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ABSTRACT 
 

This paper presents the optimization of the grinding parameters of ductile cast iron in 

wet conditions and with the minimum quantity lubrication (MQL) technique. The 

objective of this project is to investigate the performance of ductile cast iron during the 

grinding process using the MQL technique and to develop artificial neural network 

modeling. In this project we used the DOE method to perform the experiments.  

Analysis of variance with the artificial neural network method is used to investigate 

significant effects on the performance characteristics and the optimal cutting parameters 

of the grinding process. Ductile cast iron was used in this experiment and the ethanol 

glycol was applied in the conventional method and compared with the MQL method. 

During conventional grinding, a dense and hard slurry layer was formed on the wheel 

surface and the performance of the ductile cast iron was very low, threatening the 

ecology and health of the workers. In order to combat the negative effects of 

conventional cutting fluids, the MQL method was used in the process to formulate 

modern cutting fluids endowed with user- and eco-friendly properties. Aluminum oxide 

was used as the grinding wheel (PSA-60JBV). This model has been validated by the 

experimental results of ductile cast iron grinding. Each method uses two passes -  

single-pass and multiple-pass. The prediction model shows that depth of cut and table 

speed have the greatest effect on the surface roughness and material removal rate for the 

MQL technique with multiple-passes by showing improved surface roughness, 

preventing workpiece burning and enabling a more friendly environment. Thus, various 

other parameters need to be added for further experiments, such as the wheel speed, 

distance from the wheel to the workpiece zone contact, and the geometry of the nozzle. 
 

Keywords: Grinding; cast iron; minimum quantity lubrication; artificial neural network; 

depth of cut. 

 

INTRODUCTION 

 

Grinding is a precision machining process which is widely used in the manufacture of 

components requiring fine tolerances and smooth finishes [1]. Therefore, the negative 

effect of high temperature on these parameters should be prevented [2]. The high heat 

generation in the grinding process is the major part of the energy is due to the 

workpiece. Abrasive interaction is addicted for elastic and plastic deformation of the 

workpiece surface, and just a small portion of this energy is really used for cutting the 

material and for chip formation. The coolant and lubricant medium, the topography of 
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the grinding wheel, and grinding parameters have a major role in increasing this cutting 

portion of the total energy. Besides, the grinding parameters and grinding fluid 

specifications should be considered so that the possibility of the grain’s interaction with 

the workpiece to perform the cutting process with lower plastic deformation is 

increased. In dry grinding, because of the lack of cutting fluid (in order to transfer the 

heat from the contact zone), problems frequently occur in terms of thermal damage on 

the workpiece surface, high grinding energy and forces, high wear rate of the grinding 

wheel, low material removal rate (regarding relatively low depths of cut), as well as 

poor surface integrity compared with conventional flood grinding. In MQL grinding, an 

air–oil mixture called an aerosol is fed into the grinding contact zone. Compared with 

dry grinding, MQL grinding considerably enhances cutting performance in terms of 

increasing the wheel life and improving the surface quality of the ground parts [3]. 

Application of the MQL technique can reduce the grinding forces, energy consumption, 

wheel wear, and production costs, as well as generating a finer surface finish and 

improved surface integrity compared with dry and conventional flood conditions. Shen 

and [4] studied the wheel wear and tribological characteristics in wet, dry, and MQL 

grinding of a cast iron. The authors used water-based alumina and diamond nanofluids 

in the MQL grinding process and compared the grinding results with those of pure 

water. They verified the benefits of nanofluids in terms of reducing grinding forces, 

improving surface roughness, and preventing burning of the workpiece. In contrast to 

dry grinding, MQL grinding could substantially lower the grinding temperature [1]. 

