response in wide 

range of cancer types (Sikic et al., 2007). Several grade 3 toxicities, among them elevated 

liver enzymes, were related to Lexatumumab treatment and maximum tolerated dose was set 

20 mg/kg. Nevertheless, Lexatumumab could safely be administered, making further 

evaluations with regard to combinational therapy warranted. Noteworthy, a pre-clinical study 

showed a complete regression of various tumour cell line xenografts in vivo upon treatment 

with Lexatumumab and the Smac-mimetic SM-164 (Petrucci et al., 2007). 

The humanised anti-TRAIL-R2 antibody CS-1008 (Tigatuzumab) was developed for 

treatment of solid tumours and lymphoma by Daiichi Sankyo. It exhibits high-anti-tumour 

activity against astrocytoma and leukaemia cells in vitro and against engrafted breast cancer 

cells in vivo (Yada et al., 2008). A phase I study of CS-1008, for advanced solid tumours or 

lymphomas showed that CS-1008 was well tolerated, and the maximum tolerated dose was 

not reached (Saleh et al., 2008). The high number of patients with stable disease in this phase 

I trial suggests anti-tumour activity 

Novartis has produced the TRAIL-R2 specific antibody LBY135, which is able to induce 

apoptosis in 50% of a panel of 40 human colon cancer cell lines with an IC50 of < 10 nM. 

The anti-tumour activity of LBY135 could be proven in human CRC xenograft models in 
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mice (Buchsbaum et al., 2003; Ichikawa et al., 2001). In a phase I trial of LBY135, alone and 

in combination with capecitabine in advanced solid tumours, LBY135 is well tolerated and 

has shown signs of clinical activity (Sharma et al., 2008) 

The fully humanised TRAIL-R2 targeting antibody Apomab was developed by Genentech. 

Today, it is in phase I and phase II clinical trials for solid tumours. Preliminary results of the 

phase Ia study revealed that Apomab was safe and well tolerated and yielded 52 % stable 

disease. Two dose limiting toxicities occurred comprising asymptomatic transaminitis and 

pulmonary embolism in one patient each (Camidge D., 2007). In 2007, a phase II study was 

initiated, evaluating Apomab as monotherapeutic agent for sarcoma and in combination with 

avastatin against NSCLC. More studies evaluating the effect of Apomab in combination with 

the CD20 targeting antibody rituximab or with bevacizumab as a first line treatment for 

NSCLC are planned. 

Another fully humanised monoclonal antibody against TRAIL-R2 referred to as AMG 655 is 

developed by Amgen. In phase Ib clinical trials, it showed anti-tumour effects against CRC 

and NSCLC, in which it led to metabolic partial responses or partial responses, respectively. 

So far, neither dose limiting toxicities nor severe side effects were recorded when AMG 655 

was applied at doses of 20 mg/kg every two weeks. However, 9 of 11 patients showed adverse 

effects including hypomagnesaemia, fever and fatigue (LoRusso et al., 2007). In a second 

study the safety and efficacy of AMG 655 plus modified FOLFOX6 and bevacizumab for the 

first-line treatment of patients with metastatic colorectal cancer was evaluated (Saltz et al., 

2009). Out of 12 patients the best overall tumour responses were: 5 partial responses
 
(2 

unconfirmed, both underwent resection); 6 stable disease. 

The only recombinant form of TRAIL so far tested in clinical trials is an untagged version of 

human TRAIL, referred to as rhAPO2L/TRAIL that is developed by Genentech in 

cooperation with Amgen. Pharmacokinetics and safety studies (phase Ib/II) were carried out 

in patients suffering from low-grade NHL. Preliminary results have proven Apo2L/TRAIL to 

be safe and active either alone or in combination with Rituximab. To date no dose limiting 

toxicities have been reported; of the five patients investigated, two showed complete 

response, one partial response and two stable disease. More NHL patients are being recruited 

for further dose optimisation (Herbst et al., 2006). Another Phase Ib study of 

rhApo2L/TRAIL plus irinotecan and cetuximab or FOLFIRI in metastatic CRC patients 
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indicated
 
that rhApo2L/TRAIL can be safely combined with irinotecan-based

 
regimens(Yee et 

al., 2009). A phase
 

II study of rhApo2L/TRAIL with FOLFIRI should provide more 

information
 
on safety, efficacy, and a potential diagnostic for rhApo2L/TRAIL. 

Ad5-TRAIL is a recombinant form of TRAIL which is expressed adenovirally. Consequently, 

no recombinat protein is administered in Ad5-TRAIL-therapy but adenovirus which induces 

the expression of membrane-bound TRAIL in infected cells. Ad5-TRAIL is being evaluted in 

clinical trials Phase I for prostate cancer. So far it is well tolerated without any dose limiting 

toxicities or side effects (Griffith et al., 2007a). 

Looking back on the pre-clinical and clinical data summarized in this chapter, targeting the 

TRAIL-receptors with the different TRAIL-R agonists developed represents a promising 

approach for anti-cancer therapy in the future. Currently, the use of TRAIL-R agonists is 

restricted to tumours which are TRAIL sensitive in the first place or tumours that can be 

sensitised by co-treatment with other anti-cancer drugs. Therefore, it is essential to improve 

the understanding of the mechanisms that confer TRAIL-resistance to the remaining tumour 

types to be able to overcome our current limitations in cancer treatment by rational drug 

identification and design. 
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2. Aims and Objectives 

With its unique ability of killing tumour cells while sparing normal cells, TRAIL represents a 

promising tool for cancer-treatment. For a sensible application of TRAIL in combination with 

other drugs, it will be key to understand the biochemical mechanism responsible for resistance 

to TRAIL-induced cell death and for sensitisation by DNA-damaging drugs and other cancer 

therapeutics. The BH3-only protein Bid is a key player at the crossroad of life and death and it 

is phosphorylated in an ATM-dependent manner following DNA damage turning it into a pro-

survival molecule (Kamer et al., 2005). Therefore, perturbations of Bid phosphorylation and 

/or ATM activity might play a role in TRAIL sensitivity. With Bid being a pivotal player in 

TRAIL-induced apoptosis this modification might be involved in TRAIL resistance and its 

breakage. While the phosphorylation status of Bid had no detectable impact on TRAIL-

sensitivity in the model system used in this study, the interesting discovery was made that the 

ATM-inhibitor KU-55993 (Hickson et al., 2004) sensitises HeLa cells to TRAIL- induced 

apoptosis. Agents that sensitise to TRAIL induced apoptosis are very interesting in two 

aspects. First of all they might provide a new opportunity for combinational treatment with 

TRAIL. Second, analysing the mechanism of action might reveal new information on how 

TRAIL-resistance evolves. Therefore the aim of this thesis was to reveal the mechanism 

underlying KU-55933 mediated sensitisation to TRAIL-induced apoptosis.  
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3. Materials and Methods  

3.1. Materials  

3.1.1. Cell Lines 

Name Description Medium Source 

A549 Lung cancer cell line DMEM+ 

10 % FCS 

German Resource Centre for 

Biological 

Material (DSMZ), Bayreuth; 

Germany 

DLD1 Colon carcinoma cell line DMEM+ 

10 % FCS 

Kindly provided by O. 

Kranenburg, UMC Utrecht; 

Netherlands 

DLD1p Colon carcinoma cell line RPMI+ 10 % 

FCS 

Kindly provided by B. 

Burgering UMC Utrecht; 

Netherlands (Kops et al., 2002) 

DL23 DLD1 cells stably 

transfected with 4-HT 

inducible active Foxo3a 

RPMI+ 10 % 

FCS 

Kindly provided by B. 

Burgering UMC Utrecht; 

Netherlands (Kops et al., 2002) 

HCT116 Colon carcinoma cell line DMEM+ 

10 % FCS  

Kindly provided by 

B.Vogelstein, Howard Hughes 

Medical Institute Baltimore; 

USA (Zhang et al., 2000) 

HCT116

Bax -/- 

HCT116 knockout for Bax  DMEM+ 

10 % FCS 

Kindly provided by 

B.Vogelstein, Howard Hughes 

Medical Institute Baltimore; 

USA (Zhang et al., 2000) 

HeLa Cervix carcinoma cell line DMEM+ 

10 % FCS 

German Resource Centre for 

Biological 

Material (DSMZ), Bayreuth; 

Germany 
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MCF-7 Breast cancer cell line DMEM+ 

10 % FCS 

German Resource Centre for 

Biological 

Material (DSMZ), Bayreuth; 

Germany 

L6 Lymphoblastoid cell line 

isolated from AT patient 

RPMI+ 10 % 

FCS 

Kindly provided by Y. Shiloh, 

Tel Aviv University; Israel 

(Taylor et al., 2002) 

 

XhoC3 Murine embryonal cell line  DMEM+ 

10 % FCS+ 

Pyruvate-β-

Mercapto-

ethanol 

Kindly provided by J. Brost, 

NKI Amsterdam; Netherlands 

(Kast et al., 1989) 

 

3.1.2. Media 

All media were purchased from Gibco/Invitrogen. DMEM (Dulbecco‘s Modified Eagle 

Medium) and RPMI (Roswell Park Memorial Institute) both contained the more stable 

Glutamax
TM

 as Glutamine source. All media were supplemented with 10% fetal calf serum 

(FCS) (Gibco/Invitrogen) before use. Cells were generally cultured in the absence of 

antibiotics.  

For transfection experiments RPMI without FCS was used. 

3.1.3. Antibodies 

For Western blot analysis the following primary antibodies were used: 

Antibody Isotype Source 

AKT (pan) (C67E7) rabbit Cell Signaling 

ATM IgG1 Rockland 

Bad rabbit Cell Signaling 

Bak IgG1 BD Pharmingen 

Bax Rat BD Pharmingen 

Bid  rabbit BD Pharmingen 
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Caspase-3 (AF605) goat R & D systems 

Caspase-8 (C15) mIgG2b Axxora 

Caspase-9  mIgG1 MBL 

cFLIP (NF-6)  mIgG1  Axxora 

FADD  mIgG1 Transduction Laboratories 

FLAG (M2) mIgG1 Sigma 

FoxO1 (C29H4) rabbit Cell Signaling 

FoxO3a  rabbit Cell Signaling 

GSK3α rabbit Cell Signaling 

Gsk3β (27C10) rabbit Cell Signaling 

Mouse Bid  rabbit Kindly provided by A. Gross  

mTor rabbit Cell Signaling 

P70S6 Rabbit Cell Signaling 

PARP  mIgG1 BD Pharmingen 

Phopsho-Bad (S136) rabbit Cell Signaling 

Phospho GSK3α/β (S21/9) rabbit Cell Signaling 

Phospho-AKT (S473) IgG2b Cell Signaling 

Phospho-ATM (S1981) rabbit Rockland 

Phospho-Bid (S78) rabbit Kindly provided by A. Gross  

Phospho-FoxO1(T24)/FoxO3a 

(T32)/FoxO4(T28) (4G6) 

rabbit Cell Signaling 

Phospho-mTor (S2448) rabbit Cell Signaling 

Phospho-P70S6 IgG2b Cell Signaling 

PI3 Kinase p110 γ rabbit Millipore 

PI3 Kinase p110α  (C73F8) rabbit Cell Signaling 

PI3 Kinase p110β (C33D4) rabbit Cell Signaling 

PI3 Kinase p110δ (AW103) IgG1 Upstate 

TRAIL-R1 (TR1-PSC-1139)  rabbit Axxora 

TRAIL-R2 (TR2-PSC-2019) rabbit Axxora 

XIAP  rabbit Axxora 

β-actin mIgG1 Sigma 

 

  



Materials and Methods 

58 

 

Secondary horseradish peroxidase (HRP)–conjugated antibodies for Western Blot analysis 

were purchased from Southern Biotech and Santa Cruz Biotechnologies:  

Antibody  Antigen Serum Company 

anti-mIgG1-HRP  mIgG1 Goat Southern Biotech 

anti-mIgG2b-HRP mIgG2b Goat Southern Biotech 

anti-goat IgG-HRP goat IgG Rabbit Santa Cruz Biotechnologies 

anti-rabbit IgG-HRP rabbit IgG Goat Southern Biotech 

 

For flow cytometric analysis the following antibodies were used: 

Antibody  Antigen Isotype Company 

HS101  TRAIL-R1 mIgG1 Axxora 

HS201  TRAIL-R2 mIgG1 Axxora 

HS301 TRAIL-R3 mIgG1 Axxora 

HS402 TRAIL-R4 mIgG1 Axxora 

 

Biotinylated secondary goat Fab anti-mouse antibodies were purchased from Southern 

Biotechnology and streptavidin-phycoerythrin (Strep-PE) was obtained from BD Pharmingen. 

3.1.4. Recombinant proteins 

Protein Description Source 

iz-TRAIL Isoleucine zipper tagged human 

TRAIL 

(Ganten et al., 2006) 

Murine iz-TRAIL Isoleucine zipper tagged murine 

TRAIL  

(Ganten, Haas et al. 2004). 

moTAP-TRAIL The moTAP tag consists of a 3 x 

FLAG-tag, followed by a precision 

site and an AviTag. 

Produced and kindly provided by 

S. Prieske 
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3.1.5. Chemicals 

Chemical Manufacturer 

10 x Trypsin  Gibco/Invitrogen, Karlsruhe; Germany 

Acetic acid (HOAc)  J. T. Baker Chemicals, U.K 

Agarose  Sigma-Aldrich, Munich; Germany 

Bacto-Trypton  AppliChem, Darmstadt; Germany 

Bacto-Yeast  AppliChem, Darmstadt; Germany 

Bicine  Gerbu, Gaiberg; Germany 

Biotin  Pierce, Rockford; United States 

Bis Tris MB Biomedicals, Solon; United States 

Bovine serum albumin (BSA)  Serva, Heidelberg; Germany 

Calcium Chloride (CaCl2) Sigma-Aldrich, Munich; Germany 

Chloroform  Merck, Darmstadt; Germany 

Chloroquine  Sigma-Aldrich, Munich; Germany 

Dimethyl sulfoxide (DMSO)  Sigma-Aldrich, Munich; Germany 

Disodium hydrogenphosphate Merck, Darmstadt; Germany 

Dharmafect Dharmacon, Chicago,United States  

DNA ladder: SmartLadder  Eurogentec, Southampton, UK 

Ethanol absolute (EtOH) Merck, Darmstadt; Germany 

Ethylendiamintetraacetate (EDTA) Roth, Karlsruhe; Germany 

Formaldehyde J.T. Baker, Deventer; Netherlands 

Glycerin Roth, Karlsruhe; Germany 

Glycine  AppliChem, Darmstadt; Germany 

HEPES  Gerbu, Gaiberg; Germany 

Hydrochloric acid (HCl)  J. T. Baker Chemicals, U.K 

Isopropyl alcohol Merck, Darmstadt; Germany 

LB Broth MoBio Laboratories; United States 

Lipofectamine Invitrogen, Karlsruhe, Germany 

Luria Broth (LB) Agar MoBio Laboratories; United States 

Magnesiumchloride (MgCl2) Merck, Darmstadt; Germany 

MES  Roth, Karlsruhe; Germany 

Methanol  Fluka, Seelze; Germany 
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Methanol (MeOH)  J. T. Baker Chemicals, U.K 

Milk powder Roth, Karlsruhe; Germany 

MTT Sigma-Aldrich, Munich; Germany 

PEG (Polyethylenglycol 1500)  Roth, Karlsruhe; Germany 

Pipes  Sigma-Aldrich, Munich; Germany 

Ponceau S  AppliChem, Darmstadt; Germany 

Potassium acetate (KOAc) Merck, Darmstadt; Germany 

Potassium chloride (KCl) Merck, Darmstadt; Germany 

Potassium dihydrogenphosphate 

(KH2PO4) 

Merck, Darmstadt; Germany 

Potassium hydrogencarbonat (KHCO3) Merck, Darmstadt; Germany 

Propidium iodide  Sigma-Aldrich, Munich; Germany 

Protease Inhibitors (Complete 50x 

tablets) 

Sigma-Aldrich, Munich; Germany 

Protein ladder: SeeBlue®plus2 Invitrogen, Karlsruhe; Germany 

Qentix-Western Blot Signal Enhancer Pierce, Rockford; United States 

Sodium acetate (NaOAc) Merck, Darmstadt; Germany 

Sodium azide (NaN3) Merck, Darmstadt; Germany 

Sodium chloride (NaCl) Sigma-Aldrich, Munich; Germany 

Sodium citrate Sigma-Aldrich, Munich; Germany 

Sodium dodecylsulfate (SDS) Sigma-Aldrich, Munich; Germany 

Sodium hydrogencarbonate (NaHCO3)  Merck, Darmstadt; Germany 

Sodium hydroxide (NaOH) Merck, Darmstadt; Germany 

SuperSignal West Dura Extended 

Duration Substrate  

Pierce, Rockford; United States 

SuperSignal West Femto Extended 

Duration Substrate  

Pierce, Rockford; United States 

TCEP® Bond Breaker  Pierce, Rockford; United States  

Tris-Hydrochloride (Tris-HCl) Sigma-Aldrich, Munich; Germany 

Triton X-100 AppliChem, Darmstadt; Germany 

Trizma Base Sigma-Aldrich, Munich; Germany 

Trypan blue Invitrogen, Karlsruhe, Germany 

Tween 20 AppliChem, Darmstadt; Germany 
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Western Lightning®–ECL  PerkinElmer, Massachusetts; USA 

β-Mercaptoethanol  Merck, Darmstadt; Germany 

 

3.1.6. Inhibitors  

Inhibitor Chemical name/structure Target Source 

KU-55933 

 

2-Morpholin-4-yl-6-thianthren-1-

yl-pyran-4-one 

 

ATM Calbiochem 

PIK-75 

 

N-((1E)-(6-Bromoimidazo[1,2-

a]pyridin-3-yl)methylene)-N′-

methyl-N′′-(2-methyl-5- 

nitrobenzene)sulfonohydrazide 

 

PI3 Kinase p110α   Calbiochem 

TGX-221 

 

(±)-7-Methyl-2-(morpholin-4-yl)-

9-(1-phenylaminoethyl)-

pyrido[1,2-a]-pyrimidin-4-one 

 

PI3 Kinase p110β Calbiochem 

 

 

 

   



Materials and Methods 

62 

 

 

AS252424 

 

5-[5-(4-Fluoro-2-hydroxyphenyl)-

furan-2-ylmethylene)]-

thiazolidine-2,4-dione 

 

PI3 Kinase p110 γ Enzo 

Rapamycin 

 

mTORC1 Calbiochem 

SMAC 59  XIAP, cIAP1 and 

cIAP2 

Kind gift from D. 

Delia 

3.1.7. Common buffers and solutions 

Common Buffers and solutions are listed below. Additional buffers are mentioned in the 

respective paragraphs. 

PBS  137 mM NaCl 

2.7 mM KCl 

8.1 mM Na2HPO4 

1.5 mM KH2PO4 

 

LDS sample buffer (4x) 1170 mM sucrose 

560 mM Tris Base 

420 mM Tris-HCl 

280 mM LDS 

1.61 mM EDTA 

0.75 ml 1% Serva Blue G250 

0.25 ml 1% Phenolred 
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Reducing sample buffer (RSB) (4x) LDS sample buffer (4x) 

Added freshly before use: 25 mM TCEP 

 

Blocking Milk  

 

1 x PBS 

5 % Milk powder 

0.05 % Tween-20 

 

Cell lysis buffer 30 mM Tris-HCl pH 7.5 

150 mM NaCl 

10 % glycerol 

1 % Triton X-100 

Prior to use 1 x Complete protease inhibitors 

(Sigma) were added. 

