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SUMMARY: In the present study, renewable green fuel is produced using abundant biowaste from 

palm oil mill. The crude plam oil  from decanter cake was transesterify using empty fruit bunch 

ash (EFBA) and waste marine sponge with sodium (Na2SiO3-WMS) under very mild conditions. 

The EFBA as a solid catalyst was calcined at 500 ˚C for 5 h, while Na2SiO3-WMS was prepared

using impregnation method, then calcined at 500 ˚C for 3 h.  Parametric study has been conducted 

and the optimal conditions were found to be: MeOH:oil mass ratio of 6:1 and 2.3 wt.% catalyst 

(based on DC weight) at 55 °C, yielding highest methyl ester conversion of 85.9 (under 
EFBA) and 90% (under Na2SiO3) within 1 h reaction time. Ultrasound undoubtedly assisted in 

transesterification achieving this remarkable result than mechanical stirring. 

1. INTRODUCTION  

The global oil demand increase sharply by 1.3 mb/d in 2014, to 92.8 mb/d, while the fossil fuel 

reserve is depleting rapidly (IEA, 2014). Furthermore, petroleum-based activities are one of the 

main causes of carbon dioxide (CO2) emission to the atmosphere, and 13% of total greenhouse gas 

emissions is from transportation sector (EPA, 2014). The scenario drives countries like EU, USA, 

Brazil, and a part of Asia to import renewable energy. Now there are many studies being directed 

towards the exploitation of alternative renewable and environmentally friendly fuels. Biodiesel is 

one of the energy sources as an alternative fuels designed to extend the usefulness of petroleum, and 

the longevity and cleanliness of diesel engines. For many years, the cost of production has been 

the main barrier in commercializing biodiesel, globally. It has been well researched and 

established in the literature that the cost of feedstock is the major contributor. The use of edible 

feedstock sparks concern in terms of food security while the inedible feedstock needs additional 

pretreatment steps. In the other hand, the wide availability of edible feedstock guarantees the supply 
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while the choice of non-edible results in a non-continuous or non-ready supply. With these 

complications in mind, this study exploring the potential of waste edible oils and waste catalysts in 

biodiesel preparation. Biomass is a promising source of renewable energy that contributes to energy 

needs and is the best alternative for guaranteeing energy for the future. Malaysia, being one of the 

largest producers and exporters of palm oil for the last forty years (total Malaysian palm oil 

plantation approximately 5 million hectares in 2012), has an estimated total amount of processed 

fresh fruit bunches (FFB) of 7.8 tonnes/ha, 70% of which is removed as waste, and 3% is 

decanter cake (DC). As such, in the processing of 39 million tonnes of FFB annually (7.8 tonnes/ha 

x 5 million ha), 1.17 million tonnes of waste DC (3% of 39 million tonnes FFB) is generated in 

Malaysia alone. In view of this situation, in current work the use of waste crude palm oil (CPO) 
from decanter cake (DC) as a feedstock and empty fruit bunch ash (EFBA), as well as Na2SiO3 

from waste marine sponge (Na2SiO3-WMS) as catalysts is proposed.  

The current work focuses on production of biodiesel using ultrasound as an eco-extraction 

process. Ultrasound-aided transesterification is reported previously in the production of biodiesel 

using vegetable oil, WCO and spent bleaching clay (Boey et al., 2011b; Choedkiatsakul et al., 2014; 

Hindryawati and Maniam) as feedstock. The use of ultrasound promises simpler process with higher 

product purity and the process can be completed in shorter reaction time as well as reducing the 

amount of solvent being used as compared to the conventional extraction methods and with lower 

energy consumption. This study demonstrates the potential of EFBA and Na2SiO3-WMS as a low 

cost source of catalyst in a transesterification reaction aided by ultrasound. Waste marine sponge 

skeletons are high in natural silica (Ehrlich and Worch, 2007) and can be found at seaside area 

easily; unfortunately with no or less application. To the best of our knowledge, there is no published 

report on utilization EFBA and Na2SiO3-WMS as a solid catalyst in transesterification oil adsorbed 

in DC using ultrasound as compared to mechanical stirring as a control.  

2. MATERIAL AND METHODS  

2.1. Materials  

Waste marine sponge (WMS) was collected from Tanjung Lumpur shore in Kuantan, Malaysia, and 

were cut into small pieces (0.5–1.0 cm
3
), cleaned with water several times and air-dried for 24 h. 