Ethylene glycol is used to supply a minute quantity of cooling lubricant medium 

to the contact point or to the zone so that the applied amount of grinding fluid can be 

reduced dramatically while maintaining the cooling and lubrication effects that are lost 

in dry machining. Furthermore, MQL is widely applied in cutting processes such as 

turning, milling, and drilling, although MQL grinding is still a relatively new research 

area. Traditionally, ethanol from corn has primarily been produced through dry- and 

wet-milling processes. The traditional dry-grind process grinds the whole corn kernel 

and mixes it with water and enzymes. The mash is then cooked to liquefy the starch 

further, and is then cooled and mixed with more enzymes to convert the remaining sugar 

polymers to glucose before fermenting to ethanol [5]. The components of the kernel that 

are not fermented include the germ, fiber, and protein, and these are concentrated in the 

distillers’ dried grains that are produced as co-products. While dry milling is less capital 

intensive, it also yields less ethanol per bushel of corn than wet milling [6]. The 

grinding process generates an extremely high input of energy per unit volume of 

material removed. Almost all this energy is converted to heat, which can cause high 

temperatures and thermal damage to the workpiece, such as workpiece burn, phase 

transformations, undesirable residual tensile stresses, cracks, reduced fatigue strength, 

and thermal distortion and inaccuracies. Besides that, the complete elimination of 

grinding fluids always makes it difficult to keep the grinding wheel’s pores clean and 

then the grinding wheel is easily clogged. Furthermore, the use of cutting fluid has some 

drawbacks mainly concerning health hazards, since the worker is sometimes exposed to 

direct skin contact or inhalation of cutting fluid vapors [7]. The angle and geometry of 

the nozzle, if incorrectly positioned, causes the flow of fluids in areas other than the 

surface of the workpiece. The alternative is to overcome this problem by using grinding 

fluids that are often applied for flood or minimum quantity lubrication. The objectives 

of this project are to investigate the performance of ductile cast iron during the grinding 

process using the MQL technique and to optimize the grinding parameters of ductile 

cast iron using the ANN method. 
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METHODS AND MATERIALS 

 

The overall work flow progress of the ductile cast iron using MQL during the grinding 

process, based on design of experiment, and the development of an artificial neural 

network to predict the surface roughness and material removal rate, are presented in this 

section. Experiments have been performed in order to investigate the effects of 

machining parameters (speed and depth of cut) on the surface roughness and material 

removal rate of the machined surface. Nine specimens of ductile cast iron, 30 mm 

length, 30 mm height and 5 mm width, were used for experimentation using grinding 

machines. All experiments were done under conventional coolant and MQL systems. 

Each experiment used the same machine with different flow rates of the system. The 

flow rates used are 36 ml/hour, 72 ml/hour and 144 ml/hour. The concentration for 

conventional coolant used was 5% of ethanol with fully synthetic, while for MQL the 

concentration used was 0.15%. Table 1 shows the design of experiment matrix for this 

study.  

 

Table 1. Design of experiment. 

 

Sample Table speed (rpm) Depth of cut (µm) 

1 25.2 2 

2 25.2 4 

3 25.2 6 

4 12.5 2 

5 12.5 4 

6 12.5 6 

7 8.7 2 

8 8.7 4 

9 8.7 6 

 

During the grinding process, a Supertec precision machine was used, model  

STP-102AADCII. A vitrified bond aluminum oxide was used as the grinding wheel 

(PSA-60JBV), with the grain size as the average abrasive size. The workpiece used was 

ductile cast iron with carbon content of 3.5%–3.9% and average hardness of 110-

Rockwell C. The dimensions of the specimens of cast iron were 30 mm × 30 mm × 5 

mm. The two types of coolant used were conventional and minimum quantity 

lubrication. In conventional coolants, the concentration of ethanol was 2.5%, at a flow 

rate of 2.83 × 10
–4 

m
3
/s. The device for application of MQL is composed of an air 

compressor, pressure regulator, flow rate meter and nozzle. In this experiment, the air 

pressure was 0.6 MPa, and the fluid flow rate was 36 ml/hour, 72 ml/hour and 144 

ml/hour. This device provides oil and allows control of oil/air flow rates individually. 

