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Abstract: An analysis is presented to develop the exact solutions 

for the accelerated flows of a generalized Burgers' fluid when the 

relaxation time satisfying the condition 2 / 4  . The 

corresponding expressions for the velocity field and associated 

tangential stress are obtained by using Laplace transform for the 

problems of flow induced by constantly accelerated plate. The 

obtained solutions are presented through simple or multiple 

integrals in terms of Bessel functions. The corresponding solutions 

for Burgers' fluid are recovered as special case of the solutions 

obtained here.  

 
Keywords: Generalized Burgers's Fluid, Laplace Transform, Exact 

Solutions.  

1. Introduction 

The flow induced in a fluid due to sudden motion or because 

of continues oscillation of a flat plate is usually known in the 

literature as Stokes' first and second problems, respectively 

[1,2]. The exact solutions of an unsteady flow for unsteady 

Navier-Stokes equation are always handy and of fundamental 

importance. These solutions not only provide an explicit 

solution to a problem that has physical relevance but can also 

be used to check the stability analysis of the solutions. 

Further, such solutions can be used for testing the efficiency 

of algorithms/complex numerical schemes for flows in 

complicated flow domains.  In the literature there is fairly 

large number of flows of Newtonian fluids for which the 

exact analytical solutions are possible. However, for non-

Newtonian fluids such exact solutions are rare. This is 

because of the reason that the governing equations of non-

Newtonian fluids are much more complicated and of higher 

order as compare to Navier-Stokes equations. 

The purpose of this paper is to determine the exact 

solutions corresponding to generalized Burgers' fluid when 

the motion in the fluid is induced because of the constant 

acceleration of the plate. More exactly, we intend to extend 

the analysis in [3] to a larger class of fluids. The present 

analysis is not only an attempt towards enhancement of the 

theory of generalized Burgers' fluid but the present fluid 

model has its significant importance especially in describing 

the behavior of asphalt and asphalt concrete [4]. Further the 

model under discussion has also been used to model other 

geological structures, such as Olivine rocks and the 

propagation of seismic waves in the interior of the earth 

[5,6]. Such models have also been successfully used to 

describe the motion of the earth's mantle [7]. 

 Several analytical methods are available for finding the 

exact solutions of non-Newtonian fluids. Here, Laplace 

transform method has been employed to find the exact 

solutions of the proposed problems. Despite of the fact that 

the Laplace transform method does not work always, for 

example, the problems involving second grade fluid. This is 

due to incompatibility between the prescribed data (For 

further details see Bandelli [8,9]). On the other hand, the 

Laplace transform technique has also been successfully used 

by several authors to determine the exact solutions of rate 

type viscoelastic fluids [10-23]. Generally, for these fluids a 

new initial condition is necessary apart from the condition 

that the fluid is initially at rest. In this article, we try to 

establish the exact analytic solutions for the accelerated flows 

of a generalized Burgers' fluid when the relaxation times 

satisfying the condition 2 / 4  . The analytical 

expressions for the velocity fields and associated tangential 

stresses are determined by means of Laplace transform. The 

corresponding solutions for Burgers' fluid are recovered as a 

special case of the solutions obtained here. 

2. Governing Equations 

For an incompressible flow, the governing equations are 

div ,V 0                                          (1) 

div ,
d

dt
 

V
T                                       (2) 

where Eq. (1) is the continuity equation and Eq. (2) is the 

momentum equation in the absence of body forces. In these 

equations V  is the velocity field,   is the density, T  is the 

Cauchy stress tensor and for a generalized Burgers' fluid, it is 

given by 

,pT I S                                       (3) 

2 2

2 2
,r

t tt t

   
    
  

 
    

 

S S A A
S A     

where p  is the pressure, I is the identity tensor, S  is the 

extra stress tensor,   is the dynamic viscosity,   and  

r   are respectively the relaxation and retardation times, 

and   and   are the material constants of generalized 
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Burgers' fluid. The first Rivlin-Ericksen tensor A  and the 

upper convected time derivative / t   are defined as 

, ,
T

A L L L V                                  (4) 

