Catalysis ## Carbon Nanotube-Modified MnO₂: An Efficient Electrocatalyst for Oxygen Reduction Reaction Chee Wai Woon,^[a] Mohammed Amirul Islam,^[a] Baranitharan Ethiraj,^[a] Huei Ruey Ong,^[a] Chin Kui Cheng,^[a, b] Kwok Feng Chong,^[c] Gurumurthy Hedge,^[d] and M. Maksudur Rahman Khan*^[a, b] In this work, manganese dioxide/carbon nanotube (MnO₂/CNT) have been synthesized by sonochemical-coprecipitation method and demonstrated that it could be an effective electrocatalyst for oxygen reduction reaction (ORR). Moreover, the effect of CNT inclusion with MnO₂ was also investigated for ORR. The physical and electrochemical properties of the MnO₂/CNT were examined by powder X-ray diffraction (XRD), Fourier Transform Infrared (FT-IR) spectroscopy, Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy/Energy Dispersive X-ray (FESEM/EDX), Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Rotating Disk Electrode (RDE) analysis. CV showed higher currents for the ORR in MnO₂/ CNT than CNT; however, ORR current dropped when the MnO₂ loading was increased from 20–40%. The EIS analysis showed that charge-transfer resistance for MnO₂/CNT was significantly lower compared to the MnO₂ indicating that MnO₂ has good contact with CNT and the composite possess high electrical conductivity. Mott-Schottky results demonstrated that incorporation of CNT into MnO₂ resulted in producing larger electron density in n-type MnO₂/CNT compared to MnO₂ which is liable for efficient electron donation from the Mn³⁺ to adsorbed oxygen in the rate determining step. RDE results showed that MnO₂/CNT follows 4e⁻ transfer pathway, indicating its ability to act as an effective ORR electrocatalyst.