The air flow rate was monitored using a turbine-type meter, calibrated to a pressure of 

8.0 × 10
5 

Pa. Figure 1 shows the experimental setup. 
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(a)                        (b)  

 

   
(c)                                                                         (d) 

 

Figure 1. Experimental setup. 

 

ANN Modeling 
  

The experimental data consists of 27 samples with their respective grinding passes and 

types of coolant. The ANN model was trained using 16 randomly selected data 

(accounting for 60% of the total data), while the remaining 7 data (accounting for 25% 

each) were utilized for testing and 15% for validation of the network performance. 

There are many variations of the batch back-propagation algorithm. The simplest 

implementation of batch back-propagation learning updates the network weights and 
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biases in the direction in which the function decreases most rapidly, the negative of the 

gradient. The weights and biases of the network are updated after the entire training set 

has been applied to the network. The gradients are calculated for each training example 

and added together to determine the change in the weights and biases. The main purpose 

of the batch back-propagation is to explain how to use the batch back-propagation 

training functions in the toolbox to train the feed-forward neural networks to solve 

specific problems [8]. Figure 2 shows the architecture for developing the ANN model. It 

has 2 inputs, 2 hidden layers and 2 output layers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Architecture of the developed ANN model. 

 

A multilayer perceptron with a different hidden layer feed-forward (FF) network 

is applied to correlate the input parameters to the surface roughness and material 

removal rate. The back-propagation learning algorithm uses recollected data to modify 

the connection weights appropriately. As a result, the error between the desired output, 

To and actual output, Yo of the neural network is computed in the forward phase. An 

iterative error reduction is performed in a backward direction in the backward phase. 

Training and testing of the network are done using experimental data. The developed 

models are also verified experimentally. The fundamental relation between performance 

parameters and variable factors can be described as in Eq. (1) and Eq. (2): 

 

),( WXfY                                     (1) 
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ii xwv                  (2) 

 

where Y represents the performance parameter (Ra and MRR); X is a vector of the input 

variables to the neural network; W is the weight matrix that is evaluated in the network 

training process; f (.) represents the model of the process that is to be built through NN 

training; v is the induced local field produced at the input of the activation function; xi is 

the input signal and wi is the respective synaptic weight. The following relations were 

used to combine the inputs of the network at the nodes of the hidden layer and the 

output layer, respectively. 
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where Hl, Zj and Ok are the output at the hidden layers one, two and three respectively; 

Yo is the output, SR and MRR at the output layer and wli is the synaptic weight from input 

neuron i (xi) to the neuron l in the first hidden layer. By combining Eqs. (1)–(4), the 

relation for the output of the network can be set as the following equation: 

 

                               
   

k j l i
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where wjl is the synaptic weight from neuron l in the first hidden layer to the neuron j in 

the second hidden layer, wkj is the synaptic weight from neuron j in the second hidden 

layer to the neuron k in the third hidden layer and wok is the synaptic weight from 

neuron k in the last hidden layer to the output neuron o. The outputs at the hidden layer 

(Hl, Zj and Ok) and output layer (Yo) are calculated using the hyperbolic tangent function 

of the sigmoid function as in Eq. (6) because it yields practical benefits over the logistic 

function. 
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Finally, the output of the network was compared with the measured performance of the 

process using a mean square error (E) as in Eq. (7): 
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The ANN was trained in a batch mode where its parameters were only updated after all 

the input–output pairs were presented. The Levenberg–Marquardt (L–M) algorithm was 

employed for the training, and the target performance goal (mean square difference 

between NN output and target output) was set at 0.001. The maximum number of 

epochs (representation of the input or output pairs and the adjustment of NN 

parameters) was considered to be 10,000. 