2

2
,Td

t t t dtt

   

  

   
      

   

S S S
LS SL                 (5) 

where /d dt  denotes the usual material time derivative and 

L  is the velocity gradient. For the problem under discussion, 

we assume that the velocity field and the shear stress are of 

the following forms: 

   , , , ,v y t y tV i S S                            (6) 

where i  is the unit vector along the x  coordinate direction 

and v  is the x  component of velocity field .V  Invoking 

Eq. (6) the continuity equation (1) is identically satisfied and 

in view of initial conditions    ,0 ,0 ,ty y  S S 0 Eq. (3) 

gives 

       2 21 , 1 , ,t t r t t yT y t v y t                     (7) 

and 0,xz yy zzS S S    where  ,xyS T y t  is the 

tangential stress. 

In the absence of external pressure gradient, Eq. (2) reduces 

to the relevant equation 

   , , .y tT y t v y t                                   (8) 

 

3. Flow due to Constantly Accelerated Plate 

Consider an incompressible generalized Burgers' fluid 

occupying the upper half space of  ,x y  plane. The fluid is 

bounded by a rigid plate at 0y   such that the positive 

y  axis is taken normal to the plate and x  axis is taken 

parallel to the plate. Initially, both the fluid and the plate are 

at rest. At time 0 ,t   the plate is brought to a constant 

acceleration  f t At  and motion in the fluid is induced in 

the direction parallel to x  axis. Under these assumptions, 

the flow is governed by Eqs. (7) and (8) along with initial 

and boundary conditions: 

       ,0 ,0 0, ,0 ,0 0, 0,t tv y v y T y T y y            (9) 

   0, ,v t f t                                      (10) 

   , and , 0 as .v y t T y t y                     (11) 

Introducing the following dimensionless variables 

, , and ,
t y v T

U S
c A AcV

 
   

                   (12) 

into Eqs. (7)-(11), we get 

       2 2
01 , 1 , ; , 0,S U                     

(13) 

   , , ; , 0,S U                             (14) 

( ,0) ( ,0) 0, ( ,0) ( ,0) 0; 0,U U S S             (15) 

(0, ) ,U                                     (16) 

( , ), ( , ) 0 as , 0.U S                          (17) 

where 

02 2
, , and .rc

  
  

   
                  (18) 

Applying Laplace transform to Eqs. (13) and (14) along with 

boundary conditions given by Eqs. (16) and (17) in view of 

initial conditions (15) we obtain 

   2 2
0

( , )
1 ( , ) 1 ,

dU q
q q S q q q

d


   


              (19) 

( , )
( , ),

d S q
qU q

d





                                (20) 

2

1
(0, ) ,U q

q
                                     (21) 

( , ), ( , ) 0 as .U q S q                          (22) 

Eliminating ( , )S q  between Eqs. (19) and (20), we get the 

following differential equation 

 
 

2
2

2 2
0

1( , )
( , ) 0.

1

q q qd U q
U q

d q q




  

 
 

 
              (23) 

Now solving Eq. (23) and by using Eqs. (21) and (22) we get 

 2

2 2
0

11
( , ) exp .

( 1)

q q q
U q

q q q


 

 

 
  

  
  

 

              (24) 

Incorporating Eq. (24) into Eq. (19), we obtain the following 

expression for ( , )S q   

 

 

2

2 2
0

2

2
0

11
( , )

( 1)

1
exp .

( 1)

q q q
S q

q q q

q q q

q q




 




 

 
 

 

 
  

  
  

 

                      (25) 

 

3.1 Calculation of the Dimensionless Velocity 

In order to determine 1( , ) { ( , )},U L U q    we decompose 

( , )U q  as follows: 

1 2( , ) ( ) ( , ),U q U q U q                            (26) 

where 

 

   

 
 

1 2
2

2
0

2

1
( ) , ( , ) exp ,

1
.

