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ABSTRACT 

 

This project is a study on determination of fracture strain using stress relaxation 

method. The objectives of this project are to determine fracture strain of API X65 

using stress relaxation method and to investigate the effect of true stress-strain data 

on failure initiation point. This project involves both analysis and experiment of the 

API X65 steel using tensile test and MSc Marc 2008 r1 software. This project will 

determine fracture of ductile material using stress relaxation method. For validation, 

simulated results using stress relaxation method are compared with the experimental 

data for API X65 steel. Advantages in the use of the stress relaxation method for 

practical used are discussed. The results show that good comparison between 

simulation and experimental results support the method of stress relaxation method. 
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ABSTRAK 

 

Projek ini merupakan stu kajian pentuan ketegangan patah menggunakan kaedah 

kelonggaran tekanan. Objektif project ini adalah untuk menentukan ketegangan patah 

keluli API X65 menggunakan kaedah kelonggaran tekanan dan untuk menyiasat 

kesan perubahan data tegasan-tarikan sebenar pada titik permulaan kegagalan. Projek 

ini melibatkan kedua-dua analisis dan eksperimen keluli API X65 menggunakan 

ujian tegangan dan perisian MSc Marc 2008 r1. Projek ini akan menentukan patah 

bahan mulur menggunakan kaedah kelonggaran tekanan. Untuk pengesahan, 

keputusan simulasi menggunakan kaedah kelonggaran tekanan dibanding dengan 

data eksperimen untuk keluli API X65. Kelebihan dalam penggunaan kaedah 

kelonggaran tekanan untuk kegunaan praktikal akan dibincangkan. Hasilnya 

menunjukkan bahawa perbandingan yang baik antara simulasi dan keputusan 

eksperimen menyokong kaedah kaedah kelonggaran tekanan. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 INTRODUCTION 

 

This chapter will briefly explain about the introduction of this project. The 

introduction must be clear before rub any project. This chapter will consist of project 

background, problem statement, objective and scope of study. All this information is 

important before furthering to the analysis and study later. 

 

1.2 PROJECT BACKGROUND 

 

This project will present a method to determine the value of fracture strain 

using finite element analysis based on the experimental value using tensile test. A 

procedure is given to determine the stress modified fracture strain as a function of the 

stress triaxiality from smooth and notched bar tensile test. Based on detailed finite 

element analysis, the result is compared with experimental data for smooth and 

notched bar tensile test. The material that will be use is API X65 steel. The validity 

of the approach is verified by comparing tensile test results with finite element 

analysis solutions obtained using modified true stress-strain curve. 

 

1.3 PROBLEM STATEMENT 

 

Tensile test is a fundamental materials science test in which a sample is 

subjected to uniaxial tension until failure. The results from the test are commonly 

used to select a material for an application, for quality control, and to predict how a 

material will react under other types of forces. This will give cost to the manufacture 

to perform tensile test. With this project, the cost can be cut by using finite element 
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analysis to determine the value of fracture strain. We can apply the real situation into 

the analysis using finite element method. This will help to have better quality control 

and also can predict the reaction of material without doing the real tensile test 

because it can be simulated in finite element analysis. 

 

1.4 OBJECTIVES 

 

For this project, the two main objectives are listed: 

i. To determine fracture strain of API X65 using stress relaxation method. 

ii. To investigate the effect of true stress-strain data on failure initiation point. 

 

1.5 SCOPE OF STUDY 

  

The scope of this project is to determine the value of fracture strain of API 

X65 using finite element analysis. The specimen will be in four different sizes that 

are smooth and three values of radius (R1.5, R3, and R6) of notched. This project 

will focus on API X65 as the material. This test will consist with two part that is 

usng tensile test and software that is MSC Marc 2008 r1 to simulate the tensile test. 

This simulation will consist of plastics and elastic deformation. 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

CHAPTER 2 

 

 

LITERARTURE REVIEW 

 

2.1 INTRODUCTION 

 

 This chapter will briefly explain about tensile test, fracture strain, types of 

fracture, stress and strain, API X65, finite element analysis, and journals that have 

been done by current researchers. Besides that, the information about the software 

that has been used also included here. All this information is important before 

furthering to the analysis and study later. 