 

RESULTS AND DISCUSSION 

 

The experimental results of cylindrical grinding with the conventional and minimum 

quantity lubrication techniques are presented in this section. The ANN model is 

developed to predict the surface roughness and MRR. A multi-layer perceptron with 

back-propagation is used. Four types of experiments are performed on the grinding of 

ductile cast iron using conventional coolant and MQL coolants with single-pass and 

multiple-pass grinding. Table 2 presents the material removal rate of single-pass and 

multiple-pass cylindrical grinding for conventional coolants and the MQL technique. It 

can be observed that the material removal rate increases for both the single-pass and 

multiple-pass. The experiments were conducted nine times with various combinations 

of table speed and depth of cut. A 5% volume concentration of ethanol and a 0.15% 
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volume concentration of MQL were used in this study. It can be observed that the 

minimum MRR in single-pass grinding using the conventional coolant was 0.001 g/s 

and 0.0301 g/s for the MQL. On the other hand, the maximum value is 0.009 g/s and 

0.03 g/s for the conventional coolant and MQL respectively. They were slightly 

different in multiple-pass grinding. The minimum MRR in multiple-pass grinding using 

a conventional coolant was 0.021 g/s; however, the minimum MRR was 0.023 g/s for 

MQL. On the other hand, the maximum value is 0.042 g/s and 0.071 g/s for 

conventional coolant and MQL respectively. It can be observed that the MQL multiple- 

pass gives a higher value compared to other methods. This shows that the MRR and 

surface roughness in the MQL multiple-pass method has the best performance. 

 

Table 2. Experimental result for material removal rate. 

 

 

No. of  

sample 

Table 

speed 

(rpm) 

Depth of 

cut (µm) 

Material removal rate (g/s) 

Single-pass Multiple-pass 

Conventional 

coolant 

MQL Conventional 

coolant 

MQL 

1 25.2 2 0.008 0.00383 0.022 0.023 

2 25.2 4 0.003 0.00405 0.028 0.033 

3 25.2 6 0.002 0.00884 0.036 0.054 

4 12.5 2 0.004 0.00301 0.019 0.071 

5 12.5 4 0.002 0.00527 0.032 0.019 

6 12.5 6 0.001 0.00556 0.042 0.017 

7 8.7 2 0.001 0.00207 0.017 0.022 

8 8.7 4 0.003 0.0057 0.035 0.05 

9 8.7 6 0.002 0.00604 0.018 0.036 

10 25.2 2 0.016 0.00503 0.034 0.029 

11 25.2 4 0.014 0.00833 0.025 0.036 

12 25.2 6 0.001 0.023 0.009 0.039 

13 12.5 2 0.004 0.00367 0.018 0.09 

14 12.5 4 0.009 0.0096 0.014 0.019 

15 12.5 6 0.021 0.00937 0.038 0.016 

16 8.7 2 0.012 0.00324 0.021 0.027 

17 8.7 4 0.013 0.00844 0.012 0.029 

18 8.7 6 0.002 0.01265 0.025 0.036 

19 25.2 2 0.014 0.00486 0.026 0.022 

20 25.2 4 0.0082 0.00825 0.027 0.0354 

21 25.2 6 0.0016 0.01289 0.022 0.0452 

22 12.5 2 0.0039 0.00401 0.018 0.078 

23 12.5 4 0.0053 0.01072 0.021 0.024 

24 12.5 6 0.011 0.01041 0.019 0.026 

25 8.7 2 0.001 0.00322 0.024 0.03 

26 8.7 4 0.003 0.00913 0.025 0.099 

27 8.7 6 0.002 0.01266 0.027 0.105 
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Figure 3 shows the MRR value effects of various combinations of the factors: 

table speed, depth of cut, type of grinding, and type of coolant. Multiple-pass grinding 

has a higher MRR compared to the single-pass because the grinding wheel only passes 

over the specimen once. On the other hand, for multiple-pass grinding, the grinding 

wheel passes ten times. However, when using MQL, the MRR was slightly lower than 

that of the conventional coolant. This is due to the particles having exceptional 

tribological properties, which can reduce friction under extreme pressure conditions 

[10]. 

