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ABSTRACT 

 Owing to exponential growth of software lines of codes (LOC)s, testing becomes painstakingly difficult activities. 

Test engineers are often under pressure to test more and more LOCs yet within the same targeted deadline. For this reason, 

efficient testing strategy is required. Pairwise testing is amongst the most common strategies for minimizing and sampling 

of tests for testing consideration. Recently, there are growing interests for adapting optimization algorithms as the basis of 

the newly developed strategies. Complementing the existing work, we propose a novel design and implementation of Bat-

inspired algorithm (BA) for pairwise strategy, called Bat-inspired pairwise testing strategy (BPTS). Based on the 

benchmarking results, BPTS outperforms most existing strategies in terms of the generated test suite size. BPTS serves as 

our research vehicle to investigate the effectiveness of Bat-inspired algorithm for pairwise test generation, which is going 

to be helpful to reduce the time and cost of software testing by reducing the number of test cases. 

 
Keywords: bat algorithm, meta-heuristics optimization algorithms, pairwise testing, combinatorial explosion problem. 

 

INTRODUCTION 

 Software testing can be viewed as the gatekeeper 

of quality, that is, in term of minimizing the risk software 

failure (Alsewari and Zamli 2012). Considering the need 

to deal with ever increasing user requirements (and 

exponential growth of software lines of codes (LOC)), 

exhaustive testing is practically impossible. Recent studies 

have suggested that the use of 2-way (or pairwise) testing 

can be effective to systematically sample data for testing 

consideration (Soh, Abdullah et al. , Kuhn, Wallace et al. 

2004, Kuhn, Lei et al. 2008).  Complementing existing 

sampling strategies (such as equivalence partitioning, 

boundary value analysis), pairwise testing focuses on the 

bug due to 2-way interaction between two parameters 

within a typical software of interest. 

 Several strategies have been adopted for pairwise 

testing in the past, including TConfig (Williams 2000), 

Test Vector Generator (TVG) (Arshem 2009) Pairwise 

Independent Combinatorial Testing (PICT) (Czerwonka 

2006), Classification-Tree Editor eXtended Logics (CTE-

XL) (Lehmann and Wegener 2000), In Parameter Order 

Generator (IPOG) (Lei, Kacker et al. 2007), Jenny (Pallas 

2003), Particle Swarm Test Generator (PPSTG) (Ahmed 

and Zamli 2011) and pairwise Harmony Search algorithm-

based strategy (PHSS) (Alsewari and Zamli 2012), Ant 

Colony algorithm (ACA) (Shiba, Tsuchiya et al. 2004), 

genetic algorithm (GA) (McCaffrey 2009, Huang, Cohen 

et al. 2010, McCaffrey 2010), Simulated Annealing (SA) 

(Cohen, Gibbons et al. 2003) and Harmony Search 

(HS)(Alsewari and Zamli 2012)). While most strategies 

give competitive results, recent benchmarks (as published 

in (Alsewari and Zamli 2012)  and (Ahmed and Zamli 

2011)) demonstrate the use of optimization algorithms as 

the backbone engine of the pairwise strategy prove to be 

more superior in terms of the test suite size than that of the 

computational based counterparts. For this reason, we 

have opted to explore the use of optimization algorithms 

further. 

 The use of Bat Algorithm appears alluring given 

that its use has not been sufficiently explored as the basis 

of a pairwise strategy.  Furthermore, the superiority of the 

Bat Algorithm over existing counterparts is also 

commendable.  For instance, Khan and Sahai (Khan and 

Sahai 2012) reported that the Bat Algorithm outperforms 

Particle Swarm Optimization, and Genetic Algorithm for 

training Artificial Neural Networks (ANNs) (Khan and 

Sahai 2012) within e-Learning Context. In other work, 

Yang (Yang 2010) also demonstrates that the Bat 

Algorithm gives the best performance as compared to 

PSO, GA, and Harmony Search against standard 

benchmark functions. In fact, Yang proves that PSO and 

Harmony Search can be considered as the generalization 

of the Bat Algorithm. 

 Given its potential, we propose a novel design 

and implementation of Bat-inspired algorithm (BA) for 

pairwise strategy, called Bat-inspired pairwise testing 

strategy (BPTS). Based on the benchmarking results, 

BPTS outperforms most existing strategies in terms of the 

generated test suite size. BPTS serves as our research 

vehicle to investigate the effectiveness of Bat-inspired 

algorithm for pairwise test generation. 