 

Crystal Violet solution 1 % crystal violet 

50 % EtOH 

 

FACS-Buffer 1 x PBS 

5 % FCS 

 

LB-Medium 10 g Bacto Trypton 

5 g Yeast Extract 

10 g NaCl 

Ad 1L deionised H2O 

pH 7.0 

 

MES SDS Running Buffer (20x) 

 

50 mM MES 

50 mM Trizma Base 

1 mM EDTA 
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0.1 % (w/v) SDS 

pH 7.3 

 

Nicoletti buffer  

 

0.1 % (v/v) Triton X-100, 

0.1 % (w/v) sodium citrate 

50 μg/ml propidium iodide (PI) 

 

PI solution  

 

1 μg/ml propidium iodide 

1 x PBS 

 

SOB-Medium  

 

2 % Bacto Trypton 

0.5 % Yeast Extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgSO4 

pH 7.0 

 

SOC-Medium  2 % Bacto Trypton 

0.5 % Yeast Extract 

10 mM NaCl 

2.5 mM KCL 

10 mM MgSO4 

10 mM MgCl2 

pH 7.0 

 

Solution for cell fixation 1x PBS 

10 % Formaldehyde 

 

Stripping buffer 50 mM glycine 

HCl pH 2.3 
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TAE-Buffer (50x) 

(Tris-Acetate-EDTA) 

2 M Trizma Base 

2 M Acetic acid 

50 mM EDTA (pH 8) 

 

TB-buffer 10 mM Pipes, 

55 mM MnCl2 

15 mM CaCl2 

250 mM KCl 

 

Transfer Buffer (20X) 

 

25 mM Bicine 

25 mM Bis-Tris  

1 mM EDTA 

Dilute to 1x with water, add 10 % Methanol 

 

Tris Acetate SDS Running buffer (20x) 50 mM Tricine 

50 mM Tris Base 

0.1 % SDS 

pH 8.24 

 

Wash Buffer (WB) 1 x PBS 

0.05 % Tween-20 
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3.1.8. Consumables 

Name Company 

Cell Culture Petri dishes TPP, Trasadingen; Switzerland 

Cell Culture test Plates (6-, 12-, 24-well) TPP, Trasadingen; Switzerland 

Cryogenic vials  Nunc, Wiesbaden; Germany 

Combi tips Eppendorf, Hamburg; Germany 

Cuvettes  Greiner Bio-One, Flacht; Germany 

Dialysis Tube  Roth, Karlsruhe; Germany 

Falcon tubes (15 ml and 50 ml)  TPP, Trasadingen; Switzerland 

Filters for solutions (0.22 µm) Schleicher & Schuell; UK 

Glassware  Schott, Mainz; Germany 

Hybond ECL Nitrocellulose Membrane Amersham Bioscience; UK 

NuPAGE® 4-12 % Bis-Tris Gels Invitrogen, Karlsruhe; Germany 

NuPAGE® 3-8 % Tris-Acetate Gels Invitrogen, Karlsruhe; Germany 

PCR tubes (12-well strips) StarLab, Ahrensburg, Germany 

Pipette tips (0.1-10, 1-200, 101-1000 μl)  StarLab, Ahrensburg, Germany 

Plastic pipettes (5 ml, 10 ml and 25 ml) 

 

Becton Dickinson, Heidelberg; 

Germany 

Polypropylene round bottom tube (10 ml)  Becton Dickinson, Heidelberg; 

Germany 

PS-Test Tubes for FACS  Greiner Bio-One, Flacht; Germany 

Round and flat bottom 96-well test plates  TPP, Trasadingen; Switzerland 

Safe-Lock Reaction Tubes (1,5ml, 2 ml)  Eppendorf, Hamburg; Germany 

Sealing foil  Roche, Mannheim; Germany 

Single-Use Needles  Becton Dickinson, Heidelberg; Germany 

Single-Use Scalpel  Feather, Osaka; Japan 

Single-Use Syringe (5 ml, 30 ml, 50 ml) Terumo, Eschborn; Germany 

Sterile filter (0.22 μm and 0,45 μm pore size) Millipore, Billerica; United States 

Tissue Culture flasks (25, 75 and 150 cm
2
) TPP, Trasadingen; Switzerland 

Whatman paper Schleicher & Schuell; UK 

X-Ray film HyperfilmTM ECL Amersham Bioscience; UK 
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3.1.9. Instruments 

Instrument Manufacturer 

Äkta Prime  Amersham Pharmacia Biotech, Germany 

Biofuge Stratos  Heraeus, Hanau, Germany 

Biohazard safety cabinet class II  Scanlaf, Lynge, Denmark 

Blotting equipment X cell IITM  Novex, Bergisch Gladbach; Germany 

Confocal microscope (SP5 inverted) Leica, Wetzlar, Germany 

Cryo 1°C Freezing container  Nalgene Labware, Nee rijse; Belgium 

Electrophoresis chamber Cell protean II  Biorad, Munich; Germany 

Flow Cytometer FACSCalibur  Becton Dickinson, Heidelberg; Germany 

Freezer -20°C  Liebherr, Biberach; Germany 

Freezer -80°C  New Brunswick Scientific Co; USA 

Fridge, profi line  Liebherr, Ochsenhausen; Germany 

GelSystem Flexi 4040  Biostep, Jahnsdorf; Germany 

Hyper Processor X-Ray film Developer  Amersham Bioscience; UK 

Heating Block Thermo Mixer Compact E Eppendorf, Hamburg; Germany 

Incubator Polymax 1040  Heidolph, Schwabach; Germany 

Incubator Stericult 2000 Forma  Scientific, Scotia; United States 

Magnetic stirrer MR3000 Heidolph, Schwabach; Germany 

Microscope Axiovant 25  Zeiss, Jena; Germany 

Microwave  AEG, Nuremberg; Germany 

Mithras Luminometer LB 940  Berthold Technologies, Germany 

Multichannel pipettes  Micronic Systems; United States 

Multifuge 3S-R  Heraeus, Hanau, Germany 

Multiskan Ascent  Thermo Labsystems, Vantaa; Finnland 

Multistepper  Eppendorf, Hamburg; Germany 

Multitron Incubator Shaker  Appropriate Technical Resources; USA 

NanoDrop Spectrophotometer ND-1000  NanoDrop Technologies, USA 

PAGE chamber X Cell II
TM

 Novex, Invitrogen, Karlsruhe; Germany 

pH Meter  Mettler, Giessen; Germany 

Photometer Ultrospec 3100 pro  Amersham, Freiburg; Germany 

Pipetman Integra Bioscience, Fernwald; Germany 
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Pipettes (10 μl, 100 μl, 200 μl, 1 ml)  Gilson, Bad Camber; Germany 

Power supply PowerEASE 500 BioRad, Hercules; United States 

Power supply PoerPac 1000 Novex, Invitrogen, Karlsruhe; Germany 

PCR cycler Peltier Thermal cycler 200 MJ research Inc., Watertown;USA 

See-Saw Rocker  Stuart, Staffordshire, UK 

Sonifier Branson Ultrasonics Corporation, USA 

Table Centrifuge Biofuge  Heraeus, Hanau, Germany 

Thermomixer compact  Eppendorf, Hamburg; Germany 

Varifuge 3O-R  Heraeus, Hanau, Germany 

Vortex  Heidolph, Schwabach; Germany 

Water bath  B. Braun, Melsungen; Germany 

 

3.2.  Methods 

3.2.1. Cellular biology methods 

Cell culture and passaging of cells 

Suspension cells were cultured in 75 cm
2
 cell culture flasks in RPMI supplemented with 10 % 

FCS at 37°C in a humidified atmosphere with 5 % CO2 and split every 2 to 3 days with a 

number of 1-5 x 10
5 
cells/ml

 
so that the number of cells did not exceed 1 x 10

6
 cells/ml.   

All adherent cell lines were cultured in 75 cm
2
 or 150 cm

2
 cell culture flasks in DMEM + 

Glutamax or RPMI + Glutamax , depending on the cell line with different supplements (see 

section 3.1.1) and 10 % FCS at 37°C in a humidified atmosphere with 5 % CO2. Cells were 

split at 80 % confluence by washing with 1x PBS followed detachment with 3-5 ml 1x 

Trypsin/EDTA for 1-5 minutes. The trypsinisation was stopped by adding fresh medium 

containing 10 % FCS (10 ml). Detached cells were centrifuged (1400 rpm, 4min) and 

resuspended in fresh medium containing 10 % FCS. Cells were diluted 1:10 or 1:20 

depending on the growth rate. Cells were cultured for a maximum of 15 passages as cells may 

change their phenotype in long-term cultures. 

For counting of cells, a sterile aliquot of cells was mixed with trypan blue in a 1:2 dilution. 

Trypan blue penetrates cells with reduced membrane integrity and therefore stains dead cells. 

The number of living cells was then estimated in an improved Neubauer haemocytometer 
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under the microscope. Living cells in four large squares were counted, and the mean was used 

to calculate living cells per ml according to the following formula:  Cells/mL= (mean of 

number of cells per big square) x dilution x 10
4
 

Long term storage of cell lines 

For long-term storage, cells were kept in liquid nitrogen. To freeze eukaryotic cell lines, 

confluent adherent cells were detached as described above. Detached cells or relatively dense 

suspension cultures were spun down. After centrifugation, cells were resuspended in pre-

cooled (+4ºC) FCS containing 10 % DMSO and aliquoted into cryotubes (5 x 10
6
 - 1 x 10

7
 

cells/ml). DMSO was used as a cryoprotectant because it prevents the formation of ice 

crystals which would otherwise lyse the cells during thawing. Cells were slowly cooled to   -

80ºC and then transferred to liquid nitrogen for long-term storage at -196ºC. 

To take frozen cells into culture, frozen vials were thawed at 37°C in a water bath and cells 

were rapidly transferred into pre-warmed (37°C) medium containing 10 % FCS. To remove 

traces of DMSO, cells were centrifuged and resuspended in new medium before transferring 

them to the cell culture flask. Experiments were performed after passaging the cells at least 

twice to reduce cellular stress.  

Cell viability assay 

Cell viability was quantified by MTT-Assay. Yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide, a tetrazole) is reduced to purple formazan in the mitochondria 

of living cells. This reduction only takes place when mitochondrial reductase enzymes are 

active, and therefore conversion can directly be related to the percentage of living cells by 

comparing the absorbance of an untreated medium control to the absorbance of a sample 

treated with an apoptotic stimulus.  

1 x 10
4
 cells per well were seeded in a 96-well format on the first day of the experiment. The 

next day cells were incubated with the cell death inducing agent. On the third day, 25 µl of 

MTT (2.5 mg/ml in PBS) solution per well were added to the medium and incubated for at 

least 2 h at 37°C in 5 % CO2. Subsequently the medium was taken off and 100 µl of 

isopropanol and acetic acid (95:5/v:v) were added to each well. After shaking and mixing for 

15 min the absorbance was measured at 450 nm using the Multiskan Ascent (Thermo 

Labsystems, Egelsbach, Germany). The percentage of viable cells was calculated as follows: 
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100 x (absorption of treated cells - absorption of Triton X-100 lysed cells)/ absorption of 

medium treated cells - absorption of Triton X-100 lysed cells). 

Quantification of Apoptosis 

As a direct measurement of apoptotic cell death, DNA fragmentation was quantified as 

described (Nicoletti et al., 1991). Briefly, 0.5 x 10
5
 cells were seeded in 24-well plates. On the 

next day they were incubated with or without apoptotic stimulus in 1 ml medium at 37°C for 

24 h or 48 h. Living and dead cells were harvested in the same tube, washed twice with PBS 

and then resuspended in 300 μl ―nicoletti buffer‖( see buffers). After 24 h incubation at 4°C 

apoptosis was quantitatively determined as cells containing nuclei with subdiploid DNA 

content using flow cytometry. 

Long-term survival assays 

5 x 10
5 

HeLa or DLD1 cells were seeded in 6-well plates. HeLa or DLD1 cells were treated 

with KU-55933, PIK75 or DMSO as control for 1 hr before addition of iz-TRAIL. Dead cells 

were washed off with PBS after 24 h. Surviving cells were cultured for 4 additional days in 

medium without any further death stimulus. After 5 days cells were washed twice with PBS, 

fixed with 10 % formaldehyde in PBS for 30 min at room temperature and stained with 

crystal violet (1 % in 50 % ethanol). 

3.2.2. Molecular biology methods 

DNA amplification by polymerase chain reaction (PCR) 

For amplification of plasmid or cDNA, polymerase chain reactions (PCRs) were performed. 

Depending on the purpose, different polymerases were used. Polymerases with proof-reading 

activity, like Pfu (Fermentas Life Sciences) and KapaHiFi (KAPA Biosystems) were used for 

preparative PCRs while Taq polymerase (Fermentas Life Sciences) was used for analytic 

PCRs. For one PCR reaction primers, DNA template, polymerase buffer, nucleotides and 

DNA polymerase were mixed as follows: 

Forward Primer (10 pmol/μl)  1 μl 

Reverse Primer (10 pmol/μl)  1 μl 

10x polymerase buffer  5 μl 

dNTP Mix (each 10 mM)  1 μl 
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Template DNA (plasmid, cDNA)  10-100 ng 

Polymerase  1 μl (2.5 U) 

H2O add  

 

50 μl 

The melting temperature of primers used for PCR was calculated using Oligo Property 

Calculator (http://www.basic.northwestern.edu/biotools/oligocalc.html), where they were also 

checked for self complementarity. In an ideal situation, the GC content should be 50 % and 

there is no self-complementarity or hairpin formation. The annealing temperature ranged from 

50ºC to 60ºC according to the primers used. The elongation time was calculated according to 

the length of the amplicon (60 sec/1000bp). Primers used for cloning of full length Bid: 

Forward: 5‘ CAC CAT GGA CTG TGA GGT 3‘  length: 18  GC content 56%            melting 

Temperature 56°C 

Reverse: 5‘ TCA GTC CAT CCC ATT TCT 3‘    length: 18  GC content 47 %          melting 

Temperature: 53 °C 

The scheme of the PCR is shown below. 

Step Temperature Duration 

Denaturation 95ºC 3 min 

Denaturation 95ºC 35 sec 

Annealing 50-60ºC  35 sec 

Elongation 72ºC 60sec /1000 bp 

Final elongation 72ºC 10 min 

Cool-down  to 4 ºC ∞ 

 

 

30 cycles 

 

 

 

http://www.basic.northwestern.edu/biotools/oligocalc.html
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DNA digestion and restriction analysis 

For restriction analysis and subsequent cloning of amplified PCR products into defined 

vectors, plasmid DNA or PCR products were digested with restriction enzymes. For 

restriction analysis, plasmid DNA was digested with restriction enzymes that cut the plasmid 

DNA at defined restriction sites. All restriction enzymes used in this thesis were purchased for 

NEB (Frankfurt, Germany). The length of the fragments after enzymatic digestion provides 

information about the location of the restriction sites and the size of the plasmid. Restriction 

maps are usually available for commercially available plasmids according to which the size of 

the restriction fragments can be predicted. After DNA digestion, plasmid fragments were 

supplemented with DNA loading buffer, loaded onto an agarose gel in 1 x TAE buffer and 

subjected to gel electrophoresis. The percentage of the agarose gels was chosen according to 

the size of the DNA- higher percentages for larger DNA fragments and ranged from 0.5 % -

2 %. Due to the applied electric current, the negatively charged DNA molecules move 

through the matrix at different rates, depending on their size, towards the positive anode. A 

DNA ladder (Smart Ladder, Eurogentec) was loaded in parallel to the DNA samples and was 

used to assess the size of the DNA. After gel-electrophoresis, the gel was stained with 

ethidium bromide to visualize the DNA in ultra-violet light. 

Gel extraction of DNA fragments 

For the isolation of the DNA fragment(s) separated by electrophoresis, the QIAquick Gel 

Extraction Kit from Qiagen was used. Briefly, the agarose containing the DNA was dissolved 

and applied to a QIAquick column. Afterwards the DNA fragment was washed and eluted 

with H2O. 

TOPO® PCR cloning 

For instant cloning of PCR fragment without restriction digest, the Directional TOPO® 

cloning kit from Invitrogen (K4900-01) was used. The topoisomerase cleaves the duplex 

DNA allowing for the incorporation of the PCR product which in turn releases the 

topoisomerase which was covalently bound to the TOPOvector. For directional TOPO® 

cloning, the four bases CACC were added to the forward primer to allow site directed 

(GTGG) integration into the TOPO® vector. The PCR proof-reading Pfu Polymerase or 

KapaHiFi create blunt-end PCR products and were employed to generate PCR products. The 

PCR products were integrated into the vector following the manufacturer´s instruction. 
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Preparation of competent E. coli 

To generate chemically competent E. coli for transformation of ligation reactions or plasmids, 

a frozen bacterial stock (E. coli Top 10 F´, Invitrogen) was streaked out on a plain LB plate 

and incubated at 37ºC overnight to obtain single colonies. A single colony was picked and 

inoculated in 5 ml LB medium and grown overnight at 37ºC. 3 ml of this culture were 

inoculated in 250 ml SOB medium until the OD600 reached 0.5. The bacteria were placed on 

ice immediately and centrifuged at 3000 rpm for 10 min. The supernatant was removed and 

the bacteria were resuspended in 80 ml ice-cold TB-buffer and incubated for 10 min at 4ºC. 

Afterwards, the solution was centrifuged again at 3000 rpm for 10 min, the supernatant was 

removed and the bacteria were resuspended in 10 ml ice-cold TB-buffer. DMSO was then 

added to a final concentration of 7 %. After 10 min incubation at 4ºC, the bacteria were 

aliquoted at 200 μl, immediately frozen in liquid nitrogen and then stored at -80ºC. 

Transformation of competent E. coli 

An aliquot of chemically competent E. coli Top 10 F´ was slowly thawed on ice and 10-

100 ng plasmid DNA or half of the ligation reaction were added to the bacteria followed by 

incubation on ice for 30 min. Afterwards, bacteria were subjected to heat-shock at 42ºC for 90 

sec and subsequently incubated on ice for 2 min. This treatment increases the DNA uptake by 

the bacteria. 200 μl SOC medium were added and cells were incubated at 37ºC for 60 min. 

This incubation time is essentials as it enables the bacteria to express the antibiotic resistance 

gene encoded by the plasmid. Afterwards, bacteria were streaked out on LB-agar-plates 

containing the respective antibiotic agent and selected overnight at 37ºC. On the next day, a 

single colony was inoculated in 5 ml LB-medium containing the respective antibiotic agent. 

4 ml of the bacterial culture were used to isolate the plasmid using QIAprep Miniprep Kit 

from Qiagen. Additionally, glycerol stocks were prepared. 700 μl of the culture were 

transferred to a cryotube and supplemented with 300 μl of 50 % sterile glycerol and stored at -

80 ºC. 

Site directed Mutagenesis 

To create Bid mutants that were either not phosphorylatable or mimicked a phosphorylation 

the QuikChange II XL Site-Directed Mutagenesis Kit (Stratagene) was used according to the 

manufacturer‘s instruction. The procedure is based on three different steps. In the first step the 

template DNA is denatured and mutagenic primers which contain the desired mutation are 

annealed. Then the primers are extended using PfuUltra DNA polymerase to create mutated 
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DNA strands. In the second step parental methylated and hemimethylated DNA is digested 

with Dpn I. Dpn I endonuclease (target sequence:5´-Gm6ATC-3´) is specific for methylated 

and hemimethylated DNA and is used to digest the parental DNA template and to select for 

mutation containing synthesised DNA. In the last step the nicked vector DNA incorporating 

the desired mutations is then transformed into ultracompetent bacteria. The reaction 

contained: 

10× reaction buffer 5 μl 

pcDNA3.1 Bid wt (as template) 10 ng 

oligonucleotide primer #1 125 ng 

oligonucleotide primer #2 125 ng 

dNTP mix 1 μl 

QuikSolution (contained in the Kit) 3 μl 

PfuUltra HF DNA polymerase (2.5 U/μl) 1 μl 

ad H2O  50 μl 

 

The cycling parameters used: 

Step Temperature Duration 

Denaturation 95ºC 1 min 

Denaturation 95ºC 50 sec 

Annealing 60ºC  50 sec 

Elongation 68ºC 60sec/1000 bp 

Final elongation 68ºC 7 min 

Cool-down  to 4 ºC  

 

The template used was pcDNA3.1 containing wt Bid. The mutagenesis primers used were as 

follows.  

BidS78A  P1: 5´ GAA GAA TAG AGG CAG ATT CTG AAG CTC AAG AAG ACA TCA 

CC G 3‘ 

 P2: 5´ CGG ATG ATG TCT TCT TGA GCT TCA GAA TCT GCC TCT ATT 

CTT C 3‘ 

18 cycles 
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BidS78E P1: 5´ GAA GAA TAG AGG CAG ATT CTG AAG AAC AAG AAG ACA T 

CAT CCG 3‘ 

 P2: 5´ CGG ATG ATG TCT TCT TGT TCT TCA GAA TCT GCC TCT ATT 

CTT C 3‘ 

 

mRNA quantification by Quantitative Real-Time PCR (qPCR) 

Isolation of total RNA 

Total RNA was isolated from cells using TRIZOL (Invitrogen). Briefly, 5 x 10
5
 – 1 x 10

6
 cells 

were detached from the plates as described before, the cell pellet was transferred into a 1.5 ml 

test tube, centrifuged and the supernatant removed. The cell pellet was then thoroughly 

resuspended in 1 ml TRIZOL and incubated for 5 min at RT under the fume hood. 

Subsequently, 500 μl chloroform were added and the solution was mixed by vortexing for 15 

sec followed by incubation for 3 min at RT and centrifugation at 13 000 rpm (4ºC) for 15 min. 

