
 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8500

A BAT-INSPIRED STRATEGY FOR PAIRWISE TESTING

Yazan A. Alsariera, Mazlina A. Majid and Kamal Z. Zamli

Software Engineering Research Group, Faculty of Computer Systems & Software Engineering, Universiti Malaysia Pahang,

Gambang, Kuantan Pahang, Malaysia

E-Mail: kamalz@ump.edu.my

ABSTRACT

 Owing to exponential growth of software lines of codes (LOC)s, testing becomes painstakingly difficult activities.

Test engineers are often under pressure to test more and more LOCs yet within the same targeted deadline. For this reason,

efficient testing strategy is required. Pairwise testing is amongst the most common strategies for minimizing and sampling

of tests for testing consideration. Recently, there are growing interests for adapting optimization algorithms as the basis of

the newly developed strategies. Complementing the existing work, we propose a novel design and implementation of Bat-

inspired algorithm (BA) for pairwise strategy, called Bat-inspired pairwise testing strategy (BPTS). Based on the

benchmarking results, BPTS outperforms most existing strategies in terms of the generated test suite size. BPTS serves as

our research vehicle to investigate the effectiveness of Bat-inspired algorithm for pairwise test generation, which is going

to be helpful to reduce the time and cost of software testing by reducing the number of test cases.

Keywords: bat algorithm, meta-heuristics optimization algorithms, pairwise testing, combinatorial explosion problem.

INTRODUCTION

 Software testing can be viewed as the gatekeeper

of quality, that is, in term of minimizing the risk software

failure (Alsewari and Zamli 2012). Considering the need

to deal with ever increasing user requirements (and

exponential growth of software lines of codes (LOC)),

exhaustive testing is practically impossible. Recent studies

have suggested that the use of 2-way (or pairwise) testing

can be effective to systematically sample data for testing

consideration (Soh, Abdullah et al. , Kuhn, Wallace et al.

2004, Kuhn, Lei et al. 2008). Complementing existing

sampling strategies (such as equivalence partitioning,

boundary value analysis), pairwise testing focuses on the

bug due to 2-way interaction between two parameters

within a typical software of interest.

 Several strategies have been adopted for pairwise

testing in the past, including TConfig (Williams 2000),

Test Vector Generator (TVG) (Arshem 2009) Pairwise

Independent Combinatorial Testing (PICT) (Czerwonka

2006), Classification-Tree Editor eXtended Logics (CTE-

XL) (Lehmann and Wegener 2000), In Parameter Order

Generator (IPOG) (Lei, Kacker et al. 2007), Jenny (Pallas

2003), Particle Swarm Test Generator (PPSTG) (Ahmed

and Zamli 2011) and pairwise Harmony Search algorithm-

based strategy (PHSS) (Alsewari and Zamli 2012), Ant

Colony algorithm (ACA) (Shiba, Tsuchiya et al. 2004),

genetic algorithm (GA) (McCaffrey 2009, Huang, Cohen

et al. 2010, McCaffrey 2010), Simulated Annealing (SA)

(Cohen, Gibbons et al. 2003) and Harmony Search

(HS)(Alsewari and Zamli 2012)). While most strategies

give competitive results, recent benchmarks (as published

in (Alsewari and Zamli 2012) and (Ahmed and Zamli

2011)) demonstrate the use of optimization algorithms as

the backbone engine of the pairwise strategy prove to be

more superior in terms of the test suite size than that of the

computational based counterparts. For this reason, we

have opted to explore the use of optimization algorithms

further.

 The use of Bat Algorithm appears alluring given

that its use has not been sufficiently explored as the basis

of a pairwise strategy. Furthermore, the superiority of the

Bat Algorithm over existing counterparts is also

commendable. For instance, Khan and Sahai (Khan and

Sahai 2012) reported that the Bat Algorithm outperforms

Particle Swarm Optimization, and Genetic Algorithm for

training Artificial Neural Networks (ANNs) (Khan and

Sahai 2012) within e-Learning Context. In other work,

Yang (Yang 2010) also demonstrates that the Bat

Algorithm gives the best performance as compared to

PSO, GA, and Harmony Search against standard

benchmark functions. In fact, Yang proves that PSO and

Harmony Search can be considered as the generalization

of the Bat Algorithm.