 

 
 

Figure 3. Material removal rate for each coolant and type of grinding. 

 
 

Figure 4. Surface roughness for each coolant and type of grinding. 

 

Figure 4 shows the surface roughness value effects of various combinations of 

the factors: table speed, depth of cut, type of grinding, and type of coolant. Multiple-

pass grinding has a higher surface roughness compared to the single-pass because the 

grinding wheel only passes over the specimen once. From the results it was observed 

that the increased number of cutting passes makes the surface roughness increase 

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

M
at

er
ia

l 
re

m
o

v
al

 R
at

e 
(g

/s
) 

 

Sample 

Conventional coolant (SP)
MQL (SP)
Conventional coolant (MP)
MQL (MP)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

S
u
rf

ac
e 

R
o

u
g
h
n
es

s 
(µ

m
) 

Sample 

Conventional coolant (SP) MQL (SP) Conventional coolant (MP) MQL (MP)



 

Neural network modeling of grinding parameters of ductile cast iron using minimum quantity lubrication 

 

2616 
 

consequently. There was a quite linear relationship between the number of cutting 

passes and surface roughness. As the number of cutting passes increases, this results in 

more material being removed and consequently a high grinding force. The grinding 

forces are an important quantitative indicator to characterize the mode of material 

removal because the specific grinding energy and the surface damage are strongly 

dependent on the grinding forces. Higher grinding forces result in increased friction. 

The friction of the grinding wheel increased the values of surface roughness [11]. 

 

    
(a) MQL multiple-pass for MRR   (b) MQL multiple-pass for  Ra 

 

    
(c) MQL single-pass for MRR   (d) MQL single-pass for Ra 

   

    
(e) Conventional single-pass for MRR (f) Conventional single-pass for Ra 

 

     
(g) MQL single-pass for MRR h) MQL single-pass for Ra 

 

Figure 5. Predicted values for each coolant and type of grinding. 
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 The ANN model was developed for predicting the surface roughness and 

material removal rate based on the multi-layer perceptron technique. The Levenberg–

Marquardt (L–M) algorithm was used for the training, and the target performance which 

is MSE was set to 0.001 [12]. The maximum number of epochs for demonstration of the 

input/output pairs and the modification of ANN parameters was considered to be 

10,000. Figure 5 shows the actual versus predicted values for both systems, namely 

conventional and MQL for multiple-pass and single-pass by ANN analysis. The ANN 

model was trained on 60% of the total data, while 25% of the total data was used for 

testing and the remaining 15% was used for validation. It can be observed that most of 

the predicted data approximate with the actual data. The red line indicates the 

experimental value and the dashed line indicates the actual value (target output). 

 

Table 3. Error analysis for the network of surface roughness. 

 

 Conventional coolant MQL 

Performance Surface roughness (µm) 

 Single-pass Multiple-pass Single-pass Multiple-pass 

MSE 2.90176x10
-5 

0.00176 1.40126x10
-5 

0.00126 

NMSE 0.008272871 0.32435 0.004375871 0.22335 

MAE 0.003719542 0.02398 0.002712542 0.02138 

Min Abs Error 0.000367596 0.00192 0.000164596 0.00132 

Max Abs Error 0.010301721 0.10034 0.010101421 0.10002 

r 0.998236328 0.89156 0.99823768 0.901236 

 

Table 4. Error analysis for the network of material removal rate. 