 The remainder of the paper is organized as 

follows. Section two reviews the existing related work for 

pairwise testing strategies. Section three outlines the Bat 

algorithm and elaborates on our implementation. Section 

four highlights the correctness of the implementation 

along with the benchmarking experiments. Finally, 

Section five provides our closing remarks along with our 

plan for further work. 

 

RELATED WORK 

 In general, existing interaction strategies for 

pairwise testing can be categorized into two categories, 

that is, algebraic approaches or computational approaches 

respectively (Lei, Kacker et al. 2007). Algebraic 

approaches construct test sets using mathematical 
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properties of covering arrays (Lei, Kacker et al. 2007). For 

this reason, the computations involved in algebraic 

approaches are lightweight. On the negative note, the 

applicability of algebraic approaches is often restricted to 

small configurations (Yan and Zhang 2006, Lei, Kacker et 

al. 2007). Orthogonal arrays (OA) (Hedayat, Sloane et al. 

1999, Hartman and Raskin 2004), MOA (Mandl 1985) and 

TConfig (Williams 2002) are a typical example of the 

strategies that are based on algebraic approach.  

 Test Vector Generator (TVG) (Arshem 2009) 

implements a public domain strategy supporting pairwise 

testing. Our experience exploring TVG indicates that the 

pairwise generation can be summoned based on three 

algorithms, namely, T-reduced algorithm, Plus-one 

algorithm, and Random sets algorithm respectively. 

Although useful, not much information can be implied as 

the details implementation has not been made available in 

the literature. Other pairwise strategy implementation that 

is lacking as far as documentation is concerned includes 

CTE_XL (Lehmann and Wegener 2000). Unlike, Jenny is 

another public domain strategy (Pallas 2003). In the 

nutshell, Jenny generates the pairwise test in stages. 

Firstly, Jenny generates test data to cover all the 1-way 

interaction. Then, Jenny will extend the first stage test data 

to greedily cover the 2-way interactions. Optionally, this 

process can continue until the nth-way interactions as 

specified by the user. Similarly, Pairwise Independent 

Combinatorial Testing (PICT) (Czerwonka 2006, Ahmed 

and Zamli 2011) is the public domain strategy 

implementation developed by Microsoft. Adopting 

random selection for completing the uncovered pair 

interaction, PICT often offers non-optimal results. 

In Parameter Order (IPO) (Lei and Tai 1998) 

builds a pairwise test suite using horizontal and vertical 

extensions. Ideally, IPO works as follows. Firstly, IPO 

builds the pairwise tests for the first parameter. Then, IPO 

strategy extends the test set to cover the first three 

parameters, and continues to extend the test set no further 

horizontal extension is possible. If there are still uncovered 

pairs, the IPO will then proceed to its vertical extension 

essentially filling in the missing coverage. Recently, a 

number of IPO variants have developed by researchers 

(i.e., IPOG (Lei, Kacker et al. 2007), MIPOG, MC-

MIPOG (Younis, Zamli et al. 2008, Younis and Zamli 

2010, Younis and Zamli 2011) and IPOG-D (Lei, Kacker 

et al. 2008)).  

Lastly, PPSTG (Ahmed and Zamli 2011) and 

PHSS (Alsewari and Zamli 2012) are two of the most 

recent pairwise strategies that are based on optimization 

algorithms. The former (i.e. PPSTG), a Particle Swarm 

based Optimization algorithm, iteratively performs local 

and global searches to find the candidate solution to be 

added to the final suite until all the pairwise interactions 

are covered. The latter (i.e. PHSS) is a strategy based on 

Harmony Search Algorithm.  Like PPSTG, PHSS adopts 

both global and local search. Unlike PPSTG, PHSS adopts 

two probability values (i.e. the considering rate and pitch 

adjustment rate). Here, global search is iteratively 

performed by randomizing values in the Harmony memory 

whereby the local best value can be selected given a 

considering rate probability. Here, local best value can be 

considered for improvements for further improvements in 

the local search (i.e. with pitch adjustment probability). 

Upon completing each iteration, the best value will be 

added to the final test suite until all pairwise interactions 

are covered.   