1

w q
U q U q

w qq w q

q q
w q

q q q




 



 
   
 
 

 


 

    (27) 

The 4th International Conference on Computer Science and Computational Mathematics (ICCSCM 2015)

48



            

If   1
11 { ( )}U L U q   and 1

22 ( , ) { ( , )},U L U q    then 

by convolution theorem [24], we have 

    

 

1 2 1 2

0

1 2

0

( , ) ( , )

( , ) .

U U U U s U s ds

U s U s ds





    

 

   

 





     (28) 

To find  1 ,U   there are three possible different cases for 

 , i.e. 2 2/ 4, / 4      and  2 / 4.   Here, we will 

only consider the case  2 / 4   for which the quadratic 

equation  2 1 0,q q     has real and distinct roots and the 

function 1( )U q  takes the following form 

 

 

 
 

 
 

2 2 2 2 2 2
0 1 2 2 1 2 1 1 2 1 2

1
3

1 2

1 2 1 2

2 2 3
1 21 2

2
1 0 1

3
11 1 2

2
2 0 2

3
22 2 1

( )

1 1 1 1

1 1

1 1
,

q q q q q q q q q q
U q

q q

q q q q

q q qq qq q

q q

q qq q q

q q

q qq q q

  







 



 



    


 
  

  




  




        (29) 

where  1,2 1 1 4 / 2 .q      Consequently, the inverse 

Laplace transform of Eq. (29) gives the following expression 

for  1U    

 
 

 

 
 

 
 

1

2

2 2 2 2 2 2
0 1 2 2 1 2 1 1 2 1 2

1 3

1 2

2
2

1 0 1
1 2 1 2

2 3
1 2 1 1 21 2

2
2 0 2

3
2 2 1

11

2

1
,

q

q

q q q q q q q q q q
U

q q

q qq q q q
e

q q q q qq q

q q
e

q q q





  




  


 

 







     
 


   
  



   
 

 


(30) 

or simply 

 

   

1 2

0

2
1 1 2

1 2

1 1

.

2

q q
U

e e
q q

 

    

    

     
 

  
   
 

                  (31) 

where 
 

2
0 1

2

k k

k k

q q

k q q

 


 


  for 1,2.k    

Using the inversion formula for compound functions [24], we 

write 2 ( , )U    as follows: 

    2

0

( , ) , ,U f u g u du   



   

   
2

1

0 0

1
exp 2 , ,

42

z z z
J z g u dz du

uu u
 




 

   
 

     (32) 

where  1J   is the Bessel function of first kind of order one. 

To find  , ,g u   we decompose  w q  in the following form 

  1 2

1 2

1
,w q

q q q q q

 
  

 
                          (33) 

where 1  and 2  are given as 

 

 

 

 1
0 0

1 2 3 1 21
,

2 1 2 2 2 4 4

    


    

    
   

      
      (34) 

and 

 

 

 

 2
0 0

1 2 3 1 21
,

2 1 2 2 2 4 4

    


    

   
  

     
          (35) 

with  01 2 2

1 4

 




 


 . For the case  2 / 4,   we will discuss 

the following four possibilities. 

 

Case 1:  
2r  or  

2r  and      r r   

In this case  1 0   and  2 0  and taking into consideration 

Eq. (33),  ,g u  can be written as 

          1, , ,g u g u                         (36) 

where 

     

 
 

 

    

 
      

 
   

  

  
   













 


   

 


 

 

 


 



 




 

 

  



 

 

  

   


   


 



  

 



 



 




 









1

12

2

1 2

1 2

1
1 1 1 1

12
1 2

0

1 1 1

2
1 1 2

0

1 2
1 1

0

1 2

1 2

0 0

, 2 2

2

2 2

2 2

2

2

q

q sq

q s

q s q s

s
q s q s

uu
g u J u e I u

uu
e I u e

s s

J us I u s ds

u
e J us I u s ds

s s

u
e I us

s s

I u s ds

u u
e

s s
 

     



       

1

1 1 1 2

2

2 2 ,

J u

I u s I u s d ds

         (37) 

where     is the Dirac delta function and  1I  is the 

modified Bessel function of the first kind of order one. 

