NOVEL LUBRICANT COMPRESSOR FOR AUTOMOTIVE AIR CONDITIONING SYSTEM

PROJECT LEADER: DR. WAN AZMI WAN HAMZAH FACULTY: FACULTY OF MECHANICAL ENGINEERING EMAIL: wanazmi@ump.edu.my TEAM: PROF. DR. R. MAMAT, A. A. M. REDHWAN, M. Z. SHARIF, DR. M. M. NOOR

Background

- Outside Temperature increase Global warming, El-Nino, etc. ٠
- Cooling capacity reduce Compressor work increase ٠
- Automotive Air Conditioning (AAC) increase fuel Consumption up to 20% ٠ & Greenhouse gas NO_x (80%) & CO (70%)
- Current AAC system is been optimized but still could not cope with today's ٠ weather condition
- Nanotechnology provides the solution to improve \checkmark performance and energy efficiency

Publications

- [1] M.Z. Sharif, W.H. Azmi, A.A.M. Redhwan, R. Mamat. 2017. Performance analysis of SiO2/PAG nanolubricant in automotive air conditioning system. International Journal of Refrigeration. 75: 204-216 Q1 (IF = 2.241)
- [2] M.Z. Sharif, W.H. Azmi, T.M. Yusof, Rizalman Mamat and A.A.M Redhwan. 2017. Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system - A review. Renewable and Sustainable Energy Reviews. 69:415-428 Q1 (IF = 5.901)
- [3] M.Z. Sharif, W.H. Azmi, A.A.M. Redhwan, R. Mamat. 2016. Investigation of Thermal Conductivity and Viscosity of Al₂O₃/PAG Nanolubricant for Application in Automotive Air Conditioning System. International Journal of Refrigeration. 70: 93-102 Q1 (IF = 2.241)
- [4] A.A.M. Redhwan, W.H. Azmi, M.Z. Sharif and R. Mamat. 2016. Development of nanorefrigerants for various types of refrigerant based: A comprehensive review on performance. International Communication in Heat and Mass Transfer. 76: 285-293 Q1 (IF = 2.782)
- [5] A.A.M. Redhwan, M.Z. Sharif, W.H. Azmi, R. Mamat and Z.A.A. Majid. 2017. Comparative study of thermo-physical properties of SiO₂ and Al₂O₃ nanoparticles dispersed in PAG lubricant. Applied Thermal Engineering. 116: 823-832 Published Q1 (IF 3.043)

Novelty

Enhanced the Coefficient of Performance (COP)

Increased Energy Saving

Marketability

- Collaboration with Air conditioning industries
- Target market in Automotive Air Conditioning

Product

Benefits

- Coefficient of Performance (COP) enhancement achieved up to 47.2% • with average of 25.3%
- Energy saving increased up to 19.5% by implementing novel lubricant
- Save fuel Up to USD 480 / year.
- Reduction up to 916.5 kg in CO₂ emission
- Just invest USD 0.07 for nanoparticle

Analysis of fuel consumption for and product cost:

Fuel consumption & Co ₂ release/ Vehicle		
Average KM per Year *	40,000	km
Average Fuel (8.9 L/100 km) *	3,560	L
Fuel Consumption w/ AAC (+20%)	4,272	L
Fuel Cost per Year (USD 0.69/L)	2,456.40	USD
19.5% Reduction in Fuel	1,977.40	USD
Annual return per Year	479.00	USD
Co ₂ emissions per year *	4700	kg
Reduction of CO ₂	916.5	kg
Cost analysis for nanolubricant		
Cost for Al_2O_3 nanoparticle /0.1 kg	177.00	USD
Weight of AI_2O_3 use per sample	0.042	g
Cost for Al ₂ O ₃ use per sample	0.07	USD

*Natural Resources Canada (NRCan)

Industrial Partners

- Crotia Inova Special award Malaysia Technology Expo 2017 (MTE 2017)
- Gold Medal Malaysia Technology Expo 2017 (MTE 2017) •
- Best Invention in Fluid Citrex 2016
- Top 5 PIN 2016

