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ABSTRACT 

 

In hot stamping, one of the key factor for successful process control as well as 

producing a final part strength of more than 1500 MPa is the ability to control heat 

transfer from the blank throughout the process especially during quenching where the 

blank need to be cooled down rapidly to transform it’s microstructure into martensite 

phase. In order to control heat transfer process, a study need to be carried out for 

understanding the characteristics of heat transfer between two solid bodies in contact to 

each other and investigates the influence of applied pressure to the heat transfer as well 

as optimizing its. To do so, a systematic approach has been planned to analyze the heat 

transfer using finite element analysis (FEA) using commercial simulation software as 

well as the experimental work. The FEA is done by simulating the heated blank or the 

specimen cool down as it brought into contact to the tools which has a temperature 

slightly lower than ambient temperature. The effect of different values of applied 

pressure is simulates by manipulating the values of thermal contact conductance at the 

blank and tool surface in contact and the thermal contact conductance values will be 

simulates ranging in between 1000 to 2000 W/m
2
K. Meanwhile, the experiment being 

conducted to measure temperature changes of the blank and tool as it is compress in 

between a set of experimental tool (upper and lower tool) at different pressure ranging 

between 5 to 35 MPa. The experiment results will be used to compute the actual  

thermal contact conductance and compared with the FEA simulation. Based on these 

analyzed result from both approach, the influence of the applied pressure to the heat 

transfer between two solid bodies in contact as well as the optimum value of applied 

pressure possibly defined. 
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ABSTRAK 

 

Dalam proses acuan tekan panas, salah satu faktor utama untuk mengawal proses 

dengan jayanya serta menghasilkan kekuatan akhir produk lebih daripada 1500 MPa 

adalah keupayaan untuk mengawal pemindahan haba daripada kepingan asal besi 

sepanjang proses itu terutama semasa proses lindapkejut dimana kepingan asal besi 

disejukan semula dengan cepat untuk mengubah mikrostrukturnya kepada fasa 

martensit. Dalam usaha untuk mengawal proses pemindahan haba, satu kajian perlu 

dilakukan untuk memahami ciri-ciri pemindahan haba antara dua bahan legap 

bersentuhan diantara satu sama lain dan menyiasat pengaruh tekanan digunakan untuk 

pemindahan haba dan juga mengoptimumkannya. Untuk berbuat demikian, pendekatan 

yang sistematik telah dirancang untuk menganalisis pemindahan haba menggunakan 

analisis unsur terhingga (FEA) menggunakan perisian simulasi komersil dan juga kerja-

kerja uji kaji. FEA itu dilakukan dengan mensimulasi kepingan asal besi atau specimen 

yang telah dipanaskan menyejuk setelah bersentuhan dengan alat yang mempunyai suhu 

yang lebih rendah daripada suhu bilik. Manakala perbezaan tekanan di simulasikan 

dengan memanipulasi nilai-nilai haba kekonduksian sentuhan diantara permukaan 

kepingan asal besi dan alat ujikaji dan nilai-nilai haba kekonduksian sentuhan akan 

dimanupulasikan diantara 1000-2000 W/m
2
K. Sementara itu, eksperimen yang 

dijalankan untuk mengukur perubahan suhu alat yang kepingan asal besi yang telah 

dipanaskan dan di tekan  diantara alat uji kaji (alat atas dan bawah) pada tekanan yang 

berbeza antara 5-35 MPa. Keputusan eksperimen akan digunakan untuk mengira 

kekonduksian sentuhan terma sebenar dan dibandingkan dengan simulasi FEA itu. 

Berdasarkan keputusan yang  dianalisis dari kedua-dua pendekatan, pengaruh tekanan 

terhadap pemindahan haba antara dua objek legap bersentuhan serta nilai tekanan 

optimum dapat ditakrifkan. 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

1.0 CURRENT TREND  

 

The increasing awareness of environmental pollution caused by vehicle emission 

has driven automotive manufacturers around the world to improve fuel efficiency by 

producing a lighter vehicle without compromising vehicle safety. Reducing the weight 

of the vehicle requires the component to have lesser or thinner material but at the same 

time having the same or even better mechanical properties. This has resulted in the 

introduction of ultra-high strength steel (UHSS) to meet the challenge. 

 

Most UHSS as shown in figure 1.1, are made to have high mechanical 

properties. Although their mechanical properties are remarkably high, a major setback is 

in forming where high forming load is required and closely associated with short tool 

life and the low formability of the material. Unlike other UHSS materials, boron steel 

gains its final strength through the heat treatment process which alters its mechanical 

properties as well as increasing its hardness. In annealed condition, the yield strength of 

boron steels sheet (typically coated 22MnB5) are only half the strength of other UHSS 

but after it has been heat treated the yield strength increases up to 1200 MPa. With the 

capability of having an yield strength of 1200 MPa (after being hardened) the 

possibilities of weight reduction in automotive vehicle is enormous and in today’s 

vehicle there are more automotive component which are related to vehicle safety such 

as the A-pillar, B-pillar, chassis, roof rail and many others been formed  by boron steel 

material (Altan, 2006)(figure 1.2).  



