
 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13084

CPU THREAD PRIORITIZATION USING A DYNAMIC QUANTUM TIME

ROUND-ROBIN ALGORITHM

Maysoon A. Mohammed
1, 2

, Mazlina Abdul Majid
1
, Balsam A. Mustafa

1
 and Rana Fareed Ghani

3

1Faculty of Computer System & Software Engineering, University Malaysia Pahang, Pahang, Malaysia
2Department of Mechanical Engineering, University of Technology, Baghdad, Iraq

3Department of Computer Sciences, University of Technology, Baghdad, Iraq

E-Mail: maysoon.ameir@gmail.com

ABSTRACT

In Round-Robin Scheduling, the time quantum is fixed and processes are scheduled such that no process uses

CPU time more than one time quantum in one go. If time quantum is too large, the response time of the processes will not

be tolerated in an interactive environment. If the time quantum is too small, unnecessary frequent context switch may

occur. Consequently, overheads result in fewer throughputs. In this study, we propose a priority Round-Robin algorithm

with dynamic quantum time (PDQT). The algorithm used the old fixed quantum time to generate new one for each process

depending on its priority. The simple Round-Robin algorithm has been improved by about 20%. By controlling quantum

time, we experience fewer context switches and shorter waiting and turnaround times, thereby obtaining higher throughput.

Keywords: round robin, dynamic quantum time, priority, and PDQT.

INTRODUCTION

Modern operating systems are moving towards

multitasking environments in which fast computer systems

perform multitasking (executing more than one process at

a time) and multiplexing (transmitting multiple flows

simultaneously). This mainly depends on the CPU

scheduling algorithm as the CPU is the essential part of

the computer. In computer science, scheduling is the act

by which processes are given access to system resources

(e.g., processor cycles, communications bandwidth). CPU

scheduling is an essential operating system task which

permits allocating the CPU to a specific process for a time

slice. In other words it determines which process runs

when there are multiple runnable processes. As

researchers (Kopetz 2011) previously pointed out that the

need for a scheduling algorithm arises from the

requirement for fast computer systems to perform

multitasking and multiplexing. CPU scheduling is

important because it affects resource utilization and other

performance parameters(Hasan). Several CPU scheduling

algorithms are available (Silberschatz, Galvin et al. 2013),

(Oyetunji and Oluleye 2009), such as First Come First

Serve (FCFS), Shortest Job First Scheduling (SJF),

Round-Robin (RR) Scheduling, and Priority Scheduling

(PS). However, due to disadvantages, these algorithms are

rarely used in shared time operating systems, except for

RR Scheduling (Cerqueira and Brandenburg 2013).

RR is considered the most widely used

scheduling algorithm in CPU scheduling (Silberschatz,

Galvin et al. 2013), (Yang, Schopf et al. 2003) also used

for flow passing scheduling through a network device

(Tong and Zhao 2007). An essential task in operating

systems in CPU Scheduling is the process of allocating a

specific process for a time slice. Scheduling requires

careful attention to ensure fairness and avoid process

starvation in the CPU. This allocation is carried out by

software known as a scheduler(Silberschatz, Galvin et al.

2013), (Yang, Schopf et al. 2003).

The scheduler is concerned mainly with the

following tasks (Chen and Liu 2013):

 CPU utilization - to keep the CPU as busy as possible

 Throughput - number of processes that complete their

execution per time unit

 Turnaround - total time between submission of a

process and its completion

 Waiting time - amount of time a process has been

waiting in the ready queue

 Response time - amount of time taken from the time a

request was submitted until the production of the first

response

 Fairness - equal CPU time allocated to each thread

Therefore, we can conclude that a good

scheduling algorithm for real time and time sharing system

must possess the following characteristics (Singh, Goyal et

al. 2010):