 

2.2 STRESS AND STRAIN 

 

 During the tensile test samples of materials, stress-strain curve is a graphical 

representation between stress, derived from measuring the load applied to the 

sample, and strain, which is derived from measuring the deformation of the sample 

such as elongation, compression, or distortion. The slope of the stress-strain curve at 

any time is called the tangent modulus, slope of the linear elastic curve is a property 

used to characterize the materials and are known as Young‟s modulus. The area 

under the curve known as the elastic modulus of resilience.  

 

In general, stress is defined as force per unit area. It has the same units as 

pressure, and in fact pressure is one special variety of stress. However, stress is a 

much more complex quantity than pressure because it varies both with direction and 

with the surface it acts on. If there is stress, there will be strain because stress causes 

strain. Putting pressure on an object is being causes it to stretch. Strain is a measure 

of how much an object is being stretched. Strain is related to change in dimensions 

and shape of a material. When a material is stretched the change in length and strain 
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are positive. When it is compressed, the change in length and strain are negative. 

This conforms to the signs of stresses which would accompany these strains, tensile 

stresses being positive and compressive stresses negative. This definition refers to 

what are termed normal strains, which change the dimensions of a material but not its 

shape, in other words, angles do not change. In general, there are normal strains 

along three mutually perpendicular axes. 

  

Stress-strain diagrams of various materials vary widely, and different tensile 

tests conducted on the same material may yield different results, depending upon the 

temperature of the specimen and the speed of the loading. It is possible, however, to 

distinguish some common characteristics among the stress-strain diagrams of various 

groups of materials divide into two broad categories on the basis of these 

characteristics, namely ductile materials and the brittle materials. 

 

 

Figure 2.1: Stress-strain curve for mild steel 

 

Source: Ling, (1996) 



5 
 

 

Figure 2.2:  Stress-strain curve 

 

Source: Ling, (1996) 

 

2.2.1 Engineering Stress-Strain Curve 

 

 Engineering tension test is widely used to provide basic design information 

on the strength of materials and the acceptance tests for the specification of the 

materials. In the tension test specimens subjected to uniaxial tensile force which 

continues to increase while the elongation of specimens made simultaneous 

observations. The shape and magnitude of the stress-strain curve of a metal will 

depend on the composition, heat treatment, history or prior to plastic deformation, 

and strain rate, temperature, and the force applied during the test. Parameters used to 

describe the stress-strain curve of a metal, are tensile strength, yield strength or yield 

point, elongation percent and reduction area. Tensile strength and yield strength are 

strength parameter, while elongation percent and reduction area indicate ductility. 

 

2.2.2 True Stress –Strain Curve 

 

The true stress-strain curves are based on instantaneous gage length and 

instantaneous cross-sectional area of the specimen. Therefore, the area under the 

curve is up to a specific strain is proportional to the energy required to create that 
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level of strain or the energy absorbed „when that level of strain is imparted to a part. 

Because of that, true stress always rises in the plastic region. 

 

During stress testing of a material sample, the stress–strain curve is a 

graphical representation of the relationship between stress, obtained from measuring 

the load applied on the sample, and strain, derived from measuring the deformation 

of the sample. The nature of the curve varies from material to material. 

 

 

 

Figure 2.3 : Typical stress-strain curve 

 

Source: Ling, (1996) 

 

Point A: At origin, there is no initial stress or strain in the test piece. Up to 

point A Hooke's Law is obeyed according to which stress is directly proportional to 

strain. That's why the point A is also known as proportional limit. This straight line 

region is known as elastic region and the material can regain its original shape after 

removal of load. 
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Point B: The portion of the curve between AB is not a straight line and strain 

increases faster than stress at all points on the curve beyond point A. Point B is the 

point after which any continuous stress results in permanent, or inelastic 

deformation. Thus, point B is known as the elastic limit or yield point. 

