Ceo2-Tio2 as a Visible Light Active Catalyst for the Photoreduction of Co2 to Methanol

Hamidah Abdullah^{a, b}, Maksudur R. Khan^b, Manoj Pudukudy^a, Zahira Yaakob^{a, ,} , Nur Aminatulmimi Ismail^b

^a Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia

^b Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Kuantan, Pahang, 26300, Malaysia

ABSTRACT

The performance of CeO_2 -TiO₂ photocatalyst for the photocatalytic reduction of CO_2 into methanol was studied under visible light irradiation. The as-prepared catalysts were characterized for their structural, textural and optical properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), nitrogen physisorption analysis, UV-vis spectroscopy and photoluminescence (PL) spectroscopy. The characterization results indicated that the presence of CeO_2 stabilized the anatase phase of TiO₂, decreased its crystallite size, increased the surface area, reduced the band gap energy and lowered the rate of electron-hole pair recombination. The CeO_2 -TiO₂ photocatalyst showed an increased methanol yield of 18.6 µmol/g under visible light irradiation, compared to the bare TiO₂(6.0 µmol/g).

KEYWORDS: ceria; TiO₂ photocatalyst; CO₂ photoreduction; visible light; methanol; rare earths