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ABSTRACT 

In Round-Robin Scheduling, the time quantum is fixed and processes are scheduled such that no process uses 

CPU time more than one time quantum in one go. If time quantum is too large, the response time of the processes will not 

be tolerated in an interactive environment. If the time quantum is too small, unnecessary frequent context switch may 

occur. Consequently, overheads result in fewer throughputs. In this study, we propose a priority Round-Robin algorithm 

with dynamic quantum time (PDQT). The algorithm used the old fixed quantum time to generate new one for each process 

depending on its priority. The simple Round-Robin algorithm has been improved by about 20%. By controlling quantum 

time, we experience fewer context switches and shorter waiting and turnaround times, thereby obtaining higher throughput. 
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INTRODUCTION 

Modern operating systems are moving towards 

multitasking environments in which fast computer systems 

perform multitasking (executing more than one process at 

a time) and multiplexing (transmitting multiple flows 

simultaneously). This mainly depends on the CPU 

scheduling algorithm as the CPU is the essential part of 

the computer. In computer science, scheduling is the act 

by which processes are given access to system resources 

(e.g., processor cycles, communications bandwidth). CPU 

scheduling is an essential operating system task which 

permits allocating the CPU to a specific process for a time 

slice. In other words it determines which process runs 

when there are multiple runnable processes. As 

researchers (Kopetz 2011) previously pointed out that the 

need for a scheduling algorithm arises from the 

requirement for fast computer systems to perform 

multitasking and multiplexing. CPU scheduling is 

important because it affects resource utilization and other 

performance parameters(Hasan). Several CPU scheduling 

algorithms are available (Silberschatz, Galvin et al. 2013), 

(Oyetunji and Oluleye 2009), such as First Come First 

Serve (FCFS), Shortest Job First Scheduling (SJF), 

Round-Robin (RR) Scheduling, and Priority Scheduling 

(PS). However, due to disadvantages, these algorithms are 

rarely used in shared time operating systems, except for 

RR Scheduling (Cerqueira and Brandenburg 2013).  

RR is considered the most widely used 

scheduling algorithm in CPU scheduling (Silberschatz, 

Galvin et al. 2013), (Yang, Schopf et al. 2003) also used 

for flow passing scheduling through a network device 

(Tong and Zhao 2007). An essential task in operating 

systems in CPU Scheduling is the process of allocating a 

specific process for a time slice. Scheduling requires 

careful attention to ensure fairness and avoid process 

starvation in the CPU. This allocation is carried out by 

software known as a scheduler(Silberschatz, Galvin et al. 

2013), (Yang, Schopf et al. 2003). 

The scheduler is concerned mainly with the 

following tasks (Chen and Liu 2013): 

 

 CPU utilization - to keep the CPU as busy as possible 

 Throughput - number of processes that complete their 

execution per time unit 

 Turnaround - total time between submission of a 

process and its completion 

 Waiting time - amount of time a process has been 

waiting in the ready queue 

 Response time - amount of time taken from the time a 

request was submitted until the production of the first 

response 

 Fairness - equal CPU time allocated to each thread 

Therefore, we can conclude that a good 

scheduling algorithm for real time and time sharing system 

must possess the following characteristics (Singh, Goyal et 

al. 2010): 

 

 Minimum context switches 

 Maximum CPU utilization 

 Maximum throughput 

 Minimum turnaround time 

 Minimum waiting time 

 

Operating systems may feature up to three 

distinct types of schedulers, which are long term, mid-term 

or medium term, and short-term (Figure-1). The long-term 

scheduler or job scheduler selects processes from the job 

pool and loads them into the memory for execution. The 

short-term scheduler or CPU scheduler selects from 

among the processes that are ready for execution and 

allocates a CPU to one of them. The medium term 

scheduler removes processes from the memory and 

reduces the degree of multiprogramming results in the 
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scheme of swapping. Swapping is performed by the 

scheduler, which is the module that allows the CPU to 

control the process selected by the short-term 

scheduler(Noon, Kalakech et al. 2011). 

 

 
 

Figure-1. Queuing diagram for scheduling. 