Invoking Eq. (36) into Eq. (32), having in mind Eq. (28), the 

expression for the dimensionless velocity is 
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2
1

0 0

1

0 0 0

2

1

1 1

, exp
42

1
2

2

exp 2
4

, ,

U z z z
U

uu u

z z
J z dzdu

u u

z
J z

u

U s g u s dz du ds

                 (38) 

where  1U  and  1 ,g u  are given by Eqs. (31) and (37). 

 

Case 2:   2
0,r  and      r r   

In this case both constants 1  and 2  are positive. Adopting 

similar procedure as in the first case, as a result we found an 

expression for   ,U  same as given by Eq. (38) with 

     

 

 
      









   

 


 




 







 

  



 




2

1

2

2
2 1 1 2

1
1 1

2
1 1 2

0

, 2 2

2

2 2

q

q

q s

uu
g u J u e I u

u
e J u

u
e J us I u s ds

s s

 
      

 
      

  
     

     








 


 



 
  



 


  

    

 

  

   

 


 



 

  







1

2 1

1 2

1
1 1 1

0

1 2
1 2 1 1

0

1 2
1

0 0

1 1 1 2

2 2

2 2

2

2 2

q s

q s q s

s
q s q s

u
e J us J u s ds

s s

u
e I us J u s ds

s s

u u
e J u

s s

J u s I u s d ds

   

   (39) 

instead of  1 , .g u   

 

Case 3:   
2
,r  and      r r   

Here both 1  and 2  are negative and the corresponding 

velocity   ,U  have the same form as given by Eq. (38) 

with 

     

 

 
      









   

 


 




 







 


   


 


  




1

2

1

1
3 1 1 1

2
1 2

1
1 1 1

0

, 2 2

2

2 2

q

q

q s

uu
g u J u e I u

u
e J u

u
e J us I u s ds

s s

 

 
      

 
      

  
     

     








 


 



 
  



 


  

    

 

  

   


  



   



 

    







2

1 2

1 2

2
1 1 2

0

1 2
1 1 1 2

0

1 2
1

0 0

1 1 1 2

2 2

2 2

2

2 2

q s

q s q s

s
q s q s

u
e J us J u s ds

s s

u
e I us J u s ds

s s

u u
e J u

s s

I u s J u s d ds

(40) 

instead of  1 , .g u  

  

Case 4:  
2r  and      r r   

In this case for 1,    we have respectively 

 
  

  
  

    

   

      
 

       

      
 

   

 
  

     
 

      

     
 

   

3 4
0 0

2
0 0 0 0

3 4
0 0 0

2
0 0 0 0

3 4
0 0

1 1
, ,

1

1 1 2 3 1
, ,

2 2 1 1 2 2 1

1 1 2 3 1
,

2 2 1 1 2 2

q q

(41) 

and 

 
  

  

    


   

 
  

    
 

   

3 4
0 0

2 2
0 0 0

3
0 0

1 1
, ,

1 1

1 2 3 1
,

1 2 2 1

q q

 

 
  

  

 

  


   

   


 

  


 

 


  

   


 

 


 

0 0
4

0

2
0 0

3
0

0 0
4

0

1
,

2 2 1

1 2 3 1
,

1 2 2

1
.

2 2 1

                    (42) 

In both cases    1, w q  has the same expression as given 

by Eq. (33). Thus, in view of above restrictions the Laplace 

inverse of  1U q  results in 

 
   

 


    


  

 
      

 
  
  
  

3 4

2

0

1
3 4

3 4

1 1
2

.
q q

U

e e
q q

           (43) 

Thereby, the expression for the dimensionless velocity 

  ,U  in view of Eq. (28) is given by Eq. (38) with 
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4
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0

3 4
1 3

0

1 4

3 4

0 0

, 2 2

2

2 2

2 2

2

2

q

q

q s

q s

q s q s

s
q s q s

uu
g u J u e I u

u
e I u

u
e J us I u s ds

s s

u
e J us I u s ds

s s

u
e I us

s s

I u s ds

u u
e J

s s
 

     



       

1

1 3 1 4

2

2 2 ,

u

I u s I u s d ds
(44) 

instead of  1 ,g u  and  1U  is given by Eq. (43). 