The WMS fragment was then calcined at 500 ºC in air. The chemicals were purchased from Sigma-

Aldrich (Switzerland) include sodium hydroxide (analytical grades), phenolphthalein (H_= 8.2), 

2,4-dinitroaniline (H_= 15.0) and 4-nitroaniline (H_= 18.4), and methyl heptadecanoate (as an 

internal standard) GC grades (> 99.1%). Methanol (anhydrous, ≥ 99.8%), and hexane (anhydrous, ≥ 

99.8%) were purchased from Hamburg (Germany).  

2.2. Preparation of catalysts and decanter cake 

The EFBA was prepared following the procedures published elsewhere ( Boey et al., 2011; Boey et 

al., 2012). EFBA was prepared by oven drying at 105 ± 2 °C until constant weight, then calcined at 

500 °C for 5 h. Waste sponge with sodium (Na2SiO3-WMS) was prepared using impregnation 

method. WMS was suspended in water in the first step. An aqueous solution of sodium hydroxide 

was then slowly added to the suspension. All reactions were performed at Na
+
:Si molar ratio of 2:1. 

The mixture obtained was then stirred and heated at 90 ºC for 2 h.  Lastly, the mixture was 

dehydrated at 200 ºC for 30 min, and then calcined at 500 ºC for 3 h. The catalysts was 

characterized by X-ray diffraction (Rigaku) with Cu K as a source, 2 range from 25° to 125° with 

step sizes of 0.1°, at a scanning speed of 1° min
-1

. Surface analysis of the catalyst was examined by 

using Micromeritics ASAP 2000. Prior to the analysis all the samples were degassed at 105 ºC and 
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the adsorption of N2 was measured at 196 ºC. The morphology of catalyst was observed by FE-

SEM with electron dispersive X-ray (EDX) (JSM-7800F). The basicity of catalyst (H_) was 

determined by using Hammett indicators. The following Hammett indicators were used: 

phenolphthalein (H_= 8.2), 2,4-dinitroaniline (H_= 15.0) and 4-nitroaniline (H_= 18.4). About 5.0 

mL of a solution of Hammett indicator diluted with methanol and mixed with 25 mg of catalyst, and 

left to equilibrate for 2 h. After the equilibration, the colour change of the solution was noted. 

The DC was dried in an oven at 105 ºC for 2.5 h. Subsequently, the dried DC was ground and 

sieved to obtain a smaller particle size. The oil recovered from DC (O-DC) was 11.5 ± 0.18 wt.% 

(on dry basis) and its acid value is 13.8 ± 0.02 mg/KOHg (equivalent to 6.3% FFA as palmitic 

acid). The properties and elemental analysis of decanter cake was published in our previous work 

(Maniam et al., 2013). 

2.3. In situ transesterification reaction 

The transesterification reaction was carried out in a 250 ml two neck round-bottom glass flask 

equipped with a condenser to reduce the loses of methanol due to the evaporation and thermocouple 

thermometer. The ultrasonic reaction was performed using Branson (USA) ultrasonic bath (42 kHz) 

with the power dissipation 100 W and the exact power dissipation at 40 W determined 

calorimetrically (Gole and Gogate, 2012; Liu at al., 2013; T. Sivasankar et al., 2007). The bath was 

filled with distilled water up to 1/3 of its volume. The temperature was controlled and maintained at 

desired level (±0.1 °C) by water circulating from a thermostated bath by means of a pump. A 

constituent of 50 g of DC, catalyst (0.3-3.5 wt.%), methanol (2:1 – 8:1 wt/wt) and 1 g co-solvents 

(PE and hexane in equal ratio) to give 1:2 co-solvents:DC mass ratio, was immersed in an 

ultrasound (US) waterbath with the temperature set at 55 ºC for 1 h. Then the flask was removed 

and centrifuged at 1000 rpm for 5 min. Three layers were formed; the top was co-solvents, followed 

by methanol and the DC layer at the bottom. The co-solvents and methanol layers were pipetted out 

separately, then about 3 ml of each PE and hexane were added into the test tube, homogenized and 

centrifuged, then the resultant top co-solvents layer was added to the portion of co-solvents that was 

pipetted out earlier. The step was repeated twice to obtain a total amount of about 14 ml of 

accumulated co-solvents. The conversion of Oil-DC to methyl esters (ME) by mechanical stirring 

(MS) was performed in a 250 ml 2-neck round bottom flask equipped with a reflux condenser and 

magnetic stirrer at 300 rpm. After the transesterification, the reaction mixture was allowed to cool.  