After centrifugation a phase separation could be observed. The upper aqueous phase 

containing the RNA was transferred to a new test tube and 500 μl isopropanol were added 

followed by incubation at RT for 10 min to precipitate the RNA. After a centrifugation step 

(13 000 rpm, 4ºC, 15 min), the supernatant was removed and 300 μl ethanol (70 %) were 

added to wash the RNA pellet. After centrifugation at 13 000 rpm (4ºC) for 10 min, the 

supernatant was removed, the RNA pellet air-dried for 5 min and subsequently dissolved in 

RNAse-free water. The RNA was stored at -80°C until further use. 

Reverse transcription 

After isolation, mRNA was reverse transcribed into cDNA using RevertAid™ cDNA 

synthesis kit according to the manufacturer‘s instruction (Fermentas Life Sciences). Briefly, 

3 μg RNA were mixed with 1 μl Oligo(dT)18 primer and H2O to a final volume of 12 μl. This 

mixture was incubated at 70ºC for 5 min followed by incubation on ice for 2 min. 

Subsequnetly, 1 μl Ribolock™ Ribonuclease inhibitor (20 U), 5 μl reaction buffer and 2 μl 

dNTP mix (10 mM) were added. The mixture was incubated at 37ºC for 5 min. Afterwards 1 

μl RevertAid™ H Minus M-MuLV RT (200 U) was added followed by an incubation at 42ºC 

for 1 h. Then the reaction was stopped by inactivation of the enzyme at 70°C for 10 min. The 

cDNA was stored at -20°C or kept on ice for immediate use for qPCR analysis.  
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Quantitative Real-Time PCR (qPCR) 

The amount of gene specific mRNA was quantified using the ABI PRISM 7900 HT Sequence 

Detection System (Applied Biosystems). The Universal Probe Library Assay Design Centre 

(https://www.roche-applied-science.com) was used to generate primers and probes specific 

for each gene of interest. The Mastermix Absolute qPCR ROX mix (ABgene) was used for 

the amplification of cDNA. For each qPCR reaction 4.4 μl of the cDNA were used in a total 

volume of 13 μl. The qPCR reaction was performed as followed: 

Initiation 50° C for 2 min 

Enzyme activation 95° C for 15 min           

Denaturation 95° C for 15 sec     40 cycles 

Annealing/Extension 60° C for 60 sec  

Cycle threshold C(t) values were recorded and analysed using SDS Softwarev2.3 and SDRQ 

Manager. After normalisation to the house keeping gene GAPDH, relative differences in 

mRNA levels were assessed based on the C(t) values.  

Primers and Probes for qPCR: 

XIAP for 

      rev 

GCT TGC AAG AGC TGG ATT TT        Probe 25 (Roche) 

TGG CTT CCA ATC CGT GAG 

cFLIP for 

      rev 

CTT CGC TCC CAA AAT TGA GT Probe 50 (Roche) 

TCC ACA AAT CTT GGC TCT TTA CT 

 

siRNA-mediated knock-down (KD) of target genes 

For all knockdown experiments On-Target-plus siRNA (Dharmacon) was used. Each gene 

was targeted by a pool of 4 single siRNA sequences to reduce off-target effects. An siRNA 

sequence targeting Renilla Luciferase (Rluc) was used as control (Elbashier et al., 2001). For 

siRNA transfections in a 6-well format, 2.5 μl siRNA (20 μM) and 1.5 μl Dharmafect 

Reagent 1 were used per well. siRNA and transfection reagent were incubated with 196 μl 

RPMI for 30 min at RT. Cells were detached from the cell culture flask as described before 

and resuspended in DMEM containing 10 % FCS to a concentration of 100 000 cells/ 800 μl. 

https://www.roche-applied-science.com/
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Per 6-well, 800 μl of the cell solution were added to 200 μl transfection mix (final volume 1 

ml) followed by an incubation for 48 h – 96 h depending on the stability of the target protein 

at 37°C in a humidified atmosphere with 5 % CO2.  

siRNA pools used: 

Protein Gene ID On-Target-plus SMART pool (Dharmacon) 

AKT1 207 L-003000 

ATM 472 L-003201 

Bak 578 L-003305 

cFLIP 8837 L-003772 

FoxO1 2308 L-003006 

FoxO3a 2309 L-003007 

GSK3α 2931 L-003009 

GSK3β 2932 L-003010 

mTor 2475 L-003008 

PI3K p110 α 5290 L-003018 

PI3K p110 β 5291 L-003019 

PI3K p110 δ 5293 L-006775 

PI3K p110γ 5294 L-005274 

 

esiRNA mediated knockdown of endogenous Bid and re-expression of Bid 

mutants 

Endoribonuclease prepared siRNA (esiRNA) for the knockdown of endogenous Bid in the 

untranslated region was kindly provided by F. Bucholz (MPI Dresden; Germany) (Yang et al., 

2002). One day before transfection 6 x 10
5
 HeLa cells were plated per 6-well so that they 

were 80% confluent at the time of transfection. 1 µg Plasmid DNA (pcDNA3.1Bidwt, 

BidS78A, BidS78E) and 40 pmol Bid esiRNA were diluted in 250µl Opti-MEM I without 

serum. 3 µl Lipofectamine 2000 were diluted in 250 µl Opti-MEM I without serum and 

incubated for 5 min at room temperature. After 5 minutes incubation both solution were 

combined and incubated at RT for 20 min. Then the DNA-esiRNA –Lipofectamine mix was 

added to each well and incubated at 37°C for 48 h. 
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3.2.3. Biochemical methods 

Preparation of cell lysates  

Adherent cells were trypsinised to detach the adherent cells from the plates. Detached cells as 

well as the suspension cell lines were harvested by centrifugation at 1400 rpm for 5 min at 

4°C and washed twice with PBS. The resulting cell pellets were then resuspended in 50 µl 

lysis buffer supplemented with Complete™ protease inhibitors (Roche Diagnostics, 

Mannheim, Germany) according to the manufacturer's instructions to prevent protein 

degradation by proteases. After 30 min incubation on ice, lysates were centrifuged at 13 000 

rpm at 4 °C for 15 min to remove the nuclei and the protein containing supernatant was taken 

off and stored at -20°C. 

BCA assay – determination of protein content 

To determine the protein concentration of cell lysates, the bicinchoninic acid (BCA)-

containing protein assay was used (Pierce, Rockford, IL, USA). Therefore, 1 μl lysate was 

incubated in 200 µl BCA solution at 60ºC for 20 min, followed by measuring light absorption 

at 540 nm. In an alkaline medium, proteins reduce Cu
2+

 to Cu
1+

 which forms a blue-coloured 

complex with bicinchoninic acid. Larger polypeptides or proteins, but not single amino acids 

and dipeptides, will react to produce the light blue to violet complex that absorbs light at 

540 nm. A standard curve was created according to manufacturer‘s instruction and the protein 

content in the cell lysates was calculated accordingly. 

Sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE)

  

For the separation of proteins by SDS-PAGE, lysates were supplemented with four-fold 

concentrated standard reducing sample buffer (4xRSB) and incubated at 75ºC for 10 min. 

100 µg protein per lane were then separated on 4–12 % NUPAGE Bis-Tris gradient gels or 

3-8 % Tris-Acetate gels (Novex, San Diego, CA, USA) in MES or TA buffer, respectively, 

according to the manufacturer's instructions. A marker containing proteins of defined sizes 

was used to assess the size of the proteins (SeeBlue® Plus2, Gibco/Invitrogen, Karlsruhe, 

Germany). For the separation of relatively small proteins Bis-Tris gradient gels and 1x MES 

running buffer was used while Tris-Acetate gels and 1x TA running buffer was applied to 

separate larger proteins (>150 kDa). Gels were run at 200V for 45 min. 
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Western blot analysis 

The proteins separated by SDS-PAGE were transferred onto nitrocellulose membranes 

(Amersham Pharmacia Biotech, Freiburg, Germany) by the method of Towbin et al. (Towbin 

et al., 1979a). The transfer was carried out at 30 V for 2 h. Afterwards, the membrane was 

shortly washed with deionised H2O and stained with Ponceau-S to control for equal blotting. 

The membranes were then treated with the Western Blot signal enhancer Qentix (Thermo 

Scientific PIERCE Biotechnology, Rockford, USA), blocked for 1 h in 5 % blocking buffer, 

washed with washing buffer and incubated overnight with the primary antibody PBS-T 

supplemented with 5 % BSA. After 3 x 5 min washes in wash buffer the blots were incubated 

with HRP-conjugated isotype-specific secondary antibody diluted 1: 20 000 in PBS-T for at 

least 1 h. Subsequently, the blots were washed again (3 x 5 min) and then developed by 

enhanced chemoluminescence following the manufacturer‘s protocol (Amersham Pharmacia 

Biotech, Uppsala, Sweden). For weak signals, SuperSignal West Dura (Pierce/Thermo 

Scientific) or SuperSignal West Femto (Pierce/Thermo Scientific) was used as detection 

agent, while ECL Western Blotting substrate (Pierce/Thermo Scientific) was applied when 

strong signals were expected. For the use of further primary antibodies, blots were stripped 

with stripping buffer at RT for 15 min. Afterwards blots were washed in washing buffer and 

then blocked using blocking buffer for at least 1 h. 

Immunoprecipitation of TRAIL-receptor signalling complexes 

For the precipitation of receptor signalling complexes, 1x 10
7
 cells were seeded in a 150 cm

2
 

cell culture plate overnight. On the next day, the medium was removed and 10 ml prewarmed 

(37°C) DMEM containing 10 % FCS and 1 µg/ml moTAP--TRAIL was added to the cells. 

After incubation for 10 min the supernatant was removed and cells were immediately washed 

with ice-cold PBS. Cells were then scraped from the plates at 4ºC and transferred to a 15 ml 

Falcon tube with ice-cold PBS followed by a centrifugation step at 1300 rpm (4ºC) for 3 min. 

The supernatant was removed and the cells were resuspended in 900 μl ice-cold lysisbuffer 

(without Triton) and transferred to a 1.5 ml Eppendorf tube. 100 μl 10 % Triton-X- 100 (4ºC) 

were added, the tube was mixed and incubated on ice for 45 min. Afterwards, the lysate was 

centrifuged at 13 000 rpm (4ºC) for 20 min to remove nuclei and cell debris. The supernatant 

was transferred to a new 1.5 ml Eppendorf tube and the protein content was determined by the 

BCA assay. Cell lysates were then adjusted to contain the same protein amount per ml. 30 μl 

of the adjusted cell lysates were removed and stored at -20ºC (= lysates before IP). M2 beads 



Materials and Methods 

80 

 

(15 μl bead volume) were added to all adjusted cell lysates followed by over-night incubation 

at 4ºC in an overhead shaker. For the precipitation of non-stimulated receptors, moTAP-iz-

TRAIL was added post-lysis to the unstimulated cells at an end concentration of 1 µg/ml. To 

control for unspecific binding to the anti-FLAG M2 beads, a ―beads only‖ control was 

included. On the next day, the tubes were centrifuged at 7 000 rpm (4ºC) for 3 min, the 

supernatant was removed and the beads were washed 5 times with ice-cold lysisbuffer. 

Afterwards, 30 μl 2 x RSB were added followed by an incubation at 80ºC for 10 min to 

prepare the lysates for separation by SDS-PAGE. 

TRAIL receptor surface staining by flow cytometry 

For the analysis of surface-expressed receptors, cells were detached from the plates and 

washed with ice-cold FACS-buffer (1 x PBS, 5 % FCS). After centrifugation (3 min, 1200 

rpm, 4°C) 1 x 10
5
 cells were incubated in 100 μl of FACS-buffer containing 5 μg/ml antibody 

of TRAIL-R1 (HS101), TRAIL-R2 (HS201) or an mIgG1-control antibody respectively on 

ice for 30 min. Afterwards, cells were centrifuged and washed three times with 200 μl ice-

cold FACS buffer. Then 100 μl biotinylated secondary goat anti-mouse antibodies (5 μg/ml in 

FACS buffer) were added and incubated on ice for 20 min. Subsequently, cells were 

centrifuged and washed three times with 200 μl ice-cold FACS-buffer. In a third step, cells 

were incubated with Streptavidin-PE (1:200 in FACS-buffer) for 20 min on ice. Subsequently, 

cells were centrifuged, washed 3 times with 200 μl ice-cold FACS-buffer, and then analysed 

by flow cytometry with a FACS Calibur. 

Immunofluorescence and Confocal microscopy 

For immunocytochemistry, 3 x 10
5
 cells were seeded in 6-well plates on sterile coverslips. On 

the next day, cells were either left untreated or subjected to treatment with PIK75 for 6 h. 

Dead cells were then washed away three times with PBS. Cells were fixed for 10 min in 3 % 

formaldehyde in PBS. Subsequently, cells were washed again three times with PBS before 

cells were permeabilised with 0.2 % Triton X-100 in PBS for 5 min. Unspecific binding sites 

were blocked by incubation with 1 % BSA for 1h. Then cells were incubated in 20 µl primary 

rabbit anti-FoxO3a antibody (rabbit, Cell signalling) (1:500 in 1 % BSA/PBS) and incubated 

overnight at 4°C in the dark. On the next day, cells were washed three times with PBS and 

then incubated with the secondary fluorescently labelled antibody (Alexa-488-anti-rabbit, 

Invitrogen) (1:400 in 1% BSA/PBS) for 1h at 4°C in the dark. Cells were washed again three 

times in PBS. Then DAPI containing mounting solution (ProLong Gold antifade reagent with 
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DAPI, Invitrogen) was put on a microscopic slide and the cells fixed to the coverslip were put 

face down onto the slide. Sides of the coverslips were fixed with nail varnish to prevent 

movement. Cells were visualized confocal microscopy (SP5 inverted confocal microscope, 

Leica).  

PI3 Kinase assay  

p110α was immunoprecipitated overnight using anti-PI3 Kinase p110α antibody (C73F8 Cell 

Signaling) and Protein G beads and subsequently incubated for 5 min together either with 

DMSO as control, KU-55933 (1 µM), PIK-75 (1 µM) or TGX-221 (1 µM) and the substrate 

PIP2 (1 µg/µl) in kinase buffer (20 mM TrisHcl pH 7.5, 100 mM NaCl, 1 mM EGTA) 

(Whitman et al., 1985). ATP (10 µM) was added to the mix and incubated at 37 °C for 2 h. 

Subsequently, Kinase-Glo
®

 reagent was added according to the manufacturer‘s instruction 

and incubated at RT in the dark for 10 min before the luminescence was recorded with an 

integration time of 0.1 s.  

3.2.4. Statistical analysis 

Data were calculated as mean and standard deviation (SD). Comparisons of results between 

treated and control groups were made by the Student‘s t tests. P ≤ 0.05 between groups was 

considered significant. 
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4. Results 

4.1. DNA damage-induced Bid phosphorylation in human cells 

To corroborate the findings that DNA damaged-induced phosphorylation of murine full-

length Bid by Ataxia telangiectasia mutated (ATM) at serine residue S78 may affect its pro-

apoptotic function, it was tested whether this phosphorylation of endogenous Bid also occurs 

in human cells following DNA damage. To investigate the functional role of DNA damage-

mediated Bid phosphorylation at S78 in human cells the cervix carcinoma cell line HeLa was 

treated with the DNA damaging drug etoposide for 0-120 min (figure 10). At a concentration 

of 10 µM etoposide induced the phosphorylation of Bid already after 15 min, with the signal 

peaking at 60 min and then slowly decreasing again. So far a phosphorylation of Bid has only 

been shown in murine cells or in human cells in which murine Bid was overexpressed (Kamer 

et al., 2005). Thus, this result shows that DNA-damage-induced phosphorylation of human 

Bid occurs on the endogenous level which indicates that Bid phosphorylation upon DNA 

damage is conserved among different species. 

 

figure 10.  DNA damage-induced phosphorylation of full length human Bid.  

HeLa cells were treated with 10 µM etoposide for 0, 15, 30, 60, 90 and 120 min. 100 µg protein of 

the total cell lysates were applied in each lane. The resulting Western blot is shown using an S78 

specific Phospho-Bid antibody, a Bid antibody and an anti-Actin antibody which served as loading 

control. 
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4.2. Phosphorylation of Bid in TRAIL-induced apoptosis 

HeLa cells die upon TRAIL treatment in a concentration dependent manner; a dose-response 

curve of HeLa cells after 24 h TRAIL treatment is depicted in (figure 11).  

 

figure 11. TRAIL-induced apoptosis in HeLa cells. 

HeLa cells were treated with increasing concentrations of iz-TRAIL and analysed for their subdiploid 

DNA content after 24 h using flow cytometry. Values are mean ± SD of three independent 

experiments. 

To examine the role of Bid phosphorylation in TRAIL-induced apoptosis, HeLa cells were 

treated for 30 min to 6 h with 100 ng/ml iz-TRAIL, a concentration at which about 80 % of 

the cells undergo apoptosis (figure 12). Etoposide treated HeLa cells were used as a positive 

control to show the phosphorylation of full-length Bid. Interestingly, iz-TRAIL treatment 

alone induced the phosphorylation of tBid after 1.5 h with the signal getting stronger over 

time. This event seems to happen shortly after Bid cleavage which was already detectable 

after 1 h. At this time the amount of full length Bid present in the lysates of TRAIL-treated 

cells is already decreased and tBid became detectable. This is consistent with the data 

obtained for caspase-8, which is responsible for Bid cleavage and its inhibitor cFLIP. After 30 

min the active cleavage fragment of caspase-8 p18 was already detectable and cFLIPL was 

almost completely cleaved. The cleavage of Bid precedes the activation of caspase-9. Fully 

cleaved caspase-3 appeared later, starting after 3 hours, indicating that Hela cells are type II 

cells, i.e. cells which depend on the amplification loop via the mitochondria and the action of 

the apoptosome to mediate caspase-3 activation (see figure 6). However, some cleavage of the 

caspase-3 target PARP was already detectable earlier, after 1.5 h, hinting at some active 
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caspase-3 present in the sample which might have been activated via the direct death receptor 

pathway. This early caspase-3 activity might also be responsible for early cleavage of 

caspase-9, which possesses a caspase-3 cleavage site (Zou et al., 2003).  

 

figure 12. TRAIL-induced Bid phosphorylation in HeLa cells. 

HeLa cells were either left untreated, treated with etoposide (10 µM, 1h) or treated with 100 ng/ml 

iz-TRAIL for the indicated times. 100 µg protein of the total cell lysates were applied in each lane. 

The resulting Western blot was probed with the indicated antibodies. 

Taken together, these results show for the first time that TRAIL induces the phosphorylation 

of tBid at the residue S78. This residue has previously been shown to become phosphorylated 
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in an ATM-dependent manner upon DNA-damage (Kamer et al., 2005). Phosphorylation 

clearly occurs after Bid cleavage, however from these data it is hard to tell whether it occurs 

upstream or downstream of mitochondrial activation as cleavage of caspase-9 was already 

detectable after 1 h and therefore precedes phosphorylation. Early cleavage of caspase-9 

might be caused by activation of the mitochondria or by activation of caspase-3 via the direct 

death receptor pathway, which can then in turn activate caspase-9.  

To analyse whether this TRAIL-induced phosphorylation of tBid is restricted to human cells 

or whether it is conserved in other species, the same experiments were carried out using the 

TRAIL-sensitive mouse cell line XhoC3. A dose-response curve of XhoC3 cells after 

treatment with murine iz-TRAIL treatment for 24 h is depicted in figure 13.  

 

figure 13. XhoC3 cells are sensitive to treatment with murine iz-TRAIL. 

XhoC3 cells were treated with increasing concentrations of mu iz-TRAIL and analysed for their 

subdiploid DNA content after 24 h. Values are mean ± SD of three independent experiments. 

XhoC3 cells were treated with 100 ng/ml murine iz-TRAIL and investigated for 

phosphorylated Bid and other members of the TRAIL-R pathway (figure 14). Like in human 

cells, also in the murine XhoC3 cells phosphorylation of full length Bid could be observed 

after etoposide treatment. Importantly, also TRAIL-induced tBid-phosphorylation could be 

observed after 1 h. Some phosphorylation of full length Bid also occurred, but decreased over 

time corresponding to the cleavage of full length Bid into tBid. Cleavage of caspase-9 and 

caspase-3 occurred later at 3 h and 4 h, respectively. Yet again, some PARP cleavage was 

already detectable after 3 h indicating that there was some active caspase-3 present in the 

sample although it was not yet detectable by Western blot. These data suggest that TRAIL-
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induced phosphorylation of tBid is conserved among different species. Since caspase-9 and 

caspase-3 became activated much later and clearly after the phosphorylation of tBid, 

phosphorylation of tBid upon TRAIL treatment can be placed upstream of the mitochondria in 

the murine system.  

