Production of CO-rich Hydrogen from Methane Dry Reforming Over Lanthania-Supported Cobalt Catalyst: Kinetic and Mechanistic Studies

Bamidele V. Ayodele^a, Maksudur R. Khan^a, Su Shiung Lam^c, Chin Kui Cheng^{a, b,}

^a Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

^b Rare Earth Research Centre, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang Kuantan, Pahang, Malaysia

^c Eastern Corridor Renewable Energy Group (ECRE), School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

ABSTRACT

In this study, the production of CO-rich hydrogen from methane dry reforming over lanthaniasupported Co catalyst was investigated. The Co/La₂O₃ catalyst was synthesized via wet-impregnation method and characterized using instrument techniques such as TGA, FTIR, XRD, FESEM-EDX and N₂ adsorption-desorption analysis. The catalytic activity of the Co/La₂O₃ catalyst tested in a fixed bed stainless steel reactor yielded highest CH_4 and CO_2 conversion of 50% and 60% respectively at 1023 K and feed ratio of 1.0. The methane dry reforming reaction gave highest H₂ and CO yield of 45% and 58% respectively. Furthermore, kinetics and mechanistic behavior of the La_2O_3 supported Co catalyst in methane dry reforming reaction was investigated as a function of temperature and partial pressure of reactants (CH_4 and CO_2). The experimental data obtained from the kinetics measurements were fitted using the empirical power-law rate expression, as well as six different Langmuir–Hinshelwood kinetics models. The six models were then statistically and thermodynamically discriminated. Consequently, the Langmuir–Hinshelwood kinetics model (dualsite associative adsorption of both CH₄ and CO₂ with bimolecular surface reaction) was adjudged the best representative model. Activation energy values of 96.44 and 98.11 kJ mol⁻¹ were obtained for the CH₄ consumptions from the power-law and Langmuir–Hinshelwood models, respectively. A lower activation energy of *circa*72 kJ mol⁻¹ obtained for CO₂ consumption showed that the rate of consumption of CO₂ consumption was speedier than CH₄.

KEYWORDS: Cobalt; Dry reforming; Methane; Lanthanum; Langmuir–Hinshelwood; Syngas

DOI: 10.1016/j.ijhydene.2016.01.091