RESEARCH

O Springer Plus

Evaluation of di cerent time domain peak models using extreme learning machine based peak detection for EEG signal

Asrul Adam¹, Zuwairie Ibrahim², Norrima Mokhtar^{1*}, Mohd Ibrahim Shapiai³, Paul Oumming⁴ and Marizan Mubin¹

*Correspondence: norrimamokhtar@um.edu.my ¹ Applied Control and Robotics (ACR) Laboratory, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia Full list of author information is available at the end of the article

Abstract

Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (⊞G) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in ⊞G signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of di □erent models requires a common and unbiased platform. In this study, we evaluate the performance of the four di □erent peak models using the extreme learning machine (⊞M)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real ⊞G data. Statistical analysis conferred that the Dingle model a_orded signi □cantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37–52 %. Meanwhile, the Dingle model has no signi □cantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37–52 %. Meanwhile, the Dingle model has no signi □cant di □erence compared to Dumpala model.

Keywords: Extreme learning machines (ELM), Electroencephalogram (EEG), Peak detection algorithm, Peak model, Pattern recognition

Background

Peak detection algorithms are prominently used for event classi cation in various physiological signals such as in electroencephalograms (EEG) for diagnosing epilepsy (Acir 2005), photoplethysmograms (PPG) for monitoring heart rate (Elgendi et al. 2013), and in EEG (Adam et al. 2014b) or electrooculograms (EOG) in the particular application of tracking eye gaze events (Barea et al. 2012). In all of these common applications, peak detection is commonly the rst step in signal processing. For example, semi-automatic diagnosis of epilepsy can be based on the frequency of peaks detected in the EEG recording during a given time interval. A similar approach is used for identifying eye blink events, a frequent source of interference in EEG recordings.

Detecting a peak indicative of a particular event in the EEG signal is challenging due to the non-stationary nature of the signal relative to the baseline amplitude, time, and different user. A signal peak identi a point of highest signal amplitude lying between

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.