 

figure 14.  TRAIL-induced Bid phosphorylation in murine Xhoc3 cells. 

XhoC3 cells were either left untreated, treated with etoposide (10 µM, 1h) or treated with 100 ng/ml 

iz-TRAIL for the indicated times. 100 µg protein of the total cell lysates were applied in each lane. The 

resulting Western blot was probed with the indicated antibodies. 

4.3. TRAIL-induced tBid phosphorylation is ATM-independent 

DNA damage-induced phosphorylation of Bid at residue S78 is ATM-dependent (Kamer et 

al., 2005; Zinkel et al., 2005). To investigate whether this also applies to TRAIL-induced 

phosphorylation of tBid, ATM was knocked down in HeLa cells. Cells were then treated with 

TRAIL and phosphorylation of tBid was investigated by Western blot. figure 15 shows a 

representative Western Blot prepared from HeLa cells lysates, which were transfected with 

P-Bid

Bid

Caspase-9

Caspase-3

PARP

Actin

Truncated (p15)

Cleaved (p35)

Cleaved (p86)

Cleaved (p20/p17)

Full length (p22)

Full length (p46)

Full length (p32)

Truncated (p15)

Full length (p22)

Full length (p116)

Eto        TRAIL

Time (h)    0   1  0.5 1 1.5  2   3  4   6



Results 

87 

 

siRNA targeting Rluc or ATM respectively. Cells were treated with 100 ng/ml iz-TRAIL for 

various times or with etoposide for 1 h, which served as positive control for DNA damage-

induced phosphorylation of Bid by ATM. 

 

figure 15. TRAIL-induced phosphorylation of tBid is independent of ATM. 

HeLa cells were transfected with siRNA targeting ATM or Rluc as control for 72 hours. Cells were 

either left untreated, treated with etoposide (10 µM, 1hr) or treated with 100 ng/ml iz-TRAIL for the 

indicated times. 100 µg protein of the total cell lysates were applied in each lane. A Bis-Tris gel was 

used to resolve small proteins, a Tris-Acetate gel was used to resolve proteins >150 kDa. The 

resulting Western blot was probed with the indicated antibodies. 

HeLa cells transfected with siRNA targeting Rluc and treated with etoposide showed 

phosphorylated forms of full length Bid. The TRAIL-induced phosphorylation of tBid became 

visible after 2 h. These results are consistent with the ones obtained in non-transfected Hela 

cells (section 4.2). In contrast to this, HeLa cells transfected with siRNA targeting ATM did 

not show Bid phosphorylation upon etoposide treatment whereas TRAIL-induced 
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phosphorylation of tBid was still detectable. The lower part of figure 15 shows a Western blot 

run in parallel, prepared from the same cell lysates using a Tris-Acetate gel. With the use of 

Tris-Acetate gels, which are more suitable for the separation of proteins with high molecular 

weight, it was possible to detect the 380 kDa protein ATM, which became cleaved upon 

TRAIL-treatment. The knockdown of ATM was very efficient as almost no ATM and no 

active ATM could be detected in the cell lysates by Western blot. However, the active 

phosphorylated form of ATM could only be detected in the etoposide-treated sample and not 

in TRAIL-treated cells. This further supports that ATM, responsible for DNA-damage-

induced phosphorylation of Bid (Kamer et al., 2005), does not appear to be involved in 

TRAIL-induced phosphorylation of tBid.  

Taken together, these results indicate that ATM is the kinase which is responsible for DNA-

damage-induced phosphorylation of Bid, as it can clearly be inhibited by ATM knockdown. 

However, ATM does not seem to be involved in TRAIL-induced phosphorylation of Bid as it 

still occurs in the absence of ATM. Hence, a different kinase must be responsible for TRAIL-

induced phosphorylation of tBid.  

4.4. The role of TRAIL-induced tBid phosphorylation  

To investigate the role of TRAIL-induced tBid phosphorylation Bid mutants were created that 

can either not be phosphorylated (Bid S78A) or that mimic its phosphorylation (Bid S78E). 

The apoptotic outcome upon TRAIL treatment was then investigated in HeLa cells expressing 

either Bid wt, Bid S78A or Bid S78E. As potential changes in the apoptotic outcome upon 

introduction of the different Bid mutants might be masked by endogenous Bid expression, 

endogenous Bid was silenced using esiRNA targeting the untranslated region of Bid in 

parallel with the re-introduction of the different Bid mutants. 

As shown in figure 16a endogenous Bid was efficiently knocked down using esiRNA and re-

expression levels of the three different Bid proteins was comparable. Knockdown of 

endogenous Bid in HeLa cells induced TRAIL resistance, again indicating that HeLa cells are 

type II cells (figure 16b). Reintroduction of Bid wt or the Bid mutants rendered HeLa cells 

TRAIL sensitive again. Interestingly, no difference in the apoptotic outcome between wild 

type Bid and the different Bid mutants could be detected when these cells were treated with 

TRAIL for 24 h (figure 16c). 
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This indicates that TRAIL-induced phosphorylation of tBid might be an epiphenomenon and 

might not be decisive for the apoptotic outcome of TRAIL stimulation. Alternatively, its 

importance may not be detectable under the conditions employed here. One possibility is that 

it could be masked by the given expression pattern of Bcl-2 family members in HeLa cells. 

a) 

b)                                     c) 

 

figure 16. Re-introduction of a non-phosphorylatable form of Bid does not change the 

apoptotic outcome of TRAIL stimulation in HeLa cells. 

HeLa cells were transfected with esiRNA targeting endogenous Bid or Rluc and co-transfected with 

Bid wt, Bid S78a, Bid S78E or the empty vector control. (a) Lysates were prepared and subjected to 

Western blot analysis to control for the knockdown of endogenous Bid and expression of the different 

mutants.(b,c) After 36 h cells were treated with increasing concentrations of TRAIL for 24 h. Then 

cell viability was measured by MTT-assay. 
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4.5. HeLa and DLD1 cells can be sensitised to TRAIL-induced 

apoptosis by the ATM inhibitor KU-55933. 

The results from section 4.3 indicated that the kinase ATM is most likely not involved in 

TRAIL-induced tBid phosphorylation. In oder to gain a second independent assessment, I 

intented to test pharmacologically whether tBid phosphorylation was dependent on ATM in 

parallel to the ATM knockdown experiments. For this, the well characterised ATM inhibitor 

KU-55933 (Hickson et al., 2004) seemed to be a suitable tool. However, ATM deficiency can 

result in resistance to CD95L and TRAIL-mediated killing due to up-regulation of cFLIP 

(Stagni et al., 2008), which would interfere with the evaluation whether phosphorylation of 

tBid was independent of ATM. Therefore the effect of KU-55933 on TRAIL apoptosis 

sensitivity had to be determined first. figure 17a shows a dose-response curve of HeLa cells 

upon KU-55933 treatment. The concentration of 10 µM was only slightly toxic on its own and 

is used in most studies to specifically inhibit ATM (Hickson et al., 2004). Therefore this 

concentration was used in combination with TRAIL to analyse its effect on TRAIL 

sensitivity. Strikingly, KU-55933 did not render cells resistant to TRAIL but rather exerted 

the opposite effect. It potently sensitised HeLa cells to TRAIL-induced apoptosis (figure 

17 b). At a concentration of 1.2 ng/ml TRAIL was already capable of inducing apoptosis in 70 

% of the cells in the presence of KU-55933 as compared to 20 % apoptosis in cells that were 

treated with TRAIL alone. The sensitisation to TRAIL-induced apoptosis was concentration-

dependent (figure 17c) with the maximal sensitisation to be observed at 10 µM. The lowest 

concentration of 1 µM KU-55933 was not sufficient to sensitise the cells to TRAIL-induced 

apoptosis. In addition, clonogenic assays were conducted to explore whether KU-55933 had 

an effect on long-term survival following TRAIL-treatment. Indeed, KU-55933 and TRAIL 

synergistically suppressed colony formation of HeLa cells while KU-55933 alone did not 

interfere with the survival of the cells (figure 17d). Thus, HeLa cells which are relatively 

sensitive to TRAIL-induced apoptosis can be further sensitised to TRAIL by co-application of 

KU-55933. 
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a) 

 

 

 

 

b)  

 

c) 

 

 

 

 

d) 

figure 17. KU-55933 and TRAIL co-treatment sensitises HeLa cells to TRAIL-induced 

apoptosis and reduces clonogenic survival. 

 (a) HeLa cells were treated with increasing concentrations of KU-55933 for 24 h. Cell viability was 

then measured by MTT-assay. (b) HeLa cells were treated with increasing concentrations of iz-

TRAIL with or without pre-incubation with KU-55933 (10 µM, 1h) and analysed for their subdiploid 

DNA content after 24 h. (c) HeLa cells were treated with increasing concentrations of iz-TRAIL with 

or without pre-incubation with KU-55933 (10 µM, 5µM and 1µM) and analysed for their subdiploid 

DNA content after 24 h. Values are mean ± SD of three independent experiments. (d) HeLa cells 

were treated with either DMSO or KU-55933 (10 µM) alone or in combination with increasing 

concentrations of iz-TRAIL for 24 h. Dead cells were washed away and fresh medium was added 

every second day. Cell viability was visualised by crystal violet at day 5. One representative of three 

independent experiments is shown. 

In line with this, cancer cell lines of different tissue origin can be further sensitised to TRAIL-

induced apoptosis by co-treatment with KU-55933, e.g. the breast cancer cell line MCF-7 and 

the lung cancer cell line A549 (figure 18). 
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a)  

 

 

 

 

b) 

 

figure 18.  KU-55933 and TRAIL co-treatment sensitises the breast cancer cell line MCF-

7 and the lung adenocarcinoma epithelial cell line A549 to TRAIL-induced apoptosis. 

(a) MCF-7 cells were treated with increasing concentrations of iz-TRAIL with or without pre-

incubation with KU-55933 (10 µM) and analysed for their subdiploid DNA content after 24 h. 

Values are mean ± SD of two independent experiments. (b) A549 cells were treated with increasing 

concentrations of iz-TRAIL with or without pre-incubation with KU-55933 (10 µM). Cell viability 

was quantified by MTT assay after 24 h Values are mean ± SD of two independent experiments. 

However, most primary tumour cells are TRAIL-resistant. It is therefore important to test 

whether a given drug cannot only further sensitise cells that are already TRAIL sensitive but 

whether it can also break tumour cell resistance to TRAIL. To test this, the TRAIL-resistant 

human colon carcinoma cell line DLD1 was used. DLD1 cells are resistant to TRAIL when 

applied at very high concentrations (figure 19a). However, when this cell line was pre-treated 

with KU-55933, at a concentration which itself was only slightly toxic, 80 % of the cells 

became TRAIL-sensitive. Furthermore, KU-55933 and TRAIL acted synergistically and led 

to a reduction in long-term survival, as shown in a clonogenic assay (figure 19b). Taken 

together, KU-55933 can efficiently sensitise TRAIL-resistant DLD1 cells to TRAIL-induced 

apoptosis.  
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a) 

 

b)

 

figure 19.  KU-55933 and TRAIL co-treatment sensitises the TRAIL-resistant DLD1 cells 

to TRAIL-induced apoptosis and reduces clonogenic survival. 

(a) DLD1 cells were treated with increasing concentrations of iz-TRAIL with or without pre-

incubation with KU-55933 (20 µM) and analysed for their subdiploid DNA content after 24 h. 

Values are mean ± SD of three independent experiments. (b) DLD1 cells were treated with either 

DMSO or KU-55933 (20 µM) alone or in combination with increasing concentrations of iz-TRAIL 

for 24 h. Dead cells were washed away and fresh medium was added every second day. Cell 

viability was visualized by crystal violet at day 5. One representative of three independent 

experiments is shown. 

 

4.6. KU-55933 mediated sensitisation to TRAIL-induced apoptosis is 

independent of ATM inhibition 

The TRAIL sensitising effect of the ATM inhibitor KU-55933 has only recently been shown 

in melanoma cells (Ivanov et al., 2009). However, AT cells which have been isolated from 

patients suffering from Ataxia telangiectasia that lack functional ATM are generally resistant 

to death receptor-mediated apoptosis (Stagni et al., 2008). Therefore the finding that an ATM-

specific inhibitor sensitises tumour cells to TRAIL-induced apoptosis is surprising and in fact 

counterintuitive. Thus, the question arose whether the observed effect was truly due to 

inhibition of ATM.  
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a)  b) 

c) 

 

 

figure 20. The sensitisation to TRAIL-induced apoptosis by KU-55933 is independent of 

ATM. 

(a) HeLa cells were left untreated or stimulated with etoposide (10 µM) or with etoposide and KU-

55933 (10 µM) for 1 h. Cells were lysed and 50 µg of protein were analysed by SDS-PAGE using a 

Tris-Acetate gel. One representative result of three independent experiments is shown. (b) HeLa cells 

were left untreated, stimulated with etoposide (10 µM) for 1 h as positive control or stimulated with 2 

ng/ml iz-TRAIL for the indicated time points. Cells were lysed and 50 µg of protein were analysed by 

SDS-PAGE using a Tris-Acetate gel. One representative result of three independent experiments is 

shown. (c) HeLa cells were transfected with siRNA either targeting Renilla luciferase (Rluc) as 

control or ATM. After 72 h control and ATM KD cells were incubated with 1 ng/ml or 3 ng/ml iz-

TRAIL in the presence or absence of KU-55933 (10 µM). Cell viability was quantified by MTT-assay. 

Efficiency of knockdown was analysed by Western blot. AKT was used as loading control. Values are 

mean ± SD of three independent experiments. 
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As already mentioned, ATM becomes activated upon DNA damage. KU-55933 efficiently 

blocked the autophosphorylation of ATM which is necessary for ATM activation upon DNA 

damage induced with etoposide (figure 20a). However, TRAIL treatment alone at low 

concentrations which are sufficient for sensitisation by KU-55933, did not lead to an 

activation of ATM whereas ATM phosphorylation was detected upon etoposide treatment 

which was included as positive control (figure 20 b). If sensitisation to TRAIL-induced 

apoptosis by KU-55993 (figure 17 and figure 19) were due to inhibition of ATM, it could 

only be facilitated by the inhibition of basal ATM activity. This mechanism was suggested by 

Ivanov et al. (Ivanov et al., 2009). To test this, ATM was knocked down transiently using 

siRNA (figure 20c). If the observed effect were due to inhibition of basal ATM activity, a 

knockdown of ATM should also sensitise cells to TRAIL-induced apoptosis. However, ATM 

knockdown did not sensitise HeLa cells to TRAIL but rather induced a more resistant 

phenotype, resembling the situation in AT cells. Accordingly and in line with Stagni et al. 

(Stagni et al., 2008), a slight up-regulation of cFLIP could be detected which might account 

for this effect (figure 20c). Furthermore, treatment of ATM-knockdown cells with KU-55933 

could still sensitise the cells to TRAIL-induced apoptosis indicating that sensitisation to 

TRAIL-induced cell death mediated by KU-55933 is not due to the inhibition of basal activity 

of ATM. To corroborate this finding, L6 cells, which are a lymphoblastic cell line isolated 

from an AT patient and therefore completely lack ATM activity, were analysed. As shown in 

figure 21 L6 cells could also be sensitised to TRAIL-induced apoptosis by co-treatment with 

KU-55933. However in this case a pre-incubation with KU-55933 for 8 hours was necessary 

to observe the sensitising effect of KU-55993. Taken together these results demonstrate that 

KU-55933-mediated sensitisation to TRAIL-induced apoptosis is independent of ATM 

inhibition. Instead, they suggest that KU-55933 acts on a target different from ATM to enable 

TRAIL-induced apoptosis.  
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figure 21. KU-55933 sensitises the TRAIL-resistant AT cell line L6 to TRAIL-induced 

apoptosis.  

L6 cells were treated with increasing concentrations of iz-TRAIL with or without pre-incubation with 

KU-55933 (20 µM) for 8h and analysed for their subdiploid DNA content after 24h. Values are mean 

± SD of three independent experiments.  

4.7. KU-55933 sensitises to TRAIL-induced apoptosis by inhibiting 

PI3K p110α 

KU-55933 is a kinase inhibitor designed to act as an ATP-competitive inhibitor at the ATP 

binding site of ATM (Hickson et al., 2004). It is therefore most likely that the cellular target 

of KU-55933 responsible for sensitisation to TRAIL-induced apoptosis is another kinase. As 

ATM belongs to the PI3-Kinase related Kinases (PIKK) family it appeared most likely that 

KU-55933 were to sensitise cells to TRAIL-induced apoptosis by inhibiting one of the 

different PIKK family members. Interestingly, and in line with this hypothesis, inhibition of 

PI3 kinase itself was shown to sensitise cells to TRAIL-induced apoptosis (Alladina et al., 

2005; Kandasamy and Srivastava, 2002; Opel et al., 2008). Therefore, the effects of down-

regulation and inhibition of the four isoforms of the catalytic subunit p110 of PI3 kinase on 

TRAIL-induced apoptosis were tested. The response to TRAIL was not altered upon 

knockdown of the subunits β, γ, and δ in comparison to the control (figure 22). In contrast, 

knockdown of p110α drastically sensitised the cells to TRAIL-induced apoptosis even though 

knockdown was incomplete. 

0

10

20

30

40

50

60

0 24 74 222 666 2000

%
 a

p
o

p
to

ti
c
 c

e
ll

s
 

D
N

A
 f

ra
g

m
e
n

ta
ti

o
n

TRAIL [ng/ml]

L6
DMSO

KU-55933 (20µM)



Results 

97 

 

a)

 

 

figure 22. HeLa cells can be sensitised to TRAIL-induced apoptosis by knockdown of 

p110α.  

HeLa cells were transfected with siRNA either targeting Renilla luciferase (Rluc) as control or one of 

the 4 isoforms of PI3K p110 α, β, γ and δ. After 72 hours control and KD cells were incubated with 

the indicated concentrations of iz-TRAIL. Cell viability was quantified by MTT assay after 24 h. 

Efficiency of knockdown was analysed by Western Blot. Actin was used as loading control. One 

representative result of three independent experiments is shown. 

As an independent assessment, these isoforms were inhibited pharmacologically using the 

isoform specific inhibitors PIK75 (inhibits p110α), TGX-221 (inhibits p110β) and As252424 

(inhibits p110γ), inhibitors which had previously been used to investigate the role of different 

isoform of PI3K (Kim et al., 2007). A specific inhibitor for p110δ was not commercially 

available. To find out whether any of these inhibitors can sensitise to TRAIL-induced 

apoptosis subtoxic concentration needed to be determined (figure 23a, b and c). In line with 

the knockdown experiment, only co-treatment with the p110α specific inhibitor PIK75, 

applied at subtoxic concentrations, led to an increase in TRAIL-induced apoptosis whereas 

the inhibitors specific for p110β and p110γ, applied at subtoxic concentrations, had no effect 

(figure 23d).  

To test whether KU-55933 might interfere with the PI3K pathway KU-55933 treated cells 

were investigated for phosphorylation of AKT, which was taken as surrogate for PI3K 
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activity. KU-55933 was not only able block to ATM activation (figure 20) but also interfered 

with the PI3K/AKT pathway. It reduced basal AKT phosphorylation already drastically after 

30 min. No phosphorylation of AKT was detectable anymore after 1h of treatment (figure 24). 

PIK75 treatment induced rapid disappearance of Phospho-AKT with some Phospho-AKT 

becoming detectable again after 1 h (figure 24).  

a) 

 

 

 

 

 

b) 

 

c) 

 

 

 

 

d) 

 

figure 23.  HeLa cells can be sensitised to TRAIL- induced apoptosis by the p110 α specific 

inhibitor PIK75. 

 (a), (b) and (c) HeLa cells treated with increasing concentration of PIK75, TGX-221 and As252424, 

respectively for 24 h. Then cell viability was measured by MTT-assay (d) HeLa cells were pre-

incubated for 1 h either with DMSO as control, PIK75 (50 nM), TGX-221 (1 µM) or AS 252424 (3 

µM). Subsequently, increasing concentrations of iz-TRAIL were added. Cell viability was quantified 

by MTT-assay after 24 h. Values are mean ± SD of three independent experiments. 
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figure 24. KU-55933 inhibits phosphorylation of AKT.  

HeLa cells were stimulated with KU-55933 (10 µM) or PIK75 (50 nM) for the indicated time points. 

Cells were lysed and 50 µg of protein were analysed by SDS-PAGE using a Bis-Tris gel and 

subsequent Western blot. One representative result of three independent experiments is shown. 