 Given its potential, we propose a novel design

and implementation of Bat-inspired algorithm (BA) for

pairwise strategy, called Bat-inspired pairwise testing

strategy (BPTS). Based on the benchmarking results,

BPTS outperforms most existing strategies in terms of the

generated test suite size. BPTS serves as our research

vehicle to investigate the effectiveness of Bat-inspired

algorithm for pairwise test generation.

 The remainder of the paper is organized as

follows. Section two reviews the existing related work for

pairwise testing strategies. Section three outlines the Bat

algorithm and elaborates on our implementation. Section

four highlights the correctness of the implementation

along with the benchmarking experiments. Finally,

Section five provides our closing remarks along with our

plan for further work.

RELATED WORK

 In general, existing interaction strategies for

pairwise testing can be categorized into two categories,

that is, algebraic approaches or computational approaches

respectively (Lei, Kacker et al. 2007). Algebraic

approaches construct test sets using mathematical

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UMP Institutional Repository

https://core.ac.uk/display/159193133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.arpnjournals.com/
mailto:kamalz@ump.edu.my

 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8501

properties of covering arrays (Lei, Kacker et al. 2007). For

this reason, the computations involved in algebraic

approaches are lightweight. On the negative note, the

applicability of algebraic approaches is often restricted to

small configurations (Yan and Zhang 2006, Lei, Kacker et

al. 2007). Orthogonal arrays (OA) (Hedayat, Sloane et al.

1999, Hartman and Raskin 2004), MOA (Mandl 1985) and

TConfig (Williams 2002) are a typical example of the

strategies that are based on algebraic approach.

 Test Vector Generator (TVG) (Arshem 2009)

implements a public domain strategy supporting pairwise

testing. Our experience exploring TVG indicates that the

pairwise generation can be summoned based on three

algorithms, namely, T-reduced algorithm, Plus-one

algorithm, and Random sets algorithm respectively.

Although useful, not much information can be implied as

the details implementation has not been made available in

the literature. Other pairwise strategy implementation that

is lacking as far as documentation is concerned includes

CTE_XL (Lehmann and Wegener 2000). Unlike, Jenny is

another public domain strategy (Pallas 2003). In the

nutshell, Jenny generates the pairwise test in stages.

Firstly, Jenny generates test data to cover all the 1-way

interaction. Then, Jenny will extend the first stage test data

to greedily cover the 2-way interactions. Optionally, this

process can continue until the nth-way interactions as

specified by the user. Similarly, Pairwise Independent

Combinatorial Testing (PICT) (Czerwonka 2006, Ahmed

and Zamli 2011) is the public domain strategy

implementation developed by Microsoft. Adopting

random selection for completing the uncovered pair

interaction, PICT often offers non-optimal results.

In Parameter Order (IPO) (Lei and Tai 1998)

builds a pairwise test suite using horizontal and vertical

extensions. Ideally, IPO works as follows. Firstly, IPO

builds the pairwise tests for the first parameter. Then, IPO

strategy extends the test set to cover the first three

parameters, and continues to extend the test set no further

horizontal extension is possible. If there are still uncovered

pairs, the IPO will then proceed to its vertical extension

essentially filling in the missing coverage. Recently, a

number of IPO variants have developed by researchers

(i.e., IPOG (Lei, Kacker et al. 2007), MIPOG, MC-

MIPOG (Younis, Zamli et al. 2008, Younis and Zamli

2010, Younis and Zamli 2011) and IPOG-D (Lei, Kacker

et al. 2008)).

