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ABSTRACT

This thesis is on the application of friction in joints for controlling the dynamic response

of structures. It is in three parts.

Part one is concerned with modelling the friction joint when relative motion occurs

between components in the tangential direction. When the friction joint is subjected to a

tangential load, it usually deforms nonlinearly. The methods available to model the

friction joints are investigated and summarised as using 1) a dry friction element, 2) a

bilinear element, and 3) a microslip element. A new microsiip element is proposed and

verified using the experimental data, and is found to be more representative than other

models.

Part two is concerned with the prediction of the response of a structure with nonlinear

joints. The most commonly used methods are numerical integration in the time domain.

The methods available are discussed and two of these methods are found to be

particularly useful. The most attractive property of these two methods is that both are

unconditionally stable. One of the methods is also explicit, hence it is computationally

efficient. Because the ordinary start up process for the explicit method can be erroneous

unless the time step length is very small, a new start up process incorporating the implicit

method is proposed. Methods for reducing the size of the problem are also investigated.

Even if the condensation method to reduce the size of the problem is applied, the time

domain solution can still be expensive. If the excitation is periodic and only the steady

state response is of interest, some cheap, but approximate methods can be used. The most

commonly used method, the Harmonic Balance (HB) Method, is investigated. In order

to improve the accuracy, a new Higher-order Harmonic Balance Method (HHB) is

developed. Two perturbation approaches and the Newton-Raphson algorithm are found

to be effective in solving the nonlinear equations. Linear and quadratic approximation

methods for the initial estimation of a newly perturbed system are developed.

Part three consists of substructure coupling and joint identification. Both approaches use

the Frequency Response Function data (FRF).

A new generalized coupling method is developed and is found to be computationally

efficient and simple to program. It is also general and can be widely applied. The method

is particularly effective and efficient in detecting the linear-dependent joint coordinates.

Two new generalized joint identification methods are developed, and techniques to

improve the accuracy of the identified joint parameters are investigated. The nature of the

joint identification problem is also studied.

Both of the approaches discussed in part three are verified by experiment.
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NOMENCLATURE
The following is a list of the principal symbols used in this thesis. Because of the several

branches covered, some symbols might denote different meanings, these symbols are

defined where they occur in the text.
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L
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area of the cross section
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imaginary parts of the harmonics of the displacement x(Cp4)

viscous damping

energy dissipation per cycle(Cp2)

Young's modulus (Cp2)

function

frequency

force

force (in time domain)

amplitudes of harmonics of the force in a joint

force of initial loading

nonlinear force

reloading force

unloading force

function

receptance element in [H]

stiffness area(Cp2)

height

second moment of area

stiffness

initial stiffness of the joint in the tangential direction

length

torque

mass

N	 normal clamping force

P. p(t)	 excitation force (in time domain)

P1 ,P2,.. . ,P	 amplitudes of harmonics of the excitation force

r	 radius
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stress over the stiffness area

period of vibration(Cp4)

tangential force(Cp2)

maximum tangential shear force

time

deformation at a joint

deformation of an initial loading

deformation of a reloading

deformation of an unloading

velocity

displacement

coordinate

displacement (in time domain)

displacement before x

displacement at last time point

amplitude of harmonics of displacement

displacement at current time point

width

viscous damping matrix

hysteretic damping matrix

receptance matrix of an assembly

receptance matrix between coordinates a and 13 (ct43=a,b,c,g,n,m i, j)

receptance matrix between joint coordinates

receptance matrix between excitation and joint coordinates

receptance matrix of a substructure

stiffness matrix

mass matrix

transformation matrix

impedance matrix of an assembly

impedance matrix between coordinates a and 13.(a,13=a,b,c,g,n,m i, j)

force vector of an assembly

force vector at coordinates a (a=a,b,c,g,n,m i, j)

force vector of substructure

generalized displacement vector(Cp3)

displacement vector

displacement vector of an assembly
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displacement vector of a substructure
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joint increment

ap	 excitation increment

parameter for Newmark-3 method
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time interval

normalised mode shape

4:i
	 phase

I
	 parameter for Newmark-13 method
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angular displacement

t
	 shear stress per unit width
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natural exponential function
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transpose

standard inverse

pseudo inverse

complex conjugate

complex conjugate transpose
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i'th element in (y)

the element of the i'th row and j 'th column in matrix [Y]
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derivative with respect to time

Abbreviations

AFF
	

alternating frequency time domain method

ARVF
	

averge-relative value factor

cP
	

corner point

DOF
	

degree-of-freedom

DFF
	

discrete Fourier transform

ECP
	

effective corner point

ESD
	

equivalent stiffness and damping method

FE
	

finite element

FEM
	

finite element method or finite element modelling

FFF
	

fast Fourier transform

FRF
	

frequency response function

GIC
	

generalized impedance coupling

GRC
	

generalized receptance coupling

HB
	

harmonic balance method

HHB
	

higher-order harmonic balance method

HB
	

incremental harmonic balance method

LESD
	

local equivalent stiffness and damping method

MTC
	

multi-step two-coordinate coupling

P-P
	

peak to peak value

PPc
	

pseudo coordinate coupling

RC
	

receptance coupling

RJCF
	

relative joint correlation factor

SDOF
	

single degree of freedom system

SVD
	

singular value decomposition

S-area	 stiffness area

S-S area	 slipped stiffness area

WA
	

weight after method

WB
	

weight before method

WBG
	

weight before, group equation method

WBS
	

weight before, single equation method

superscript(Ieft)

(n)	 number of perturbation (Cp4), e.g.

superscript (right)

(n)	 number of iteration
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subscript (left)

A, B	 substructures A, B

subscript (right)

a	 assembly

master coordinate on substructure

b	 interface coordinate on substructure

c	 interface coordinate on substructure

i	 joint coordinate on substructure

j	 joint coordinate on assembly or joint

m	 master coordinate on substructure

n	 master coordinate on assembly

s	 substructure
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CHAPTER

INTRODUCTION

§1.1 GENERAL INTRODUCTION

Studies on vibration phenomena can be dated back to a few centuries ago. It has long

been observed that when a structure is subjected to a periodic load, it can vibrate

violently. Consequently, high levels of stress and noise are built up. Unlike static

deformation, the vibration magnitude of a structure is determined by both the magnitude

and the period (or frequency) of the excitation. For each structure, there are always some

special frequencies; if the frequency of an excitation load happens to coincide with (or be

close to) one of these special frequencies, the structure will vibrate at an exceedingly high

level. These special frequencies are called the natural frequencies and they are inherent

properties of the structure.