As only the knockdown and inhibition of p110α, and not the other PI3K isoforms, sensitised 

to TRAIL-induced apoptosis, it seemed likely that KU-55933 worked via inhibition of p110α. 

To test this kinase assay was performed. In this assay immunoprecipitated p110α was 

incubated with its substrate PIP2 and ATP either alone, with PIK75, KU-55933 or TGX-221 

which was used as negative control. Subsequently ATP-consumption was measured using the 

Kinase-Glo
®
 reagent. This reagent generates a luminescent signal which is correlated with the 

amount of ATP present and inversely correlated with kinase activity. If the kinase is active, 

ATP will be consumed and the luminescent signal will be low. If the kinase activity is 

blocked, the ATP will not be consumed resulting in a higher luminescent signal. 

 

figure 25. KU-55933 directly inhibits PI3 Kinase p110α. 

 Immunoprecipitated p110α was incubated for 5 min either with DMSO as control, KU-55933 

(1 µM), PIK75 (1 µM), or TGX-221 (1 µM) and the substrate PIP2 (1 µg/µl) in kinase buffer. The 

kinase assay was performed as described in Materials and Methods (section 3.2.3). Values are mean 

± SD of three independent experiments. 
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As shown in figure 25, p110α alone reduced the amount of ATP left in the sample by 50 %. 

As expected, this ATP-consumption was almost completely blocked by the addition of PIK75. 

KU-55933 was also able to significantly block kinase activity almost to the same extent as 

PIK75. In contrast to this, TGX-221 did not significantly affect the activity of p110α. This 

result shows that KU-55933 is able to interfere with the PI3K pathway via direct inhibition of 

p110α.  

DLD1 cells are chemotherapy resistant and have an activating mutation in the PIK3CA gene 

and are therefore hallmarked by strong activation of the PI3K/AKT pathway (Samuels et al., 

2005). Remarkably, these cells can also be sensitised to TRAIL-induced apoptosis by co-

treatment with PIK75 (figure 26a), as PIK75 acts as an ATP- competitive inhibitor of p110α. 

Additionally, their long-term survival was reduced as only very few clones survived treatment 

with TRAIL in combination with PIK75 (figure 26b). 

a) 

  

b) 

 

figure 26.  PIK75 and TRAIL co-treatment sensitises TRAIL-resistant DLD1 cells to 

TRAIL-induced apoptosis and reduces clonogenic survival.  

(a) DLD1 cells were treated with increasing concentrations of iz-TRAIL with or without 

preincubation with PIK75 (100 nM) and analysed for their subdiploid DNA content after 24 h. 

Values are mean ± SD of three independent experiments. (b) DLD1 cells were treated with either 

DMSO or PIK75 (100 nM) alone or in combination with increasing concentrations of iz-TRAIL for 

24 h. Dead cells were washed away and fresh medium was added every second day. Cell viability 

was visualized by crystal violet at day 5. One representative of three independent experiments is 

shown. 
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4.8. Molecular changes facilitating TRAIL sensitisation by KU-

55933/PIK75 

So far it has been demonstrated that KU-55933-mediated sensitisation to TRAIL-induced 

apoptosis works via the inhibition of PI3K p110α. However, the mechanism underlying this 

sensitisation has not been investigated. Regulation of the TRAIL-Rs as well as intracellular 

factors might be responsible for the sensitisation. Often, sensitisation to TRAIL-induced 

apoptosis correlates with up-regulation of TRAIL-R1 and TRAIL-R2. An up-regulation of 

TRAIL-R2 upon inhibition of the PI3K pathway was reported by two independent studies 

(Rychahou et al., 2005; Tazzari et al., 2008). Ivanov et al. (2009) also claimed that up-

regulation of TRAIL-R2 was important for KU-55933-mediated sensitisation to TRAIL-

induced apoptosis. Thus, it was examined whether TRAIL-receptors become up-regulated 

upon KU-55933 treatment and whether this is necessary for sensitisation to TRAIL- induced 

cell death in this cell system.  

TRAIL-Rs were stained using specific antibodies and analysed using flow cytometry. In HeLa 

cells, KU-55933 treatment did not enhance but even slightly decreased the surface expression 

of TRAIL-R1 and TRAIL-R2 (figure 27a). Treatment with PIK75 also led to a slight down-

regulation of TRAIL-R1 but at the same time enhanced surface expression of TRAIL-R2. 

Treatment with KU-55933 or PIK75 did not change the surface expression of TRAIL-R1 in 

TRAIL-resistant DLD1 cells. However the surface expression of TRAIL-R2 is slightly up-

regulated by both treatments. TRAIL-R3 and TRAIL-R4 could not be detected on the surface 

of untreated or sensitised HeLa or DLD1 cells (data not shown). As an up-regulation of 

TRAIL-R2 was observed on DLD1 cells after KU-55933 or PIK75 treatment, it was 

investigated whether this up-regulation was indeed the reason for the sensitisation to TRAIL-

induced apoptosis by KU-55933 and PIK75.  

To asses this, a ―wash kill‖ experiment was performed as previously described by our 

laboratory (Ganten et al., 2005). If up-regulation of TRAIL-R2 by KU-55933 or PIK75 was 

responsible for sensitisation, binding of additional TRAIL to these new TRAIL-Rs on the cell 

surface would be necessary for apoptosis induction. DLD1 were incubated with TRAIL for 30 

min to occupy all present TRAIL-receptors on the cells surface. Unbound TRAIL was washed 

off after 30 min and cells were treated with KU-55933 or PIK75, either alone or with 

additional TRAIL. As shown in figure 27b, no significant differences in TRAIL-induced 
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apoptosis were observed between KU-55933- or PIK75- treated cells when unbound TRAIL 

was removed and not replaced and cells which were further incubated in the presence of 

TRAIL. Thus, receptor up-regulation is not essential for the sensitisation of DLD1 cells to 

TRAIL-induced apoptosis. 

a) 
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b) 

 

figure 27. Surface expression of TRAIL-R1 and TRAIL-R2 changes upon KU-55933 or 

PIK75 treatment but is not essential for sensitisation.  

(a) Surface expression analysis of TRAIL-R1 and TRAIL-R2 on HeLa and DLD1 cells was performed 

1 h after treatment with DMSO, KU-55933 or PIK75 inhibitor in comparison to an isotype-matched 

control mIgG1 monoclonal antibody (tinted grey). TRAIL-R expression of control treated cells is 

shown as black solid line. TRAIL-R expression of KU-55933 or PIK75 treated cells is shown as grey 

dashed line. Only PI–negative cells were counted, to exclude non-specific staining of dead cells,. One 

representative result out of 3 independent experiments is shown. (b) DLD1 cells were incubated with 

1 µg/ml iz-TRAIL for 30 min and then washed 5 times with medium. Cells were then cultured either in 

medium containing KU-55933 (20 µM) or PIK75 (100 nM) in the absence or in the presence of 1 

µg/ml iz-TRAIL. Control cells were washed 5 times without any addition of TRAIL. After 24 h cells 

were analysed for their subdiploid DNA content. One of three experiments with comparable results is 

shown. 

As the up-regulation of TRAIL-Rs turned out not to be essential for KU-55933 and PIK75 

mediated sensitisation to TRAIL-induced apoptosis, intracellular components have to be 

responsible for the observed effect. Therefore, the regulation of known components of the 

death receptor pathway upon treatment with KU-55933 and PIK75 was investigated by 

Western Blot (figure 28).  
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figure 28. Treatment with KU-55933 and PIK75 leads to a down-regulation of cFLIP and 

XIAP in HeLa cells.  

HeLa cells were stimulated with KU-55933 (10 µM) or PIK75 (50 nM) for the indicated time points. 

Cells were lysed and 50 µg of protein were analysed by SDS-PAGE using a Bis-Tris gel and 

subsequent Western blot. One representative result of two independent experiments is shown. 

Expression of FADD, caspase-8, Bid, caspase-9 and caspase-3 remained unchanged upon 

stimulation with KU-55933 or PIK75. However, cFLIPL and cFLIPS as well as XIAP were 

down-regulated upon stimulation with either KU-55933 or PIK75. Furthermore, a reduction in 

the phosphorylation of Bad could be detected, which has been described before to take place 

upon inhibition of the PI3K-pathway (Kang et al., 2004). Down-regulation of XIAP 

expression was mediated by transcriptional regulation as qPCR analysis showed a decrease of 

mRNA expression for XIAP following treatment with KU-55933 or PIK75 (figure 29). 

mRNA levels for cFLIP were also down-regulated upon KU-55933 treatment, whereas in the 

case of PIK75 treatment even a slight increase in the levels of cFLIP mRNA was detected. As 

the protein was clearly down-regulated upon stimulation with KU-55933 and PIK75 (figure 
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28), cFLIP expression seems to be regulated rather at the post-transcriptional level, possibly 

by enhanced ubiquitination and degradation (Poukkula et al., 2005) . 

 

figure 29.  Expression of XIAP is down-regulated on mRNA level upon treatment with KU-

55993 and PIK-75.  

HeLa cells were stimulated with KU-55933 (10 µM) or PIK75 (50 nM) for the indicated time points. 

RNA was isolated and the expression of cFLIP and XIAP was analysed by qPCR. GAPDH was used 

for normalisation. One of two experiments with comparable results is shown. 

As cFLIP levels were slightly up-regulated upon ATM knockdown (figure 20), the observed 

down-regulation of cFLIP by KU-55933 could only be explained if an inhibition of p110α at 

the same time overrode this effect. Indeed, this seems to be the case as shown in figure 30. 

HeLa cells in which p110α was knocked down clearly showed a decrease of cFLIPL. This 

effect could also be observed in HeLa cells in which p110α and ATM were silenced at the 

same time. In contrast to this a knockdown for ATM alone again shows a slight up-regulation 

of cFLIPL when compared to control cells.  
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figure 30.  Concomitant Knockdown of p110α and ATM leads to down-regulation of 

cFLIP.  

HeLa cells were transfected with siRNA either targeting Renilla luciferase (Rluc) as control or 

p110α, ATM or p110α and ATM. After 72 h control cells were lysed and 50 µg of protein were 

analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One representative result 

of two independent experiments is shown. 

As a reduction in cFLIP levels possibly leads to a difference in the formation or composition 

of the DISC, analysis of the native DISC was performed in DLD1 cells with and without pre-

treatment with KU-55933 or PIK75. To control for differential expression of caspase-8, 

FADD and cFLIP total cell lysates (TCL) were analysed for the respective proteins (figure 

31).  

KU-55933- and PIK75-treated cells recruited slightly less cFLIP to the DISC. This resulted in 

increased caspase-8 cleavage, with the p43/41 cleavage fragments only being detectable in 

KU-55933- and PIK75-treated cells. 
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figure 31. Treatment with KU-55933 or PIK75 leads to stronger DISC formation in DLD1 

cells.  

DLD1 cells were pre-treated with KU-55933 and PIK75 for 4 h and either stimulated with 1 µg/ml 

FLAG-TRAIL for 10 min or left unstimulated before cell lysis. TRAIL was added to unstimulated 

control lysates at a final concentration of 1 µg/ml. To check for unspecific binding to the beads a 

negative control containing beads only (Mock) was included. Expression of TRAIL-R1, TRAIL- R2, 

caspase-8, FADD/MORT1, and cFLIP, lysates was analysed by Western blot. Actin was included as 

loading control. One representative result out of at least two independent experiments is shown. 

As the changes at the DISC, albeit detectable, are not very dramatic, the down-regulation of 

cFLIP is probably not the only factor which is essential for the sensitisation. To investigate at 

which other stage the TRAIL-apoptosis pathway was influenced by KU-55933 or PIK75 

treatment, DLD1 cells were treated with TRAIL alone or in combination with KU-55933 or 

PIK75 and subjected to Western blot analysis. DLD1 cells do not only show a quicker and 

enhanced cleavage of caspase-8 and caspase-9 when co-treated with TRAIL and KU-55933 or 

PIK75, respectively, but also a stronger activation of caspase-3 (figure 32). Although 
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caspase-3 levels are slighty lower in KU-55933 treated samples, the fully activated caspase-3 

cleavage fragment p12 is only detectable in KU-55933 or PIK75 co-treated samples. As this 

final cleavage step is essential for the protease activity of caspase-3, cleavage of the caspase-3 

substrate PARP can also only be observed in these samples. XIAP inhibits the full activation 

of caspase-3 (Riedl et al., 2001), which has been shown to be down-regulated on protein and 

mRNA levels upon treatment with KU-55933 and PIK75 (figure 28 and figure 29). Hence, 

XIAP is most likely the factor inhibiting full cleavage and activation in DLD1 cells which are 

treated with TRAIL alone. 

 

figure 32.  Full activation of caspase-3 and PARP cleavage is only detectable in cells 

which are co-treated with TRAIL and KU-55933 or TRAIL and PIK-75, respectively. 

HeLa cells were stimulated with 1µg/ml iz-TRAIL for the indicated time points after 1 h 

preincubation with DMSO, KU-55933 (20 µM) or PIK75 (100 nM). Cells were lysed and 50 µg of 

protein were analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One 

representative result of two independent experiments is shown. 
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a)

 

 

b)

 

 

 

figure 33. Concomitant down-regulation of cFLIP and XIAP is sufficient to sensitise 

DLD1 cells to TRAIL-induced apoptosis. 

(a) DLD1 cells were transfected with siRNA either targeting Renilla luciferase (Rluc) as control or 

cFLIP, XIAP or cFLIP and XIAP. After 48 h control and KD cells were incubated with increasing 

concentrations of iz-TRAIL for 24 h and then analysed for subdiploid DNA content. (b) DLD1 cells 

were transfected with siRNA either targeting Rluc as control or cFLIP. After 48 h control and KD 

cells were incubated with or without SMAC59 (10 nM) and increasing concentrations of iz-TRAIL for 

24 h and then analysed for their subdiploid DNA content. Values are mean ± SD of three independent 

experiments. The efficiency of the knockdown of the different proteins was controlled by Western 

blot.  

To evaluate the importance of the two factors cFLIP and XIAP concerning the sensitisation to 

TRAIL-induced apoptosis, the expression of cFLIP, XIAP or cFLIP and XIAP was silenced 

using siRNA in DLD1 cells (figure 33a). Knockdown of either cFLIP or XIAP alone was not 
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sufficient to sensitise DLD1 cells to TRAIL-induced apoptosis. However, concomitant 

knockdown of both proteins efficiently sensitised DLD1 cells to apoptosis. Accordingly, 

DLD1 cells could also be sensitised by knockdown of cFLIP in combination with SMAC 

mimetics which block XIAP (figure 33b). 

These results clearly show that down-regulation of cFLIP and XIAP both is sufficient and 

necessary for sensitisation of DLD1 cells to TRAIL-induced apoptosis. However, a 

contribution of pro- or anti-apoptotic factors that act on the mitochondria and are regulated 

upon KU-55933/PIK75 treatment cannot be excluded. For example a regulation of 

phosphorylation of Bad has been observed in KU-55933 and PIK75 treated cells (figure 

28)To test for a potential involvement of the mitochondria in the sensitisation mediated by 

KU-55933 and PIK75, HCT116 Bax-/- cells were used in which Bak was additionally 

knocked down to completely take out the action of the mitochondria. HCT116 control cells 

are TRAIL sensitive but can further be sensitised by co-treatment with KU-55933 or PIK-75 

(figure 34a). In contrast to this, TRAIL-induced apoptosis is completely blocked in HCT116 

Bax-/- Bak KD (figure 34b). However these cells can still be sensitised by co-treatment with 

KU-55933 or PIK75, almost to the same extent as the control cells. This indicates that 

regulation of pro-apoptotic mitochondrial events only marginally contributes to sensitisation 

by KU-55933 or PIK75 and that they are in fact not required for it. 
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a) 

 

 

 

 

  

b)  

 

c) 

 

 

 

 

figure 34. Regulation of pro- or anti-apoptotic factors on mitochondrial levels is only 

marginally involved in the sensitisation to TRAIL by KU-55933 or PIK75.  

(a), (b) HCT116 control cells and HCT116 Bax-/- Bak KD cells were incubated with increasing 

concentrations of iz-TRAIL for 24 h and then analysed for their subdiploid DNA content. Values are 

mean ± SD of three independent experiments. (c) As control for the knockdown lysates of the 

control and KD cells were analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western 

Blot. KD efficiency of Bak was controlled by Western blot. The asterix indicates an unspecific band. 

One representative result out of two independent experiments is shown. 

 

4.9. Down-regulation of cFLIP and XIAP downstream of AKT is 

facilitated by activation of FoxO3a 

Inhibition of PI3 kinase leads to inhibition of the kinase AKT. Consequently, knockdown of 

AKT1 can also sensitise HeLa and DLD1 cells to TRAIL-induced apoptosis (figure 35). 
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However, knockdown of AKT1 cannot sensitise DLD1 cells to the same extent as inhibition 

of p110 α (figure 26).  

a) 

 

 

 

 

 

b)  

c) 

 

figure 35. HeLa cells and DLD1 cells can be sensitised to TRAIL-induced apoptosis by 

knockdown of AKT1. 

HeLa cells (a) or DLD1 cells (b) were transfected with siRNA either targeting Renilla luciferase 

(Rluc) as control or AKT1. After 72 h control and KD cells were incubated with 0.01 -100 ng/ml iz-

TRAIL and then analysed for their subdiploid DNA content. Values are mean ± standard deviation of 

two independent experiments. (c) Efficiency of knockdown was analysed by Western blot. Actin was 

used as loading control. One representative result of two independent experiments is shown. 

This suggests that the inhibition of the other AKT isoforms - AKT2 and AKT3 might also be 

involved in sensitising cells to TRAIL-induced apoptosis. These different isoforms have been 

described to have redundant or non-redundant functions depending on the context. Active 

AKT regulates cell survival, cell-cycle progression, cell growth and cell metabolism through 

the phosphorylation of a diverse set of substrates. So far it is not clear which signalling 

cascade triggered by AKT is responsible for mediating TRAIL resistance in HeLa and DLD1 
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cells. Therefore, the substrates with the best known relevance to human cancer have been 

investigated concerning their influence on TRAIL-sensitivity, namely GSK3, FOXO and 

mTOR signalling. 

 

figure 36. mTOR signalling to translation initiation. 

Growth factors trigger activation of PI3K and AKT (as described before). mTOR in a complex with 

LST8 and Rictor can act as PDK2 and phosphorylate AKT at S473. AKT phosphorylates TSC2 and 

destabilises the TSC1/TSC2 complex and thus promotes the activation of mTOR by Rheb. mTOR in 

complex with LST8 and Raptor meditates phosphorylation of S6K1 and 4E-BP which in turn induce 

Cap-dependent translation. Adapted from Mamane et al. (Mamane et al., 2006). 

 

Signalling by mTOR regulates Cap-dependent translation. Active AKT indirectly activates 

mTOR via phosphorylation. An overview about mTOR signalling is shown in figure 36. As 

expected inhibition of AKT using PIK75 leads to a loss of phosphorylation of mTOR (figure 

37).  
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figure 37. Inhibition of p110α by PIK75 leads to loss of phosphorylation of mTOR. 

HeLa cells were stimulated with PIK75 (50 nM) for the indicated time points. Cells were lysed and 

50 µg of protein were analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One 

representative result of three independent experiments is shown. 

If the observed sensitisation to TRAIL using KU-55933 or PIK75 worked via the inhibition of 

the mTOR pathway, then inhibition of mTOR would be expected to sensitise the cells to 

TRAIL as well. mTOR is part of two different and mutually exclusive mTOR complexes 

referred to as mTOR complex (mTORC)1 and mTORC2. The well-described inhibitor of the 

mTOR Complex 1 rapamycin was used to study the effects of mTOR inhibition on TRAIL-

induced apoptosis. The phosphorylation of the downstream target of mTOR P70S6 was used 

as surrogate for mTOR activity. Starvation, used as a positive control, led to a complete loss 

of phosphorylation of P70S6 (figure 38a). Similarly, a concentration of 10 µM rapamycin was 

sufficient to inhibit mTOR activity in HeLa and DLD1 cells (figure 38c). Although mTOR is 

clearly efficiently inhibited at 10 µM rapamycin, the treatment was not toxic at this 

concentration in HeLa and DLD1 cells (figure 38b, d). Furthermore co-treatment with 

rapamycin and TRAIL did not result in sensitisation to TRAIL-induced apoptosis in HeLa 

cells and DLD1 cells (figure 38b, d).Thus, it is not very likely that KU-55933 or PIK75 exert 

their TRAIL-sensitising effects via the inhibition of mTORC1. 