 

BAT-INSPIRED PAIRWISE TESTING STRATEGY 

(BPTS) 
 

Bat-inspired algorithm (BA) 

 In a nutshell, BA is a population optimization 

algorithm founded on the hunting behavior of Microbats 

by using echolocation. Typically, every pulse lasts for a 

few milliseconds (i.e., 8-10ms) with a frequency of 25–
150 kHz on consistent wavelengths of 2–14 mm. The 

algorithm has been built on the assumption that the bat is 

able to find its prey in complete darkness. The bat position 

represents a possible solution of the problem. The best 

position of a bat to its prey indicates the quality of the 

solution. Here, obstacles are avoided using echolocation. 

In such a case, different frequencies are returned. 

Generally, the BA has three main assumptions: 

Assumption 1: All bats are using echolocation to 

intelligently calculate distance. They know the difference 

between food/prey and the surrounding environment 

background in a magical way. 

Assumption 2: Bats are flying randomly using velocity vi 

at position xi. They automatically adjust emitted pulses 

echolocation frequency. 

Assumption 3: Although the loudness could be different 

in several ways, Here, it is assumed that the loudness 

change from a large (positive) A0 to a minimum value 

Amin. 
 

 
 

Figure-1. Pseudo code of the BA according to (Yang 

2010). 

 

http://www.arpnjournals.com/


                            VOL. 10, NO. 18, OCTOBER 2015                                                                                                               ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
8502 

The complete step of BA is shown in the pseudo 

code in Figure 1. Briefly, for every bat i a position xi and 

velocity vi in a D- dimensional search space that is 

randomly initialized. After the initialization for the first set 

of position xi and velocity vi the fitness is calculated for 

each solution. Those solutions are being updated and 

improved by each iterative using the equations 1-3 shown 

in Figure-1 until the best fitness for the problem is found. 

 

The implementation of bat-inspired pairwise testing 

strategy (BPTS) 

We have developed our strategy in the Java 

programming language. BA attributes have been 

initialized in sequence. We also introduce population lists 

to represent the interaction elements in our 

implementation. The class structure of our implementation 

can be seen in Figure-2.  

Building from the aforementioned class 

implementation, our BPTS strategy consists of two main 

processes; generating process and bat-inspired based 

searching process respectively. As for generating process, 

BPTS initializes pairing criteria by matching all the 

possible combination binary value with the pair interaction 

elements. 

 

 
 

 
 

Figure-2. Class diagram for java BA implementation. 

 

The searching process starts with the initialization 

of the bat population. BPTS then iterates each individual 

bat in search for the best fitness values. At each iteration, 

the test case stored in each individual bat is updated based 

on the updated individual frequency, velocity, and 

displacement (see the equations 1-3 on Figure-1). Upon 

completing the maximum iteration, the best bat (i.e. 

covering maximum uncovered tests) will be selected and 

be added to the final test list. Then, all the covered 

interaction elements are removed from the interaction 

elements list.   Finally, the results and visualization for the 

final test suite is processed for auxiliary intentions (i.e. to 

view the result and make them readable).   The pseudo 

code of the bat-inspired pairwise testing strategy (BPTS) 

can be seen in Figure-3. 

 

 
 

Figure-3. The pseudo code of the BPTS. 
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EXPERIMENTAL RESULTS 

 Our experimental results consist of two parts. For 

the first part, the goal is to verify the correctness of our 

Bat algorithm implementation. For the second part, the 

goal is to benchmark against competing pairwise strategies 

as well as to investigate the effect of incremental changes 

of V and P values to BPTS.  

 As far as verifying the correctness of our 

implementation is concerned, we run the optimization tests 

for 6 selected benchmarking functions (Jamil and Yang 

2013) and recorded the results. Here, we use the two 

diminutions for all functions and obtain the best and worst 

solution for each function. We also calculate the mean and 

standard deviation for the 20 runs result (for statistical 

significance). 

 

Function-1. The Rastrigin’s function 
 

     (4) 
 

Subject to [-5.12 ≤ xi ≤ 5.12].  
It has global minimum  f(x*) = 0 at x* = (0, ..., 0). 

 

Function-2. The Egg Crate benchmarking function. 
 

    (5) 

 

Subject to [-5 ≤ xi ≤ 5].  
It has global minimum f(x*) = 0 at x* = (0, 0). 

 

Function-3. The frist Bohachevsky benchmarking 

function. 
 

