

Contents lists available at ScienceDirect

International Communications in Heat and Mass Transfer

HEAT OF MASS
TRANSFER

journal homepage: www.elsevier.com/locate/ichmt

Numerical study of nanofluid heat transfer for different tube geometries – A comprehensive review on performance

H.W. Chiam^a, W.H. Azmi^{b,c,*}, N.M. Adam^a, M.K.A.M. Ariffin^a

- ^a Mechanical and Manufacturing Engineering Department, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- ^b Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia
- ^c Automotive Engineering Centre, Universiti Malaysia Pahang, 26600 Pekan, Pahang, Malaysia

ARTICLE INFO

Keywords:
Nanofluids
Heat transfer performance
Turbulent flow
Tube geometry
Single phase

ABSTRACT

The heat transfer performance of a system can be improved using a combination of passive methods, namely nanofluids and various types of tube geometries. These methods can help enhance the heat transfer coefficient and consequently reduce the weight of the system. In this paper, the effect of tube geometry and nanofluids towards the heat transfer performance in the numerical system is reviewed. The forced convective heat transfer performance, friction factor and wall shear stress are studied for nanofluid flow in different tube geometries. The thermo-physical properties such as density, specific heat, viscosity and thermal conductivity are reviewed for the determination of nanofluid heat transfer numerically. Various researchers had measured and modelled for the