P-AKT

AKT

mTOR

P-mTOR

PIK75 (50nM)

Time     0   15‘ 30‘  45‘ 1h  2h



Results 

115 

 

a) 

 

b)

 

c) 

 

d) 

 

figure 38. Treatment with rapamycin leads to inhibition of mTOR activity but does not 

sensitise to TRAIL-induced apoptosis.  

(a,c) HeLa or DLD1 cells were stimulated with rapamycin at the indicated concentrations and for the 

indicated times. Cells were lysed and 50 µg of protein were analysed by SDS-PAGE using a Bis-Tris 

gel and subsequent Western blot. One representative result of two independent experiments is 

shown.(b,d) HeLa or DLD1 cells were treated with increasing concentrations of iz-TRAIL with or 

without preincubation with rapamycin (10 µM) and analysed for their subdiploid DNA content after 

24h. Values are mean ± standard deviation of three independent experiments. 
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a) 

 

 

 

 

 

b) 

 

  

figure 39. Knockdown of mTOR does not sensitise to TRAIL- induced apoptosis. 

 (a,b) HeLa or DLD1 cells were transfected with siRNA either targeting Renilla luciferase (Rluc) as 

control or mTOR. After 48 h control and KD cells were incubated with increasing concentrations of 

iz-TRAIL for 24 h and then analysed for subdiploid DNA content. Values are mean ± SD of two 

independent experiments. The efficiency of the knockdown of the different proteins was controlled by 

Western blot.  

However, as rapamycin only inhibits mTORC1 there is still the possibility that mTORC2 

could be involved in the sensitisation process. To test this, mTOR was knocked down in HeLa 
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knockdown of mTOR was very efficient in both cell lines as shown in figure 39, neither cell 

line was sensitised to TRAIL by knockdown of mTOR. Taken together, these results suggest 

that PIK75 and KU-55933 most likely exert their TRAIL-sensitising effects independently of 

the mTOR pathway. Besides mTOR, AKT regulates GSK3 signalling. Active AKT 

phosphorylates GSK3 and thereby inhibits it. When the AKT pathway is inhibited GSK3 

becomes active. GSK3 is involved in different physiologically pathways itself- ranging from 
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metabolism, cell cycle, gene expression, development to oncogenesis. The regulation of 

GSK3 by the PI3K/AKT pathway is depicted in figure 40. One of its major functions is the 

regulation of Wnt signalling. Together with APC and Axin active GSK3 forms the ß-catenin 

destruction complex and blocks ß-catenin translocation to the nucleus. The phosphorylation of 

GSK3 was not as strongly affected by inhibition of the PI3K/AKT pathway as for example 

phosphorylation of mTOR (figure 37). Nevertheless, phosphorylation of GSK3 was 

diminished after 15-45 min of PIK75 treatment before it got back to basal levels after 1 h 

(figure 41). Although GSK3 phosphorylation is not that strongly diminished, it is still possible 

that the reduction of GSK3 phosphorylation has an effect on TRAIL sensitivity. If the 

activation of GSK3 via inhibition of AKT were to be responsible for TRAIL sensitisation via 

KU-55933 and PIK75, knockdown of GSK3 would be expected to block the sensitising 

effects of KU-55933 and PIK75.  

 

figure 40. Regulation of GSK3 activity by the PI3K/AKT pathway. 

Both isoforms of GSK3 are constitutively active in resting cells. But their actions are tightly 

controlled. Inhibitory phosphorylation sites are present in both isoforms. Active AKT phosphorylates 

GSK3 at these inhibitory phosphorylation sites. Inhibition of GSK3 activity induces gene 

transcription via β-catenin, the cell cycle progression and glycogenesis. Is the PI3K/AKT pathway 

inhibited, GSK3 is active and is responsible for degradation of β-catenin and inhibition of Glycogen 

Synthase and Cyclin D. Adapted from Beurel and Jope (Beurel and Jope, 2006). 
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figure 41. Inhibition of p110α by PIK75 leads to diminished phosphorylation of GSK3.  

HeLa cells were stimulated with PIK75 (50 nM) for the indicated time points. Cells were lysed and 

50 µg of protein were analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One 

representative result of three independent experiments is shown. 

As shown in figure 42 knockdown of both of the GSK3 isoforms either alone or together was 

not sufficient to block KU-55933 or PIK75-induced sensitisation to TRAIL-induced 

apoptosis. Remarkably, silencing of the GSK3β isoforms rather induces a slight sensitisation 

to TRAIL-induced apoptosis. Taken together, these data indicate that activation of GSK3 via 

inhibition of the PI3K/AKT pathway is also not involved in the sensitisation to TRAIL 

mediated by KU-55933 or PIK75. 
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figure 42. Knockdown of GSK3α or GSK3β does not block KU-55933 or PIK75 induced 

sensitisation to TRAIL- induced apoptosis.  

HeLa were transfected with siRNA either targeting Renilla luciferase (Rluc) as control or GSK3α, 

GSK3β or GSK3α and β. After 72 h control and KD cells were incubated with 1ng/ml of iz-TRAIL for 

24 h in presence or absence of KU-559933 (10µM) or PIK75 (50 nM) and then analysed for their 

subdiploid DNA content. Values are mean ± SD of two independent experiments. The efficiency of the 

knockdown of the different proteins was controlled by Western blot.  

This is in line with the results obtained for the knockdown of β-catenin which is one of the 

most prominent downstream targets of GSK3. As described above, inhibition of AKT leads to 

the activation of GSK3 which in turn is responsible for the destruction of β-catenin. 

Therefore, if active GSK3 were responsible for the sensitisation observed, knockdown of β-

catenin would also sensitise the cells to TRAIL-induced apoptosis. Knockdown of β-catenin 

was very efficient after 48h and was already quite toxic on its own (figure 43). It induced 

about 30 % of apoptosis in HeLa and DLD1 cells, which might not be so surprising as 

β-catenin mainly induces survival signals. However, although being quite toxic on its own, 

there was no synergistic effect of knockdown of β-catenin and additional TRAIL-treatment. 
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This provides further support for the conclusion that GSK3 and β-catenin are not involved in 

TRAIL sensitisation in HeLa and DLD1 cells by inhibition of the PI3K /AKT pathway. 

a) 

 

 

b) 

 

 

c) 

   

figure 43. Knockdown of β-catenin does not sensitise to TRAIL- induced apoptosis. 

 (a,b) HeLa or DLD1 cells were transfected with siRNA either targeting Renilla luciferase (Rluc) as 

control or β-catenin. After 48 h control and KD cells were incubated with increasing concentrations of 

iz-TRAIL for 24 h and then analysed for their subdiploid DNA content. Values are mean ± standard 

deviation of two independent experiments. (c) The efficiency of the knockdown of the different proteins 

was controlled by Western blot. 

Another important function of active AKT is the inhibition of FoxO transcription factors. As 

shown in figure 44 phosphorylation of FoxO1 and FoxO3a was markedly decreased after 

p110α inhibition and the expression level of FoxO1 was increased.  
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figure 44. Inhibition of p110α by PIK75 leads to diminished of phosphorylation of FoxO1 

and Foxo3a.  

HeLa cells were stimulated with PIK75 (50 nM) for the indicated time points. Cells were lysed and 50 

µg of protein were analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One 

representative result of three independent experiments is shown. 

Phosphorylation of FoxO transcription factors by AKT leads to the exclusion of FoxO from 

the nucleus and their translocation in the cytosol. Upon inhibition of the PI3K/AKT pathway 

FoxO does not become phosphorylated anymore and can therefore remain in the nucleus to 

act as a transcription factor as depicted in figure 45. 

Translocation of FoxO3a into the nucleus could be observed after PIK75 treatment as shown 

in figure 46. When cells were untreated the FoxO3a was detectable in the nucleus and in the 

cytosol. In contrast to this, after 6 h of PIK75 treatment FoxO3a was only detectable in the 

nucleus as the staining for FoxO3a completely overlaps with the DAPI staining.  
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figure 45. Nuclear Export of FoxO controlled by the PI3K/AKT pathway. 

FoxO1, FoxO3a and FoxO4 have three conserved amino acid residues which are targets for 

phosphorylation by AKT. Phosphorylation of FoxOs leads to interaction with 14-3-3 proteins and the 

nuclear export of the FoxO-14-3-3 complex. Inhibition of the PI3K/AKT pathway leads to 

dephosphorylation of FoxOs and target gene activation. 

 

figure 46.  Treatment with PIK75 enhances nuclear localisation of FoxO3a.  

HeLa cells were left untreated or treated with PIK75 for 6h. Then they were subjected to staining 

with a FoxO3a specific antibody (green fluorescence); nuclei were revealed by DAPI staining. 

Localisation of FoxO3a was examined by confocal microscopy. 
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If sensitisation to TRAIL by KU-55933 or PIK75 worked via FoxO1 or FoxO3a, their 

knockdown should block sensitisation. As shown in figure 47 knockdown of FoxO1 in HeLa 

cells worked very well. However, no detectable difference in TRAIL-sensitivity could be 

observed between control cells and FoxO1 knockdown cells. Accordingly, no blockage of 

KU-55933 or PIK75 mediated sensitisation to TRAIL could be observed, either. 

Unfortunately, the knockdown of FoxO3a did not work very well (figure 47). Although 

optimisation experiments were carried out using higher amounts of siRNA for longer times 

with different FoxO3a targeting siRNA pools, no reliable knockdown of Foxo3a could be 

achieved (data not shown). Therefore a different approach was taken to study the influence of 

FoxO3a on TRAIL-induced apoptosis. DLD1 cells were used which express an inducible 

version of non-phosphorylatable, and therefore active FoxO3a (generated and kindly provided 

by Prof. Burgering (Kops et al., 2002)). These cells, referred to as DL23 cells, as well as the 

parental DLD1 cell line used for transfection (here referred to as DLD1p) were very TRAIL 

sensitive (figure 48), whereas the DLD1 cells that had been used in the work described here 

so far were TRAIL-resistant (figure 19).  

 

 

 

figure 47. Knockdown of FoxO1 does not block KU-55933 or PIK75 induced sensitisation 

to TRAIL- induced apoptosis. 

HeLa were transfected with siRNA either targeting Renilla luciferase (Rluc) as control or FoxO1. 

After 72 h control and KD cells were incubated with increasing concentrations of iz-TRAIL for 24 h 

and then analysed for subdiploid DNA content. Values are mean ± standard deviation of two 

independent experiments. The efficiency of the knockdown of the different proteins was controlled by 

Western blot. 
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It has been described before that there are two different DLD1 cell lines which differ in their 

sensitivity to death ligand-induced apoptosis (Zhang et al., 2005). This difference in 

sensitivity is caused by differential expression of caspase-8. Indeed the TRAIL-resistant 

DLD1 cells used in the previous experiments have very low levels of caspase-8 whereas the 

TRAIL-sensitive DLD1p cells and DL23 cells expressed rather high levels of caspase-8 

(figure 48b). FoxO3a expression in DL23 cells can be induced by Hydroxy-Tamoxifen 

(4-HT) treatment. figure 49a shows that a concentration of 20 nM 4-HT was sufficient to 

induce expression of HA-tagged FoxO3a. The highest expression of FoxO3a after 24 hours 

could be achieved with 100 nM of 4-HT. This concentration was used to investigate whether 

expression of active FoxO3a influenced TRAIL-sensitivity. As DLD1p cells and DL23 were 

per se very TRAIL-sensitive, TRAIL was titrated in a very low concentration range to detect 

a possible sensitisation by FoxO3a. Treatment with 4-HT did not influence TRAIL sensitivity 

of DLD1p cells, excluding a sensitising effect of 4-HT itself on TRAIL-induced apoptosis 

(figure 49).  

a) 

 

 

 

 

 

 

  

b) 

 

figure 48. DL23 and DLD1p cells are very TRAIL sensitive due to high levels of caspase-8. 

 (a) DL23 and DLD1p cells were treated with increasing concentrations of iz-TRAIL for 24 h and 

then analysed for their subdiploid DNA content. Values are mean ± standard deviation of two 

independent experiments. (b) DLD1, DLD1p and DL23 cells were lysed and 50 µg of protein were 

analysed by SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One representative result 

of two independent experiments is shown. 

DL23 cells died in a similar manner upon TRAIL-treatment as the parental DLD1p cells. 

When DL23 were treated with 4-HT for 24 h to induce active FoxO3a, cells became TRAIL-

sensitive. 4-HT treatment alone was only slightly toxic. Furthermore, treatment with 4-HT led 

to a rapid decrease in cFLIP levels and a slower reduction of XIAP (figure 49). Taken 
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together these results suggest that the TRAIL-sensitisation by KU-55933 and PIK75 most 

likely works via the activation of the transcription factor FoxO3a. Expression of active 

FoxO3a did not only sensitise to TRAIL-induced apoptosis but also triggered reduction of 

cFLIP and XIAP, the same molecular changes that are responsible for TRAIL sensitisation 

mediated by KU-55933 and PIK75. 
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a) 

 

 

  

b) 

 

 

 

 

 

c) 

 

 

 

 

 

figure 49. Constitutively active FoxO3a sensitises to TRAIL-induced apoptosis and induces 

down-regulation of cFLIP and XIAP.  

(a),(c) DLD1p cells and DL23 were treated with increasing amounts of 4-HT for 24 h (a) or for the 

indicated times with 100 nM 4-HT (c). Then cells were lysed and 50 µg of protein were analysed by 

SDS-PAGE using a Bis-Tris gel and subsequent Western blot. One representative result of two 

independent experiments is shown. (b) DLD1p and DL23 were either left untreated or treated with 4-

HT (100 nM) for 24 h. Then cells were treated with increasing amount of iz-TRAIL and analysed for 

subdiploid DNA content. Values are mean ± standard deviation of three independent experiments.  
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5. Discussion 

5.1. TRAIL-induced phosphorylation of tBid 

Bid is a key molecule in apoptosis as it acts as a linker between the death receptor pathway 

and the mitochondrial pathway. For a long time Bid was thought to be a killer molecule but 

recent evidence suggested that it also has a pro-survival role (Zinkel et al., 2005). Its 

phosphorylation by the kinase ATM at residue S78 turned out to be essential for Bid‘s role as 

a pro-survival molecule (Kamer et al., 2005). With Bid being a pivotal player in death 

receptor-induced apoptosis this work set out to investigate the effects of perturbation of 

phosphorylation of Bid and ATM activity on TRAIL-induced apoptosis. 

DNA damage-induced phosphorylation of Bid by ATM at residue S78
 
had only been 

observed for murine Bid in murine cells or in human cells in which murine Bid was 

overexpressed (Kamer et al., 2005). In this thesis it is now shown that this phosphorylation 

also occurred on endogenous human Bid in human cells (see figure 10) suggesting a 

conserved mechanism among different species. Surprisingly, TRAIL treatment alone without 

any further DNA damage already led to phosphorylation of tBid as detected with an S78
 

Phospho-Bid specific antibody in the TRAIL-sensitive HeLa cell line. As shown in figure 12, 

this phosphorylation occurred after activation of caspase-8 and cleavage of full length Bid 

into tBid, suggesting that the cleavage of Bid may be essential for phosphorylation of tBid 

following TRAIL stimulation. This phosphorylation could also be detected in the mouse cell 

line XhoC3, again indicating a conserved mechanism (see figure 14). Espistatic analysis in the 

XhoC3 cells also indicated that phosphorylation of tBid occurred upstream of the activation of 

the mitochondria. 

As ATM has been reported to be the kinase phosphorylating Bid upon DNA damage (Kamer 

et al., 2005) it might also be involved in TRAIL-induced phosphorylation of Bid. However, 

no active phosphorylated ATM could be detected on Western blot level when cells were 

treated with TRAIL, whereas etoposide-treated cells used as positive control exhibited 

activated ATM. This already indicated that ATM was responsible for DNA-damage induced 

phosphorylation of Bid but not for TRAIL-induced tBid phosphorylation. Additionally, 

siRNA targeting ATM was used to virtually exclude the involvement of ATM in TRAIL-

induced phosphorylation of tBid. Using this siRNA-based approach it could be shown that 
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DNA damage-induced phosphorylation of Bid vanished upon specific knockdown of ATM, 

but TRAIL-induced tBid phosphorylation was still detectable (see figure 15). This led to the 

conclusion that a different kinase than ATM was responsible for TRAIL-induced 

phosphorylation of tBid. Potential candidates are the kinases DNA-PK and CKII that are 

predicted to phosphorylate Bid at residue S78 with a much higher likelihood than ATM by the 

Motif Scanner Scansite (http://scansite.mit.edu/). A screen shot of a search scanning for 

kinases that phosphorylate Bid (Protein ID: P55957) at residue S78 is shown in figure 50. 

 

figure 50. Screenshot of a search for kinases which potentially phosphorylate Bid at S78 

with the Motif Scanner Software Scansite. 

 

Similar to ATM, DNA-PK is also involved in the DNA damage response to DNA double 

strand breaks (reviewed in Shiloh, 2003). So far it has not been implicated in the 

phosphorylation of Bid. However, two recent studies linked DNA-PK activity to TRAIL-

induced apoptosis. A study performed by Kim et al. (2009) observed a sensitisation of K562 

cells to TRAIL when cells were treated with a DNA-PK inhibitor or when DNA-PK was 

knocked down. In contrast to this, Solier et al. (2009) showed that DNA-PK became activated 

following TRAIL stimulation and found that the use of a DNA-PK inhibitor together with 

TRAIL did not change the apoptotic outcome. Furthermore, the activation of DNA-PK was 

only detectable after cytochrome c release from the mitochondria. However it is still possible 

Motif Scan Graphic Results: P55957

Description: RecName: Ful=BH3-interacting domain death agonist; AltName: Full=p22 BID; Short=BID; 

Contains: RecName: Full=BH3-interacting domain death agonist p15; AltName: Full=p15 BID;

Contains: RecName: Full=BH3-interacting domain death agonist p13;

Motifs scanned: All

Stringency: Medium

Show domains: Yes
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that basal levels of active DNA-PK are present which might be involved in the 

phosphorylation of Bid or tBid upstream of cytochrome c release from the mitochondria.  

As mentioned in the introduction, CKII has already been described to phosphorylate Bid 

(Desagher et al., 2001; Olsen et al., 2006). This phosphorylation is constitutive and reduces its 

cleavage by caspase-8 (Degli Esposti et al., 2003; Desagher et al., 2001). However, the 

phosphorylation site focused on in this study was residue T59 (Degli Esposti et al., 2003). 

Therefore, it would be interesting to investigate whether inhibition of CKII by the specific 

inhibitor DRB might also affect TRAIL-induced Bid phosphorylation at residue S78. If this 

were the case it should be examined whether it is functionally involved in the sensitisation to 

TRAIL induced by DRB treatment (Kim et al., 2008). One argument in favour of the 

hypothesis that CKII might also be involved in phosphorylation of tBid after TRAIL 

treatment might be that Casein Kinase II is a constitutively active kinase. Our collaboration 

partner Atan Gross made the observation that induced expression of tBid also led to the 

phosphorylation of tBid without any further stimulus (unpublished observation). Taking this 

into consideration the most likely scenario would be that Bid undergoes a conformational 

change when it is cleaved into tBid. This results in an increased accessibility of the 

phosphorylation site S78 which would then become phosphorylated by a constitutively active 

kinase.  

The solution structure of Bid has been resolved by two different group in parallel by NMR 

spectroscopy already in 1999 (Chou et al., 1999; McDonnell et al., 1999). The study by Mc 

Donnell et al. modelled the structure of tBid based on the structure of Bid and compared both 

structures. The study by Chou et al. even went one step further; they also resolved the 

structure of tBid. Both studies found that Bid does not undergo any dramatic conformational 

changes upon cleavage to tBid. Nevertheless, they observed marked changes in the character 

of Bid surfaces comprising hydrophobic exposure and surface charge. The residue S78 is 

directly adjacent to the helix 3, in a region that showed significant changes in the chemical 

shift, as shown in figure 51. 
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figure 51.  Ribbon diagram of BID highlighting the residues whose local chemical 

environments are changed due to caspase-8 cleavage. 

In this representation, residues of which NH chemical shift changes are greater than 0.1 and 0.02 ppm 

in 15N and 1H dimension, respectively are coloured in red. The position of S78 is approximately 

indicated by the arrow. Figure adapted from Chou et al. (Chou et al., 1999). 