 

RELATED WORK 

Many CPU scheduling algorithms have been 

introduced in the past years to improve the performance of 

the CPU. An algorithm for robust quantum time value 

(Lavanya¹ and Saravanan 2013) orders processes 

according to the smallest to the highest burst time. Then, 

quantum time would be calculated by taking the average 

of minimum and maximum burst times of the processes in 

the ready queue. An Improved Round Robin Scheduling 

using the feature of SJF in which the process in the ready 

queue would be allocated with static quantum time in the 

first cycle, and then the process would be selected by SJF 

(Yadav, Mishra et al. 2010). Self-Adjustment Time 

Quantum in RR Algorithm is an algorithm in accordance 

to the burst time of the processes (Nayak, Malla et al. 

2012). (Behera 2011) assigned a fare-share weight to each 

process, such that the process with the minimum burst 

time would have the maximum weight. Quantum time 

would be calculated dynamically by using the weighted 

time slice method. Thus, the processes would be executed.  

An Improved RR (IRR) CPU Scheduling Algorithm was 

presented by (Mishra 2012). In this algorithm, the CPU 

time is allocated to the first process from the ready queue 

for a time interval of up to one quantum time. After the 

quantum time of the process is completed, the remaining 

burst time of this process would be compared with 

quantum time. If its burst time was less than one quantum 

time, the CPU would again allocate the same process until 

execution is completed and the task is removed from the 

queue. This algorithm reduces waiting time in the ready 

queue, and hence improves performance.  

 (Abdulrahim, E Abdullahi et al. 2014) proposed 

algorithm similar to IRR (Mishra 2012). The proposed 

algorithm uses two queues, which are ARRIVE and 

REQUEST. Compared with IRR, this algorithm indicated 

performance improvement. (Noon, Kalakech et al. 2011) 

presented a mechanism of dynamic quantum time, which 

overcame the problem of fixed quantum time. Meanwhile, 

an algorithm of feedback scheduling focused on lower 

priority queue process (Bhunia 2011). 

 

RRARCHITECTURE 

RR architecture is a preemptive version of First 

Come, First Serve scheduling algorithm. The tasks are 

arranged in the ready queue in first come, first serve 

manner and the processor executes the task from the ready 

queue based on time slice. If the time slice ends and the 

tasks are still executing on the processor, the scheduler 

will forcibly preempt the executing task and keep it at the 

end of ready queue. Then, the scheduler will allocate the 

processor to the next task in the ready queue. The 

preempted task will make its way to the beginning of the 

ready list and will be executed by the processor from the 

point of interruption. 

A scheduler requires a time management function 

to implement the RR architecture and requires a tick timer 

(Goel and Garg 2013). The time slice is proportional to the 

period of clock ticks (Chen and Liu 2013). The time slice 

length is a critical issue in real time operating systems. 

The time slice must not be too small, as it would result in 

frequent context switches. Moreover, the time slice should 

be slightly greater than the average task computation time. 

 

RR pitfalls in real time systems 

RR when implemented in real time operating 

systems faces two drawbacks, which are high rate of 

context switch and low throughput. These two problems of 

RR architecture are interrelated (Lampard 2011). 

 Context switch: When the time slice of the task ends 

and the task is still executing in the processor, the 
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scheduler forcibly preempts the tasks on the 

processor. The interrupted task is then stored in stacks 

or registers, and the processor is allocated the next 

task in the ready queue. This action performed by the 

scheduler is called “context switch.” Context switch 
leads to wastage of time, memory, and scheduler 

overhead. 

 Larger waiting and response times: In RR 

architecture, the time the process spends in the ready 

queue waiting for the processor for task execution is 

known as “waiting time.” The time the process 
completes its job and exits from the task-set is called 

“turnaround time.” Larger waiting and response times 
are clearly a drawback in RR architecture, as it leads 

to degradation of system performance. 

 Low throughput: Throughput refers to the number of 

processes completed per time unit. If RR is 

implemented in real time operating systems, 

throughput will be low and results in severe 

degradation of system performance. If the number of 

context switches is low, then the throughput will be 

high. Context switch and throughput are inversely 

proportional to each other. 