 

Point C & D: Beyond the point B, the material goes to the plastic stage till the 

point C is reached. At this point the cross- sectional area of the material starts 

decreasing and the stress decreases to point D. At point D the workpiece changes 

its length with a little or without any increase in stress up to point E. 

 

Point E: Point E indicates the location of the value of the ultimate stress. The 

portion DE is called the yielding of the material at constant stress. From point E 

onwards, the strength of the material increases and requires more stress for 

deformation, until point F is reached. 

 

Point F: A material is considered to have completely failed once it reaches the 

ultimate stress. The point of fracture, or the actual tearing of the material, does not 

occur until point F. The point F is also called ultimate point or fracture point. 

 

Therefore, availability of a method similar in principle to (Zhang and Li, 

1994) approach but much simpler is highly desirable. A power law is often used to 

represent the whole flow curve, for instance , where K and n are empirical constants 

determined from known true stress-strain data before necking. 

 

Modern FEA programs do not require input of the uniaxial true stress-strain 

function in analytical form. It is entered numerically as ordered pairs taken from 

experimental data and the power law or any other function in analytical form are not 

necessary for curve fitting the measured true stress-strain data before necking. The 

power law may be useful for extrapolation of the true stress-strain curve beyond 

necking (Ling, 1996). 

 

True stress–strain curves can be obtained using tensile (Bridgman, 1952; 

Cabezas and Celentano, 2004; Koc and Stok, 2004; Komori, 2002; Mirone, 2004; 
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Zhang, 1995; Zhang et al., 1999), compression, ball indentation, punch, torsion, and 

notch tensile tests. Haddadi et al. (2006) and Bouvier et al. (2006) studied the 

anisotropic behaviors of sheet metals under large plastic deformations using the 

simple shear test. Most of these methods obtain true stress–strain relations only for 

strains less than 0.5. However, the maximum strain often exceeds 1.0 in bulk metal 

forming, such as in forging, extrusion, and rolling. Sometimes it reaches 3.0 in multi-

stage automatic cold forging, the so-called cold-former forging used to produce 

fasteners. 

 

Recently, many researchers have tried to obtain true stress–strain curves using 

finite element methods, see e.g. (Cabezas and Celentano, 2004; Campitelli et al., 

2004; Choi et al., 1997; Husain et al., 2004; Isselin et al., 2006; Lee et al., 2005; 

Mirone, 2004; Nayebi et al., 2002; Springmann and Kuna, 2005). In a tensile test, the 

true strain reaches its maximum value at the smallest cross-section in the necked 

region, and it may exceed 1.5 just before a ductile material fractures. Therefore, one 

should be able to obtain the flow stress of materials at a large strain if finite element 

methods are used to predict the localized deformation behavior during a tensile test. 

A few researchers have attempted to obtain the flow stress at a large strain using 

simulation and experimental approaches, but these applications have been quite 

limited, see e.g. (Cabezas and Celentano, 2004; Mirone, 2004). 
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2.2.3 Comparison Of Engineering And True Stress-Strain Curves 

 

 

 

Figure 2.4: Graf of engineering and true stress strain curve 

 

Source: C.K. Oh, (2011) 

 

2.3 FRACTURE STRAIN 

 

 From detailed elastic-plastic FE analyses with the large geometry change 

option, accurate values of stress and strain components can be determined at every 

stage of deformation. By combining such information with notched bar tensile test 

results, a ductile failure criterion in terms of the equivalent strain to failure as a 

function of the stress triaxiality can established. Before proceeding, it should be 

noted that stress and strain are defined only at appoint. 
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 Different positions with notched bar can be chose, which lead to different 

failure criteria. One possible approach is to develop a failure criterion based on stress 

and strain at the location where the failure is most likely to initiate, which 

corresponds to the site with the highest stress triaxiality and strain or with the highest 

damage. Another interesting approach is based on average stress and strain over the 

minimum section. Although the former approach is more plausible, the latter 

approach could offer some advantages in practical application to defect assessment. 