At the moment the role of this TRAIL-induced phosphorylation of tBid is still unclear. A 

post-translational modification of tBid might alter the affinity for binding to Bcl-2 family 

members or affect targeting to the mitochondria as has been shown for N-myristoylated tBid 

(Zha et al., 2000). In the system used in this study in which endogenous Bid was knocked 

down using esiRNA and in which the different Bid mutant were re-expressed, no difference 

could be detected in the apoptotic outcome upon TRAIL treatment (figure 16). Therefore, one 

might conclude that TRAIL-induced tBid phosphorylation is an epiphenomenon and is not 

associated with a functional role in TRAIL-induced apoptosis. However, as phosphorylation 

of Bid at the same residue in the context of DNA damage has a major impact on cellular fate 

(Zinkel et al., 2005), it is more likely that this phosphorylation event has functional 

consequences on TRAIL-induced apoptosis. It is possible that these consequences were not 

detectable in the cell line used in this study. Different anti-apoptotic Bcl-2 family members 

may be differentially affected by the action of phosphorylated versus non-phosphorylated 

tBid. In addition, there is still a controversy about whether tBid directly acts on pro-apoptotic 

Bcl-2 family members or whether it indirectly activates them by neutralising anti-apoptotic 

members. Perhaps the phosphorylation of tBid differentiates between these different actions 

of tBid. This is an intriguing hypothesis but to test it an experimental system that evaluates the 

differential binding capacities of phosphorylated tBid versus tBid to Bax and Bak and all anti-

apoptotic Bcl-2 proteins would have to be established. 
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5.2. Sensitisation to TRAIL-induced apoptosis by the ATM-inhibitor 

KU-55933 

As mentioned in the introduction, TRAIL selectively kills about 50% of tumour cell lines 

while sparing the majority of normal cells from apoptosis. This unique feature makes TRAIL 

a promising tool for anti-cancer therapy. Unfortunately, most primary tumour cells turned out 

to be resistant to TRAIL, which casts doubt over the potential of TRAIL to be used as a single 

agent to treat cancer. However, a variety of conventional and targeted cancer drugs can 

sensitise many primary tumour cells to TRAIL-mediated apoptosis. To find and characterise 

new agents that sensitise to TRAIL is not only interesting with regard to cancer therapy but 

also makes it possible to unravel mechanisms and pathways conveying TRAIL resistance. 

With improved understanding of the mechanisms that confer TRAIL-resistance one might be 

able to overcome current limitations in cancer treatment by rational drug identification and 

design, as well as develop biomarker driven patient selection criteria. As already mentioned in 

the results section the ATM inhibitor KU-55933 was intended to be used as an independent 

assessment to test whether ATM was involved in tBid phosphorylation. KU-55933 was 

identified as an ATP-competitive inhibitor for ATM in a small molecule compound library 

screen (Hickson et al., 2004; Hollick et al., 2007). There, KU-55933 was shown to inhibit 

ATM with an IC50 value of 13 nmol/L whereas the IC50 value for other members of the 

phosphoinositide 3-kinase-related kinase (PIKK) family like DNA-PK or PI3K was 

determined as 2,5 µmol/L and 16,6 µmol/L respectively. KU-55933 inhibits the 

phosphorylation of a range of ATM targets upon activation of ATM using ionizing radiation 

in HeLa cells. KU-55933 also sensitises these cells to apoptosis caused by chemotherapeutics 

which induce DNA double strand breaks (Hickson et al., 2004). KU-55933 might be useful in 

the treatment of HIV infection as inhibition of ATM prevents retroviral replication (Lau et al., 

2005). Using KU-55933 to specifically target DNA-damage repair could also have 

implications for anti-cancer therapy. It has been successfully applied as a single agent to kill 

senescent, otherwise chemotherapy-resistant breast, lung, and colon carcinoma cells, which 

are hallmarked by constitutive activation of ATM (Crescenzi et al., 2008). Accordingly, 

pancreatic tumour cell lines with a mutation in the Fanconi anaemia pathway which results in 

constitutive activation of ATM could also be killed by KU-55933 (Kennedy et al., 2007). 

Besides its potential application in HIV therapy, and potential use as single agent in cancer 
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therapy mentioned in the introduction, it has been shown that co-treatment with KU-55933 

can sensitise breast carcinoma cells to ionizing radiation (Cowell et al., 2005). 

This thesis showed at 10 µM, a concentration which is used in most studies to efficiently 

inhibit ATM, KU-55933 further sensitised TRAIL-sensitive HeLa cells to TRAIL-induced 

apoptosis in a concentration dependent-manner (figure 17). This result corresponds to the 

observations presented in a recent study which showed that KU-55933 can be used in 

combination with TRAIL to further enhance sensitivity of cells to TRAIL-induced apoptosis 

in melanoma cells (Ivanov et al., 2009). Remarkably, co-treatment with KU-55933 could even 

break TRAIL resistance in the colon carcinoma cell line DLD1 (figure 19). Furthermore, the 

long-term survival of HeLa as well as DLD1 cells was significantly diminished upon co-

treatment with KU-55933 and TRAIL (figure 17 and figure 19).  

These results showed that a combination of TRAIL and KU-55933 might potentially be a new 

treatment option for tumours cells that are resistant to TRAIL as a single agent.  

5.3. Sensitisation to TRAIL-induced apoptosis mediated by KU-

55933 is independent of ATM inhibition 

As AT cells have been reported to be resistant to death receptor-induced apoptosis due to 

elevated levels of cFLIP (Stagni et al., 2008), the finding that the use of an ATM inhibitor 

sensitised to TRAIL-induced apoptosis was quite surprising. Therefore the question arose 

whether the observed effect was truly due to inhibition of ATM. As already mentioned, the 

dosage of 10 µM KU-55933 was used in most studies to efficiently inhibit ATM. At this 

concentration KU-55933 was not toxic for HeLa cells but was sufficient to completely 

abrogate the activation of ATM upon stimulation with etoposide (figure 20). In contrast to 

this, ATM did not become activated upon TRAIL stimulation in HeLa cells in this study, 

although it has recently been reported that TRAIL leads to an activation of ATM (Solier et al., 

2009). However, this activation seems to be a late event in TRAIL-induced apoptosis and 

occurs, similar to the activation of DNA-PK, after cytochrome c release from the 

mitochondria. Cytochrome c release is generally considered to be the point of no return, after 

which cells are doomed to die. Considering this, it is very unlikely that inhibition of active 

ATM downstream of cytochrome c release were responsible for the KU-55933-mediated 

TRAIL sensitisation.  



Discussion 

133 

 

Ivanov et al. (Ivanov et al., 2009) claim that KU-55933 sensitised to TRAIL-induced 

apoptosis by blocking the basal activity of ATM. However, no basal activity of ATM was 

detected in this study in HeLa cells by Western blot, not even after very long exposures times 

(figure 20). Therefore, the observed sensitisation by KU-55933 could only be due to an 

inhibition of the basal activity of ATM which was below the detection limit. If this were the 

case, a knockdown of ATM should have the same effect as KU-55933 treatment. However, 

when ATM was knocked down cells became rather more TRAIL-resistant. Nevertheless, KU-

55933 was still able to sensitise these ATM knockdown cells. In line with this the same result 

was obtained in AT cells which lack functional ATM (figure 21). Taken together, these 

results indicate that KU-55933-mediated sensitisation to TRAIL-induced apoptosis is 

independent of ATM inhibition. 

5.4. Sensitisation to TRAIL-induced apoptosis by inhibition of the 

PI3K catalytic subunit p110 α 

As ATM belongs to the PIKK family and the inhibition of the PI3K/AKT pathway has been 

shown to sensitise to TRAIL-induced apoptosis in various tumour cell types, it seemed most 

likely that KU-55933 might work via the inhibition of PI3K. Indeed, when the four different 

isoforms of the PI3K p110 subunit α, β, γ and δ were knocked down, it was found that 

knockdown of p110α sensitised HeLa cells to TRAIL-induced apoptosis whereas suppression 

of the other isoforms had no effect (figure 22). Correspondingly, pharmacological inhibition 

of p110α with the specific inhibitor PIK75 had the same effect (figure 23). Both, PIK75 as 

well as KU-55933 interfered with the phosphorylation of AKT, which was taken as surrogate 

for PI3K activity (figure 24). Furthermore, using a kinase assay a direct inhibition of p110α 

by KU-55933 could be shown (figure 25). These results demonstrate that KU-55933 was not 

as specific as previously thought. Thus, results derived solely from the use of KU-55933 

might have to be reconsidered taking into account the potential additional inhibition of the 

PI3K pathway.  

Moreover, this study underlines the importance of the PI3K/AKT survival pathway for 

TRAIL sensitivity. Genetic studies showed that tumour cells which contain an activating 

somatic mutation in PI3K are relatively TRAIL-resistant (Samuels et al., 2005). Several 

studies exist which make use of the inhibition of the PI3K/AKT pathway to sensitise to 

TRAIL-induced apoptosis. They either target PI3K directly by using LY294002 (Martelli et 
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al., 2003), inhibit receptor tyrosine-kinases which function upstream of PI3K with gefitinib 

(Shrader et al., 2007) or target mTOR activity which is downstream of AKT using rapamycin 

(Panner et al., 2005).  

Although several studies reported that PI3K inhibition sensitises to TRAIL-induced apoptosis, 

so far only one of them has investigated the importance of the different isoforms which have 

non-redundant functions (reviewed in Ihle and Powis, 2009) and might therefore differentially 

affect TRAIL-induced apoptosis. The study by Opel et al. (Opel et al., 2008) only focussed on 

the two ubiquitously expressed isoforms α and β and finds that knockdown of PI3K subunits 

p110α and/or p110β sensitised glioblastoma cells to TRAIL-induced apoptosis. As the α-

isoform seems to be the most dominant regulator of cell growth (Knight et al., 2006) and 

mutations in p110α gene (PIK3CA) occur in diverse tumours with frequencies of up to 32 % 

(Samuels et al., 2004), specifically targeting the α-isoform of p110 by the specific inhibitor 

PIK75 to sensitise to TRAIL, as has been shown for the first time in this study, might be 

advantageous in comparison to broader inhibitors. This might reduce unwanted side effects as 

the different isoforms have non-redundant functions.  

PIK75 was developed by Hayakawa et al. (Hayakawa et al., 2007) who aimed to increase the 

stability of their previously developed p110α inhibitor which was specific but unstable in 

solution and ineffective in vivo. As a result of this study PIK75 is very selective for p110α 

(IC50: 30 nM), stable in solution and has also been shown to be effective in vivo. In a HeLa 

cervical cancer xenograft model in which PIK75 was applied daily for 2 weeks, PIK75 was 

well tolerated and was able to suppress tumour growth by 62 % without any toxicity. The 

inhibitor LY294002 targets all isoforms and has been shown to be toxic under certain 

conditions, e.g. in a mouse xeno-transplant model of ovarian cancer (Hu et al., 2000). In this 

model, LY294002 significantly inhibited growth and ascites formation of ovarian carcinoma 

but two of the 12 mice in the treatment group died. Additionally, 80 % of the LY294002- 

treated mice developed dry and scaly skin, possibly due to hyperkeratosis in the epidermis as 

a result of increasing LY294002-induced apoptosis.  

Mutations in PIK3CA or KRAS, which in turn results in hyperactivity of PI3K p110α, are 

very frequent in metastatic colorectal carcinoma (13.6% and 29.0%, respectively) and 

tumours bearing these mutations are often chemotherapy-resistant (Sartore-Bianchi et al., 

2009). Additionally, the EGFR-targeting monoclonal antibodies panitumumab and cetuximab 
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which are currently used to treat metastatic colorectal cancer are ineffective in patients who 

have tumours with PIK3CA and KRAS mutations (Amado et al., 2008; Lievre et al., 2006; 

Sartore-Bianchi et al., 2009). Furthermore, mutation of PIK3CA led to increased cell motility 

and metastasis in breast and colon cancer models (Guo et al., 2007; Pang et al., 2009). Both 

colorectal cancer cell lines used in this study, the TRAIL-resistant DLD1 cell line and the 

HCT116 cell line, carry activating mutations in the PIK3CA and the KRAS genes (Samuels et 

al., 2005). The influence of the PIK3CA mutations in these cell lines on TRAIL sensitivity 

has already been revealed in an elegant study by Samuels et al. (Samuels et al., 2005). Here, 

the authors generated DLD1 and HCT116 cells in which either the wild-type or mutant alleles 

of PIK3CA gene were disrupted using a gene targeting approach. This resulted in DLD1 and 

HCT116 cells that expressed either wt p110α or mutant constitutively active p110α. DLD1 

and HCT116 cells that only expressed mutant p110α were TRAIL-resistant at the applied 

concentration of TRAIL reflecting the phenotype of the parental cell lines. In contrast to this, 

DLD1 cells and HCT116 cells only expressing the wt p110α allele became TRAIL sensitive. 

Considering this, the authors came to the conclusion that TRAIL-based therapies in patients 

with a mutation in the PIK3CA gene or with constitutive AKT activation caused by other 

mutations are to not likely to be useful.  

This thesis now shows that although TRAIL might not be a treatment option when applied as 

a single agent, combination of TRAIL with a p110α inhibitory drug, e.g. PIK75 or KU-55933 

represents a promising treatment option, as it can efficiently kill these chemotherapy resistant 

cells with great metastatic potential in vitro. The next step to establish the combination of 

TRAIL and PI3K p110α inhibition as potential cancer treatment will be to determine the 

efficacy and the toxicity of this combination in vivo. A potential candidate for a future 

combination treatment with TRAIL is the p110α specific inhibitor GDC-0941 which is 

currently developed by Genentech/Piramed (Folkes et al., 2008). This compound is orally 

available and now in clinical trials. It has already yielded promising results as a single agent 

in ovarian xenografts (Raynaud et al., 2009) or in combinations with trastuzumab and 

pertuzumab in breast cancer models (Junttila et al., 2009; Yao et al., 2009). 
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5.5. Molecular changes facilitating TRAIL-sensitisation by KU-

55933/ PIK75 

After PI3K p110α had been identified as the target of KU-55933, the question arose how 

p110α activity conveys TRAIL resistance. Many studies about TRAIL sensitisation suggest 

up-regulation of TRAIL-Rs to be the underlying mechanism. However, in our laboratory the 

observation was made that although up-regulation of TRAIL-Rs often correlates with 

sensitisation to TRAIL and sometimes contributes to sensitisation, it is rarely the decisive, 

causative factor for sensitisation. Indeed, up-regulation of TRAIL-R1 and-R2 has been 

reported to be important for sensitising tumour cells to TRAIL-induced apoptosis when the 

PI3K/AKT pathway is inhibited (Rychahou et al., 2005; Tazzari et al., 2008). Also, Ivanov et 

al. (Ivanov et al., 2009) claimed that sensitisation to TRAIL-induced apoptosis in melanoma 

cells by KU-55933 was mediated by up-regulation of TRAIL-R2. This study shows that up-

regulation of TRAIL-R2 coincided with, but was not essential for sensitisation to TRAIL-

induced apoptosis of HeLa and DLD1 cells (figure 27). Therefore, intracellular regulatory 

mechanisms must exist that facilitate sensitisation to TRAIL mediated by KU-55933 and 

PIK75. Regulation most likely occurs at three different levels: at the DISC, at the 

mitochondria, or at the level of caspase-3 activation.  

Many intracellular factors have been linked to TRAIL sensitisation upon inhibition of the 

PI3K/AKT pathway, among them: cFLIP, cIAP1, cIAP2, Survivin, Bcl-2, Bad, Bim, and 

XIAP. However, most studies only show a correlation between the regulation of the 

respective molecule and rarely present evidence that the respective factor is indeed decisive 

for facilitating TRAIL sensitisation. 

To find out which molecules were regulated intracellularly that might facilitate TRAIL 

sensitisation, members of the direct apoptotic pathway were investigated on the protein level. 

A strong down-regulation of both, cFLIPL and cFLIPS short on protein level could be 

observed (figure 28), which had been described before upon inhibition of the PI3K pathway 

(Bortul et al., 2003; Han et al., 2007; Kang et al., 2004; Panka et al., 2001). As the effects on 

the transcriptional level were only marginal, it is likely that post-transcriptional mechanisms 

were involved in cFLIP down-regulation. Previously, ubiquitin–mediated degradation has 

been shown to be involved in the post-transcriptional regulation of cFLIPL and cFLIPS 

(Poukkula et al., 2005). Only recently a study reported a reduced half-life of cFLIP after 
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inhibition of AKT which correlated with increased ubiquitination by the E3 ligase atrophin-

interacting protein 4 (AIP4) (Panner et al., 2009). It will be interesting to address how p110α 

inhibition negatively regulates cFLIP stability. cFLIP forms part of the DISC and inhibits the 

activation of caspase-8. Therefore, changes of the DISC composition that come along with 

down-regulation of cFLIP have been investigated. Though, changes at the DISC level were 

detectable, they were not dramatic (figure 31). It was suspected that the down-regulation of 

cFLIP alone might not be sufficient to break TRAIL-resistance in DLD1 cells and other 

factors might also be involved. A kinetic in DLD1 cells revealed that full-activation of 

caspase-3 only occurred in cells that were co-treated with TRAIL and KU-55933 or PIK-75. 

cIAP-1 and cIAP-2, survivin and XIAP all belong to the IAP family and a correlation between 

down-regulation upon inhibition of the PI3K pathway and increased TRAIL sensitivity has 

been described for each of them (Han et al., 2007; Kim et al., 2004; Shrader et al., 2007; 

Tazzari et al., 2008). XIAP, whose expression was shown to be regulated by AKT directly, 

via phosphorylation (Dan et al., 2004) and indirectly via transcription (Takeuchi et al., 2005), 

seemed to be the most likely candidate in the system used in this study. Indeed, XIAP was 

strongly down-regulated on the protein (figure 28) and mRNA levels in HeLa cells (figure 

29). Using siRNA-mediated knockdown of cFLIP and XIAP it could be demonstrated that the 

concomitant suppression of cFLIP and XIAP was both required and sufficient for TRAIL 

apoptosis sensitisation by KU-55933- or PIK75-mediated inhibition of p110α. Down-

regulation of cFLIP resulted in enhanced caspase-8 activation at the DISC and down-

regulation of XIAP facilitated full activation of caspase-3. In line with this, cells could also be 

sensitised by knockdown of cFLIP and treatment with SMAC mimetics (figure 33), a drug 

class developed to block the activity of XIAP (Mastrangelo et al., 2008), whereas 

combination of TRAIL with SMAC mimetics alone was not sufficient to sensitise these cells. 

Although the concomitant down-regulation of cFLIP and XIAP was sufficient to sensitise to 

TRAIL-induced apoptosis this did not exclude that a regulation of proteins acting at 

mitochondria might contribute to the observed sensitisation mediated by KU-55933 or PIK75. 

In this regard, a loss of phosphorylation of the pro-apoptotic Bcl-2 family member Bad has 

been observed upon treatment with KU-55933- or PIK-75. Phosphorylated Bad is usually 

sequestered in the cytosol but upon loss of phosphorylation Bad can induce apoptosis via the 

mitochondrial pathway by binding to and counteracting the anti-apoptotic function of Bcl-2, 

Bcl-XL and Bcl-w (reviewed in Danial, 2008), as illustrated in figure 52. 
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figure 52. Regulation of Bad activity by the PI3K/AKT pathway. 

Activation of the AKT by survival signals leads to phosphorylation of BAD at S136, which allows its 

association with 14-3-3 proteins and sequestration in the cytosol. Upon inhibition of the PI3K/AKT 

pathway phosphorylation of Bad is lost and Bad can induce apoptosis via the mitochondrial pathway.  

A correlation between the phosphorylation status of Bad and TRAIL-sensitivity has already 

been reported by two independent studies (Kang et al., 2004; Martelli et al., 2003). However, 

data shown in these studies are only correlative and do not show that loss of phosphorylation 

was decisive for sensitisation to TRAIL. Similarly, down-regulation of Bcl-2 upon inhibition 

of the PI3K/AKT was observed (Alladina et al., 2005; Han et al., 2007). Yet again the data 

only establish correlation and do not show a decisive role for Bcl-2 in the sensitisation 

process.  

To investigate the contribution of apoptotic regulators that act at the mitochondria on KU-

55933- and PIK75-mediated sensitisation to TRAIL, HCT116 Bax-/- cells in which, in 

addition, Bak was knocked down were employed (figure 34). HCT116 cells are type II cells. 

Taking out Bax and Bak completely takes out the mitochondrial pathway in these cells and 

thereby also blocks TRAIL-induced apoptosis which in these cells is entirely dependent on 

the action of tBid on the mitochondria. However, when co-treated with KU-55933 or PIK75 
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the HCT116 Bax-/- Bak–KD cells could still be sensitised to TRAIL virtually to the same 

extent as the control cells. This means, that although Bcl-2 family members are certainly 

regulated upon treatment with KU-55933 and PIK75, and might contribute when 

mitochondria are present, they are not the decisive factors that allow for sensitisation by KU-

55933 and PIK75 to occur. 

