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A GOMPERTZIAN MODEL WITH RANDOM EFFECTS
TO CERVICAL CANCER GROWTH

Mazma Syahidatul Ayuni Mazlan and Norhayati Rosli

Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300
Gambang, Pahang

Abstract. In this paper, a Gompertzian model with random effects is introduced to describe the cervical cancer growth. The
parameters values of the mathematical model are estimated via maximum likehood estimation. We apply 4-stage Runge-
Kutta (SRK4) for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing
the simulated result and the clinical data of the cervical cancer growth. Low values of root mean-square error (RMSE) of
Gompertzian model with random effect indicate good fits.
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INTRODUCTION

Cervical cancer is the third most common cancer among women behind breast cancer and colorectal cancer and the
fourth leading cause of death among Malaysian [1]. The National Cancer Society Malaysia (NCSM) said that over
1500 women are diagnosed with cervical cancer each year. Cervical cancer accounts for 6% deaths among women
in Malaysia [2]. Recently, effort has been paid to the investigation of tumor growth because a better understanding
of the highly complex process is paramountly important to develop better prognoses for patients and more effective
treatment plan. Taking the advantages of the methods of physics and engineering, most studies review of mechanistic
mathematical models which consist of one or more differential equations [3]. Despite their simplicity, such models
have been proved to be appropriate to predict the evolution of numerous tumor growth developments. Among the
proposed models of those based upon the deterministic Gompertzian growth law appears to be particularly consistent
with the evidence of tumor growth [4]. However, real biological systems will always exposed to random influences
that are not completely understood or not feasible to model deterministically. To be realistic, models of tumor growth
should include random effects or noise. These random fluctuations are the result of uncontrolled factors in human
body such as hormonal oscillations, blood pressure variations, respiration, variable neural control of muscle activity,
enzymatic processes, energy requirements, cellular metabolism, sympathetic nerve activity or individual characteristics
like body mass index, genes, smoking, stress impacts, etc [5]. Therefore, a better model is needed to reflect the external
randomness that affects the tumor growth behaviour. This research is carried out to model the growth of cervical cancer
via Gompertzian stochastic model.

MATHEMATICAL MODELS

Mathematical expression of growth representation has been formulated in [6]. Beginning essentially as exponential
growth, as time goes on, the process becomes damped and eventually stops. If A(t) is the area (cm2) of the tumor at
time, t then it can be represented by the mathematical formula

dA(t) = (aA(t)−bA(t) ln(A(t)))dt (1)

where a is the intrinsic growth rate of the tumor which is a parameter related to the initial mitosis rate and b is
the growth rate deceleration factor that related to the antiangiogenic process. Equation (1) is called a Gompertzian
deterministic model introduced by [6] to describe and analyze the population dynamics in nature. This model was
subsequently shown to fit well the tumor growth. However, real biological systems are subjected to environmental
noise that are not completely understood or not feasible to model deterministically. Hence, Gompertzian deterministic
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model of tumor growth (1) should include random effects or noise that influence its growth. We assume that the
variability of environmental conditions influences in the intrinsic growth rate, a. Hence, the uncontrolled factors is
allowed into Equation (1) such that the intrinsic growth rate parameter

a → a+σ
dW
dt

(2)

where σ > 0 is the diffusion coefficient and the process W (t) for t ≥ 0 is a white noise process having Gaussian
distribution with mean zero and variance, Δt. The mathematical model tumor growth for cervical cancer can be defined
by the stochastic differential equation of

dA(t) = (aA(t)−bA(t) lnA(t))dt +σA(t)dW (t) (3)

Equation (3) is a Gompertzian stochastic model which has been used by [7] to describe in vivo tumor growth and its
sensitivity treatment with antiangiogenic drugs. In this research, the Gompertzian stochastic model of Equation (3)
will be used to describe the growth of the tumor for cervical cancer. Moreover, this research will verify the ability of
Gompertzian stochastic model to simulate the clinical data.