Then, to further separate the product (ME and glycerol) and the catalyst centrifugation at 4000 rpm 

for 5 min was performed. The excess methanol was evaporated before the chromatographic 

analysis. The reaction was carried out three times in order to reflect the precision and errors of the 

results.  

2.4. Analysis 

The concentration of ME in the sample was determined by following the European regulation 

procedure EN 14103. In this study, GC-MS (Agilent Technologies, 7890A GC-System) with 

capillary column DB-wax (length 30  x diameter 0.25 mm x film thickness 0.25 µm) using methyl 

heptadecanoate as an internal standard. Helium was used as a carrier gas with a linear velocity of 40 

cm/s. The oven temperature was programmed at 190 °C, held for 2 min, then ramped at 10 °C per 

min until it reached 230 °C, and with a final hold time of 8 min. The sample volume of 0.6 µL was 

injected into GC. The peaks of ME were identified by comparing them with their respective ME 

standards and the ME content was quantified using the following formula: 
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where 

A     = total peak area of ME from C12:0 to C18:3 

AISTD = peak area of methyl heptadecanoate 

CISTD = concentration, in mg/mL, of the methyl heptadecanoate solution 

VISTD = volume, in mL, of the methyl heptadecanoate solution 

m       = mass, in mg, of the sample  

The concentration of methyl heptadecanoate solution (CISTD) is at 10 mg/ml (in heptane) whereas 

the volume (VISTD) is at 0.5 ml. 

3. RESULT AND DISCUSSION 

3.1 Characterization of catalyst 

The powder XRD pattern of WMS and Na2SiO3-WMS are shown in Figure 1. The diffractograms 

of WMS (Fig. 2a) showed a hump at 2 ranging from 16 to 40, and the presence of large 

reflection at 22.45°, indicates the presence of amorphous silica particles. The results are similar 

with reported work by Kalapathy and Proctor (2000) indicating the disordered structure mainly due 

to amorphous SiO2. In Fig. 2(b), the intense diffraction peaks found at 25.26º- 65.93º correspond to 

the Miller indexes (100), (101), (110), (200), (111), (002), (112), (300) and (302) were confirmed as 

Na2SiO3 (Na2SiO3-WMS). 

X-ray diffraction (XRD) was used to determine the crystal structure of the EFBA, which is 

shown in Figure 1. The diffractograms of EFBA-dried showed a minor amorphous structure and the 

trait peaks for EFBA-dried are examined at 2θ = 28.40
o
, 29.70

o
, 34.06

o
, 50.28

o
, 57.63

o
, and 74.10

o
, 

the dominant is potassium; magnesium; calcium silicate structure. Calcination of EFBA at 500 °C 

may have caused increasing bond formation between potassium, magnesium calcium and silicone 

oxide. The EFBA-calcined peaks at 2θ = 28.58
o
, 29.93

o
, 31.33

o
, 31.91

o
, 32.35

o
, 39.78

o
, 50.38

o
, 

58.89
o
, 66.60

o
 and 73.86

o
. The mayor peaks of the XRD patterns were potassium calcium silicate 

(K4CaSi3O9) is indicated by 2ᶿ at 28.6, 31.3, 31.9, 32.3, 40.7, 41.9, 50.4, 66.1˚, and potassium 

calcium silicate (K9.6Ca1.2Si12O30) at 2ᶿ at 29.9, 39.8, 58.9, 73.9˚. SiO2 in this XRD pattern which is 

crystalline phase and perform as sustain for the metal oxides in the catalyst. The development 

between silicone oxide and metal oxides was caused by calcinations. Examples are potassium, 

magnesium and calcium. Since XRD is for the qualitative detection of minerals, other amorphous 

compounds may not be clear in this particular identification.  
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Figure 1. XRD pattern of BA-dried, BA-calcined, WMS and Na2SiO3-WMS;, ■: K9.6Ca1.2Si12 O30,  

●: K4CaSi3O9,  : KAlO2, and ▲: Na2SiO3 

The values of specific surface area and pore volume considerably decrease after modification of 

sodium with WMS. The loading of the sodium with WMS resulted in decrease in both the BET 

surface area from 11.77 to 5.08 m
2
/g and the pore volume from 0.15 to 0.08 cm

3
/g of the WMS and 

Na2SiO3-WMS, respectively. The decrease in surface area and pore volume has been observed for 

sodium silica by the corporation of sodium in pore of waste marine sponge conforming the 

impregnation. The EFBA-dried has total surface area is 106.6 (m
2
/g) and pore volume is 0.032 

cm
3
/g. The calcination may have collapsed in the surface area and pore volume of EFBA-calcined. 