 Minimum context switches

 Maximum CPU utilization

 Maximum throughput

 Minimum turnaround time

 Minimum waiting time

Operating systems may feature up to three

distinct types of schedulers, which are long term, mid-term

or medium term, and short-term (Figure-1). The long-term

scheduler or job scheduler selects processes from the job

pool and loads them into the memory for execution. The

short-term scheduler or CPU scheduler selects from

among the processes that are ready for execution and

allocates a CPU to one of them. The medium term

scheduler removes processes from the memory and

reduces the degree of multiprogramming results in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UMP Institutional Repository

https://core.ac.uk/display/159191723?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:maysoon.ameir@gmail.com

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13085

scheme of swapping. Swapping is performed by the

scheduler, which is the module that allows the CPU to

control the process selected by the short-term

scheduler(Noon, Kalakech et al. 2011).

Figure-1. Queuing diagram for scheduling.

RELATED WORK

Many CPU scheduling algorithms have been

introduced in the past years to improve the performance of

the CPU. An algorithm for robust quantum time value

(Lavanya¹ and Saravanan 2013) orders processes

according to the smallest to the highest burst time. Then,

quantum time would be calculated by taking the average

of minimum and maximum burst times of the processes in

the ready queue. An Improved Round Robin Scheduling

using the feature of SJF in which the process in the ready

queue would be allocated with static quantum time in the

first cycle, and then the process would be selected by SJF

(Yadav, Mishra et al. 2010). Self-Adjustment Time

Quantum in RR Algorithm is an algorithm in accordance

to the burst time of the processes (Nayak, Malla et al.

2012). (Behera 2011) assigned a fare-share weight to each

process, such that the process with the minimum burst

time would have the maximum weight. Quantum time

would be calculated dynamically by using the weighted

time slice method. Thus, the processes would be executed.

An Improved RR (IRR) CPU Scheduling Algorithm was

presented by (Mishra 2012). In this algorithm, the CPU

time is allocated to the first process from the ready queue

for a time interval of up to one quantum time. After the

quantum time of the process is completed, the remaining

burst time of this process would be compared with

quantum time. If its burst time was less than one quantum

time, the CPU would again allocate the same process until

execution is completed and the task is removed from the

queue. This algorithm reduces waiting time in the ready

queue, and hence improves performance.

 (Abdulrahim, E Abdullahi et al. 2014) proposed

algorithm similar to IRR (Mishra 2012). The proposed

algorithm uses two queues, which are ARRIVE and

REQUEST. Compared with IRR, this algorithm indicated

performance improvement. (Noon, Kalakech et al. 2011)

presented a mechanism of dynamic quantum time, which

overcame the problem of fixed quantum time. Meanwhile,

an algorithm of feedback scheduling focused on lower

priority queue process (Bhunia 2011).

RRARCHITECTURE

RR architecture is a preemptive version of First

Come, First Serve scheduling algorithm. The tasks are

arranged in the ready queue in first come, first serve

manner and the processor executes the task from the ready

queue based on time slice. If the time slice ends and the

tasks are still executing on the processor, the scheduler

will forcibly preempt the executing task and keep it at the

end of ready queue. Then, the scheduler will allocate the

processor to the next task in the ready queue. The

preempted task will make its way to the beginning of the

ready list and will be executed by the processor from the

point of interruption.

A scheduler requires a time management function

to implement the RR architecture and requires a tick timer

(Goel and Garg 2013). The time slice is proportional to the

period of clock ticks (Chen and Liu 2013). The time slice

length is a critical issue in real time operating systems.

The time slice must not be too small, as it would result in

frequent context switches. Moreover, the time slice should

be slightly greater than the average task computation time.

RR pitfalls in real time systems

RR when implemented in real time operating

systems faces two drawbacks, which are high rate of

context switch and low throughput. These two problems of

RR architecture are interrelated (Lampard 2011).

 Context switch: When the time slice of the task ends

and the task is still executing in the processor, the

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13086

scheduler forcibly preempts the tasks on the

processor. The interrupted task is then stored in stacks

or registers, and the processor is allocated the next

task in the ready queue. This action performed by the

scheduler is called “context switch.” Context switch
leads to wastage of time, memory, and scheduler

overhead.