NUMERICAL METHOD & PARAMETER ESTIMATION

Analytical solution of Gompertzian model with random effects is hard to be found, thus solving this model numerically
is necessary. We apply a 4-stage Stochastic Runge-Kutta (SRK4) to approximate the numerical solution of Equation
model (3). Details for implementing the numerical method known as:

4–stage Stochastic Runge–Kutta

In this section, we present 4–stage stochastic Runge–Kutta method for solving Gompertzian stochastic model of
tumor growth. It was Werner [8] who introduced a so–called an s–stage explicit SRK for solving SDEs. The method
was based on the increment of Wiener process, J1(t) which corresponds to the

∫ tn+1
tn dW (t). A simple generalization of

SRK method introduced by [8] is

Yi = yn +h
s

∑
j=1

ai j f (Yj)+ J1

s

∑
j=1

bi jg(Yj), i = 1, . . . ,s

yn+1 = yn +h
s

∑
i=1

αi f (Yi)+ J1

s

∑
i=1

γig(Yi) (4)

where A = (ai j)s×s and B = (bi j)s×s are matrices of real elements, αT = (α1, . . . ,αs) and γT = (γ1, . . . ,γs) are row
vectors in ℜs. The stochastic component comes from J1–integral. The method proposed by [8] cannot surpass the order
of convergence greater than 1.0. Then, Burrage [9] refined the Equation (4) by introducing other stochastic elements
apart from J1. Arbitrary matrix Z and vector zT , were introduced whose elements are random variables. A general
family of s–stage SRK is formulated by

Yi = yn +
s

∑
j=1

Z(0)
i j f (Yj)+

s

∑
j=1

Z(1)
i j g(Yj), i = 1, . . . ,s

yn+1 = yn +
s

∑
i=1

z(0)i f (Yi)+ J1

s

∑
i=1

z(1)i g(Yi)

where Z(0)
i j , Z(1)

i j , z(0)i and z(1)i are written as

Z(0)
i j = hai j, i, j = 1, . . . ,s

Z(1)
i j =

q

∑
l=1

b(l)i j θl , i, j = 1, . . . ,s

050008-2 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

103.53.33.45 On: Thu, 02 Jul 2015 04:51:47



z(0)i = hαi, i = 1, . . . ,s

z(1)i =
q

∑
l=1

γ(l)i θl , i = 1, . . . ,s

An explicit SRK with strong order of 1.0 and 1.5 was developed by letting q = 2. For q = 2, then θ1 = J1 and θ2 =
J10
h ,

where J10 =
∫ tn+1

tn
∫ t

tn dW (s)dt. The random variable J10 is approximated by using the equation (5)

J10

h
=

√
h

2

(
N1 +

N2√
3

)
(5)

where N1 and N2 are standard normal distribution. An s–stage SRK therefore can be written as

Yi = yn +h
s

∑
j=1

a(0)i j f (Yj)+
s

∑
j=1

(
b(1)i j J1 +b(2)i j

J10

h

)
g(Yj), i = 1, . . . ,s

yn+1 = yn +h
s

∑
i=1

α(0)
i f (Yi)+

s

∑
i=1

(
γ(1)i J1 + γ(2)i

J10

h

)
g(Yi) (6)

Burrage & Burrage 4–stage SRK scheme with strong order of 1.5 is represented in tableu form

A 1
2 0

0 1
2 0

0 0 1 0

α 1
6

1
3

1
3

1
6

B(1) −0.72429163 0
0.4237534 −0.1994437 0
−1.5784755 0.84010034 1.7383751 0

γ(1) −0.78007 0.073637 1.4865 0.21992

B(2) 2.700200041 0
1.757261649 0 0
−2.918524118 0 0

γ(2) 1.69395 1.63610 −3.02400 −0.306049

Applying Burrage & Burrage scheme to stochastic model (3), yields

Y1 = y(t0)

Y2 = y(t0)+
1

2
h(aY1 +b ln(Y1))+

(
−0.72429163J1 +2.7002000410

J10

h

)
σY1

Y3 = y(t0)+
1

2
h
(

Y1 +
1

2
(aY1 +b ln(Y1))

