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Abstract 

 

This paper presents a preliminary study of a model-free 

approach based on spiral dynamic algorithm (SDA) 

formaximizing wind farms power production. The SDA based 

approach is utilized to find the optimal control parameter of 

each turbine to maximize the total power production of a wind 

farm. For simplicity, a single row wind farm model with 

turbulence interaction between turbines is used to validate the 

proposed approach. Simulation results demonstrate that the 

SDA based method produces higher total power production 

compared to the particle swarm optimization (PSO) and game 

theoretic (GT) based approaches. 
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Introduction 

     

Recently, existing wind turbine has a capability of adjusting 

its control variables, such as blade angle, yaw angle and 

generator torque, to maximize the power production. In the 

context of wind farm, the adjustment of those control variables 

not only affecting its own power production, but also can 

influence the power productions of the downstream turbines 

due to turbulence interactions among turbines. Moreover, the 

complexity of this turbulence interactions, which is difficult to 

model, make the problem of finding the optimal control 

variables is more challenging. Therefore, the study on 

improving the control algorithm of existing wind farms is 

interesting and it has attracted many control experts. 

Realizing that the turbulence interactions amongst turbines 

are complex and difficult to model, a model-free control 

approach has became an effective solution to maximize the 

power production of existing wind farms. So far, there exists 

various model-free control approaches to improve the energy 

production of wind farms. These includes game theoretic (GT) 

and cooperative control based [1]–[3], maximum power point 

tracking [4], [5], simultaneous perturbation stochastic 

approximation [6], multi-resolution simultaneous perturbation 

stochastic approximation [7], Bayesian ascent [8] and random 

search [9] based approaches. 

On the other hand, it is known that the spiral dynamic 

algorithm (SDA) [10] is a promising tool for maximizing 

power production of wind farm. It is because this algorithm is 

known to be effective for a variety of optimization problems, 

such as controller tuning [11], [12], system identification [13], 

and emission dispatch problems [14]. Moreover, the SDA 

algorithm, which makes use of the feature of logarithmic spirals, 

is well known for its simple and effective strategy, while retains 

the diversification and intensification at the early and later 

phases of the trajectory. 

This paper investigates the effectiveness of a spiral dynamic 

algorithm (SDA) as a model-free method and it is validated to a 

single row wind farm model. Then, the statistical analysis of the 

wind farm total power production is presented. Finally, a 

performance comparison between the SDA, particle swarm 

optimization (PSO) and the game theoretic (GT) [2] based 

approaches is shown. Since the SDA based method is in the 

class of population-based method, a suitable combination of 

the population size and maximum number of iterations is also 

investigated. 

The organization of this paper is described as follows. 

Section II explains the problem formulation. In Section III, the 

step-by-step procedure of the SDA based methods is discussed. 

The SDA based approach is validated to the single row wind 

farm model in Section IV. The comparative study between the 

SDA, PSO and the GT based methods are also discussed in the 

same section. Finally, Section V provides some concluding 

remarks. 

 

Problem Formulation 

 

We consider N wind turbines in a wind farm, where the 

position of each turbine can be located randomly. The control 

variable of turbine j is defined as )...,,2,1( Njq j  , which is a 

general form of the turbine controllers, such as pitch angle of 

the blade and speed of turbine rotor [15]. The power production 

of turbine j is denoted as )...,,2,1)(...,,,( 21 NjqqqL Nj  . The 

incoming wind speed with a time-varying speed and random 

direction is considered in this study. Therefore, we can say that 

the control variables except for turbine j, which are 

Njj qqqqq ...,,...,,, 1121 
, would also affect the turbine j power 

production 
jL  because of the turbulence interaction between 

turbines. Similarly, any variations of control variable 
jq  not 

only affect 
jL  but also 

Njj LLLLL ...,,...,,, 1121 
. Therefore, 

the total power production of turbine j highly depends on 
jq  

and weakly depends on other control variables 

Njj qqqqq ...,,...,,, 1121 
. Since the turbine dynamics and the 

turbulence interactions amongst turbines are very complex, it is 

difficult to obtain an accurate model of the wind farm, which 

accurately provides the relation between 
jL  and 

Nqqq ...,,, 21
. 
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However, we assume that the total power production of the 

wind farm is measurable and can be represented as: 
 





N
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NjN qqqLqqqL
1

2121 )...,,,()...,,,(  (1) 

 

Then, we describe the problem as: 

 

Problem 2.1. Let the wind farm total power production 

)...,,,( 21 NqqqL  is given in (1) and functions 

)...,,2,1( NjLj   are unknown. Then, find control variables 

)...,,2,1( Njq j   such that )...,,,( 21 NqqqL  is maximized. 