 Larger waiting and response times: In RR

architecture, the time the process spends in the ready

queue waiting for the processor for task execution is

known as “waiting time.” The time the process
completes its job and exits from the task-set is called

“turnaround time.” Larger waiting and response times
are clearly a drawback in RR architecture, as it leads

to degradation of system performance.

 Low throughput: Throughput refers to the number of

processes completed per time unit. If RR is

implemented in real time operating systems,

throughput will be low and results in severe

degradation of system performance. If the number of

context switches is low, then the throughput will be

high. Context switch and throughput are inversely

proportional to each other.

PROPOSED ALGORITHM

RR scheduling algorithm has no priority and

fixed quantum time. However, this scheduling algorithm is

not suitable for real time operating system (RTOS)

because of drawbacks. In other words, the high context

switch, high waiting and response times, and low

throughput are pitfalls of RR. These disadvantages do not

make the optimal choice for RTOS. Priority RR

scheduling still has the problem of starvation, where the

lowest priority thread with fixed quantum time will be

starved and preempted by the highest priority thread.

Hence, we propose an algorithm that depends on the

existing RR. The proposed algorithm is the Priority

Dynamic Quantum Time RR Scheduling Algorithm

(PDQT).

The basic idea of this algorithm considers

different priorities and different quantum times(Mohanty,

Behera et al. 2011).

The steps of PDQT:

a) Set priorities for the processes that enter the ready

queue.

b) Calculate new quantum time depending on the old one

by using a simple formula, which is q=k+n-1, where q

is the new quantum time, k is the old quantum time,

and n is the priority of the processes in the ready

queue.

c) Set different quantum times for the processes

depending on the priorities. The highest priority

process will get the largest quantum time, which is q,

and the lowest priority process will get the smallest

quantum time, which is k.

d) Assign the process in between to get quantum time

less than the time of the process before it by 1.

e) Apply the original RR with the priorities and new

different quantum times.

f) Calculate context switches average turnaround, and

average waiting times.

By changing the quantum time, we could

improve the existing RR algorithm by reducing context

switches and lessening waiting and response times. Hence,

throughput will increase. The next sections present two

case studies to show the differences between PDQT and

RR Algorithm.

Case study 1:

PDQT vs. existing RR Algorithm

Five processes have been defined with CPU burst

time, arrival times, and their priorities. These five

processes are scheduled in RR technique as well as

according to the PDQT algorithm. The context switches,

average waiting timeand average turnaround time are

calculated, and the results are compared. To accomplish

this task, we implemented the algorithm in JAVA

programming language and conducted several

experiments. However, only two experiments are

discussed here for dynamic quantum time process, and we

assure that the analysis remain the same for the other

experiments.

We consider five processes (A, B, C, D, and E)

with different arrival times, burst time, and priorities as

shown in Table-1, where quantum time is 5 millisecond.

Figure-2 illustrates a diagram of the case study.

Table-1. The inputs for the processes of case study 1.

Task Arrival time Burst time Priority

A 0 12 2

B 10 8 4

C 15 4 5

D 20 10 3

E 25 6 1

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13087

Figure-2. Diagram of case study 1.

According to the original RR, Simple RR does

not use priority. Hence, five processes have been

scheduled by using simple RR architecture. The time slice

of 5 millisecond was used. In RR algorithm, no process is

allocated in the CPU for more than one time slice in a row.

If the CPU process exceeds one time slice, the concerned

process will be preempted and placed into the ready

queue. The process is preempted after the first time

quantum, and the CPU is given the next process, which is

in the ready queue (process B). Similar process is

conducted for the schedule until the first cycle is

completed. In the second cycle, the same method is used

to schedule the processes. The process time slicing in

simple RR architecture is shown in Gantt chart 1.

Gantt chart-1. Process time slicing in simple RR.

According to PDQT, the algorithm used priorities

of the processes and different quantum times depending on

these priorities, where each process gets quantum time

different from the other. The highest priority process gets

the largest quantum time, the lowest priority process gets

the smallest quantum time, and the processes in between

get quantum time less than the one before by 1. The

process time slicing in PDQT architecture is shown in

Gantt chart 2.