 

 Conventional coolant MQL 

Performance MRR(g/s) 

 Single-pass Multiple-pass Single-pass Multiple-pass 

MSE 0.4716321 0.123632 0.4316321 0.134332 

NMSE 0.46149965 0.00688 0.4216465 0.00548 

MAE 0.00187113 0.00322 0.00177113 0.00102 

Min Abs Error 0.00040576 0.0002 0.00041976 0.0001 

Max Abs Error 0.00372336 0.00261 0.0021236 0.00222 

r 0.99091562 0.99866 0.9923212 0.99826 

 

 Tables 3 and 4 present the error analysis for the network of surface roughness 

and MRR within percentage relative errors in the verification cases. The tables show the 

actual versus predicted values for the conventional and MQL methods with single-pass 

and multiple-passes by ANN analysis. The ANN prediction yields the statistical 

coefficients, giving the linear correlation coefficient (r) value of 0.99 for both cases. The 

regression coefficients obtained from testing of the ANN were perfect and within the 

acceptable limits in both cases. As the correlation coefficient approaches 1, the accuracy 

of the prediction advances. Thus, the correlation coefficient range is very close to 1, 

which consequently indicates excellent agreement between the experimental and the 

ANN predicted results [13]. 
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 The data is further analyzed for sensitivity to identify the influence of the 

varied input process parameters on the output material removal rate and response 

surface roughness. Tables 5 and 6 present the sensitivity analysis for the surface 

roughness and material removal rate respectively. From the result it is apparent that with 

the MQL multiple-pass system the surface roughness and material removal rate have 

more influence on both the performance of speed and depth of cut. The lowest influence 

of surface roughness and material removal rate on both the performance of speed and 

depth of cut was with a conventional single pass. It can be observed that MQL with 

multiple-passes shows more interaction between the input and output because increasing 

the cutting passes causes the material removal rate and surface roughness to have a 

greater effect. 

 

Table 5. Sensitivity analysis value for surface roughness. 

 

 Conventional coolant MQL 

Sample 

Speed  DOC Speed  DOC 

Single 

pass 

Multiple-  

pass 

Single-

pass 

Multiple- 

pass 

Single- 

pass 

Multiple- 

pass 

Single- 

pass 

Multiple- 

pass 

1 0.2973 0.3143 0.3132 0.3134 0.3323 0.3058 0.0324 0.3136 

2 0.2974 0.3143 0.3129 0.3129 0.3321 0.3165 0.0323 0.3135 

3 0.2977 0.3144 0.3132 0.3129 0.3321 0.3272 0.0323 0.3137 

4 0.2980 0.3145 0.3134 0.3135 0.3286 0.3379 0.0237 0.3137 

5 0.2985 0.3146 0.3129 0.3130 0.3253 0.3384 0.0323 0.3135 

6 0.2992 0.3147 0.3130 0.3129 0.3223 0.3387 0.0323 0.3132 

7 0.2999 0.3148 0.3132 0.3133 0.3195 0.3486 0.0323 0.3132 

8 0.2998 0.3150 0.3128 0.3129 0.3170 0.3483 0.0323 0.3132 

9 0.2900 0.3152 0.3127 0.3129 0.3148 0.3475 0.0323 0.313 

 

Table 6. Sensitivity analysis value for material removal rate 

 

 Conventional coolant MQL 

Sample 

Speed  DOC Speed  DOC 

Single- 

pass 

Multiple- 

pass 

Single- 

pass 

Multiple- 

pass 

Single- 

pass 

Multiple- 

pass 

Single- 

pass 

Multiple- 

pass 

1 0.0204 0.0209 0.0302 0.0312 0.0324 0.0332 0.0324 0.0312 

2 0.0203 0.0201 0.0312 0.0314 0.0322 0.0331 0.0323 0.0331 

3 0.0204 0.0207 0.0332 0.0319 0.0324 0.0330 0.0313 0.0321 

4 0.0204 0.0213 0.0304 0.0313 0.0239 0.0330 0.0237 0.0330 

5 0.0206 0.0217 0.0351 0.0316 0.0328 0.0329 0.0323 0.0329 

6 0.0206 0.0201 0.0304 0.0319 0.0322 0.0328 0.0353 0.0328 

7 0.0206 0.0202 0.0301 0.0318 0.0321 0.0327 0.0324 0.0327 

8 0.0207 0.0207 0.0304 0.0316 0.0323 0.0326 0.0329 0.0326 

9 0.0207 0.0202 0.0302 0.0314 0.0325 0.0325 0.0327 0.0325 

 