Usually, corresponding to kinetic energy, potential energy and energy dissipation, the

properties of a structure can be defined by mass, stiffness and damping. However, it is

also worth mentioning that if some parts of the structure are rotating, other forces such as

centrifugal force can be involved. Accordingly, other properties should be used. In this

thesis, the effects of rotation u. excluded, hence only the mass, stiffness and damping

effects are considered.

The final purpose of the structural dynamic study is to control the vibration of structures

at a desirable level. In most cases, without significantly affecting the performance and the

cost of the structure, the vibration level should be kept as low as possible. In practice,

due to the complexity of the working load, the excitation can only be reduced, but it is

almost impossible for it to be eliminated completely. Therefore, an engineering structure

must be so designed that the response of a structure under external excitation does not

exceed a permitted level.
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The main tasks in structural dynamics can be summarised as:

1) to predict the response of a structure under certain excitation at the design stage and the

effects of modifications.

2) to suggest effective measures to solve vibration problems for existing structures.

The basic requirements to fulfil these tasks are the abilities to

i) model a structure;

ii) predict the response of a structure under an excitation; and

iii) measure the response.

§1.2 MODELLING A STRUCTURE

It is essential to have a theoretical model to represent a structure in order to study its

dynamic properties. Theoretical modelling methods can be categorised into two groups;

those based on the stress-strain relations in the structure (continuous model), and those

on the discretalization of the structure (finite element model).

A continuous model is often used for studying simple structures such as a uniform beam,

or a plate; usually it is characterised by a partial differential equation with respect to the

coordinates (x, y, z) and time (t). An analytical solution can often be obtained and the

dynamic characteristics of the structure can be represented accurately. However, a

continuous model is often extremely difficult to use in engineering problems because of

the complexity of real-life engineering structures.

In contrast to a continuous model, a finite element model consists of many small

elements, each element is constructed on some idealised assumptions (e.g. assumed

deformation shape of the element). Therefore, a finite element model is always an

approximation. However, high accuracy can usually be achieved by using a sufficiently

small element. A finite element model is characterised by the stiffness, mass and damping

matrices, and it is most suitable for analysis by numerical methods.

For a linear structure (see § 1.3), besides theoretical modelling, the model can also be

established by using experimental measures. The most commonly used experimentally

established models are the response model and the modal model. A response model is

characterised by the ratio of the excitation oj' a sinusoidal force to the response of the

structure. The ratio is referred to as the frequency response function(FRF). The structure

can also be characterised by a set of vibration modes and their corresponding natural

frequencies, this model is referred to as the modal model.
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The spatial model, modal model and response model are interchangeable. For theoretical

analysis, it usually starts from a spatial model, while for experimental study, the response

model is often first established. More details about these three models and their relations

can be found in [1].

§1.3 NONLINEAR PROBLEM

Most analysis techniques in structural dynamics are based on the assumption that the

structure to be analysed is linear. A structure is said to be linear if the relationship

between the response of the structure and the external force is proportional. When a

structure is linear, the principle of superposition holds, which means that doubling the

excitation will double the levels of the response. When a structure is subjected to more

than one excitation, the response is the same as the sums of the response due to each

excitation. If a structure is linear, the response of the structure is purely sinusoidal when

the excitation is sinusoidal, in other words, no energy can transfer between different

frequencies.

If the relationship between the response of a structure and the excitation is not

proportional, then the structure is said to be nonlinear. When a structure is nonlinear, the

superposition principle is no longer valid, and the spatial properties change all the time

when the structure is excited. Therefore, the modal model is not appropriate and the

response model is also very difficult to define uniquely.

From the physical point of view, vibration energy can transfer from one frequency to

another in a nonlinear structure, sometimes, the energy transfer can even make the

structure unstable.

Most engineering structures are not absolutely linear. For structures made from solid

materials, the relationship between the response and external force is substantially

proportional under a small deformation, and it is reasonable to assume that the structure is

linear. However, for other structures, the relationship cannot be approximated to be

proportional even if under a small deformation, and they must be considered to be

nonlinear structures.

The nonlinearity can be categorised into two groups [2]; the material type nonlinearity,

and the large deformation nonlinearity. A spring with cubic stiffness and a pendulum with

large angular response are examples of these two groups of nonlinearity respectively. The

material nonlinearity is often localized, i.e. only some parts of the structure are nonlinear

while the large deformation nonlinearity is often global.
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In this thesis, the property of a friction joint is studied. It will be shown later that

nonlinearity of a friction joint is of the material type. Therefore, unless specified, the

nonlinearity in this thesis is the material type.

§1.4 BASIC STRATEGY FOR REDUCTION OF THE VIBRATION OF A

STRUCTURE

At any time, the excitation force must be balanced by the restoring, damping and inertia

forces in the structure. Because the magnitude of the damping force is usually much

smaller than other forces, the effects of the damping force are often insignificant at most

frequencies. However, at or close to a natural frequency of a structure, the restoring force

and inertia force cancel each other out, and the excitation must be balanced by the

damping force. Therefore, at or close to a resonance frequency, the damping in the

structure is very important.

Accordingly, the basic strategies of vibration control should be

l)to avoid exciting a structure at its resonance; and

2)to increase the damping levels in the structure when resonance is unavoidable.

If resonance can be avoided, there is little use for mechanical damping. Unfortunately,

avoiding resonances becomes more and more difficult nowadays due to higher excitations

over a wider frequency range. This situation is exacerbated by using low weight and

flexible structural components such as beams and a thin plates, and by using all welded

construction methods. As a result, the assembled structure has more resonances with a

lower inherent damping level. When a structure with low inherent damping is excited at

one of its natural frequencies, violent vibration is inevitable which causes various

problems which can lead to the ultimate failure of the structure. Consequently, the

damping in an engineering structure is more important than ever before.

§1.5 EFFECTS OF A JOINT

§1.5.1 The Joint, A Problem in the Finite Element Model (FEM)

A joint in this thesis is defined as any connection between two distinct parts of a

structure. A friction joint is a type of joint with two surfaces directly pressed together

by a normal force applyed through bolts, rivets or other clamping mechanisms.