Lastly, PPSTG (Ahmed and Zamli 2011) and

PHSS (Alsewari and Zamli 2012) are two of the most

recent pairwise strategies that are based on optimization

algorithms. The former (i.e. PPSTG), a Particle Swarm

based Optimization algorithm, iteratively performs local

and global searches to find the candidate solution to be

added to the final suite until all the pairwise interactions

are covered. The latter (i.e. PHSS) is a strategy based on

Harmony Search Algorithm. Like PPSTG, PHSS adopts

both global and local search. Unlike PPSTG, PHSS adopts

two probability values (i.e. the considering rate and pitch

adjustment rate). Here, global search is iteratively

performed by randomizing values in the Harmony memory

whereby the local best value can be selected given a

considering rate probability. Here, local best value can be

considered for improvements for further improvements in

the local search (i.e. with pitch adjustment probability).

Upon completing each iteration, the best value will be

added to the final test suite until all pairwise interactions

are covered.

BAT-INSPIRED PAIRWISE TESTING STRATEGY

(BPTS)

Bat-inspired algorithm (BA)

 In a nutshell, BA is a population optimization

algorithm founded on the hunting behavior of Microbats

by using echolocation. Typically, every pulse lasts for a

few milliseconds (i.e., 8-10ms) with a frequency of 25–
150 kHz on consistent wavelengths of 2–14 mm. The

algorithm has been built on the assumption that the bat is

able to find its prey in complete darkness. The bat position

represents a possible solution of the problem. The best

position of a bat to its prey indicates the quality of the

solution. Here, obstacles are avoided using echolocation.

In such a case, different frequencies are returned.

Generally, the BA has three main assumptions:

Assumption 1: All bats are using echolocation to

intelligently calculate distance. They know the difference

between food/prey and the surrounding environment

background in a magical way.

Assumption 2: Bats are flying randomly using velocity vi

at position xi. They automatically adjust emitted pulses

echolocation frequency.

Assumption 3: Although the loudness could be different

in several ways, Here, it is assumed that the loudness

change from a large (positive) A0 to a minimum value

Amin.

Figure-1. Pseudo code of the BA according to (Yang

2010).

http://www.arpnjournals.com/

 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8502

The complete step of BA is shown in the pseudo

code in Figure 1. Briefly, for every bat i a position xi and

velocity vi in a D- dimensional search space that is

randomly initialized. After the initialization for the first set

of position xi and velocity vi the fitness is calculated for

each solution. Those solutions are being updated and

improved by each iterative using the equations 1-3 shown

in Figure-1 until the best fitness for the problem is found.

The implementation of bat-inspired pairwise testing

strategy (BPTS)

We have developed our strategy in the Java

programming language. BA attributes have been

initialized in sequence. We also introduce population lists

to represent the interaction elements in our

implementation. The class structure of our implementation

can be seen in Figure-2.

Building from the aforementioned class

implementation, our BPTS strategy consists of two main

processes; generating process and bat-inspired based

searching process respectively. As for generating process,

BPTS initializes pairing criteria by matching all the

possible combination binary value with the pair interaction

elements.

Figure-2. Class diagram for java BA implementation.

The searching process starts with the initialization

of the bat population. BPTS then iterates each individual

bat in search for the best fitness values. At each iteration,

the test case stored in each individual bat is updated based

on the updated individual frequency, velocity, and

displacement (see the equations 1-3 on Figure-1). Upon

completing the maximum iteration, the best bat (i.e.

covering maximum uncovered tests) will be selected and

be added to the final test list. Then, all the covered

interaction elements are removed from the interaction

elements list. Finally, the results and visualization for the

final test suite is processed for auxiliary intentions (i.e. to

view the result and make them readable). The pseudo

code of the bat-inspired pairwise testing strategy (BPTS)

can be seen in Figure-3.

Figure-3. The pseudo code of the BPTS.

http://www.arpnjournals.com/

 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8503

EXPERIMENTAL RESULTS

 Our experimental results consist of two parts. For

the first part, the goal is to verify the correctness of our

Bat algorithm implementation. For the second part, the

goal is to benchmark against competing pairwise strategies

as well as to investigate the effect of incremental changes

of V and P values to BPTS.

