Optimization Of Photocatalytic Degradation Of Palm Oil Mill Effluent In UV/Zno System Based On Response Surface Methodology

Kim Hoong Ng^a, Yoke Wang Cheng^a, Maksudur R. Khan^a, Chin Kui Cheng^{a,b} ^aFaculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia ^bCentre of Excellence for Advanced Research in Fluid Flow, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

ABSTRACT

This paper reports on the optimization of palm oil mill effluent (POME) degradation in a UVactivated-ZnO system based on central composite design (CCD) in response surface methodology (RSM). Three potential factors, *viz*. O_2 flowrate (*A*), ZnO loading (*B*) and initial concentration of POME (*C*) were evaluated for the significance analysis using a 2³full factorial design before the optimization process. It is found that all the three main factors were significant, with contributions of 58.27% (*A*), 15.96% (*B*) and 13.85% (*C*), respectively, to the POME degradation. In addition, the interactions between the factors *AB*, *AC* and *BC* also have contributed 4.02%, 3.12% and 1.01% to the POME degradation. Subsequently, all the three factors were subjected to statistical central composite design (CCD) analysis. Quadratic models were developed and rigorously checked. A 3D-response surface was subsequently generated. Two successive validation experiments were carried out and the degradation achieved were 55.25 and 55.33%, contrasted with 52.45% for predicted degradation value.

KEYWORDS

Center composite design; Optimization; Palm oil mill effluent; Photocatalysis; Zinc oxide

Doi: 10.1016/j.jenvman.2016.10.034