In the last section, it has been explained that the basic strategy in controlling vibration is

to avoid the structure being excited at a resonance. In order to avoid a structure being
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excited at a resonance, the properties of the structure must be predicted accurately. This

means that each part of the structure should be modelled accurately.

Nowadays, although the FEM is so developed that the accuracy of modelling a solid

structure is usually satisfactory, there are still some parts on the structure which cannot be

modelled accurately, or even reasonably. One of these is the joint. So, quite often, the

flexibility of a joint is ignored in the analysis of an assembled structure, i.e. the joint is

assumed rigid. In practice, however, the joint effects can be very significant on the

response of a fabricated structure. As pointed out by Beards[3], up to 60% of the

deformation and 90% of the damping in a fabricated struCture can arise from various

joints. Neglecting these effects can make the prediction on the property of the whole

structure inaccurate or even unreasonable. Clearly, establishment of accurate joint models

is of great importance in accurate prediction of the dynamic behaviour of the structure.

§1.5.2 Friction Joint; A Great Source for Vibration Reduction

Apart from the problems caused by the joint in the FEM, the joint is also interesting

because of its capacity for controlling vibration.

It has been discussed in § 1.3 that it is not always possible to avoid all the resonance

frequencies of a structure. Thus, the effect of damping becomes important. To increase

the damping level in a structure, the following three measures can be taken:

1) the introduction of high damping materials,

2) the introduction of energy dissipation equipment (e.g dashpot), and

3) the utilisation of the damping capacity of various joints (mainly friction joint).

Use of measures 1) and 2) requires additional components, which means extra cost to

manufacture the structure. Sometimes, these measures are difficult to apply because of the

practical limit on these additional components such as the size and shape. In addition, it is

often found that although the damping levels of these material can be very high, they are

usually expensive, and there are also some physical limits on these materials, for

example, the damping materials are often only effective under large strain and within

some frequency and temperature ranges; outside these limits, the damping level drops

dramatically.

In contrast to the first two measures, because the joint is an original part of a structure,

using the damping capacity does not have these disadvantages. The effects of friction

joints on the reduction of vibration levels have attracted great interests [4-19] (see the next

section). It has been found that a friction joint has a great potential for reducing the

vibration levels of a structure. By controlling the clamping force at the joint so that it
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allows slip at interfaces, the vibration magnitude(FRF) of a structure can often be reduced

by 20dB or more [4], which is equivalent to reducing the vibration level to one-tenth of
its original value.

§1.6. REVIEW OF PREVIOUS WORK ON FRICTION JOINTS

The observation and utilisation of friction force can be traced back many thousand years

when ancient people discovered the method of making fire by drilling wood and to move

heavy objects by using round logs.

The concept of friction force was first introduced in 1519 by Lenardo da Vinci and the

eighteen century saw the breakthrough in the study of friction. In 1750, Euler concluded

that it was not possible to give the inclined plane inclinations such that the descent would

be as slow as desired. Either the body would not slide at all, or it would slide very fast.

In 1785, Coulomb verified experimentally that the friction force was proportional to the

normal force and also made a distinction between static and kinetic friction force. Various

studies have been carried out and summarised by Martins et at in [20]. Almost all of

them were in the fields of tribology.

In contrast to the developments in tribology, the developments of structural dynamics

were insignificant until 1931. Before that, the effect of a friction force on the response of

a structure was simply approximated by an equivalent "viscous" damping which

dissipated the same energy as the friction force in each cycle. In 1931 Den Hartog [21]

analytically solved the steady state response problem of an SDOF system with combined

Coulomb and viscous friction. An important discovery was that the system with only

friction damping can be excited into unbounded response at resonance. The analytical

method was later extended to a 2-DOF system by Yeh [22]

Since 1970, the effects of slip between a friction joint interface on the control of vibration

of mechanical structures attracted the attentions of many researchers such as Earles [5-7],

Beards [8-13], Dowell [14-15] and Menq [16-17]. Various structures have been tested

and the great potential for a friction joint to reduce vibration level has been observed.

The problems in utilising a friction joint as a tool to control the vibration of a fabricated

structure were summarised by Beards[3] as:

1) fretting corrosion at joint interface;

2) loss of static stiffness of the structure; and

3) difficulty in design and analysis due to problems of nonlinearity.
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Beards [8][12] has shown that fretting damage can be minimised by providing a layer of

low modulus or yield strength material between the joint interfac non-metallic or metal

coatings can also be used to prevent the fretting caused crack from propagating through

the whole joint; many surface preparations such as shot peening, blasting and metal

sprays reduce the fretting damage, and inexpensive cyanide hardening and electro-

discharge machining were very effective and suggested for surface treatment.

Beards [3] also pointed Out that any loss of static stiffness of a structure did not

necessarily affect the integrity of the structure if the joints were carefully located.

Accordingly, the major obstacle in the application of the friction joint in vibration control

is the problem of nonlinearity. In dealing with this nonlinear problem, attention was paid

to the following:

1) modelling the properties of a joint.

2) calculating the response of a fabricated structure when the properties of all the joints

are known.

Quasi-static experiments have been carried out on various friction joints [23-34]. It has

been found that the relationships between the load and deformation in the directions

normal and parallel to the interface are not linear. In the direction parallel to the interface,

energy is dissipated when a cyclic load is applied. When the deformation magnitude is

small, Coulomb's dry friction law is not adequate, and it is believed that microslip

mechanism is responsible for the characteristics of the friction joint. Several theoretical

models have been developed to represent the nonlinear behaviour of a friction joint [35-

5 1,16]. Some of these models were adopted primarily for mathematical convenience [35-

38], while others had physical significance [39-51,16]. Although some of these

physically motivated models are based upon the so called nonlocal and nonlinear friction

law [39,40], most of them are constructed on the basis of Coulomb's dry friction law

[4 1-5 1, 16].