)
+
(
−0.72429163J1 +2.7002000410

J10

h

)
σY1

+
(

0.4237534J1 +1.757261649
J10

h

)
σY1 −0.19944370σY2

Y4 = y(t0)+h
1

2

(
Y1 +h

1

2
(aY1 +b ln(Y1))

)
+
(
−0.72429163J1 +2.7002000410

J10

h

)
σY1

+
(

0.4237534J1 +1.757261649
J10

h

)
σY1 −0.19944370J1σY2

+
(
−1.5784755J1 −2.918524118

J10

h

)
σY1 +0.84010034J1σY2 +1.7383751J1σY3
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y(t) = y(t0)+h
(1

6
(aY1 +b ln(Y1)+

1

3
(aY2 +b ln(Y2))+

1

3
(aY3 +b ln(Y3))+

1

6
(aY4 +b ln(Y4))

)

+
((

−0.78007J1 +1.69395
J10

h

)
σY1 +

(
0.073637J1 +1.63610

J10

h

)
σY2 +

(
1.4865J1 −3.02400

J10

h

)
σY3

+
(

0.21992J1 −0.306049
J10

h

)
σY4

)
(7)

The numerical scheme describes above was translated into Matlab program to obtain the approximate solution of

tumor growth for cervical cancer at t ∈ [48,50]. Stochastic integrals of J1 and J10
h can be generated by using Box-

Muller method. We define a meshpoint with a uniform step size h on the interval [t0,T ] and the numerical algorithm is
presented below.

1. Define the fix step size, hn = tn+1 − tn and integer number N such that h = T
N , for tn = n ·h and n = 0, . . . ,N .

2. Do drift function, f (An) = (aAn −bAn ln(An)) evaluation.

3. Do diffusion function, g(An) = σAn evaluation.

4. Perform random number generator of stochastic integrals J1 and J10
h .

5. Perform an explicit 4-stage stochastic Runge-Kutta.

Maximum Likelihood Estimator

In this section, we apply a non–parametric simulated maximum likelihood approach to estimate the unknown
parameters of stochastic model (3). While sample data for the tumor growth of cervical cancer are available, the
parameters a, b and σ are unknown accurately and need to be estimated. The transition density of yi starting from
yi−1 and evolving to yi is p(ti,yi|ti−1,yi−1,θ), where θ = a,b,σ are the parameters to be estimated. The maximum
likelihood estimator for θ is obtained by maximizing the likelihood function of

L(θ) =
n

∏
i=1

p(ti,yi|ti−1,yi−1;θ) (8)

In practice L(θ) will be approximated through Monte Carlo simulation according to the following algorithm proposed
by [10]

1. Divide the time interval [ti−1, ti] into N subintervals with a step size of h =
(ti−1−ti)

N . The Gompertzian stochastic
model is integrated on this discretization by using 4–stage stochastic Runge–Kutta method. This integration is
repeated R times for R = 100 to generate R approximations of the tumor growth A at ti starting with yi−1 at ti−1.
The approximate values of tumor growth is denoted as A1

ti . . .A
R
ti , where Ar

ti is the integrated value of (3) in the

rth–simulation for r = 1, . . . ,R.

2. A non–parametric kernel density then is constructed from the simulated values of A1
ti . . .A

R
ti are used to construct

a non–parametric kernel density estimate of the transition density (8)

pR(ti,yi|ti−1,yi−1;θ) =
1

Rhi

R

∑
r=1

K
(yi −Ar

ti
hi

)
(9)

where hi is the kernel bandwith at time ti and K(·) is a suitable symmetric, non–negative kernel function enclosing
unit mass.

3. The previous procedure is repeated for each yi and the pR(ti,yi|ti−1,yi−1;θ) thus obtained used to construct
LR(θ) = ∏n

i=1 pR(ti,yi|ti−1,yi−1;θ).
4. LR(θ) is maximized to obtain the approximated MLE θ R of θ .

Hurn et al. [10] proposed a suitable choice of K(·) which is given by the normal kernel

K(u) =
1√
(2π)

exp(
−u2

2 ) (10)

with bandwith given by

hi =
4

3

1
5

siR
−1
5 , i = 1, . . . ,n (11)
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RESULTS & DISCUSSION

This section presents the prediction quality of Gompertzian stochastic model to describe the growth of the tumor for
cervical cancer.