 As far as verifying the correctness of our

implementation is concerned, we run the optimization tests

for 6 selected benchmarking functions (Jamil and Yang

2013) and recorded the results. Here, we use the two

diminutions for all functions and obtain the best and worst

solution for each function. We also calculate the mean and

standard deviation for the 20 runs result (for statistical

significance).

Function-1. The Rastrigin’s function

 (4)

Subject to [-5.12 ≤ xi ≤ 5.12].
It has global minimum f(x*) = 0 at x* = (0, ..., 0).

Function-2. The Egg Crate benchmarking function.

 (5)

Subject to [-5 ≤ xi ≤ 5].
It has global minimum f(x*) = 0 at x* = (0, 0).

Function-3. The frist Bohachevsky benchmarking

function.

 (6)

Subject to [-100 ≤ xi ≤ 100].
It has global minimum f(x*) = 0 at x* = (0, 0).

Function-4. The Booth benchmarking function

 (7)

Subject to [-10 ≤ xi ≤ 10].
It has global minimum f(x*) = 0 at x* = (1, 3).

Function-5. The Himmelblau benchmarking

function.

 (8)

Subject to [-5 ≤ xi ≤ 5].
It has a global minimum f(x*) = 0 at x* = (3, 2).

Function-6. The Parsopoulos benchmarking function

 (9)

Subject to [-5 ≤ xi ≤ 5].
It has 12 global minimum f(x*) = 0 at x*  R

2
.

 Tables-1 until 3 demonstrates our results for all

the experiments.

 Concerning benchmarking of BPTS, we run two

comparative experiments taken from (Ahmed and Zamli

2011) and (Alsewari and Zamli 2012). In the first

experiment, we have used a system configuration with 10

V-valued parameters, where V is varied from 3 to 10. In

the second experiment, we have used a system

configuration with P 2-valued parameters, where P is

varied from 3 to 15 (see Table-3).

 For both parts of our experimental results, we use

the following configuration; Intel® Core™ i7-3770

(3.40GHz, 3MB L3, 256KB L2, 32KB L1 cache) with

4GB of RAM on Windows 7 professional Operating

System with Java SE version 8. The result of time

performance is shown (in milliseconds).

 The Bat algorithm takes the following attributes

(or parameter) values. The population size nBats = 50,

number of generations = 100, loudness = 0.9, rate of pulse

emission Q = 0.7 with a frequency range of [0, 1] and

tolerance = 0.001.

 Regarding the first part, Table-1 demonstrates

that our implementation of the Bat algorithm according to

the pseudocode provided by Yang (Yang 2010). BA gives

accurate results. In fact, we have done this experiment

using the 6 benchmarking functions (Jamil and Yang

2013) to verify the correctness of our implementation. The

result shows a very good solution quality compared to the

actual minimum value.

 As for the second part, Table-2 and 3 highlights

the overall performance of BPTS against existing

strategies. For both tables, the cell with an asterisk (*)

depicts the optimal test suite size achieved by each

strategy.

 Referring to Table-2, BPTS’s performance
appears to be significantly better by gradual changes in V.

With the exception of 10 9-valued parameters and 10 9-

valued parameters where PHSS offers the best result. In

the case of 10 [4 and 7]-valued parameters BPTS gives

similar results as the overall best results offered by PHSS.

BPTS outperforms all existing strategies with 10 3-valued

parameters, 10 5-valued parameters, 10 6-valued

parameters and 10 8-valued parameters. BPTS offers the

best overall results, Moreover, BPTS shows a high

reduction in the case of 10 8-valued parameters where it

outperform Jenny with redaction of two test cases. BPTS

outperforms all existing strategies in most cases

considered.

 Considering Table-3, we observe that BPTS gives

the best overall result. At a glance, BPTS matches with the

best results in most cases except in three instances (4 2-

valued parameters, 6 2-valued parameters, and 8 2-valued

parameters respectively). A closer look reveals that BPTS

outperforms all existing strategies in the cases of high P

from 12 onwards (i.e. where P is the number of

parameters) suggesting its superiority for the high number

of parameters.

http://www.arpnjournals.com/

 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8504

Table-1. Result of BA for six functions.