Coulomb's dry friction was assumed for most of the studies in predicting the response of

a structure with friction joint/s attached[5-17, 52-74]. The most commonly used method

in analysing the response of a structure is an approximation method--the Harmonic

Balance method [5-17, 52-62], which effectively linearises the dry friction force at a

joint. Recently, effort has also been devoted to obtaining results which are balanced in

multi-harmonics[63-65]. In most cases, only one joint is involved. Numerical integration

methods [66-73] have also been used in calculation of the transient response of the

structure and an analog computer method has been developed for modelling the bilinear

type hysteresis [74].
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Various structures have been studied including fabricated beams(e.g.[2][3]),

plates(e.g. [9] [13]), frame structures(e.g. [101 [11]), turbine blades(e.g.[ 19] [58] [59]) and
turbine discs (e.g. [56][67]). SDOF systems [63][65], lumped parameter systems
[56][64], finite element systems [35][57], continuous systems [ 1 9], response systems (in
FRFs)[5- 12] and modal systems [53-55] have all been used to model these structures.

The effects of the joint mass [69] and variable normal load [58][59]][62] on the property

of the joint have also attracted the attention of some researchers. Two-dimensional motion

at the joint has recently been investigated [60] [61]. The effects of a friction force on the

stability of a structure have also been studied [56][68][71][73]. For most of the analyses

on friction joint related problems, only qualitative agreements between the theoretical

analysis and the experiment have been achieved. Quantitative agreement is still lacking.

To summarise; many efforts have been devoted to the study of the friction joint,

nevertheless, the understanding on the friction joint is still limited. Here, Jones's

comments in 1988 [75] are summarised to conclude this review:

So we might ask, what developments have taken place with respect to our understanding

of damping of built-up structures? The answer seems, surprisingly, or perhaps not, very

little! ... it would be difficult to find any recent studies which have advanced our ability to

predict joint damping or to predict the response of built-up jointed structures better than

was achieved in 1960's. The only major change has been in computer power, software

including finite element codes, test instrumentation and electronic analyzers. The

difficulty remains in the modelling of the damping, and in the variability of manufactured

structures, even when the process is automated.

§1.7 PREVIEW OF THE THESIS

As discussed in the last section, despite developments on the study of friction joints in the

past, the friction joint has seldom been deliberately used to reduce the vibration of

engineering structures. The nonlinear problem is believed to be the major obstacle in

utilising the Capacity of damping in a friction joint, and how to model a friction joint

accurately is the root of the problem. The research presented in this thesis is intended to

seek new developments on model and identification of friction joints, and also on

prediction of the response of a structure containing nonlinear friction joints.

The most basic requirement, and probably the most difficult task in the study of friction

joint, is to model the joint. This problem is dealt with in Chapter 2. The most commonly

used friction joint models have been presented and methods to derive joint models

summarised. The problems of these models are also discussed. Based on the new concept

of stiffness area, a new microslip element is developed for modelling a friction joint and

models constructed from the new element are verified by using experimental data. The
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new element and the joint models are found to be more representative than other available

models. For a friction joint with complicated geometric shape and surface, an approach

utilising both the FE method and the new element is proposed.

In Chapter 3 and Chapter 4, efforts are devoted to selecting proper available techniques

and developing new techniques for predicting the response of a structure with nonlinear

friction joints attached.

In Chapter 3, time-domain methods are investigated. Stability, accuracy and efficiency of

the methods are discussed. The ability to calculate the frictiofl force from the deformation

of the joint is essential. Two simple algorithms based on Masing's rule are developed to

calculate the corresponding friction force from the response. A new method of

condensation has also been studied.

In Chapter 4, the frequency-domain methods are investigated. The Harmonic Balance

method is studied and some new algorithms to find the solution for the Harmonic Balance

method (HB) are proposed, and the advantages and disadvantages of the HB method are

discussed. In order to achieve the desirable accuracy for the predicted response, a new

Higher-order Harmonic Balance method(I-LHB) is suggested. An incremental approach is

developed to find the solution for the HHB method. Comparison between the numerical

results from the HHB method and time-domain method demonstrates the accuracy and

efficiency of the HHB method.

There are two extreme cases for a friction joint; one is the case when the joint is

unclarnped, the other is when the joint is tightly clamped. These two cases usually set the

lower and upper bounds for the natural frequencies of a structure. It is possible to predict

the property of the structure with tightly clamped joints by using that with unclamped

joints. The most commonly used methods are only for coupling two structures. In

Chapter 5, some of the commonly used FRF coupling methods are reviewed and their

advantages and shortcomings are discussed. Then a new generalised coupling method is

developed. Based on the new generalised FRF coupling method, another computationally

efficient coupling algorithm is proposed. The effects of measurement errors on the

coupling results are investigated by using the simulated experimental data.

Although properties of some friction joints can be found from a static test, it is believed

that an accurate model for most joints in an engineering structure can only be established

from a dynamic test. In order to develop techniques for modelling a nonlinear friction

joint, a full understanding of the methods for establishing a linear joint model from the

dynamic experimental data is essential. In Chapter 6, joint identification techniques using

FRF data are investigated systematically. A brief review on the joint identification

techniques is presented and two new joint identification techniques are developed. The

effects of measurement errors on	 the accuracy of the identified joint model are
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discussed and techniques to improve the accuracy of the identification method are

presented. The nature of the identification problem has also been discussed.

In chapter 7, the newly developed coupling and joint identification techniques are

investigated by using experimental data. The joint identification technique is also applied

to identify a nonlinear friction joint by using newly improved control technique in the

experiment. Satisfactory results are obtained.

Finally, all the new developments presented in this thesis are reviewed and suggestions

for future studies are presented.



CHAPTER

MODELLING THE FORCE-DEFORMATION
CHARACTERISTICS OF FRICTION JOINTS

IN THE TANGENTIAL DIRECTION

§2.1 INTRODUCTION

The definition of a joint given in Chapter 1 is very general; the clamped edge of a panel is

a joint, and the root of a turbine blade is also a joint. The contact surface of a joint is

called the interface. The connection part of a component which forms a joint is referred

as the joint component.

The properties of a friction joint are interesting because joints are always an essential part

of any real fabricated engineering structure and dissipate vibrational energy. A joint may

be desirable in the sense that it dissipates the vibration energy; it can also be undesirable

because the slip between the interfaces of a joint can cause problems such as fretting

corrosion at the interfaces and a reduction in total static stiffness of the structure; the slip

at the joint can also make the properties of a structure nonlinear [3], which makes the

analysis of a structure with a friction joint very difficult.

The undesirable effects can be reduced by using high normal force at the interfaces.

