Pseudocapacitive Charge Storage in Single-Step-Synthesized CoO-MnO₂-MnCo₂O₄ Hybrid Nanowires in Aqueous Alkaline Electrolytes Midhun Harilal[†], Syam G. Krishnan[†], Asfand Yar[‡], Izan Izwan Misnon[†], M. Venkatashamy Reddy[§] (b), Mashitah M. Yusoff[†], John Ojur Dennis[‡], and Rajan Jose^{*†} (b) - [†] Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Science &Technology, Universiti Malaysia Pahang, Kuantan, 26300 Pahang, Malaysia - Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Tronoh, 31750 Perak Darul Ridzuan, Malaysia - § Department of Materials Science & Engineering, National University of Singapore, Singapore 117543, Singapore J. Phys. Chem. C, 2017, 121 (39), pp 21171-21183 DOI: 10.1021/acs.jpcc.7b06630 Publication Date (Web): September 15, 2017 Copyright © 2017 American Chemical Society *E-mail: rjose@ump.edu.my. ## Abstract A new pseudocapacitive combination, viz. CoO-MnO $_2$ -MnCo $_2$ O $_4$ hybrid nanowires (HNWs), is synthesized using a facile single-step hydrothermal process, and its properties are benchmarked with conventional battery-type flower-shaped MnCo $_2$ O $_4$ obtained by similar processing. The HNWs showed high electrical conductivity and specific capacitance (C_8) (1650 F g $^{-1}$ or 184 mA h g $^{-1}$ at 1 A g $^{-1}$) with high capacity retention, whereas MnCo $_2$ O $_4$ nanoflower electrode showed only one-third conductivity and one-half of its capacitance (872 F g $^{-1}$ or 96 mA h g $^{-1}$ at 1 A g $^{-1}$) when used as a supercapacitor electrode in 6 M KOH electrolyte. The structure–property relationship of the materials is deeply investigated and reported herein. Using the HNWs as a pseudocapacitive electrode and commercial activated carbon as a supercapacitive electrode we achieved battery-like specific energy (E_8) and supercapacitor-like specific power (P_8) in aqueous alkaline asymmetric supercapacitors (ASCs). The HNWs ASCs have shown high E_8 (90 Wh kg $^{-1}$) (volumetric energy density $E_V \approx 0.52$ Wh cm $^{-3}$) with P_8 up to $\sim 10^4$ W kg $^{-1}$ (volumetric power density $P_V \approx 5$ W cm $^{-3}$) in 6 M KOH electrolyte, allowing the device to store an order of magnitude more energy than conventional supercapacitors.