Pinch Analysis Targeting For CO₂ Total Site Planning

Wan Norlinda Roshana Mohd Nawi^{1,2,3}, Sharifah Rafidah Wan Alwi^{1,2}, Zainuddin Abdul Manan^{1,2}, Jiří Jaromír Klemeš⁴

¹Process Systems Engineering Centre (PROSPECT), Research Institute on Sustainable Environment Universiti Teknologi Malaysia (UTM) Johor Bahru, Malaysia

²Faculty of Chemical and Energy Engineering Universiti Teknologi Malaysia (UTM) Johor Bahru Malaysia

³Faculty of Chemical Engineering & Natural Resources Universiti Malaysia Pahang (UMP) Gambang, Malaysia

⁴Faculty of Information Technology and BionicsPázmány Péter Catholic University (PPKE) Budapest Hungary

ABSTRACT

Rising CO₂ emissions that have been primarily attributed to fossil fuel utilisation have motivated extensive research on optimal CO2 reduction planning and management. Carbon (more precisely CO₂) capture and storage (CCS) and carbon capture and utilisation (CCU) have been the potential solutions to control CO₂ emissions. However, mitigating CO₂ emissions via CO₂ storage in geological reservoirs without utilisation is merely a technology transition, and CO₂ utilisation is limited due to the short lifespan of products. The integration of CCS and CCU, described as carbon capture, utilisation and storage (CCUS), has recently been introduced as a better option to mitigate CO₂ emission. This study introduces a new algebraic targeting method for optimal CCUS network based on a Pinch Analysis-Total Site CO₂ integration approach. A new concept of Total Site CO₂ Integration is introduced within the CCS development. The CO₂ captured with a certain quality from the largest CO₂ emissions sources or plants is injected into a CO₂ pipeline header to match the CO₂ demands for utilising by various industries. The CO₂sources and demands are matched, and the maximum CCU potential is targeted before the remaining captured CO2 is injected into a dedicated geological storage. One or more headers are divided into certain composition ranges based on the purity level of the CO_2 sources and demands. The CO_2 header can satisfy the CO₂ demands for various industries located along the headers, which require CO₂ as their raw material. The CO₂ can be further regenerated, and mixed as needed with pure CO₂ generated from one or multiple centralised CO₂ plants if required. The main consideration for the problem is the CO₂ purity composition of targeted sources and demands. The proper estimation of CO₂ integration will reduce the amount of CO₂emission needed to be stored and introduced to systematic CO₂ planning and management network.

KEYWORDS: CO2 emission reduction; CO2 sources and demands; CO2 management; CO2 capture, utilisation and storage; CO2 total site

DOI: 10.1007/s10098-016-1154-7