However, even when a joint is tightly clamped, the dynamic characteristics of the joint are

still different from the properties of the solid materials from which the joint component is

made. This difference is often one of the main sources of mis-prediction of the dynamic

behaviour of a structure using the finite element method which usually does not include

the effects of the various joints.

Should the energy dissipation mechanism in a friction joint be used deliberately to reduce

the vibration levels of a structure, the joint clamping force should be reduced to allow

some slip mechanisms to act. Unfortunately, this will usually exaggerate the undesirable

effects. The energy dissipation mechanism is closely related to the slip between the

interfaces which is also responsible for the undesirable effects. Therefore, the desirable

and the undesirable effects of a joint are inseparable. As discussed in chapter one, fretting

corrosion and the reduction of total static stiffness can be controlled by special preparation

on the interface and carefully choosing the joint in which slip is allowed. However, in
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order to deal with the nonlinear problem quantitatively, it is essential to be capable of
modelling the dynamic behaviour of all the joints accurately. In other words, a

quantitative mathematical model must be established for every joint. In this chapter, the

major effort is devoted to obtaining a quantitative analytical model for a friction joint.

§2.2 BASIC CONCEPTS IN MODELLING A FRICTION JOINT

§2.2.1 Types of Nonlinearity

The basic requirement to characterise a friction joint is to fmd the relationship between an

external excitation force (load) and the response (displacement, velocity and acceleration)

at the joint caused by the external load.

For a linear component, the excitation-response relation can be expressed by:

F=kx+cx	 (2.1)

under any circumstance. However, for the nonlinear element, the relation is much more

complicated. Usually, a general form of the force-response relation of a nonlinear element

is:

F=F(x,x,t)
	

(2.2)

If the nonlinear element is independent of the velocity, then

F=F(x,t)
	

(2.3)

and the excitation-response relation becomes the force-deformation relation.

For some nonlinear elements, the relationship is only determined by the deformation at

the current state and can be presented by a single formula

F=F(x)
	

(2.4)

For other nonlinear elements, however, the relationship is not only related to the current

response state, but the loading history too. Usually, this type of nonlinearity can not be

presented by a single formula and is the most difficult to analyse. This type of

nonlinearity is often referred as nonlinearity with memory (or multi-value

nonlinearity); the nonlinear property which can be characterised by equation(2.4) is

referred as the single-value nonlinearity.

§2.2.2 Types of Loading on a Friction Joint

It will be shown in the next section that the force-deformation relation of the friction joint

is not only nonlinear, but actually dependent upon the loading history. Different loading
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periods are characterised by different properties. However, the relationship in several

loading period are often similar or the same, and accordingly, the loading is often

categorized as:

1) Initial loading: The (.ot period with increasing load from the free rest state (zero

load).

2) Unloading: Any loading period with decreasing load.

3) Reloading: Any loading period with increasing load except for the initial loading.

For a nonlinear element, there is only one initial loading, however, there can be many

unloadings (and reloadings). The force-deformation relation of all the unloadings (and

reloadings) are similar, and sometimes, can be modelled by the same analytical formula.

This will be discussed later in this chapter.

§2.3 THE BEHAVIOUR OF A FRICTION JOINT IN THE NORMAL AND

THE TANGENTIAL DIRECTIONS

There are two basic types of force-deformation relations for a friction joint; one is in the

direction normal to the interfaces, the other is in the direction parallel or tangential to the

interfaces.It has been shown experimentally [76] [29] that the force-deformation relations

in both directions are not linear (figure 2.1 and figure 2.2).However, the force-

deformation relations in the two directions are different in their nature.
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Figure 2.2 The loading curves in the tangential direction
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§2.3.1 Behaviour of a Friction Joint in the Normal Direction

For the force-deformation relation in the normal direction, as shown in figure 2.1,

although the initial loading (OA) is different from the subsequent loading(e.g. ABC), the

relation in the subsequent cyclic loading are the same, i.e. the force-deformation curve

after initial loading OA follows the path ABC. Except for the initial loading, the unloading

and the reloading curves are overlaid. Usually it is the behaviour after the initial loading

that is of interest, therefore, the properties of the friction joint in the normal direction is

effectively a type of single value nonlinearity.

In practice, a certain level of pre-load will be applied in the normal direction, and when

the joint is subjected to a cyclic load in the normal direction, the joint will deform along

the path ABC. Because the magnitude of the cyclic load is usually much smaller than that

of the pre-load, the joint is more likely to deform in the range of AB. Since the force-

deformation relation in path AB is effectively linear, the behaviour of a friction joint in the

normal direction is substantially linear.

§2.3.2 Behaviour of a Friction Joint in the Tangential Direction

For the force-deformation relation in the tangential direction, however, the path of

subsequent cyclic unloadings and reloadings are different, in other words, the behaviour

of a friction joint in the tangential direction is a kind of nonlinearity with memory. It can

also be noted that the path ABA forms a loop. This indicates that energy is dissipated

when the joint is subjected to a cyclic load. This kind of loop (energy dissipation) does

not exist under loading in the normal direction.

One feature which can be noted is that the loop is effectively symmetrical with respect to

the centre point of the loop. Therefore, it must be possible to represent the unloading and

reloading properties in some similar mathematical formulae.
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Because energy dissipation (and also effective nonlinearity) does not exist under cyclic

loading in a normal direction, it will not be investigated further in this thesis. In this

chapter, we shall deal with the properties of the joint in the tangential direction only.

§2.4 THE DRY FRICTION MODEL

In this section, the simplest and also the most important model is discussed. Most of the

other friction models are based on, or closely related to this model.

The most well known theory about the friction force is Coulomb's dry friction law which

may be stated as follows:

The friction force at the interface is

1) affected by the material properties in contact and the surface preparation;

2) proportional to the normal clamping force;

3)substantially independent of the sliding speed and the apparent area of contact; and

4) greater just prior to the occurrence of the relative motion than after sliding

The first three points are generally well accepted, while disagreement exists between

different researchers for the fourth point (Some details have been discussed by Martins et

a! [20]). However, if the duration time of two components being pressed together is

insignificant, it is generally accepted that the difference between the friction force at

smooth metal contact surfaces just prior to the sliding and after the sliding, if it exists at

all, is usually not significant. Accordingly, the difference is often ignored.