Description of the Clinical Data

The cervical cancer data was taken from Hospital Sultanah Nur Zahirah (HSNZ) Kuala Terengganu. One patient,
age 48 years old, has fulfilled the inclusion criteria was identified. The inclusion criteria were histopathologically and
clinically diagnosed with cancer of cervix between 17th March 2011 until 20th March 2013, and without having any
treatment related to cervical cancer in HSNZ. The variables of interest were time (in months) and the area of the cell
growth for cervical cancer (in cm2) were measured from the patient that has been diagnosed with cervical cancer up
to the time she was referring to Total Abdominal Hysterectomy and Bilateral Salphingooopherectomy (TABHSO).
Initial state is observed from the clinical data, A(t0) = 23cm2 where t0 is an initial time that is the time in which the
cell cancers was first detected.

Analysis of Gompertzian Stochastic Model

The likelihood function LR(θ) for R = 100 are maximized to generate the estimated values of θ = {a,b,σ}. The
construction of LR(θ) requires the generating of Wiener increments ΔW (t) = W (ti+1)−W (ti). For this purpose,
these increments are generated via Box–Muller method and once created, those values are kept fixed for a given
optimization procedure. The tumor growth of cervical cancer is simulated at equally spaced intervals of time hi =
ti+1 − ti = T

N . Numerical method of 4–stage SRK is performed to simulate the trajectories in the interval time [t0,T ]
with initial condition, A(t0) = 23cm2. Numerical optimization algorithm was implemented using Matlab program and
the estimated parameter values of θ = {a,b,σ} for R = 100 are listed in Table 1.

TABLE 1. Maximum Likelihood Estimates of Gompertzian Stochastic and Deterministic Model Pa-
rameters

Mathematical
Model a b σ

Gompertzian Stochastic Model 9.288110e−001 −2.000000e+000 7.602268e−001
Gompertzian Deterministic Model 1.043000e+000 −0.074800e+000 –

The following Figure 1 illustrates the plot of clinical data and the respective results of the empirical mean, 95 percent
confidence interval, Q1–Q3 quartiles of the numerical solution over 100 trajectories. Figure 2 shows the result of the
actual data, stochastic Gompterzian model and deterministic counterpart for tumor growth of cervical cancer. Based on
Figure 2, it can be seen that the numerical results obtained via stochastic Gompertzian model are more consistent with
the actual data, hence the tumor growth of cervical cancer is adequately describe by stochastic Gompterzian model.
Moreover, the mathematical model with the incorporating of uncontrolled factors produce low values of MSE, hence
indicate good fits.

TABLE 2. MSE of Gompertzian Stochastic and
Deterministic Models

Mathematical Model MSE

Gompertzian Stochastic Model 0.6020
Gompertzian Deterministic Model 10.0579
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FIGURE 1. Empirical mean, 95 percent CI, Q1-Q3 quartiles of the numerical solution over 100 trajectories and data observations

FIGURE 2. Simulation Results of Stochastic Gompertzian, Deterministic Gompertzian Models and the Actual Data of Cervical
Cancer Growth

CONCLUSION

The numerical solution of stochastic Gompertzian model for cervical cancer describes the experimental data with
more adequacy as indicated by low values of MSE compare to the deterministic Gompertzian model. In real biological
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system, the cancerous growth is subjected to random effects since there are many uncontrolled environmental factors
that influenced the system. This study found that the stochastic model describes real behavior of cancer growth
adequately compare to the deterministic counterpart. Hence, it is worthwhile to note that the cancerous growth for
cervical cancer can be better presented and understood via stochastic Gompertzian model. This finding provides useful
knowledge on the understanding of the uncontrolled factors that affect the cervical cancer cell. However, apart from
that, in reality the patients do not aware when the cancer cell begin to grow. Further work can be done to solve the
latter problem by the inclusion of time delay into stochastic model, the research that will be considered.
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