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ABSTRACT 

In a typical acrylic manufacturing unit, waste water contains acrylic acid (AA) 

in a range of 4-15 wt% contributes to the high value of chemical oxygen demand. Due 

to the toxicity of AA to the aquatic organism, this wastewater should be treated before it 

is discharged. Recovery of AA from the waste water via esterification reaction in a 

reactive distillation column (RDC) could be a promising method to treat this waste 

water. Activity and kinetic studies using a batch system are important to examine the 

'practicability of this method. In the present work, the activity and kinetic studies of the 

esterification of AA and 2-ethyl hexanol (2EH) were carried out in a batch system. Ion 

exchange resin, Amberlyst 15 was employed as a catalyst. The effect of various 

variables that affecting conversion and yield such as agitation speed, catalyst particle 

size, temperature, catalyst loading and initial reactant molar ratio were studied. The 

effect of the initial water content was studied using both the batch systems with total 

reflux (TR) and dean stark for continuously water removal (CWR). The increase of 

equilibrium conversion with the temperature indicated the endothermicity of the 

reaction. Temperature was the most significant variable that affected the conversion and 

yield. The highest conversion and yield were obtained at the temperature of 388 K, 

initial reactant molar ratio of AA to 2EH of 1:3 and catalyst loading of 10 wt%. The 

yield for the reactions of the AA solutions with different AA concentrations except the 

AA concentrations of 10-20 wt%, was enhanced significantly when the reactions were 

carried out using the CWR setup. Catalyst poisoning occurred during the reactions of 

the very dilute AA solutions (10-20%) due to the water inhibition and poly-acrylic acid 

deposition on the catalyst surface as validated by the catalyst characterisation studies. 

The pseudo-homogeneous (PH), Eley-Rideal (ER) and Langmuir-Hinshelwood-

Hougen-Watson (LHHW) kinetic models were used to interpret the kinetic data. The 

best fit kinetic model for the main esterification reaction was shown by the non-ideal 

ER model while the side reaction, AA polymerisation was best interpreted by PH 

model. The kinetic data for the esterification of dilute AA was well described by the 

inclusion of the correction factor to the kinetic model of the esterification.
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ABSTRAK 

Kebiasaannya, unit penghasilan asid akrilik menghasilkan air sisa yang 

mengandungi asid akrilik (AA) dalam komposisi 4-15% nisbah berat. Air sisa mi 

menyumbang kepada nilai permintaan oksigen kimia (COD) yang tinggi Air sisa mi 

perlu dirawat sebelum dilepaskan disebabkan oleh sifat toksiknya kepada organisma 

akuatik. Perawatan air sisa menggunakan kaedah pengesteran dalam turus penyulingan 

reaktif (RDC) menunjukkan potensi yang tinggi. Kajian tentang aktiviti clan kinetik 

menggunakan sistem reaktor berkelompok penting untuk mengkaji kesesuaian kaedah 

mi. Dalam kajian mi, kajian aktiviti clan kinetik pengesteran AA clan alkohol 2-

ethyihexyl (2EH) telah dijalankan dalam sistem reaktor berkelompok. Ion bertukar resin 

komersial, 'Amberlyst 15' telah dipilih sebagai bahan pemangkin. Kesan pelbagai 

pemboleh ubah yang mempengaruhi kadar tindak balas kimia seperti kelajuan adukan 

reaktor, saiz zarah pemangkin, suhu tindak balas, kadar muatan pemangkin clan nisbah 

awal mot bahan tindak balas telah dikaji. Kesan kandungan awal air diuji menggunakan 

kedua-dua sistem reaktor berkelompok pada keadaan refluks keseluruhan (TR) clan 

penyingkiran air berterusan (CWR). Peningkatan penukaran pada keseimbangan dengan 

peningkatan suhu membuktikan sifat endotermik tindak balas mi. Suhu ialah pemboleh 

ubah yang paling memberi kesan kepada penukaran clan hasil tindak balas. Penukaran 

dan hasil tindak balas tertinggi diperoleh pada suhu 388 K , nisbah molar awal bahan 

tindak balas, AA kepada 2EH pada 1:3 clan kuantiti bahan pemangkin 10% nisbah berat. 