The mathematical expression for Coulomb's law can be presented as follows:

r-N
F=1 -P	 v=0	 (2.5)

1.Ni.	 v<0

where v is the relative motion at the joint interface, N is the normal clamping force, g.t is

the friction coefficient and P is the external force with a magnitude less than the product

of the normal force and the friction coefficient (Np.).

From equation (2.5), it is known that if the external force is smaller than the friction limit

(Np.), the two interfaces ofajoinc will remain locked; the friction force at the interface has

the same magnitude as the external force but acts in the opposite direction. Once sliding

occurs, the friction force is equal to the friction limit and the direction of the friction force
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is always opposite to the direction of motion; no tangential force greater than the friction

limit can be transmitted through the interface.

The direct use of the dry friction law leads to the simplest joint model -- the point contact

dry friction model (element); since the friction force is independent of the area and shape

of the interface and is also independent of the pressure at the interface, the joint property

will be the same as the joint with only one contact point as shown in figure 2.3. In other

words, the joint can be considered as contacting at one point only. An implication of the

dry friction law is that before sliding is initiated, the deformation of the joint is zero.

H
a. Physical configuration	 b. Point contact dry friction model

2.3 The point contact dry friction model and its physical configuration

The point dry friction model has been used by many researchers (e.g. [lO1[53}[541) in the

analysis of vibration problems. However, the analyses are usually less satisfactory in

quantitative study than in qualitative study, especially when the vibration magnitude is

small [3]. Nowadays, it is generally accepted that for most of the engineering joints, the

elasticity of the joint components and the interfaces plays an important role in the

behaviour of the whole joint; slip may occur over some parts of the interface before the

two components slide against each other. The force-deformation relation under such a

partial slip state usually cannot be represented by the point contact dry friction model.

This kind of partial slip is called micro-slip. When slip occuiall over the interfaces,

it is called macro-slip or sliding.

Clearly other more refined models are required to represent the behaviour of the microslip

joint.

§2.5 MASING'S RULE

Before going any further with the microslip models, it may be appropriate to introduce a

rule which represents the properties of a joint by the initial loading relation, this being

Masing's rule. Masing's rule can be expressed as follows:

If a joint consists of only linear components and the dry friction elements, the properties

of the joint are fully defined by the force-deformation relation of the initial loading, i.e.

the unloading and the reloading relationship can be obtained directly from the initial

loading.
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As shown in figure 2.4 if an interface is subjected to an initial load F, and the
deformation u follows a path

F=f(u)
	

(2.6)

to a point A(u,FJ, then an unloading path from the point A to a point B(u,F) can be

expressed as:

F=F1-2 
f(Ui-UU)	

uu^-ui
(2.7)

F= -f(-u)
	

uu<-ui

Similarly, a reloading path from the point B(u, F) to a point C(ur, Fr) S

fFr=Fu+2f(UU)

I.., Fr f(Ur)

IUI^ max (IuI,IuI)

Un> max (IuI,IuI)
(2.8)

The proof of Masing's rule is not published in English [77], and to the author's

knowledge, no proof in English was available. Therefore, Masing's rule is proved

independently and forms Appendix A of this thesis.

The application of Masing's rule can simplify the analysis of the force-deformation

relation significantly. If a joint model consists of only linear components and dry friction

components, once the initial loading is known, further unloading and reloading can be

deduced from the initial loading relation, in other words, a friction joint is completely

characterised by the initial loading relation. Some other properties of the joint can also be

detected from the relationship of the initial loading.

One of the important properties of a friction joint is the energy dissipation under a cyclic

load.	 The energy dissipated each cycle is the area of

the loop, which can obtained from integration as:

E=S:r(FrFdU	 (2.9)



displacement

Chapter 2 Modelling the Force-Deformation Characteristics of Friction Joint	 page -18-

Substituting equations (2.7) and (2.8) into equation(2.9) leads to

E= fUr FI 2f(U U)^2f(I) - (F1-2f('-)) ) du
jU

=8Uruf(y)dy - Ur-Uj f(UrUu)	
(2.10)

From equation(2.10), it is proved that the energy dissipated each cycle is a function of the

peak to peak value (P-P value) of the deformation and is independent of the absolute

value of the maximum deformation.

The energy dissipated per cycle can also be calculated from

E=f(uuur)dF

=8J'f-1 (y)dy - 4 (
FrFU) fl(FrFu)	

(2.11)

Therefore, the energy dissipated per cycle is also a function of the P-P value of the cyclic

load.

§2.6 FRICTION BILINEAR ELEMENT AND ASSEMBLY

Another most important element in modelling the friction joint is the friction bilinear

element which consists of a linear spring and a dry friction element, the physical

configuration of a friction bilinear element is shown in figure 25a.

(a) Mathematical model	 (b) hysteresis loop

Figure2.5 Mathematical model and hysteresis loop of a bilinear element

The element has the following properties

1) if the deformation u is less than the limit u, the force-deformation relation of the

element is effectively linear, i.e. f=ku

2) if the deformation x exceeds the limit the force is a constant ku0.
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When the element is subjected to a cyclic load, a hysteresis loop is formed as shown in

figure 2.5b. For the simplicity, the friction bilinear element is known as the bilinear
element only.

The bilinear element is actually an extension of the dry friction element with additional

flexibility. The dry friction model is a special case of the bilinear element with the linear

spring having infinite stiffness.

For a dry friction element, the force at the zero deformation state is not determined, but

for a bilinear element, the force is determined under any circumstance.

Bilinear elements can be connected in series, parallel or in a parallel-series combination as

shown in figure 2.6 to yield different force-deformation relations. This kind of bilinear

assembly model was originally introduced to model the yielding behaviour of continuous

and composite materials [44][78].

(a) parallel bilinear assembly

(b) series bilinear assembly

(c) combined parallel and series bilinear assembly

Figure 2.6 different bilinear assembly models

No matter how complicated the bilinear assembly is, two basic properties for the bilinear

assembly are held:

1) Masing's rule can be applied, and

2) The slope of a force-deformation curve represents the stiffness contributed from

stiffness of the elastic components and the bilinear elements in which slip has not

initiated. A reduction of the slope indicates an increase in the number of slipped bilinear

elements.