Table-2. Test suite size for a configuration with 10 paramters V-value, values are varied from 3 to 10.

Table-3. Test suite size for a configuration with P-parameters 2-values, parameters are varied from 3 to 15.

CONCLUSIONS

Bat algorithm is a new meta-heuristics intelligence

optimization algorithm. Despite that, BA has shown lately

very good result in various types of research, which is the

main reason to use it in our research. In this research work,

we have proposed a novel strategy called BPTS, based on

the Bat algorithm. Our experimental results are

encouraging, especially at the prospect of supporting a

high number of parameters. As the scope for future work,

we are also working to support the constraints interaction

in order to support the testing of software product lines.

ACKNOWLEDGEMENTS

 This research is funded by MOSTI eScience fund

for the project titled: Constraints T-Way Testing Strategy

with Modified Condition/Decision Coverage from the

Ministry of Science, Technology, and Innovation,

Malaysia. We thank MOSTI for the contribution and

support.

REFERENCES

[1] Ahmed B. S. and Zamli K. Z. 2011. The development

of a particle swarm based optimization strategy for

pairwise testing. Journal of Artificial Intelligence,

Vol. 4, No. 2, pp. 156-165.

[2] Ahmed B. S. and Zamli K. Z. 2011. A variable

strength interaction test suites generation strategy

using Particle Swarm Optimization. Journal of

Systems and Software, Vol. 84, No. 12, pp. 2171-

2185.

[3] Alsewari A. R. A. and Zamli K. Z. 2012. Design and

implementation of a harmony-search-based variable-

strength t way testing strategy with constraints

support. Information and Software Technology, Vol.

54, No. 6, pp. 553-568.

http://www.arpnjournals.com/

 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8505

[4] Alsewari A. R. A. and Zamli K. Z. 2012. A harmony

search based pairwise sampling strategy for

combinatorial testing. International Journal of the

Physical Sciences Vol. 7, No. 7, pp. 1062--1072.

[5] Arshem J. 2009. TVG.

[6] Cohen M. B., Gibbons P. B., Mugridge W. B. and

Colbourn C. J. 2003. Constructing test suites for

interaction testing. 2003. Proceedings. 25
th

International Conference on Software Engineering.

[7] Czerwonka J. 2006. Pairwise testing in the real world,

pp. Practical extensions to test-case scenarios.

Proceedings of 24
th

 Pacific Northwest Software

Quality Conference, Citeseer.

[8] Hartman A. and Raskin L. 2004. Problems and

Algorithms for Covering Arrays. Discrete

Mathematics, Vol. 284, No. 1-3, pp. 149--156.

[9] Hedayat A. S., Sloane N. J. A. and Stufken J. 1999.

Orthogonal Arrays: Theory and Applications. New

York, Springer Verlag.

[10] Huang S., M. Cohen B. and Memon A. M. 2010.

Repairing GUI test suites using a genetic algorithm.

2010 Proceedings of the Third International

Conference on Software Testing, Verification and

Validation (ICST.

[11] Jamil M. and Yang X. S. 2013. A literature survey of

benchmark functions for global optimisation

problems. International Journal of Mathematical

Modelling and Numerical Optimisation, Vol. 4, No. 2,

pp. 150--194.

[12] Khan K. and Sahai A. 2012. A comparison of BA,

GA, PSO, BP and LM for training feed forward

neural networks in e-learning context. International

Journal of Intelligent Systems and Applications

(IJISA) Vol. 4, No. 7, pp. 23.

[13] Kuhn D. R., Wallace D. R. and Gallo A. M. Jr. 2004.

Software fault interactions and implications for

software testing. IEEE Transactions on Software

Engineering, IEEE Vol. 30, No. 6, pp. 418--421.

[14] Kuhn, R., Lei, Y. and Kacker, R. (2008). Practical

combinatorial testing: Beyond pairwise. IT

Professional 10(3), pp. 19--23.