 

PROPOSED ALGORITHM 

RR scheduling algorithm has no priority and 

fixed quantum time. However, this scheduling algorithm is 

not suitable for real time operating system (RTOS) 

because of drawbacks. In other words, the high context 

switch, high waiting and response times, and low 

throughput are pitfalls of RR. These disadvantages do not 

make the optimal choice for RTOS. Priority RR 

scheduling still has the problem of starvation, where the 

lowest priority thread with fixed quantum time will be 

starved and preempted by the highest priority thread. 

Hence, we propose an algorithm that depends on the 

existing RR. The proposed algorithm is the Priority 

Dynamic Quantum Time RR Scheduling Algorithm 

(PDQT). 

The basic idea of this algorithm considers 

different priorities and different quantum times(Mohanty, 

Behera et al. 2011). 

The steps of PDQT: 

a) Set priorities for the processes that enter the ready 

queue. 

b) Calculate new quantum time depending on the old one 

by using a simple formula, which is q=k+n-1, where q 

is the new quantum time, k is the old quantum time, 

and n is the priority of the processes in the ready 

queue. 

c) Set different quantum times for the processes 

depending on the priorities. The highest priority 

process will get the largest quantum time, which is q, 

and the lowest priority process will get the smallest 

quantum time, which is k. 

d) Assign the process in between to get quantum time 

less than the time of the process before it by 1. 

e) Apply the original RR with the priorities and new 

different quantum times. 

f) Calculate context switches average turnaround, and 

average waiting times. 

 

By changing the quantum time, we could 

improve the existing RR algorithm by reducing context 

switches and lessening waiting and response times. Hence, 

throughput will increase. The next sections present two 

case studies to show the differences between PDQT and 

RR Algorithm. 

 

Case study 1: 

PDQT vs. existing RR Algorithm 

Five processes have been defined with CPU burst 

time, arrival times, and their priorities. These five 

processes are scheduled in RR technique as well as 

according to the PDQT algorithm. The context switches, 

average waiting timeand average turnaround time are 

calculated, and the results are compared. To accomplish 

this task, we implemented the algorithm in JAVA 

programming language and conducted several 

experiments. However, only two experiments are 

discussed here for dynamic quantum time process, and we 

assure that the analysis remain the same for the other 

experiments.  

We consider five processes (A, B, C, D, and E) 

with different arrival times, burst time, and priorities as 

shown in Table-1, where quantum time is 5 millisecond. 

Figure-2 illustrates a diagram of the case study. 

 

Table-1. The inputs for the processes of case study 1. 
 

Task Arrival time Burst time Priority 

A 0 12 2 

B 10 8 4 

C 15 4 5 

D 20 10 3 

E 25 6 1 
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Figure-2. Diagram of case study 1. 

 

According to the original RR, Simple RR does 

not use priority. Hence, five processes have been 

scheduled by using simple RR architecture. The time slice 

of 5 millisecond was used. In RR algorithm, no process is 

allocated in the CPU for more than one time slice in a row. 

If the CPU process exceeds one time slice, the concerned 

process will be preempted and placed into the ready 

queue. The process is preempted after the first time 

quantum, and the CPU is given the next process, which is 

in the ready queue (process B). Similar process is 

conducted for the schedule until the first cycle is 

completed. In the second cycle, the same method is used 

to schedule the processes. The process time slicing in 

simple RR architecture is shown in Gantt chart 1. 

 

 
 

Gantt chart-1. Process time slicing in simple RR. 

 

According to PDQT, the algorithm used priorities 

of the processes and different quantum times depending on 

these priorities, where each process gets quantum time 

different from the other. The highest priority process gets 

the largest quantum time, the lowest priority process gets 

the smallest quantum time, and the processes in between 

get quantum time less than the one before by 1. The 

process time slicing in PDQT architecture is shown in 

Gantt chart 2. 

 

 
 

Gant chart-2. Process time slicing in PDQT. 