U

K1=Ka-Kb+Kc, K2=Ka+Kb, Ki=is.a
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A typical parallel-series bilinear assembly loading curve is shown in figure 2.7

Figure 2.7 A typical hysteresis loop of a bilinear assembly

§2.7 MICROSLIP WITH CONSIDERATION ON THE ELASTICITY OF
THE JOINT COMPONENT ONLY

§2.7.1 Review of the Microslip Models Based on the Dry Friction Element

In the next few sections, microslip caused by the elasticity of the joint components are

considered and the properties discussed.

Experimental results [30] show that the variation of the force-displacement relation is

insignificant in the frequency range up to 200Hz, this covers the frequency range of

interest in most structural engineering problems. As a result, it is commonly assumed that

the friction force under cyclic excitation is independent of the excitation frequeiicy. To

simplify the problem, the difference between the friction force just prior to and just after

slip is also ignored.

The microslip phenomenon was first discovered on a spherical contact rig by Mindlin et al

analytically [79] in 1949 and experimentally [24] in 1951. Analytically, Mindlin assumed

that the dry friction law was held at an infinitely small area and he found that if slip did

not occur at some parts of the interfaces, the shear stress at these areas would be infinite.

Therefore, slip must occur at these parts of the interfaces.

After Mindlin, a series of theoretical analyses on different joints with different

configurations were developed (e.g.Pian and Hallowell [41] )Goodman and Klumpp [80],

Earles and Philpot [26] and Metherell and Diller [45]). These models are all based on

Mindlin's assumption that the dry friction law held at any point on the interface.

The methods used to calculate the force-deformation relation for these dry friction element

based models are similar, the procedure is in two stages:

1) detect the slip area, and

2) calculate the deformation of the joint component due to the external force and friction

shear stress at the interface.



0

U0
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To illustrate the basic procedure, a new bending microslip model is developed and

presented in the next section.

§2.7.2 A Bending Joint Model -- New Development

The joint model presented in this section is shown in figure 2.8. The joint is effectively

the root of a clamp .r beam with unit width. This kind of joint can be found in many

engineering structures such as the root of a turbine blade. To the author's knowledge, it

has not been analysed based on this physical configuration.

FIlL I ' I Unclamped part of the beam

>4FO
Figure 2.8 The diagram for the bending joint model

Assume that the structure is subjected to an external force and moment at the free end of

the beam. The root of the beam is clamped by a uniformly distributed pressure and the

surface conditions of the interface are the same. The friction shear stress limit per unit

width is the product of the pressure per unit width and the friction coefficient, i.e.

tmaxP.L.

Based on the dry friction law, if slip does not occur, the external force and moment at the

root must be balanced by the force and moment at point A, which means the shear force

and moment at point A must be infinite. Because the shear stress cannot exceed the

friction limit, slip must occur in some regiorof the root.

The shear stress direction must be opposite to the direction of motion, hence the

component of shear stress in the horizontal direction is much smaller than that in the

vertical direction. If the thickness of the beam is small, the shear stress in the horizontal

direction can be neglected. To balance both the external moment and the external force,

two slip regions must occur at the root with the shear stress in opposite directions as

shown in figure 2.9.

X	
tbmax

BaIIIIIIIItIIIIA

IIIIItIIIIIII	 )iii1(	 143	 F0
tgtmax

19 The diagram for the slitmed area of the bendin g joint mode

BLLJ-Ir

..7a AJ11ULUULL(JII (U UUICfCHt uerorrnauons Ofl
at the tin of the beam



(2.12)

(2A3)

x^a

x>a
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The equilibrium equations for the force and moment at point B are

F-b+arm=0, and

Solving equations(2.12) and (2.13) leads to

1 /2Mtmax+F2
a—	

'4	 2tmax

and b— 
1 (F+'J 2Mt+F2)

tmax

(2.14)

(2.15)

where F=F0 and M=M0+F0L0

Once the slipped area has been detected, the second step is to determine the deformation

level with the knowledge of the external force and the slipped area. When the thickness of

the beam is small, Euler beam theory can be used. The governing equilibrium equation

for a bending beam is [81]:

a2U(xt)]f(	a2u(x,t)
- - x,t)	 t)=m(x) at2 (2.16)

For a case of a quasi-static load on a uniform cross-section beam root, the inertia force

can be ignored, then equation(2.16) becomes

EId+f(x)=0

I tfl(
where f(x)=j

. tmax

The boundary conditions at the left and right ends of the beam are

du(0)
left end: u(0)=0 and	 =0,

right end: El 
d2u(L) 

=M and El 
d3u(L) 

=-F.
dx3

at x=a: u(a+)=u(a)

du(a) du(a-)
dxdx

(2.17)

(2.18)

(2. 19a,b)

(2.20a,b)

(2.21a)

(2.21b)
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d2u(ai	 d2u(a) =M
b	(2.21c)El 

dx2 
=EI 

dx2

d3u(a)	 d3u(a-) 
=-Fb	 (2.21d)El 

dx3 
=EI

where L=a+b, a+ and a- represent the position on the right and left of the position x=a

Also	 Fa=Ftmb
	

(2.22)

and	 MaM+ Fb - btmax2
	

(2.23)

are the shear force and the shear moment at x=a.

From equations(2. 17) to (2.23), the translational and angular displacement at the point M

can be easily worked out:

I	 tmax(xa)4
I	 -	 24E1 + d3(x-a) 3 +d2(x-a) 2+dj(x-a)+do	 x>a

1	 'tmaxX4	
(2.24,2.25)

u(x)= 24E1 -	 c x 2	 x ^ a

(Fa+tma)
where C3=-	 6E1

1 Ma tmaxa2 a(Fa+tma)
c=	 2E1 -	 El

d----6E1

d-2— 2E1

du(a)
d1= dx

and d=u(a).

Therefore

tmaxb4
- 24E1 + d3b3+d2b2^d1b+dØ,

O(L du(L)	 tma,(b3
dx =	 6El32b1.

