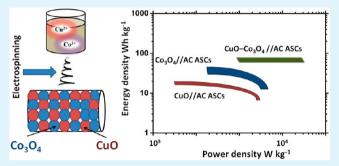
One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors

Midhun Harilal,[†] Baiju Vidyadharan,[†] Izan Izwan Misnon,[†] Gopinathan M. Anilkumar,[‡] Adrian Lowe,[§] Jamil Ismail,[†] Mashitah M. Yusoff,[†] and Rajan Jose^{*,†}

[†]Nanostructured Renewable Energy Materials Laboratory, Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Kuantan, Malaysia

[‡]R&D Center, Noritake Company Ltd., 300 Higashiyama, Miyoshi, Aichi 470-0293, Japan


[§]Research School of Engineering, Australian National University, Canberra 0200, Australia

Supporting Information

ACS APPLIED MATERIALS

INTERFACES

ABSTRACT: A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co₃O₄), is developed by electrospinning technique. The CuO-Co₃O₄ nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co₃O₄, and CuO-Co₃O₄ composite nanowires, and their properties are compared. A high energy density of ~44 Wh kg⁻¹ at a

Research Article

www.acsami.org

power density of 14 kW kg⁻¹ is achieved in CuO $-Co_3O_4$ ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.

KEYWORDS: renewable energy, hybrid capacitors, energy-storage materials, electrochemical charge storage, nanocomposites, electrodes, pseudocapacitors, electrochemical double-layer capacitors