2 

 

 

 

Figure 1.1: Yield strength comparison between boron steel (code name: 22MnB5) and 

typical sheet metal used for automotive component 

 

(Altan, 2006) 

 

In the heat treatment process, boron steel is heated to austenization temperature 

about 900 - 950 °C to induce the microstructure phase transformation. At this point, not 

only the microstructure phase changes from a mixture of ferrite and pearlite to austenite 

phase but also reduces the strength of the materials as well as increasing the elongation 

which are practical for the forming operation. In order to take advantage of this 

phenomenon, a special forming technique so called 'Hot Stamping'  has been developed 

to suit the forming and hardening process of boron steel. In general, this technique 

combines the process of forming at elevated temperature and rapid cooling or queching 

of the blank (also made of boron steel) in a single operation tool. This specially 

designed stamping tool is capable of forming the blank into shape and cooling down the 

blank rapidly through the conduction between the blank surface in contact with liquid 

cooled tool surface . This technique is proven to be more effective to reduce the spring-

back effect and improve the formability of material thus indirectly reducing the forming 

force and allowing for smaller press machine tonnage (Mori et al., 2005). 
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Figure 1.2: Typical vehicle component produced from 22MnB5 Boron Steel sheet 

 

(Karbasian and Tekkaya, 2010) 

 

1.1 HOT STAMPING 

 

In hot stamping (figure 1.3), the pre-cut boron steel sheet is heated to the 

austenization temperature approximately at 900 - 950 °C for 5 to 10 minutes in a 

furnace to induce the microstructure phase of the blank changing to austenite 

microstructure. As the temperature is reached, the blank is transferred as quickly as 

possible to the hot stamping tool to avoid temperature drop. Then, as the tool closes the 

forming operation take place where the blank is formed into shape according to the 

contour surface of the tool. This forming operation must take place before the beginning 

of the martensitic transformation. Therefore,  fast tool closing and forming are the 

preconditions for a successful process. As the tool reaches the bottom end stroke, it will 

dwell for a certain time (depending on the blank size) to allow the quenching operation 

to take place. At this stage the blank needs to be cooled down through conduction to the 

tool surface with minimum cooling rate of 30 ºC per second to force the microstructure 

phase transformation of the boron steel blank from austenitic phase to fully martensitic 

phase thus giving the high final part strength or otherwise the final yield strength of 
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1200 MPa might not be achieved (Abdul Hay et al., 2010).  Soon after that, the tool is 

opened to remove the formed blank, ready for the next operation. 

 

A  successful process control can be defined by two main criteria; the ability to 

form the blank into shapes as well the ability to hardened the blank so that the final part 

would have yield strength of 1200 MPa and ultimate tensile strength at 1500 MPa.  In 

the process, forming the blank at high temperature is not a major issue since the process 

of heating itself improves the formability of the blank but for hardening the blank, a few 

parameters such as cooling rate, initial tool temperature, applied pressure and so on 

need to be carefully considered. A slow cooling rate would cause the formation of 

bainite microstructure phase instead of martensite (figure 1.4) which affects the final 

part strength while fast cooling rates would increase the cost of lowering the tool 

temperature to accelerate the blank cooling rate (Chang et al., 2011). So an experimental 

studies need to be done to investigate the optimal process parameters such as applied 

pressure to the blank, initial tool temperature and the cooling rate of the the blank. 

 

 

Figure 1.3: Typical process flow of hot stamping process 

 

(Abdul Hay et al., 2010) 
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Figure 1.4:Continuous  cooling transformation diagram of 22MnB5 boron steel. 

 

(Naganathan, 2010) 

 

1.2 PROBLEM  STATEMENT 

 

In hot stamping,one of  the key factors for successful production of the stamped 

part with a ultimate strength of 1500 MPa is the ability to control the cooling rate of the 

blank during the quenching inside the forming tool. The blank needs to be cooled down 

at a rate of less than 30 ºC/s in order to fully transform the austenite phase to martensitic 

microstructure phase(Karbasian and Tekkaya, 2010). During the process, the quenching 

needs to be performed as the forming operation is completed where the tool dwells for a 

few second at the bottom stroke. As the tool dwells, the formed blank is fully in contact 

with the tool surface consequently conducting the heat from the blank to the tool 

materials and rapidly cooling down the blank. At this point, process parameters such as 

applied contact pressure and initial tool temperature as well as the tool material play an 

important role in controlling the blank cooling rate. A tool material with a higher 

thermal conductivity is capable of conducting the heat faster, while higher applied 
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pressure reduces the heat resistance at the contact interface. A lower tool temperature 

accelerates the blank cooling rate thus shortening the part cycle time(Karbasian and 

Tekkaya, 2010). So, based on these criteria most tool makers prefer high thermal 

conductivity tool steel (HTCS) as the material for the tool insert and during the process, 

the tool temperature is maintained at 5 - 10 °C. Despite the advantage of high thermal 

conductivity and low tool temperature, the drawback is the high tool cost and the 

operational cost is very high. The price of HTCS  is almost triple the price of hot tool 

steel and this is further complicated by the lack of steel makers in this region. As a 

result the material cost is increased due to transportation as well as increasing the 

procurement lead time. In addition in equatorial climates, maintaining low tool 

temperature using chilled water requires high energy utilization thus raising the 

operational cost. Also very low tool temperature leads to condensation on the tool 

surface due to high humidity which could accelerate corrosion. An alternative to the 

situation, HTCS  materials could be replace with low thermal conductivity steel as the 

tool materials and the initial tool temperature set  just slightly lower than ambient 

temperature (20 – 25 ºC) capable to reduce the transportation and the lower the energy 

consumption for chilled water but in another hand increase the process cycle time. Thus, 

a study on the tool material and the process parameters needs to be done to optimize the 

process. 

 

1.3 RESEARCH  OBJECTIVES 

 

This research has the following objectives: 

(i) To conduct a thermal analysis simulation of the actual experimental process. 

(ii) To design and fabricate an experimental setup to evaluate the thermal 

contact conductance between the boron steel blank and the tool . 

(iii) To determine the influence of applied pressure, P on the thermal contact 

conductance, hc at the interface between the blank (boron steel material) and 

tool material (STAVAX Tool Steel). 

 

 

 

 