 

 

Model-Free Design Using Spiral Dynamic Algorithm 

 

This sections provides the main idea to solve Problem 2.1. 

Firstly, the SDA algorithm introduced by [10] is briefly 

explained. Next, model-free synthesize is shown by the control 

variables based on the SDA method.  

 

A. Spiral Dynamic Algorithm 

Let RR nf :  be the objective function and 

)...,,2,1( miθ n

i R  is the design variable for m number of 

agents. Then, a standard optimization problem is expressed by 
 

)(max
,...,, 21

i
θθθ

θf
m

 (2) 

 

for mi ...,,2,1 . The Spiral dynamic algorithm algorithm 

updates )...,,2,1( miθi   iteratively by performing an updated 

equation as follow 
 

*)),(()(),()1( θIrStθrStθ nnini   , (3) 

 

mi ...,,2,1 , for ...,1,0t . In (3), 
nI  is n by n identity 

matrix, ]1,0[r  is a convergence rate of distance between a 

current position and the origin at each t, ]2,0[    is a 

rotation angle around the origin at each t, *θ  is the best 

solution among all agents during a search, and ),( rSn  is 

given by 
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where )( ,

)(

, wl

n

wlR   is a rotation matrix. Please see [10] for the 

details of )( ,

)(

, wl

n

wlR  . Then, the step-by-step procedure of the 

SDA algorithm is given by: 

 

Step 1: Select the number of agents m, the rotation angle  , 

and the convergence rate of distance r. Set t = 0 . 

 

Step 2: Set the initial design variables n

iθ R)0( , 

mi ...,,2,1  randomly in a pre-specified region. Then, find 

)0(*

ci
θθ  , where ))0((maxarg i

i
c θfi  , mi ...,,2,1 . 

 

Step 3: Compute the updated equation in (3). 

 

Step 4: Find )1(*  tθθ
ci

, where ))1((maxarg  tθfi i
i

c
, 

mi ...,,2,1 . 

 

Step 5: Set 1 tt  and continue Step 3 if a pre-specified 

stopping criterion is not fulfilled. Otherwise, the algorithm 

stops with the optimal design variable *θ . 

 

In Step 5 of the algorithm, the stopping criterion is chosen 

from the maximum iterations, where the algorithm stops after a 

pre-determined number of iterations 
maxt . 

 

B. Model-Free Design 

Using the SDA algorithm in Section III-A, the model-free 

SDA based method for maximizing wind farm power 

production is explained:  

 

Step I: Select the maximum iterations number 
maxt . 

Step II: Perform the SDA algorithm in Section III-A by setting 

L = f and q as θ. 

Step III: After 
maxt  iterations, the algorithm stops with the 

optimal solution ** : θq   and the total power production L  is 

recorded. 

 

Simulation Results 

 

This section demonstrates the SDA based method for 

maximizing wind farm power production. A wind farm model, 

which replicates a real commercial wind farm, is considered to 

evaluate the proposed method. Firstly, the model of the wind 

farm proposed by [15] is described. Next, the SDA based 

approach is validated to the single row wind farm model. 

 

A. Numerical Model of Wind Farm 

Let N wind turbines in the wind farm is represented by the set 

n...,,2,1 , the incoming wind speed is denoted by 
V , the 

turbine rotor diameter is defined by 
jD , the rotor swept area of 

turbine k is represented by 
kA . The symbol   is a roughness 

parameter that describes the gradient of turbulence propagation 
ov

kjA 
 is defined as the overlap region between the upstream 

turbine j turbulence and turbine k rotor swept region. The 

expression ),( rz  is defined as a point in the turbulence of the 

turbine, where z is the distance to the turbine rotor disk plane 

and 
r  is the distance to the center of the turbine rotor axis. 

Then, the aggregate wind speed is represented as: 
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where 
jz  is the distance to  the turbine j rotor disk plane, while 

kz  is the distance to the turbine k rotor disk plane. Figure 1 

shows the illustration of turbulence interaction between the two 

turbines. For k , the wind speed 
kV  is calculated using the 

wind speed aggregation deficit produced by each upstream 

turbine. It is assumed that the turbulence expands 

proportionally to the distance z and its diameter has a circular 

cross-section. Moreover, the power of each turbine is given by: 
 

32)1(2 kkkkk VqqAL    (6) 

 

where   is the density of air. 