3.2 Calculation of Dimensionless Shear Stress  

For shear stress we write Eq. (25) in the following form 

        1 2, , ,S q S q S q                          (45) 

where 

 
 

 
   

 






 


 

 
  
 
 

2
0

1
2 2

2

1
,

1

1
, exp ,

q q
S q

q q q

S q
w q w q

                 (46) 

and  w q  is given by Eq. (33). 

If    1
11 { ( )}S L S q and     1

22 , { ( , )},S L S q  then by 

convolution product we can write 

      

 





    

 

     

  





1 2 1 2

0

1 2

0

, ( , )

( , ) .

S S S S s S s ds

S s S s ds

          (47) 

To find  1 ,S  we arrange  1S q  in the following form 

   

 

 



 

   
  



  
 

  

2
0 1 11 2 1 2

1
2 2

1 2 1 11 2

2
0 2 2

1 2 2 2

11 1 1
( )

2

11 1
.

2

q qq q q q
S q

q q q q qqq q

q q

q q q q q q

(48) 

The Laplace inverse of Eq. (48) gives 

        
    1 2

1 1 2 1,q qS e e                    (49) 

where 1 2 1, ,q q  and 2  having similar expressions as given 

before. Adopting similar procedure as for   , ,U  one 

obtains the following expression for the shear stress 
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1

0

0 0
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0

0 0 0

1

, exp 2
42

1
exp 2

42

, ,k

S z z
S J z dz du

uu u

z z
J z

uu u

S s g u s dz du ds

    (50) 

where  ,kg u  with 1,2,3,k  are given by Eqs. (37), (39) 

or (40) and   1S  is given by Eq. (49). In the last case 

        
    3 4

1 3 4 1,q qS e e                (51) 

where   3 4 3, ,q  and  4q  are same as given in Eqs. (41) and 

(42).  Consequently, the expression for   ,S is given by 
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1
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1
exp 2 ,
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1 ,

q q

q s q s

e e
S

z z
J z dzdu

uu u

z z
J z g u s

uu u

e e s dz du ds

 (52) 

where  1 ,g u  is same as given by Eq. (37).  

4. Special Case  

Taking the limit of Eqs. (38) and (50), as  0  and hence  

 0 0,  we get the following expressions for the velocity 

and shear stress 
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1
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U J z dzdu

uu u

z z z
J z

uu u

U s g u s dz du ds

       (53) 
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S s g u s dz du ds

   (54) 

with 

The 4th International Conference on Computer Science and Computational Mathematics (ICCSCM 2015)

51



            

 
   

 


   


 

 
     

 
  
  
 
 

1 2

2

1 2

1 1
2

,
q q

U
e e

q q

                (55) 

        
    1 2

1 1 2 1,q qS e e                 (56) 

where 
 








1

2
.k

k k

q
k q q

  

The expression for  ,g u is same as for   1 ,g u  given by 

Eq. (37) with the following values of  1 2,  and    

  
  



  
  


1 2

1 1 1 2
, , .

2 2 1 4
             (57) 

It is important to note that the limiting solutions (53) and (54) 

of present study are similar to Khan et al. [3, Eqs. (41) and 

(53)]. 

5. Concluding Remarks  

This article reports the exact solution for the  accelerated 

flows of a generalized Burgers' fluid when the relaxation time 

satisfy the condition 2 / 4.   The flow is induced by 

uniform accelerated motion of the plate. The Laplace 

transform method was used for finding the expressions for 

velocity field and adequate tangential stress. The solutions 

are obtained for four different cases. The solutions obtained 

in [3] are recovered as a special case.  
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