Gant chart-2. Process time slicing in PDQT.

The equations used to calculate average

turnaround and average waiting time are:

Average turnaround time = ∑ T/n��=1 (1)

Average waiting time = ∑ B/n��=1 (2)

where n = number of processes, T = completion time -

arrival time; B = turnaround time - burst time

By using Equations 1 and 2 and initially applying

RR, we obtained 14.6 millisecond for average turnaround

time and 6.6 millisecond for average waiting time. The

context switch is 9. By applying PDQT, we got 13.0 and

5.0 millisecond for average turnaround and average

waiting times, respectively, and 7 for context switch.

These results indicated that PDQT behaves more

efficiently than simple RR.

Case study 2:

In this example, we applied two algorithms with

different arrival times, but the two processes (B and C)

will arrive at the same time. This situation means the

priority of the process will play an important role in

executing the processes. The process with the largest

priority should go first whenever it arrives at the same

time with another process with smallest priority. Table-2

shows the inputs of the processes and Figure-3 shows the

diagram of the case study. Gant charts 3 and 4 illustrate

the process time slicing in RR and PDQT, respectively.

The quantum time is 3.

Table-2. Inputs of the processes of case study 2.

Task Arrival time Burst time Priority

A 0 12 2

B 5 8 4

C 5 4 5

D 10 10 3

E 15 6 1

Figure-3. Diagram of case study 2.

Gantt chart-3. Process time slicing in RR.

Gantt chart-4. Process time slicing in PDQT.

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13088

By using Equations 1 and 2 and applying RR, we

obtained 26.2 milliseconds for average turnaround time

and 18.2 milliseconds for average waiting time, and the

context switch is 14. By applying PDQT, we got 23.2 and

15.2 milliseconds for average turnaround and average

waiting time, respectively, and the context switch is 9. The

same efficient results of PDQT have been obtained in this

case study. The advantage of our algorithm as we

experience from the different case studies is high

performance with the large number of processes which

will be the next improvement of the algorithm to compare

with other techniques, however, there is a limitation faces

us is the low performance with the large burst times with

high quantum time.

Tables 3 and 4 illustrate the results that obtained

in case study 1 and 2, figures 4 and 5 show the simulation

of the results for the two case studies.

Table-3. Results of case study 1.

 Algorithm

Factors
RR PDQT

Context switches 9 7

Average

turnaround time
14.6 13.0

Average waiting

time
6.6 5.0

Table-4. Results of case study 2.

 Algorithm

Factors
RR PDQT

Context switches 14 9

Average

turnaround time
26.2 23.2

Average waiting

time
18.2 15.2

Figure-4. Simulation for case study 1.

Figure-5. Simulation for case study 2.

COMPARRISION WITH ORIGINAL RR

The performance of two algorithms can be

compared by considering the number of context switches,

average waiting time, and average turnaround time as

shown in Figures 6, 7, and 8, respectively.

Figure-6. Performance of RR and PDQT for quantum

time and context switches.

Figure-7. Performance of RR and PDQT for quantum

time and turnaround time.

0

5

10

15

20

0 5 10

C
o

n
te

x
t

sw
it

ch
es

Quantum Time

context

switches

with RR

context

switches

with PDQT

20

25

30

35

40

10 15 20

T
u
rn

ar
o

u
n
d

 T
im

e

Quantum Time

quantum

and

turnaround

time with

RR

quantum

and

turnaround

time with

PDQT

 VOL. 11, NO. 22, NOVEMBER 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 13089

Figure-8. Performance of RR and PDQT for quantum

time and waiting time.

The figures above shows that the proposed

algorithm performs better over existing RR for dynamic

time quantum. We see that the PDQT RR has less number

of context switches, turnaround time, and waiting time in

comparison to simple RR for same value of time quantum.

CONCLUSIONS

We have successfully compared both algorithms,

namely, simple RR and the proposed algorithm (PDQT).