[15] Lehmann E. and Wegener J. 2000. Test case design

by means of the CTE XL. Proceedings of the 8
th

European International Conference on Software

Testing, Analysis & Review (EuroSTAR 2000),

Kopenhagen, Denmark.

[16] Lei Y., Kacker R., Kuhn D. R., Okun V. and

Lawrence J. 2007. IPOG: A general strategy for t-way

software testing. 2007 Proceedings of the 14
th

 Annual

IEEE International Conference and Workshops on the

Engineering of Computer-Based System. (ECBS'07).

[17] Lei Y., Kacker R., Kuhn D. R., Okun V. and

Lawrence J. 2007. IPOG: A general strategy for t-way

software testing. Proceedings of the 14
th

 Annual IEEE

International Conference and Workshops on the

Engineering of Computer-Based Systems, Tucson,

AZ U.S.A, IEEE Computer Society.

[18] Lei Y., Kacker R., Kuhn D. R., Okun V. and

Lawrence J. 2008. IPOG/IPOG‐D: efficient test

generation for multi‐way combinatorial testing.

Software Testing, Verification and Reliability, Vol.

18, No. 3, pp. 125--148.

[19] Lei Y. and Tai K.-C. 1998. In-parameter-order: A test

generation strategy for pairwise testing. 1998

Proceedings of the Third IEEE International High-

Assurance Systems Engineering Symposium, IEEE.

[20] Mandl R. 1985. Orthogonal latin squares: An

application of experiment design to compiler testing.

Communications of the ACM, Vol. 28, No. 10, pp.

1054--1058.

[21] McCaffrey J. D. 2009. Generation of pairwise test sets

using a genetic algorithm. 2009 Proceedings of the

33
rd

 Annual IEEE International of Computer Software

and Applications Conference (COMPSAC'09).

[22] McCaffrey J. D. 2010. An empirical study of pairwise

test set generation using a genetic algorithm. 2010 the

Seventh International Conference on Information

Technology New Generations (ITNG),

[23] Pallas. 2003. Jenny.

[24] Shiba T., Tsuchiya T. and Kikuno T. 2004. Using

artificial life techniques to generate test cases for

combinatorial testing. Proceedings of the 28
th

 Annual

International, Computer Software and Applications

Conference (COMPSAC 2004).

[25] Soh Z. H. C., Abdullah S. A. C., Younis M. I. and

Zamli K. Z. A. parallelization strategy of test suite

generation for pairwise testing using tspaces.

[26] Williams A. W. 2000. Determination of test

configurations for pair-wise interaction coverage.

Testing of Communicating Systems, Springer, pp. 59-

-74.

[27] Williams A. W. 2002. TConfig.

http://www.site.uottawa.ca/~awilliam.

http://www.arpnjournals.com/

 VOL. 10, NO. 18, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8506

[28] Yan J. and Zhang J. 2006. Backtracking algorithms

and search heuristics to generate test suites for

combinatorial testing. 2006 Proceeding of the 30
th

Annual International Computer Software and

Applications Conference, IEEE Computer Society.

[29] Yang X. 2010. A new metaheuristic bat-inspired

algorithm. Nature inspired cooperative strategies for

optimization (NICSO 2010), Springer, pp. 65--74.

[30] Younis M. I. and Zamli K. Z. 2010. MC-MIPOG: A

parallel t-way test generation strategy for multicore

systems. ETRI journal, Vol. 32, No. 1.

[31] Younis M. I. and Zamli K. Z. 2011. MIPOG-An

efficient t-way minimization strategy for

combinatorial testing. International Journal of

Computer Theory and Engineering, Vol. 3, No. 3, pp.

388--397.

[32] Younis M. I., Zamli K. Z. and Isa N. M. 2008.

MIPOG-Modification of the ipog strategy for t-way

software testing. 2011 Proceeding of The Distributed

Frameworks and Applications (DFmA), Penang,

Malaysia.

http://www.arpnjournals.com/