Hasil bagi tindak balas AA dengan kepekatan berbeza (melainkan kepekatan AA 10-

20% berat), telah diprtingkatkan dengan ketara apabila tindak balas dijalankan dengan 

menggunakan set radas CWR. Keracunan pada pemangkin dilihat berlaku semasa 

tindak balas pada kepekatan AA yang sangat rendah (10-20 %) disebabkan oleh 

perencatan oleh air clan pemendapan polimer akrilik pada permukaan mangkin 

sepertimana yang disahkan oleh kajian pencirian pemangkin. Model kinetik Pseudo-

homogen (PH), Eley-Rideal (ER) clan Langmuir-Hinshelwood-Hougen-Watson ( 

LHHW ) telah diguna pakai untuk mentafsir data kinetik. Model kinetik terbaik bagi 

aktiviti tindak balas pengesteran utama ialah model ER tidak ideal manakala bagi tindak 

balas sampingan, pempolimeran AA, ditafsirkan dengan baik oleh model PH. Data 

kinetik untuk pengesteran cairan AA boleh ditafsirkan dengan pertambahan faktor 

pembetulan kepada model kinetik pengesteran.
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CHAPTER 1 

INTRODUCTION 

1.0 INTRODUCTION 

Acrylic acid (AA) has served for more than 30 years as an essential component 

in the production of acrylate polymers from acrylate ester such as methyl acrylate, butyl 

acrylate, ethyl acrylate and 2-ethyl hexyl acrylate, which are applied in the industry of 

paints, coatings, textiles, adhesives, and plastics (Xu et at., 2006). 

Wastewater containing 4-10 wt% AA could be generated after the extraction and 

distillation process in the AA manufacturing plant. AA is categorized as hazardous 

chemical compound. Release of AA to the effluent can cause serious damage to the 

environment due to the high toxicity to the aquatic organism. The prolonged exposure 

may cause destructive to the mucous membranes and upper respiratory tract, even cause 

fatal as a result of spasm, inflammation and edema of the larynx and bronchi, chemical 

pneumonitis and pulmonary edema (Sigma-Aldrich, 2013). 

High value of total organic content (TOC) and chemical oxygen demand (COD) 

of the wastewater from a typical acrylic manufacturing unit were attributed to the high 

concentration of AA (Li el at., 2008). Wastewater containing AA has been treated with 

various methods in order to fulfil the standard limit set by the local environmental 

authority. Most of the AA manufacturers have burned this type of wastewater using 

incinerator (Alison el at., 2011). However, this method is neither environmental friendly 

nor economical feasible. High content of COD also has restricted to the application of 

biological treatment and adsorption to this type of wastewater (Scholz, 2003).
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1.1 PROBLEM STATEMENT 

In view of the shortcomings of the existing treatment method, esterification of 

AA with alcohol could be a promising method to recover the AA from the wastewater 

stream. AA could be recovered as a useful polyester compound while the wastewater is 

purified

2-ethyl hexyl acrylate is widely known for the use in the polymer industries for 

the production of different copolymers, such as those with AA and it's salts, amides, 

methacrylates, acrylonitriles, styrene vinyls and butadiene (Klien et al., 2012; Peykova 

el at., 2012). It is normally produced by the esterification of prop-2-enoic acid or 

commonly known as AA with 2-ethyl hexanol (2E1-1). It is a classical reaction system 

where the conversion achieved is limited by equilibrium. Unfortunately, this method 

alone show low performance in diluted compound and has difficulty in product 

separation. 

Reactive distillation column (RDC) is an intensified process in which reaction 

and separation occur simultaneously in a column. It is used to enhance particularly the 

reversible reaction by removing product from the system continuously. RDC was used 

to overcome the equilibrium limitation of the esterification reaction. A typical 

commercialised example is esterification of methanol with acetic acid and esterification 

of fatty acid with isopropyl alcohol. Numerous researches were carried out for the 

esterification of different type of pure/diluted carboxylic acids with alcohols. These 

acids include formic acid, phthalic acid, succinic acid and lactic acid (Saha and Sharma, 

1996; Bock el at., 1997; Choi and Hong, 1999; Sanz el al., 2002). Esterification in a 

RDC is one of the promising methods to recover AA from wastewater, (Saha et at., 

2000; Bianchi et at., 2003; Calvar el at., 2007). 