  

The equations used to calculate average 

turnaround and average waiting time are: 

 

Average turnaround time = ∑ T/n��=1                   (1) 

 

Average waiting time = ∑ B/n��=1                    (2) 

 

where n = number of processes, T = completion time - 

arrival time; B = turnaround time - burst time  

By using Equations 1 and 2 and initially applying 

RR, we obtained 14.6 millisecond for average turnaround 

time and 6.6 millisecond for average waiting time. The 

context switch is 9. By applying PDQT, we got 13.0 and 

5.0 millisecond for average turnaround and average 

waiting times, respectively, and 7 for context switch. 

These results indicated that PDQT behaves more 

efficiently than simple RR. 

 

Case study 2: 

In this example, we applied two algorithms with 

different arrival times, but the two processes (B and C) 

will arrive at the same time. This situation means the 

priority of the process will play an important role in 

executing the processes. The process with the largest 

priority should go first whenever it arrives at the same 

time with another process with smallest priority. Table-2 

shows the inputs of the processes and Figure-3 shows the 

diagram of the case study. Gant charts 3 and 4 illustrate 

the process time slicing in RR and PDQT, respectively. 

The quantum time is 3. 

 

Table-2. Inputs of the processes of case study 2. 
 

Task Arrival time Burst time Priority 

A 0 12 2 

B 5 8 4 

C 5 4 5 

D 10 10 3 

E 15 6 1 

 

 
 

Figure-3. Diagram of case study 2. 

 

 
 

Gantt chart-3. Process time slicing in RR. 

 
 

Gantt chart-4. Process time slicing in PDQT. 
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By using Equations 1 and 2 and applying RR, we 

obtained 26.2 milliseconds for average turnaround time 

and 18.2 milliseconds for average waiting time, and the 

context switch is 14. By applying PDQT, we got 23.2 and 

15.2 milliseconds for average turnaround and average 

waiting time, respectively, and the context switch is 9. The 

same efficient results of PDQT have been obtained in this 

case study. The advantage of our algorithm as we 

experience from the different case studies is high 

performance with the large number of processes which 

will be the next improvement of the algorithm to compare 

with other techniques, however, there is a limitation faces 

us is the low performance with the large burst times with 

high quantum time. 

Tables 3 and 4 illustrate the results that obtained 

in case study 1 and 2, figures 4 and 5 show the simulation 

of the results for the two case studies. 

 

Table-3. Results of case study 1. 
 

        Algorithm 

Factors 
RR PDQT 

Context switches 9 7 

Average 

turnaround time 
14.6 13.0 

Average waiting 

time 
6.6 5.0 

 

Table-4. Results of case study 2. 
 

        Algorithm 

Factors 
RR PDQT 

Context switches 14 9 

Average 

turnaround time 
26.2 23.2 

Average waiting 

time 
18.2 15.2 

 

 
 

Figure-4. Simulation for case study 1. 

 
 

Figure-5. Simulation for case study 2. 

 

COMPARRISION WITH ORIGINAL RR 

The performance of two algorithms can be 

compared by considering the number of context switches, 

average waiting time, and average turnaround time as 

shown in Figures 6, 7, and 8, respectively.  

 

 
 

Figure-6. Performance of RR and PDQT for quantum 

time and context switches. 

 

 
 

Figure-7. Performance of RR and PDQT for quantum 

time and turnaround time. 
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Figure-8. Performance of RR and PDQT for quantum 

time and waiting time. 

 

The figures above shows that the proposed 

algorithm performs better over existing RR for dynamic 

time quantum. We see that the PDQT RR has less number 

of context switches, turnaround time, and waiting time in 

comparison to simple RR for same value of time quantum. 

 

CONCLUSIONS 

We have successfully compared both algorithms, 

namely, simple RR and the proposed algorithm (PDQT). 

Results indicated that PDQT is more efficient because this 

proposed algorithm has fewer context switches and shorter 

average turnaround and waiting times compared to simple 

RR. Moreover, the results reduced operating system 

overhead and increased throughput. PDQT lessened the 

problem of starvation as the processes with highest 

priorities are assigned with largest quantum time and are 

executed before lower priority processes. Performance of 

time-sharing systems can be improved with the proposed 

algorithm, and can be modified to enhance the 

performance of real time system. 
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