Results indicated that PDQT is more efficient because this

proposed algorithm has fewer context switches and shorter

average turnaround and waiting times compared to simple

RR. Moreover, the results reduced operating system

overhead and increased throughput. PDQT lessened the

problem of starvation as the processes with highest

priorities are assigned with largest quantum time and are

executed before lower priority processes. Performance of

time-sharing systems can be improved with the proposed

algorithm, and can be modified to enhance the

performance of real time system.

REFERENCES

Abdulrahim, A., et al. 2014. "A New Improved Round
Robin (NIRR) CPU Scheduling Algorithm." International
Journal of Computer Applications. 90(4): 27-33.

Behera, H. 2011. "Experimental Analysis of New Fair-
Share Scheduling Algorithm with Weighted Time Slice for
Real Time Systems." Journal of Global Research in
Computer Science2 (2).

Bhunia, A. 2011. "Enhancing the Performance of
Feedback Scheduling." International Journal of Computer
Applications 18(4): 11-16.

Cerqueira, F. and B. Brandenburg. 2013. A comparison of
scheduling latency in linux, PREEMPT-RT, and
LITMUSRT. Proceedings of the 9th Annual Workshop on
Operating Systems Platforms for Embedded Real-Time
applications.

Chen, M.-X. and S.-H. Liu. 2013. Hierarchical Deficit
Round-Robin Packet Scheduling Algorithm. Advances in

Intelligent Systems and Applications-Volume 1, Springer:
419-427.

Goel, N. and R. Garg. 2013. "An Optimum Multilevel
Dynamic Round Robin Scheduling Algorithm." arXiv
preprint arXiv: 1307.4167.

Hasan, T. F. "CPU scheduling visualization."

Kopetz, H. 2011. Real-time systems: design principles for
distributed embedded applications, Springer.

Lampard, B. 2011. "Program scheduling and simulation in
an operating system environment."

Lavanya¹, M. and S. Saravanan. 2013. "Robust Quantum
Based Low-power Switching Technique to improve
System Performance."

Mishra, M. K. 2012. "An Improved Round Robin CPU
scheduling algorithm." Journal of Global Research in
Computer Science 3(6): 64-69.

Mohanty, R., et al. 2011. "Priority based dynamic round
robin (PBDRR) algorithm with intelligent time slice for
soft real time systems." arXiv preprint arXiv: 1105.1736.

Nayak, D., et al. 2012. "Improved round robin scheduling
using dynamic time quantum." International Journal of
Computer Applications (0975–8887) Volume.

Noon, A., et al. 2011. "A New Round Robin Based
Scheduling Algorithm for Operating Systems: Dynamic
Quantum Using the Mean Average." arXiv preprint arXiv:
1111.5348.

Oyetunji, E. and A. Oluleye. 2009. "Performance
Assessment of Some CPU Scheduling Algorithms."
Research Journal of Information and Technology 1(1): 22-
26.

Silberschatz, A., et al. 2013. Operating system concepts,
Wiley.

Singh, A., et al. 2010. "An Optimized Round Robin
Scheduling Algorithm for CPU Scheduling." IJCSE)
International Journal on Computer Science and
Engineering 2(07): 2383-2385.

Tong, W. and J. Zhao. 2007. Quantum varying deficit
round robin scheduling over priority queues.
Computational Intelligence and Security, 2007
International Conference on, IEEE.

Yadav, R. K., et al. 2010. "An improved round robin
scheduling algorithm for CPU scheduling." International
Journal on Computer Science and Engineering 2(04):
1064-1066.

Yang, L., et al. 2003. Conservative scheduling: Using
predicted variance to improve scheduling decisions in
dynamic environments. Proceedings of the 2003
ACM/IEEE conference on Supercomputing, ACM.

12

14

16

18

20

22

24

26

0 5 10

W
ai

ti
n
g
 T

im
e

Quantum Time

quantum

and waiting

time with RR

quantum

and waiting

time with

PDQT