However a slight increase was observed for the average pore diameter of the calcined EFBA. The 

major pore distribution in EFBA-dried and EFBA-calcined is between 20 and 25 mm, which can be 

classified as mesopores.  

The micrograph of EFBA-dried and EFBA-calcined has shown similar spongy and porous 

structure in nature (Figure 2). This shows the common catalytic activity if BA-dried and EFBA-

calcined. EFBA-calcined explains the presence of metals such as potassium, calcium, magnesium, 

aluminum and phosphorus. The metals are in the form of oxides because the high oxygen content 

presence in the EFBA-calcined. The basicity of EFBA-calcined comes from the mixture of these 

metal oxides. This was confirmed by Chin et al., 2009. There are different metal oxides in EFBA, 

this maybe because the different sources of EFBA. The difference fertilizers used for palm oil 

plantation, the different types of metal oxide present in the EFBA. The micrograph of the Na2SiO3-

WMS catalyst (with Na
+
: Si stoichiometry ratio 2:1 at 500 ºC) demonstrated the crystal 

morphology. The morphology of Na2SiO3-WMS shows the homogenous surface (Figure 2.e), 

having a smooth surface and similar to each other. In contrast, the WMS (Figure 2.d) showed a 

bulky substance. The skeleton consisted of needle shaped spicules that are bundled together.  
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Figure 2. SEM micrograph of (a) EFBA-dried, (b) EFBA-calcined, (c) EDX EFBA-calcined, (d) 

WMS, (e) Na2SiO3-WMS and (f) EDX Na2SiO3-WMS 

3.2 Catalyst amount 

The amount of catalysts (EFBA-calcined and Na2SiO3-WMS) was varied in the range of 0.5-3.5 

wt.% (based on oil weight). As shown in Figure 3, the transesterification was dependent on the 

amount of catalyst used. Increasing the amount of catalyst from 0.3 to 3.5 wt.%, the methyl esters 

content increases from 18.5 to 85.9 wt.% and 90 wt.% for EFBA-calcined and Na2SiO3-WMS, 

respectively. The ME content reaches the highest value at the catalyst concentration of 2.3 wt.%, 

due to the contact opportunity between catalyst and the reactants hence propels the reaction 

kinetics. The maximum ME content was observed at 2.3 wt.% for both catalysts, although Na2SiO3-

WMS was more high than EFBA-calcined but the differences is not significant. Based on the oil 

weight, the amount of catalyst used in this work seems to be higher due to several reasons; part of 

the catalyst could be entrapped in the clay matrix; this portion of the catalyst may not have any 

contribution in catalytic activity. In addition, a part of the catalyst (basic) is also used to neutralize 

the acids in CPO (acid value =13 mg KOH g
-1

). Ultrasonic that used in this work can affect the 

catalyst reactivity, positively, by enhancing the mass transfer between clay-catalyst-reactants as 

well as promising the presence of kinetic energy in the reaction media. Dispersion due to ultrasonic 

increases the surface area available to the reactants. As such, the use of ultrasound promotes the 

efficiency of acyl conversion in a shorter reaction time.  
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Figure 3. Effect of catalyst amount in methyl esters content (reaction conditions:  temperature 55 ºC; 

reaction time, 1 h). 

3.3 Effect of methanol to oil mass ratio 

The molar ratio of methanol to oil is one of the important variables that affect the transesterification 

reaction. Stoichiometrically, the reaction requires three moles of methanol for each mole of oil 

(MeOH:oil=3:1), and with excess methanol it would shift the equilibrium towards the direction of 

ME production. As observed from Figure 4, four different mass ratios of MeOH:oil where tested; 

2:1, 4:1, 6:1 and 8:1. The ME content is increased as the MeOH:oil was raised from 2:1 to 4:1. A 

very sharp increase is observed between 2:1 and 4:1, and then reaches the maximum performance at 

6:1 for both catalysts. However further increases to 8:1 has negative effect on ME conversion. 