Catalyst is used in the esterification process to accelerate the chemical reaction 

process by lower the activation energy required for the reaction. Homogeneous acid 

catalyst such as sulphuric acid, hydrofluoric acid, para-toluenesulfonic acid and 

heteropolyacid are often used in industrial processes for this purpose (Lilja et al., 2002 

Jaques and Leisten, 1964; Sejidova el at., 1990; Goncalves et al., 2012; Santia et at.,
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2012; Pappu et al., 2013). Nevertheless, these corrosive homogeneous catalysts are 

difficult to be removed from the reaction medium (Farnetti et al., 2004). Meanwhile, 

esterification reaction catalysed by biocatalyst/enzymatic catalyst suffers with poor 

thermal stability (about 323-328 K) and longer reaction time despite the low energy 

consumption and operating cost (Gómez-Castro et al., 2012; Demirbas, 2008; Gerpen, 

2005). Heterogeneous catalysts are claimed to be more relevant and appropriate as it is 

easy and cheap for recovery purpose, good in thermal stability, besides having better 

conversion and selectivity (Kiss, 2011). The usage of heterogeneous catalyst in 

esterification reaction could produce clean reaction product solution and reduce waste 

water (Sejidov el al., 2005; Cordeiro et al., 2008). 

The suitability of commercially available solid acid catalyst such as 

macroporous sulfonic acid resin (Indion 130 and Amberlyst 15), gelular or 

microrcticular cation-exchange resin (amberlite JR 120), acid-treated montmorillonite 

clay (Engelhard F 24), Zeolite (ZSM-5 and MCM-41) sulfated zirconia, and 

heteropolyacids (12-tungstophosphoric acid) were assessed for the esterification of 

carboxylic acid/ waste water containing carboxylic acid with alcohol (Bianchi el al., 

2003; Peters et al., 2006; Fernandes et al., 2012). The organic resin is preferable 

compared to solid oxides due to higher conversion (Chen et al., 1999; Komoñ et al., 

2013).

To the best of our knowledge, the study about esterification of AA with 2EH 

catalysed by Amberlyst 15 Dry (an acidic cation-exchange resin) is yet to be reported in 

the literature. In the present study, which is a part of a wider project with the aim of 

designing RDC for the AA recovery from the wastewater stream, diluted AA with 

different concentration (model wastewater) was reacted with 2EH in a stirred batch 

reactor. Amberlyst 15 Dry was used as catalyst. Information required for RDC design 

such as the important operating variables and kinetic model were identified. The 

practicability of carrying out this reaction in RDC was examined.
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1.2 OBJECTIVES 

The objectives of the study of esterification of AA with 2EH catalysed by Amberlyst 15 

Dry are: 

• To study the effect of important operating variables to the reaction kinetics. 

• To develop the kinetic model of the reaction. 

• To determine the effect of water inhibition toward the reaction. 

1.3 SCOPES OF STUDY 

The scopes of study include: 

• The study on the effect of external and the internal diffusion on the reaction. 

• The study on the effect of the operating variables such as initial concentration of 

AA, reaction time, catalyst loading, temperature and ratio of reactants. 

• The equilibrium study. 

• The kinetic data correlation, with pseudo-homogeneous (PH), Eley Rideal (ER), and 

Langmuir Hinsheiwood Hougen Watson (LHHW) models. 

1.4 SIGNIFICANCE OF STUDY 

The outcome of the present research serves as a basis for the analysis of the 

prospect and feasibility of the AA recovery from the waste water stream using RDC. 

The range of the important operating variables and the kinetic model identified in the 

present study can be adopted in the modelling and simulation of the RDC for AA 

recovery. The feasibility can be examined based on the results obtained from the 

simulation study. The success of the present work would lead to a breakthrough of new 

treatment method for wastewater containing acrylic acid from the etrochemical 

industries. Hence, the environmental impact of the wastewater generated by 

petrochemical industries could be reduced. More revenue would also be generated from 

the ester produced from the wastewater stream.
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