 Tables 7 and 8 present the error of surface roughness and material removal rate 

predicted values in the ANN for the conventional and MQL systems respectively. It can 

be observed that the predicted values of surface roughness with the single-pass method 
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have an average total error of 0.34% and 0.07% for the conventional coolant and MQL 

systems respectively. However, in multiple-pass the average total error is 0.49% and 

0.05% for the conventional and MQL systems respectively. It can be observed that the 

multiple-pass for MQL gives the lowest error. The error for the material removal rate is 

observed to be 4.954% and 1.743% in single-pass for the conventional and MQL 

systems respectively. For the multiple-pass, the error values are 6.047% and 1.362% for 

the conventional and MQL systems respectively. It can be observed that the MQL 

multiple-pass for both the surface roughness and material removal rate yields the 

minimum total error for the predicted values.  

 

Table 7. Error for predicted value of surface roughness in ANN.  

 

No Experimental NN predicted Error 

(%) 

Experimental NN predicted Error 

(%) 

 Conventional coolant MQL 

Single-pass 

1 0.52 0.512 1.53 0.489 0.486 0.61 

2 0.367 0.366 0.27 0.548 0.545 0.54 

3 0.557 0.558 0.17 0.441 0.445 0.90 

4 
0.391 

0.392 

Average total  

0.22 

0.34 
0.395 

0.398 

Average total 

0.75 

0.07 

Multiple-pass 

1 0.285 0.282 1.05 0.543 0.541 0.36 

2 0.2015 0.201 0.24 0.323 0.324 0.30 

3 0.1695 0.169 0.29 0.331 0.333 0.60 

4 
0.257 

0.256 

Average total 

0.38 

0.49 
0.5545 

0.549 

Average total 

0.99 

0.05 

 

Table 8. Error for predicted value of surface roughness in ANN.  

 

 

 

No. Experimental NN predicted Error (%) Experimental NN predicted Error (%) 

 Conventional coolant MQL 

Single-pass 

1 0.025 0.023 8.000 0.0456 0.044 3.508 

2 0.026 0.028 7.692 0.0256 0.0251 1.953 

3 0.027 0.0265 1.852 0.0354 0.0351 0.847 

4 0.022 0.0225 2.27 0.0452 0.0455 0.664 

  Average total 4.954  Average total 1.743 

Multiple-pass 

1 0.001 0.002 0 0.00486 0.00472 2.881 

2 0.014 0.012 14.28 0.00825 0.00819 0.727 

3 0.0082 0.0085 3.658 0.01289 0.01278 0.853 

4 0.0016 0.0015 6.25 0.00406 0.00402 0.985 

  Average total 6.047  Average total 1.362 
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CONCLUSIONS 

 

In order to optimize the two parameters to produce the minimum surface roughness and 

maximize the MRR value in the experiment, the combination of table speed and depth 

of cut influences the process. The grinding process with MQL coolants gives the best 

performance compared to conventional coolants according to the output, which is the 

material removal rate and surface roughness. From the sensitivity analysis, it is 

concluded that MQL multiple-pass has the highest influence on depth of cut and table 

speed compared to the conventional single pass, conventional multiple-pass and MQL 

single pass. This is because the MQL multiple-pass method increases the number of 

cutting passes so that the surface roughness and material removal rate will have a 

greater influence on the table speed and depth of cut. Meanwhile, the conventional 

multiple-pass method has less influence even though the cutting speed is increased, 

because the coolants used in the conventional technique are less effective than the MQL 

system. 
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