Furthermore, there is no significant difference in ME content between EFBA-calcined and Na2SiO3-

WMS. Too much of methanol could dilute the oil and as a result slowing the reaction rate ( Gao et 

al., 2008), as a result, lower conversions were recorded with higher amount of methanol. Additional 

to that, high mass ratio of alcohol to oil increases the solubility of glycerol, and as a result, the 

separation of glycerol becomes more difficult and retards the forward reaction by promoting the 

backward equilibrium (Meher et al., 2006). Relatively larger amount of methanol was used in this 

work mainly to cater the solvent-absorbing and solvent-retaining characteristics of the DC during 

the reaction. Nevertheless, the excess amount of methanol can be readily recovered at the end of the 

reaction. Ultrasound radiation makes methanol to disperse into the oil, thus increases the contact 

surface between reactant and consequently accelerating the reaction. The effect of cavitations 

created by ultrasonic supplies sufficient energy into the immiscible medium and the continuous 

formations and collapses of micro bubble accelerates the miscibility of reactants in addition to 

chemical and mechanical effects. 
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Figure 4. Effect of methanol to oil mass ratio (reaction conditions: temperature 55 ºC; reaction time, 

1 h). 

3.4 Effect of co-solvents 

In this work, co-solvents (PE and hexane) are used to aid in situ oil extraction as well as oil 

solubility in the reaction media. Figure 5 shows the influence of the co-solvents in the 

transesterification of the DC where approximately ME content of 80% and 84% is achieved by 

using PE and hexane alone, respectively. Higher conversion value for hexane is understandable as 

hexane (dielectric constant, 1.89) is less polar than PE (dielectric constant, 2.0-2.2), thus makes 

hexane to easily soluble in oil. On the other hand, the higher polar PE has better methanol soluble 

characteristic. This implies that by combining these two solvents, a better solubility between oil and 

methanol can be achieved as an evident of highest ME content (86%) is achieved at the combination 

ratio of 1:1 PE:hexane. The reduction of energy consumption is one of the advantages of the 

ultrasound technique in methyl esters production. A study on the energy requirement for 

transesterification using ultrasound and hotplate (mechanical stirring) methods revealed that, 

transesterification using hotplate requires very much more energy than ultrasonic process (Gude et 

al., 2012). This shows that with appropriate reactor design, non-conventional techniques have 

potential to reduce the process energy requirement significantly. 

 

Figure 5. Effect of co-solvents to DC ratio on the methyl ester content (reaction conditions:  

temperature 55 ºC; reaction time, 1 h). 
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3.5 Comparison between ultrasonic and mechanical stirring 

A comparison of the effect of ultrasound in the transesterification reaction was carried out at the 

optimal operating conditions (methanol to oil mass ratio (3:1), catalyst amount (1.7 wt.% at 55°C 

for 1 h) shown in Figure 6. It can be seen from the figure that ultrasonic cavitations results in 85 and 

87% conversion for EFBA-calcined and Na2SiO3-WMS, respectively, whereas the conventional 

stirring method results in lower extent of conversion 60 and 63% ME conversion for EFBA-

calcined and Na2SiO3-WMS, respectively. This can be attributed to the fact that as the reaction is 

mass transfer controlled, the micro level turbulence generated due to cavitations bubbles results into 

the higher availability of the interfacial area and hence higher conversion. Thus, the use of 

ultrasonic irradiation to be in both enhances the rate of reaction as well as shifting the equilibrium 

and resulting in higher product yield. In agreement with Worapun et al. (2010), effect ultrasonic 

irradiation will inducing an effective emulsification and mass transfer so that the rate of ester 

formation is significantly enhanced. 

 

Figure 6. Comparison in situ ultrasound and mechanical stirring (reaction conditions:  temperature 55 

ºC; reaction time, 1 h). 

4. CONCLUSIONS  

In this work, decanter cake (DC) was successfully utilized as a low-cost feedstock to produce 

methyl ester (biodiesel) via ultrasound aided in situ transesterification. Highest ME content of 85.9 

wt.% was obtainable in an hour reaction time at 55 ºC. Optimization of reaction parameters revealed 

that MeOH:oil, 6:1; catalyst, 2.3 wt.% (based on DC weight) and co-solvents to DC mass ratio of 

1:2 as the optimal reaction conditions. The use of ultrasound undoubtedly assisted in achieving this 

remarkable result in 1 h reaction time. Materials derived from waste sources, as used in this work, 

should be given a priority for sustainable production of biodiesel.  

 

 

 

 



Venice 2014, Fifth International Symposium on Energy from Biomass and Waste 

 

ACKNOWLEDGEMENTS 

The authors acknowledge MTUN CoE grant (RDU121207 and RDU121208), RAGS grant 

(RDU121402), GRS grant (GRS-120336; 130303) from the Ministry of Higher Education, 

Malaysia, and Universiti Malaysia Pahang for funding the research project and the Government of 

East Borneo, Indonesia for scholarships to N. Hindryawati and I. Nurfitri. 