Taken together the results indicate that treatment with KU-55933 or PIK75 leads to 

simultaneous down-regulation of cFLIP and XIAP which together facilitates sensitisation to 

TRAIL-induced apoptosis. A regulation of Bcl-2 family members occurs but is not required 

for TRAIL sensitisation. The use of KU-55933 or PIK75 in combination with TRAIL might 

be advantageous when compared to other sensitising agents, like e.g. SMAC mimetics. By 

down-regulating both, cFLIP and XIAP, KU-55933 and PIK75 do not only target resistance at 

the level of caspase-3 activation but also at the DISC.  

5.6. Down-regulation of cFLIP and XIAP is facilitated by activation 

of FoxO3a downstream of AKT 

A plethora of studies has shown that inhibition of PI3K leads to sensitisation to TRAIL-

induced apoptosis. PI3K mainly seems to exert its TRAIL-sensitising effect by acting on its 

downstream effector AKT. Several studies have shown that cells expressing a dominant 

negative version of AKT are sensitised to TRAIL whereas cells over-expressing active AKT 

become more TRAIL-resistant (Kandasamy and Srivastava, 2002; Thakkar et al., 2001). 

Correspondingly, a study using the AKT inhibitor perefosine also observed a correlation 

between TRAIL sensitisation and down-regulation of cFLIP and XIAP (Tazzari et al., 2008) ; 

the same changes that were observed here after treatment with KU-55933 and PIK75. In line 

with this it could be shown here that HeLa cells as well as DLD1 cells could be sensitised to 

TRAIL by knockdown of AKT1 (figure 35). The isoforms AKT1 in comparison with the two 

other isoforms, AKT2 and AKT3, has been shown to be predominantly activated by mutated 

p110α (Samuels et al., 2005). 

The involvement of AKT in the TRAIL sensitisation process triggered by inhibition of PI3K 

seems to be a well-accepted fact. The knockdown of AKT1 already served as a positive 

control for the first siRNA screen performed in 2003 in search of modulators of TRAIL-

induced apoptosis (Aza-Blanc et al., 2003). However AKT phosphorylates a variety of 

substrates and thereby triggers or inhibits different pathways. So far the pathway which 



Discussion 

140 

 

allows for TRAIL sensitisation upon PI3K inhibition downstream of AKT has not been 

identified. 

Through the phosphorylation of various substrates AKT regulates the four intersecting 

biological processes: cells survival, cell progression, cell growth and cell metabolism. Among 

the substrates which have been linked to cancer are mTOR, GSK3 and FoxO, all of which 

have been implicated in TRAIL sensitivity and resistance. 

mTOR signalling is one of the major pathways which becomes activated downstream of 

AKT. mTOR regulates cap-dependent mRNA translation and integrates extracellular signals 

and translational control. It does so by phosphorylating 4E-BP and S6K1 which then can no 

longer bind to and inhibit eukaryotic initiation factors eIF4E and eIF3, respectively, which 

can in turn initiate cap-dependent translation. An overview about the mTOR signalling 

pathway is given in figure 36. mTOR stands for mammalian target of rapamycin. Rapamycin 

was discovered as a product of the bacterium Streptomyces hygroscopicus in a soil sample 

from the Easter Island— an island also known as "Rapa Nui", hence the name (Vezina et al., 

1975). Originally developed as an anti-fungal agent, rapamycin was found to exert its anti-

proliferative effect due to inhibition of mTOR. Rapamycin or rapamycin analogues 

(rapalogues) have shown activity against many types of cancer in phase I and II trials. 

Specifically, partial responses and stable disease have been observed in NSCLC, breast, 

cervical, and uterine carcinomas, as well as sarcoma, mesothelioma, mantle cell lymphoma, 

and glioblastoma (LoPiccolo et al., 2008). However, the observation that prolonged 

rapamycin treatment leads to an enhanced PI3K/AKT activation via an S6K1 negative-

feedback loop might complicate the use of rapamycin in cancer treatment (Sun et al., 2005). 

 A few studies have already investigated whether inhibition of translation via mTOR 

inhibition sensitises to TRAIL-induced apoptosis with contradicting results. A study by 

Panner et al. (2005) reported that resistance to TRAIL is associated with reduced expression 

of cFLIPS and decreased S6K1 phosphorylation in glioblastoma cells. cFLIPS mRNA was 

poorly translated as it sedimented with light polysomes in TRAIL-sensitive glioblastomas, but 

co-sedimented with heavy polysomes in TRAIL-insensitive glioblastoma multiforme, thus 

indicating a translational regulation. Accordingly, rapamycin treatment or siRNA-mediated 

knockdown of S6K sensitised cells to TRAIL. In a second study the same group reported 

other anti-apoptotic proteins apart from cFLIPS also to be controlled via translational 

http://en.wikipedia.org/wiki/Streptomyces
http://en.wikipedia.org/wiki/Easter_Island
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regulation. Among them were cIAP2, XIAP, Survivin and Bcl-2 (Panner et al., 2006). 

Interestingly, a third study showed that inhibition of the AKT pathway led to increased 

ubiquitination of cFLIP. However, the same group did not see a reduction of cFLIP after 

rapamycin treatment (Panner et al., 2009). Noteworthy, all three studies were conducted in the 

same cell system – glioblastoma multiforme. An independent study also using glioblastoma 

found that co-treatment with rapamycin could not sensitise to TRAIL (Opel et al., 2008). 

Another group investigated the effect of rapamycin in TRAIL-resistant human mesothelioma 

multicellular spheroids (Barbone et al., 2008; Wilson et al., 2008). They observed a 

sensitisation of these spheroids to TRAIL by rapamycin treatment as well as by knockdown of 

S6K1. As this sensitisation could be ablated by Bid knockdown, it probably occurred at the 

mitochondrial level (Barbone et al., 2008). 

As cFLIP and XIAP have been reported to be down-regulated upon mTOR inhibition, the 

mTOR pathway seemed to be a possible candidate for conveying the TRAIL-sensitising effect 

by KU-55933 and PIK75 downstream of AKT. In HeLa and DLD1 cells phosphorylation of 

mTOR was greatly diminished after inhibition of p110α (figure 37). Rapamycin treatment did 

not affect TRAIL-induced apoptosis although phosphorylation of the mTOR target S6K1 was 

efficiently inhibited (figure 38). As rapamycin treatment is only able to inhibit the activity of 

mTOR in complex with LST8 and Raptor, referred to as mTORC1, this experiment did not 

exclude a potential role for mTORC2 (mTOR in complex with LST8 and Rictor) in TRAIL 

sensitisation. The only inhibitor known so far which also inhibits the activity of mTORC2 is 

PI-103. Yet, PI-103 also inhibits p110α and is, therefore, not suitable to dissect the effects 

downstream of PI3K/AKT (Knight et al., 2006). However, a knockdown of mTOR equally 

affects mTORC1 and mTORC2. Yet again, no effect on TRAIL sensitivity could be observed 

in this study after knockdown of mTOR. Taken together these results excluded the mTOR 

pathway as the downstream mediator of TRAIL sensitisation upon inhibition of p110α. 

Another molecule downstream of AKT is GSK3, a multi-functional kinase involved in diverse 

physiological pathways ranging from metabolism, cell cycle, gene expression and 

development to oncogenesis (reviewed in Rayasam et al., 2009). AKT acts as a major 

negative regulator of GSK3 activity by phosphorylating GSK3 at inhibitory sites (depicted in 

figure 40). However, several other kinases can also phosphorylate these sites. 
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GSK3 is implicated in oncogenesis as a component of the Wnt pathway (Rayasam et al., 

2009). As mentioned in section 4.9, active GSK3 exists in a complex with APC and Axin 

which phosphorylates β-catenin and targets it for degradation. Once GSK3 is inactivated, β-

catenin accumulates and translocates to the nucleus, where it induces target genes like c-myc. 

Aberrant Wnt signalling has been reported in a wide range of cancers.  

GSK3 can have opposing effects on apoptosis, either strongly inhibiting or promoting 

apoptosis (reviewed in Beurel and Jope, 2006). For example, GSK3β
-/-

 mice died during 

embryonic development due to massive hepatocyte apoptosis, which led to the concept that 

GSK3 inhibits apoptosis (Hoeflich et al., 2000). This observation seems to be the direct 

opposite of the finding of Pap and Cooper that overexpression of GSK3 was sufficient to 

induce apoptosis (Pap and Cooper, 1998). Through more recent studies using GSK3 inhibitors 

like lithium evidence accumulated that the death-stimulus dictates whether GSK3 acts as a 

pro- death or pro-survival molecule (reviewed in Beurel and Jope, 2006). GSK3 acts pro-

apoptotically when the intrinsic mitochondrial pathway is triggered but in an anti-apoptotic 

manner in death-receptor induced apoptosis. Accordingly, three independent studies report 

that inhibition of GSK with lithium or knockdown of GSK3 sensitised to TRAIL-induced 

apoptosis. The earliest study by Liao et al. showed that inhibition of GSK3 with lithium or the 

knockdown of GSK3β breaks TRAIL resistance of prostate cancer cells (Liao et al., 2003). 

The role of the α-isoforms has not been addressed in this study. TRAIL sensitisation was 

associated with increased proteolytic processing of caspase-8 and its downstream target Bid. 

In line with this, using an siRNA-based approach, another study found that the knockdown of 

isoform GSK3β but not GSK3α sensitised cells to TRAIL-induced apoptosis which was 

correlated with an up-regulation of TRAIL-R2 (Rottmann et al., 2005). The most recent 

publication on that matter showed GSK3 in a complex with DDX3 and cIAP-1 which were 

associated with death receptors (Sun et al., 2008). GSK3 restrained apoptotic signalling by 

inhibiting formation of the DISC and caspase-8 activation. Stimulated death receptors seem to 

surmount the anti-apoptotic complex by causing GSK3 inactivation and cleavage of DDX3 

and cIAP-1 to enable progression of the apoptotic signalling cascade. In cells resistant to 

death receptor stimulation the anti-apoptotic complex remains functional. This resistance 

could be overcome by GSK3 inhibitors. In this study both isoforms were found to be in the 

anti-apoptotic complex. 
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In contrast an siRNA screen conducted by Aza-Blanc et al. (Aza-Blanc et al., 2003) in HeLa 

cells found the α-isoform of GSK3 to be necessary for TRAIL-induced apoptosis as its 

knockdown induced a more resistant phenotype.  

Based on the data described above, it seemed unlikely that KU-55933- or PIK75-induced 

TRAIL sensitisation worked via GSK3. As already mentioned, AKT usually phosphorylates 

and thereby inactivates GSK3. Inhibition of the PI3K/AKT pathway therefore leads to 

activation GSK3. If active GSK3 were necessary for sensitisation, inhibition or knockdown of 

GSK3 would rather block TRAIL sensitisation than induce it. In line with this hypothesis, 

phosphorylation of GSK3 was not significantly altered upon inhibition of p110α (figure 41). 

Furthermore, knockdown of either isoforms did not block TRAIL sensitisation by KU-55933 

or PIK75. On the contrary, knockdown of the β-isoforms rather induced a more TRAIL-

sensitive phenotype, which has been described in the studies mentioned above (figure 42).  

A knockdown of β-catenin, which reflects the situation of activated GSK3 in Wnt signalling, 

did not influence TRAIL-induced apoptosis either. Therefore a down-regulation of β-catenin 

targets like the soluble TRAIL-receptor OPG (De Toni et al., 2008), is not involved in 

sensitisation mediated by inhibition of the PI3K/AKT pathway. These results are in line with 

a recent publication which showed that although it has been widely accepted that active PI3K 

signalling feeds positively into the Wnt pathway by AKT-mediated inhibition of GSK3, 

compartmentalisation of GSK3 by Axin prohibits cross-talk between the PI3K and Wnt 

pathways. Thus, Wnt-mediated transcriptional activity is not modulated by activation of the 

PI3K/AKT pathway (Ng et al., 2009). 

Taken together GSK3 does not seem to be the pivotal player mediating KU-55933 or PIK75-

induced TRAIL sensitisation downstream of AKT. 

The next important factors regulated by AKT are the Forkhead Box O (FoxO) transcription 

factors. FoxO transcription factors regulate multiple signalling pathways and play a role in a 

number of physiological and pathological processes including cancer (reviewed in Maiese et 

al., 2008). In mammals, there are four different FoxO family members: FoxO1, FoxO3a, 

FoxO4 and FoxO6. Direct phosphorylation of FoxO1, FoxO3a and FoxO4 by AKT facilitates 

interaction of FoxOs with 14-3-3 causing the displacement of the complex from the nucleus 

into the cytoplasm (figure 45). Translocation of FoxOs into the cytoplasm results in inhibition 

of target gene transcription. As might be expected, growth factor withdrawal and inhibition of 
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PI3K have been shown to result in dephosphorylation of FoxO at its AKT sites and thereby to 

target gene activation. Accordingly, inhibition of p110α using PIK75 induced a loss of 

phosphorylation and a translocation of FoxO3a into the nucleus (figure 46). 

FoxO has been implicated in the regulation of apoptosis by inducing transcription of e.g. Bim, 

CD95L and TRAIL (Modur et al., 2002). Besides inducing gene transcription of TRAIL itself, 

one study has recently linked FoxOs and resistance to TRAIL-induced apoptosis. In this study 

in activated hepatic stellate cells, concomitant knockdown of FoxO1 and FoxO3a together 

induced a more TRAIL-resistant phenotype (Park et al., 2009) and thereby identified FoxOs 

as factors required for TRAIL-induced apoptosis. However, the contribution of the isoforms 

FoxO1 and FoxO3a has not been addressed separately. TRAIL itself was shown to lead to a 

dephosphorylation for FoxOs and consequently translocation of FoxOs to the nucleus. The 

authors then claimed that up-regulation of cFLIP was responsible for inducing FoxO-

mediated TRAIL resistance. However, the data in support of the interpretation were not 

convincing. The data rather showed that knockdown of FoxOs inhibited the cleavage of 

cFLIP and TRAIL-induced down-regulation of cFLIP, which occurred in the course of 

TRAIL-induced apoptosis. FoxO knockdown alone did not lead to an increase of cFLIP 

which might have been expected if cFLIP was the factor essential for the observed TRAIL-

resistance induced by FoxO. Furthermore, the authors did not investigate whether an 

activation of FoxOs by additional inhibition of PI3K leads to a sensitisation to TRAIL-

induced apoptosis as has been addressed in this thesis.  

A second study which investigated cell death induced by over-expression of constitutively 

active FoxO3a reported a down-regulation of cFLIP in Human Umbilical Vein Endothelial 

Cells (HUVECs) (Skurk et al., 2004). This down-regulation proved to be essential for 

FoxO3a-induced cell death which depended on the activation of the death-receptor-induced 

apoptosis. To date, a role of FoxOs as modulators of TRAIL sensitivity in cancer cells has not 

been studied.  

As cFLIP down-regulation is one of the changes occurring upon inhibition of p110α, it was 

possible that FoxO transcription factors convey TRAIL sensitisation upon treatment with KU-

55933 or PIK75. To evaluate the contribution of the two different FoxO transcription factors 1 

and 3a, both of them were addressed separately. Similarly to GSK3, AKT usually 

phosphorylates and thereby inactivates FoxOs. Inhibition of the PI3K/AKT pathway leads to 
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activation of FoxOs. Therefore, if active FoxO1 were necessary for sensitisation, inhibition or 

knockdown of FoxO1 would be expected to block TRAIL sensitisation. Knockdown of 

FoxO1 worked very well but neither did it influence TRAIL-induced apoptosis itself nor was 

it able to block KU-55933- or PIK75- mediated sensitisation to TRAIL (figure 47). Therefore, 

a role for FoxO1 in the sensitisation of cancer cells to TRAIL could be excluded. The role of 

FoxO3a was approached differently. A tool which has widely been used to study the role of 

FoxO3a in different contexts is an inducible, non-phosphorylatable mutant version of 

FoxO3a. This version can no longer be inactivated by AKT and therefore mimics the situation 

upon inhibition of PI3K. DL23 cells, which are DLD1 cells stably transfected with the 4-HT 

inducible mutant were provided by Prof. Burgering (Kops et al., 2002). These cells, as well as 

the parental cell line were very TRAIL-sensitive in comparison to the DLD1 cells previously 

used in this study. Such a difference between different DLD1 cells has already been noticed 

before and has been associated with differential caspase-8 levels (Zhang et al., 2005). Indeed, 

the TRAIL-resistant DLD1 cells were marked by a much lower caspase-8 expression than 

DL23 cells or their parental DLD1 cells. Induction of constitutively active FoxO3a in DL23 

sensitised these cells to TRAIL-induced apoptosis and led to a concomitant down-regulation 

of cFLIP and XIAP (figure 49), the same molecular changes which occurred upon blockage of 

p110α. Down-regulation of XIAP by FoxO3a activity has been described previously. 

Interestingly, this study, which also used an inducible constitutively active FoxO3a, showed 

that TNF stimulation resulted in apoptosis instead of pro-inflammatory signalling (Lee et al., 

2008).  

Taken together, these results show for the first time that active FoxO3a can sensitise cancer 

cells to TRAIL-induced apoptosis and uncover which of the many pathways downstream of 

activated AKT is responsible for TRAIL resistance and whose activation by PI3K inhibitors is 

decisive for sensitisation to TRAIL-induced apoptosis. Although many different factors are 

inhibited/activated by inhibition of PI3K/AKT, activation of FoxO3a is sufficient induce the 

down-regulation of cFLIP and XIAP which has been proven to be pivotal for TRAIL 

sensitisation by inhibition of p110α.  
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6. Conclusion and Outlook 

The results of this study suggest that the combination of TRAIL and KU-55933 or TRAIL and 

PIK75 respectively could be a promising option for cancer therapy, in particular for cancer 

types which are hallmarked by mutations of KRAS or PI3KCA, including but not limited to 

cancers of the colon, breast, ovary, lung and pancreas. This study revealed FoxO3a as the 

decisive modifier of TRAIL-induced apoptosis in cancer cells. As AKT triggers many 

different pathways which play an important role in other processes that also affect normal 

physiology, it would be advantageous to target FoxO3A directly. Possibly a small molecule 

leading to activation of FoxO3a in a more direct manner can be identified by rational drug 

design. 

The next step in advancing the combination of TRAIL with KU-55933 and /or TRAIL with 

PIK75, respectively will be to evaluate its toxicity and the efficacy of the agents alone and in 

combination in normal cells and in primary cancer cells. Addiotionally, an in vivo study 

should be performed to find out whether the application of TRAIL and KU-55933/PIK75 is 

feasible and effective in vivo. As mutations in KRAS or in the PI3K/AKT pathway occur in 

almost 80 % of colon carcinomas, a colon carcinoma model would be ideal to study the effect 

of the different combinations. Although there are very good genetic models for benign 

adenoma (Sansom et al., 2006), no genetic mouse model is available for spontaneous tumours 

that arise in the intestine, become invasive, and metastasise to organs such as liver, lungs, and 

lymph nodes, as they do in humans. Because metastasis is responsible for most colon cancer 

mortality and PIK3CA has been identified as a driver of metastasis (Guo et al., 2007; Pang et 

al., 2009), it would be important to study the effect of TRAIL in combination with KU-55933 

or PIK75 on metastasis. DLD1 and HCT116 cells used in this study have already been 

employed for orthotopic transplantation models (Samuels et al., 2005) and have great 

metastatic potential (Guo et al., 2007). Noteworthy, a panel of DLD1 cells as well as HCT116 

exists which express wild type versions versus mutant version of different genes as has been 

described in section 5.4. Among the target genes are e.g. KRAS, p53 and PTEN. The use of 

these cells would provide the opportunity to study the efficacy of TRAIL in combinations 

with KU-55933 or PIK75 in the presence or absence of specific mutations. Thus, it might be 

possible to determine a certain mutation pattern that renders a particular tumour treatable or 
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not treatable with TRAIL in combination with KU-55933 or PIK75. It can also be envisaged 

that it will be possible in the future to use mutation patterns and/or correlating expression 

profiles as a prognostic tool to predict which tumours are treatable with the combination of 

TRAIL and KU-55933 or PIK75. 

Currently, the use of TRAIL-based cancer therapy is restricted to tumours which are TRAIL 

sensitive in the first place or tumours that can be sensitised by co-treatment with other anti-

cancer drugs. In this respect it would be interesting to study the surviving clones that do not 

die upon treatment with TRAIL and KU-55933/PIK75. These clones probably up-regulate 

certain survival pathways that allow them to escape the induction of cell death. If these 

pathways were to be identified and the escape mechanism could be interfered with by 

combining such interference with TRAIL and PI3K inhibitors, it could be possible to limit the 

tumour‘s possibilities of creating a therapy resistant variant even before this materialises. This 

strategy may help in overcoming current limitations in cancer therapy. 
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