doi:10.4028/www.scientific.net/MSF.819.226 © 2015 Trans Tech Publications, Switzerland ## Nanocrystal TiO₂ engulfed SiO₂-Barium Hexaferrite for Enhanced Electrons Mobility and Solar Harvesting Potential Azrina Abd Aziz 1, a, Shaliza Ibrahim 2, b, Saravanan Pichiah 2, c ¹Faculty of Engineering Technology, Universiti Malaysia Pahang, 26300 Kuantan, Pahang. Malaysia. ²Department of Civil Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur. Malaysia. ^aazrina15@gmail.com, ^bshaliza@um.edu.my, ^cpichiahsaravanan@gmail.com **Keywords:** TiO₂; SiO₂-Barium hexaferrite; photocatalyst; electrons mobility; solar harvesting. Abstract. Barium hexaferrite embedded-silica-titania photocatalyst (TiO₂-SiO₂-BaFe₁₂O₁₉) was synthesized through sol-gel, liquid catalytic phase transformation and solid reaction routes. The magnetic photocatalyst was aimed to harvest the photoenergy from the sunlight, minimize the electron-holes recombination rate, improve the long lifetime charge-carriers transfer to maximize the photocatalytic activity and enhances the separation and reusability of it. The as-synthesized photocatalyst was characterized and the photocatalytic activity was evaluated for the reduction of 2, 4-dichlorophenol (2, 4-DCP) under direct sunlight. The presence of SiO₂ interlayer in TiO₂-SiO₂-BaFe₁₂O₁₉ prevents the phase transformation of magnetic core. TiO₂-SiO₂-BaFe₁₂O₁₉ benefits the magnetic separation with appreciable magnitude of coercivity (5035.6 Oe) and saturation magnetization (18.8256E⁻³ emu/g), respectively. The ferrite ions from the magnetic core which dispersed into TiO₂ matrix exhibited an evident shift of the absorption in the visible region. This was again confirmed with the reduced band gap energy of 1.90 eV. Furthermore, TiO₂-SiO₂-BaFe₁₂O₁₉ destructed 100% of 2, 4-DCP compound within 150 min under very bright sunlight with an average irradiance of 820.8 W/m² (results not shown). The embedding of BaFe₁₂O₁₉ with a SiO₂ layer onto TiO₂ nanocrystals contributed for an excellent solar-light utilization and ease magnetic separation of the nano-sized photocatalyst.