REFERENCES 

Boey P-L., Ganesan S., Lim S-X., Lim S-L., Maniam G.P., Khairuddean M. (2011a). Utilization of 

BA (boiler ash) as catalyst for transesterification of palm olein. Energy, vol.36, 5791-5796  

Boey P-L., Ganesan S., Maniam G.P., Ali D.M.H. (2011b). Ultrasound aided in situ 

transesterification of crude palm oil adsorbed on spent bleaching clay. Energy Convers. Manage., 

vol.52, 2081-2084  

Boey P-L., Ganesan S., Maniam G.P., Khairuddean M., Lim S-L. (2012). A new catalyst system in 

transesterification of palm olein: Tolerance of water and free fatty acids. Energy Convers. 

Manage., vol.56, 46-52  

Chin L.H., Hameed B.H., Ahmad A.L. (2009). Process optimization for biodiesel production from 

waste cooking palm oil (Elaeis guineensis) using response surface methodology. Energy Fuels, 

vol.23, 1040-1044  

Choedkiatsakul I., Ngaosuwan K., Cravotto G., Assabumrungrat S. (2014). Biodiesel production 

from palm oil using combined mechanical stirred and ultrasonic reactor. Ultrason. Sonochem., 

vol.21, 1585-1591  

Ehrlich H., Worch H. (2007)  Sponges as natural composites: from biomimetic potential to 

development of new biomaterials. In: Custódio MR L-HG, Hajdu E, Muricy G (ed) Porifera 

research: Biodiversity, innovation and sustainability  

EPA. (2014) Global Greenhouse Gas Emissions Data. In: 

http://www.epa.gov/climatechange/ghgemissions/global.html. Accessed 18 June 2014 

Gao L., Xu B., Xiao G., Lv J. (2008) Transesterification of palm oil with methanol to biodiesel over 

a KF/Hydrotalcite solid catalyst. Energy Fuels, vol.22, 3531-3535  

Gole V.L., Gogate P.R. (2012) Intensification of synthesis of biodiesel from nonedible oil using 

sonochemical reactors. Ind. Eng. Chem. Res., vol.51, 11866-11874  

Gude V.G., Patil P.D., Grant G.E., Deng S Sustainable Biodiesel Production. In: In Proceedings of 

the 2nd World Sustain Forum, 1-30 November; Sciforum Electronic Conference Series, 2012. 

vol 2.  

Hindryawati N., Maniam G.P. (2015) Novel utilization of waste marine sponge (Demospongiae) as 

a catalyst in ultrasound-assisted transesterification of waste cooking oil. Ultrason. Sonochem. 

vol.22, 454-462 

IEA. (2014) International Energy Agency, Oil Market Report. In: http://omrpublic.iea.org/. 

Accessed 18 June 2014 

Kalapathy U., Proctor A., Shultz J. (2000) A simple method for production of pure silica from rice 

hull ash. Bioresour. Technol., vol.73, 257-262  

Liu D., Vorobiev E., Savoire R., Lanoiselle J-L. (2013) Comperative study of ultrasound-assisted 

and conventional stirred ded-end microfiltration of grape pomance extracts Ultrason. Sonochem. 

vol.20, 708-714  

Maniam G.P., Hindryawati N., Nurfitri I. Jose R., Rahim
 
M.H.A., Dahalan F.A., Yusoff M.M. 



Venice 2014, Fifth International Symposium on Energy from Biomass and Waste 

11 
 

 (2013) Decanter cake as a feedstock for biodiesel production: A first report. Energy Convers. 

Manage., vol.76, 527-532  

Meher L.C., Vidya S.D., Naik S.N. (2006) Technical aspects of biodiesel production by 

transesterification—a review. Renew. Sustain. Energy Rev., vol.10, 248-268  

Sivasankar T., Paunikar A.W., Moholkar V.S. (2007) Mechanistic approach to enhancment the 

yield of a sonochemical reaction. AIChe J., vol. 53, 1132-1143  

Worapun I., Pianthong K., Thaiyasuit P. (2010) Synthesis of biodiesel by two-step 

transesterification from crude jatropha curcus L.oil using ultrasonic irradiation assisted. KKU 

Eng. J., vol.37, 169-179  