 

2.4 PLANE STRESS 

 

 Plane stress is defined to be a state of stress in which the normal stress, σz, 

and the shear stress, σ x z and σ y z, directed perpendicular to the x-y plane are assumed 

to be zero. The geometry of the body is essential that one of the plate with one 

dimension much smaller than the others. The loads are applied uniformly over the 

thickness of the plate as shown. The plane stress condition is the simplest form of 

behavior for continuum structures and represents situations frequently encountered in 

practice. 

 

 

 

Figure 2.5: Plate with fillet 

 

Source: Choung and Cho, (2008) 
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2.5 PLANE STRAIN 

 

 Plane strain is defined to be a state of strain which the strain normal to the x-y 

plane, ε z, and the shear strain γ x z and γ y z, are assumed to be zero. In plane strain, 

one deals with a situation in which the dimension of the structure in one direction, 

say the z-coordinate direction, is very large in comparison with the dimensions of the 

structure in the other two directions (x-and y-coordinate axes), the geometry of the 

body is essentially that of prismatic cylinder with one dimension much larger than 

the others. The applied forces act in the x-y plane and do not vary in the z direction. 

For example, the loads are uniformly distributed with respect to the large dimension 

and act perpendicular to it. Some important practical applications of this 

representation occur in the analysis of bars and rollers compressed by forces normal 

to their cross section are amenable to analysis in this way. 

 

2.6 DUCTILE FRACTURE 

 

 In ductile fracture, extensive plastic deformation (necking) occurs prior to 

fracture. Breach of the terms of major failure of the ductile fracture reflects ductile 

materials loaded in the tension difficult. Instead of cracking, the material will pull 

apart. In this case, there is slow diffusion and absorption of large amounts of energy 

before breaking. Many ductile metals, in particular materials with high purity, can 

sustain very large deformation or strain before fracture under favorable loading 

condition and environmental condition. At room temperature, pure iron can undergo 

deformation up to 100% strain before breaking, while high carbon steel cannot 

maintain 3% strain. 

 

 Because of the ductile fracture involves a degree of high plastic deformation, 

fracture behavior of the crack propagates as a model on the basic of change. Some of 

the energy of the stress concentration at the crack tip is dissipated by plastic 

deformation before crack propagates. The characteristics of ductile fracture are there 

is permanent deformation at the tip of the advancing crack that leaves distinct 

patterns in SEM images. As with brittle fractures, the surface of a ductile fracture 

tends to be perpendicular to the principal tensile stress, although other components of 
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stress can be factors. In ductile, crystalline metals and ceramics it is microscopically 

resolved shear stress that is operating to expand the tip of the crack. There also has to 

be a lot of energy available to extend the crack. 

 

2.7 BRITTLE FRACTURE 

 

 In brittle fracture, no apparent plastic deformation takes place before fracture. 

In brittle crystalline materials, fracture can occur by cleavage as the result of tensile 

stress acting normal to crystallographic planes with low bonding. In amorphous 

solids, by contrast, the lack of crystalline structure results in a conchoidal fracture, 

with cracks proceeding normal to the applied tension. 

 

 Some characteristics of brittle fracture are there is no gross, permanent 

deformation of the material. The surface of the brittle fracture tends to be 

perpendicular to the principal tensile stress although other components of stress can 

be factor. Besides that, characteristic crack advance markings frequently point to 

where the fracture originated. The path of the crack also follow depends on the 

material‟s structure. In metals, transgranular and intergranular cleavage are 

important. Cleavage shows up clearly in the SEM. 

 

2.8 MATERIALS PROPERTIES OF PIPELINE 

 

2.8.1 Materials 

 

A summary of the relevant properties of these materials is given in Table 2.1. 

To make a complete economic assessment of the various competitive materials 

taking into account all the factors enumerated above is a matter of extreme 

complexity, verging on the impossible. Adequate data on service conditions may not 

be available and even if the initial conditions can be specified fairly precisely, they 

may subsequently change in an unpredictable manner. Estimates of the probability of 

satisfactory behavior for the various materials will have to be made. First costs must 

be balanced against subsequent costs of maintenance, repair and replacement and 

loss of revenue due to outage. The calculations need to include assumptions about 
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