    (6) 
 

Subject to [-100 ≤ xi ≤ 100].  
It has global minimum f(x*) = 0 at x* = (0, 0). 

 

Function-4. The Booth benchmarking function 
 

    (7) 
 

Subject to [-10 ≤ xi ≤ 10].  
It has global minimum f(x*) = 0 at x* = (1, 3). 

 

Function-5. The Himmelblau benchmarking 

function. 
 

    (8) 
 

Subject to [-5 ≤ xi ≤ 5].  
It has a global minimum f(x*) = 0 at x* = (3, 2). 

 

Function-6. The Parsopoulos benchmarking function 
 

      (9) 
 

Subject to [-5 ≤ xi ≤ 5].  
It has 12 global minimum f(x*) = 0 at x*  R

2
. 

 

 Tables-1 until 3 demonstrates our results for all 

the experiments.  

 Concerning benchmarking of BPTS, we run two 

comparative experiments taken from (Ahmed and Zamli 

2011) and (Alsewari and Zamli 2012). In the first 

experiment, we have used a system configuration with 10 

V-valued parameters, where V is varied from 3 to 10. In 

the second experiment, we have used a system 

configuration with P 2-valued parameters, where P is 

varied from 3 to 15 (see Table-3).  

 For both parts of our experimental results, we use 

the following configuration; Intel® Core™ i7-3770 

(3.40GHz, 3MB L3, 256KB L2, 32KB L1 cache) with 

4GB of RAM on Windows 7 professional Operating 

System with Java SE version 8. The result of time 

performance is shown (in milliseconds). 

 The Bat algorithm takes the following attributes 

(or parameter) values. The population size nBats = 50, 

number of generations = 100, loudness = 0.9, rate of pulse 

emission Q = 0.7 with a frequency range of [0, 1] and 

tolerance = 0.001. 

 Regarding the first part, Table-1 demonstrates 

that our implementation of the Bat algorithm according to 

the pseudocode provided by Yang (Yang 2010). BA gives 

accurate results. In fact, we have done this experiment 

using the 6 benchmarking functions (Jamil and Yang 

2013) to verify the correctness of our implementation. The 

result shows a very good solution quality compared to the 

actual minimum value. 

 As for the second part, Table-2 and 3 highlights 

the overall performance of BPTS against existing 

strategies. For both tables, the cell with an asterisk (*) 

depicts the optimal test suite size achieved by each 

strategy. 

 Referring to Table-2, BPTS’s performance 
appears to be significantly better by gradual changes in V. 

With the exception of 10 9-valued parameters and 10 9-

valued parameters where PHSS offers the best result. In 

the case of 10 [4 and 7]-valued parameters BPTS gives 

similar results as the overall best results offered by PHSS. 

BPTS outperforms all existing strategies with 10 3-valued 

parameters, 10 5-valued parameters, 10 6-valued 

parameters and 10 8-valued parameters. BPTS offers the 

best overall results, Moreover, BPTS shows a high 

reduction in the case of 10 8-valued parameters where it 

outperform Jenny with redaction of two test cases. BPTS 

outperforms all existing strategies in most cases 

considered. 

 Considering Table-3, we observe that BPTS gives 

the best overall result. At a glance, BPTS matches with the 

best results in most cases except in three instances (4 2-

valued parameters, 6 2-valued parameters, and 8 2-valued 

parameters respectively). A closer look reveals that BPTS 

outperforms all existing strategies in the cases of high P 

from 12 onwards (i.e. where P is the number of 

parameters) suggesting its superiority for the high number 

of parameters. 
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Table-1. Result of BA for six functions. 
 

 
 

Table-2. Test suite size for a configuration with 10 paramters V-value, values are varied from 3 to 10. 
 

 
 

Table-3. Test suite size for a configuration with P-parameters 2-values, parameters are varied from 3 to 15. 
 

 
 

CONCLUSIONS 

Bat algorithm is a new meta-heuristics intelligence 

optimization algorithm. Despite that, BA has shown lately 

very good result in various types of research, which is the 

main reason to use it in our research. In this research work, 

we have proposed a novel strategy called BPTS, based on 

the Bat algorithm. Our experimental results are 

encouraging, especially at the prospect of supporting a 

high number of parameters. As the scope for future work, 

we are also working to support the constraints interaction 

in order to support the testing of software product lines. 
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