 

 
 

Fig.1 The illustration of turbulence expansion. 

 

B. Single Row Wind Farm Example 

This section demonstrates the performances of the SDA 

based method based on a simple ten-turbine row wind farm as 

shown in Figure 2. We use the model in Section IV-A for this 

single row wind farm. The wind farm consists of 10 turbines 

with 80 m diameter. The distance between each turbine is equal 

to seven turbine diameters, i.e., 560 m. The values of air density 

and the roughness parameter are 225.1  kg/m3 and 

04.0 , respectively. In this preliminary study, the 

performance of the SDA, is compared with the standard PSO 

algorithm in [16] and the game theoretic approach in [2] for the 

specific wind direction only. In particular, we select the case 

when wind direction is perpendicular to the rotational motion 

of turbine’s blade since a much larger turbulence effect is 

generated amongst turbines. 

Firstly, it is assumed that the incoming wind speed is constant 

at 8V  m/s. Next, the parameters of SDA based method is 

set as 97.0r  and 4/  , after several preliminary 

experiments are performed. The parameters of PSO based 

method [16] is set as 9.00 c , 1.01 c , and 5.02 c . 

Meanwhile, the game theoretic method with random step 

interval size KG = 0.03 and the probability of update the design 

variable E = 0.3 are considered. Please see [2], [16] for the 

details of GT and PSO algorithms. The initial control variable 

of each turbine, which is given by 3/1)0( iθ . In order to see 

the effect of random parameters in all methods, 100 

independent trials are executed for the SDA, PSO and GT 

based methods. 
 

 
Fig. 2 Single row wind farm layout. 

 

In this study, we set the number of evaluations is set as 10000 

for all methods in order to obtain a fair comparative study. In 

this sense, we set kmax = 10000 for GT based method, since it 

only requires one evaluation per iteration. Meanwhile, for SDA 

and PSO, we perform several preliminary study to find a 

suitable combination of the kmax and the m. Here, the optimal 

combination of kmax and m is selected for each method such that 

the mean, best, and worst of total power production are 

maximum and its standard deviation is minimum. Based on the 

analysis, kmax = 200 and m = 50 are chosen for both SDA and 

PSO based methods. Table I shows the statistical analysis of the 

total power production after 10000 number of evaluations. 

Notice that the SDA based approach produces higher best total 

power production (4.7648415723 MW) compared to PSO 

(4.7648414855 MW) and GT (4.7627457259 MW) based 

methods. We also can observe a similar pattern for the values of 

mean and worst of the total power production. Moreover, the 

SDA based approach yields slightly lower standard deviation 

value compared to PSO and GT based approaches. This result 

proves that the SDA based method is robust to the 

randomization effect and can achieve maximum total power 

production with high probability. In terms of the obtained 

optimal control variables, the best optimal control variables of 

the SDA based approach are obtained as turbine {1; 2; 3; 4; 5; 

6; 7; 8; 9; 10} = {0.2061; 0.1611; 0.1648; 0.1651; 0.1698; 

0.1173; 0.2258; 0.1877; 0.1837; 0.3333}. It can be seen that 

the optimal control variable value of the first turbine is higher 

than the intermediate turbines, while the value in the final 

turbine is remained as the initial control variable. This pattern 

is similar to recent investigation on wind farm control, e.g., [2], 

while producing better total power production. 

 

Conclusion 

 

In this paper, a preliminary study of a model-free method 

based on spiral dynamic algorithm (SDA) for wind farm 

control has been investigated. The proposed method is 

simulated on a single row wind farm layout. In the numerical 

example, the SDA based approach produces a better total 

power production than PSO and GT based methods with more 

consistent results. In this sense, it shows the potential of SDA 

based method for model-free approach of wind farm control. 
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TABLE I 

PERFORMANCES COMPARISON OF THE TOTAL POWER PRODUCTION (MW) OF THE SDA, PSO AND GT BASED 

METHODS 

        

Statistical analysis SDA PSO GT [2] 

Mean (MW) 4.7648415723 4.7648415625 4.7644075485 

Best (MW) 4.7648415723 4.7648415723 4.7648415242 

Worst (MW) 4.7648415723 4.7648414855 4.7627457259 

Standard deviation 1.1039824×10-7 0.0141665007 4.513106×102 


