Comparison of process stability in methane generation from palm oil mill effluent using dairy manure as inoculum

Santhana Krishnan^a, Lakhveer Singh^b, Puranjan Mishra^a, Mohd Nasrullah^a, Mimi Sakinah^a, Sveta Thakur^a, Nurul Islam Siddigue^a, Zularisam Ab, Wahid^{a,*}

^a Faculty of Engineering Technology, Universiti Malaysia Pahang, Kuantan, Pahang, 26300, Malaysia

^b Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97333, USA

HIGHLIGHTS

- This study investigated methane production from dairy manure as inoculum.
- Addition of dairy manure improved both the start-up time and rate of biogas production.
- Biogas production was achieved at ambient temperature.

ARTICLE INFO ABSTRACT Article history: The potential of methane production in a continuously stirred tank reactor (CSTR) was Received 8 May 2017 investigated using dairy manure as inoculum at pH 6.8 and 37 °C temperature in this Received in revised form 10 August 2017 Metadata, citation and similar papers at core.ac.uk

CORE

Provided by UMP Institutional Repository allowed to run for 5 days (d) in batch condition at hydraulic retention time (HK1) 10 d. Keywords: The CSTR₂produced 0.85 L/d gas yield and 59% methane content compared to 0.39 L/d Biomass gas yield and 20% produced in CSTR₁, respectively. A better chemical oxygen demand Renewable energy (COD) reduction percentage of 48% was found in CSTR₂ compared to CSTR₁ with 33%. The Waste management investigation showed that dairy manure as inoculum has a marked influence on the startup period and the biogas production rate. © 2017 Elsevier B.V. All rights reserved.