(2.26 a)

(2.26b)

(2.26c)

(2.26d)

(2.26e)

(2.26f)

(2.27)

(2.28)
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The displacement at the tip of the free end is the sum of the displacement due to slip at the

clamped end of the beam and the elastic deformation of the un-clamped part of the beam,

i.e

UTo =U(L)+tM)+O(L)L)
	

(2.29)

For a cantilever beam with a force F0 applied to its free end, the displacement at the tip

can be found as:

-w
U ,EI	 -	 (2.30)

and the moment at point M due to the force F is

M=F0L0	 (2.31)

If equations(2.19) and (2.20) are substituted into equation(2.18), the force-deformation

relation can be calculated. It can be noted that the loading relation can be written in the

form

U=f(EI,L(J,tmax,F0)
	

(2.32)

Figure 2.10 shows the force-deformation relation at the free end of a uniform beam

Figure 2.10 Initial loading curve of the bending joint

It should be noted that the derived formulae are only valid for a beam with small

thickness. When the thickness of the beam is significant, more accurate Timoshenko

beam theory [82] should be used. However, the principle of the method is still applicable

except that the formula deduction may be more tedious.

Since the only nonlinear element is the dry friction shear stress at the interfaces, the

unloading and reloading relation can be found using Masing's rule.

§2.7.3 Features of Joint Models Based on the Dry Friction Element

Figure 2.11 shows the physical configurations and stress distributions over the interfaces

for two of the published joint models. Some common points can be noted. First of all, all
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these joints have very simple geomeny, and uniform stress distribution over the interfaces

and uniform surface conditions are assumed. Because the only nonlinearity is the dry

friction shear stress at the interface, Masing's rule is applicable and the model is fully

defined by the force-deformation relation of the initial loading.

Interface	
i T

tmax	 t

(a). Metherell and Diller's model

Interface	

J F

44++4+M44

tmax
(b) Plan and Hallowell's model

Figure 2.11. Two examples of dry friction element based joint models and
their stress distributon over the interface

However, there are some significant differences between these models, apart from the

difference in the geometry. It can be noted that for some of the models (e.g. figure

2.11 a), the shear stress at the interface must be either the friction shear limit or zero. In

other words, the external force and moment are completely balanced by the friction force

in the slipped regions. For other models (e.g. figure 2.1 ib), however, the stress can be

below the friction limit. For some models, the slip only occurs at one area; for the others,

there can be several slipped areas and the slipped areas can have shear stress in both

directions.

§2.8 MICROSLIP MODEL BASED ON THE BILINEAR ELEMENT

§2.8.1 Asperity at Interfaces and Its Effects on the Behaviour of a Joint

For the joint models discussed in the foregoing sections, the basic assumption is that

Coulomb's friction law is held at infinitesimal 	 area and under infinitesini

deformation. However, this basic assumption may not be realistic. Indeed, when

Coulomb presented his research results, he had never intended to extend his theory to the

contact problem with very small areas and with very small deformation.

A problem arises when the elasticity of the asperity on the interface is significant: under

the microscope, even the finest machined surfaces are not actually smooth [83], instead, it
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appears a very rough surface consisting of many tiny bumps known as asperities. A
relevant quotation about the contact of interfaces is [83]:

Putting two solids together is rather like turning Switzerland upside down and standing it

on Austria--the area of inti,nare contact will be small

The asperities are not rigid. When two surfaces are pressed together, the asperities will

deform until the normal pressure is balanced by the internal normal stress in the

asperities. The deformation of the asperities causes more contact area and hence the

stiffness in the normal direction will increase when the normal clamping force increases.

The increase of normal stiffness with normal clamping force, an indication of the effects

of asperities, have been found by many researchers [29][32]. Since the initial loading and

unloading curves in the normal direction are different, plastic deformation of asperities

must occur.

When force is applied in the tangential direction, the asperities will also deform until the

shear stress between the asperities exceeds the limit, then the asperities will break up and

rub against each other. If it is reasonable to model the rub mechanism between the

asperities by the dry friction law, it is certainly not appropriate to use the law to model the

deformation of the asperities before they break up.

Clearly, the asperities on the interfaces play an important role in the behaviour of the

joint, particularly when the motion between the asperities is small compared with the size

of the asperities. How to model these asperities is of great importance

§2.8.2 A Microslip Model Based on the Friction Bilinear Element

Menq et al [59] suggested that the force-deformation relation of an asperity is linear

before slipping. Accordingly, he suggested that the contact interface in a small area can be

approximated by a linear spring until the contact is broken After breaking up, the

relationship between the friction force and deformation at the interfaces can be modelled

using the dry friction law. This assumed relationship between the friction force and the

deformation at the contact interface is the typical property of a friction bilinear element.

If the bilinear element is used to replace the dry friction contact element in the microslip

models discussed in the foregoing section the resultant models can be more realistic.

The method used to derive the force-deformation relation of a joint model based on the

bilinear element is similar to the method in §2.7. However, because the tangential force

can transfer through the un-slipped area as well as the slipped area, the slipped area

corresponding to external loading is usually very difficult to detect, therefore, it is better

to start with an assumed slipped area, the corresponding force and deformation is then

calculated from the information in the slipped area.



EA— - ku=O
ax2 (2.33)

For slipped area (x^(l-a)L)

EA - tmaxO (2.34)
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Menq er a! [59] proposed a new translational microslip model based on the bilinear

element. Menq's model is actually an extension of the dry friction element based

translational microslip model by Metherell and Diller [45] with one bar being rigid. The

model consists of a elastic bar and a rigid base as shown in figure 2.12, the left end of the

elastic bar is connected to the rigid base through a linear spring 13. This model will be

used in this section to illustrate the general method for deriving a joint model based on the

friction bilinear element.

13
	

T

max

(l-a)L

k99222i Elastic interface	 Slipped interface

Figure 2.12 Diagram for Menq's model

The force-deformation relation consists of three ranges; the elastic range, the microslip

range and the macroslip range. Only the relationship in the microslip range is presented

below. Detailed formulae derivation is given in [59].

First assume slip has occurred in the area aL from the rightnd of the bar as shown in

figure 2.12. The governing equilibrium equation in the non-slipped aredIipped area for

the elastic bar are

For non-slipped area (x<(l-a)L)

The boundary conditions at both ends of the bar are

EA° - 13u(0)=O and EAaU(L) =T
	

(2.35, 2.36)
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The continuity condition at x=(1-a)L must be satisfied too, i.e.

du du
__1+

'dx dx (2.37, 2.38)

where superscripts + and - denote limiting values from the right and left of the transition

point (x=(1-a)L) respectively.

Solving equation(2.33) and (2.34) with the boundary conditions leads to the force at the

left end and displacement in a parametric form as:

[+XtanhX( 1-a)]
TtmL (a-4-

X{itanhX(l-a)+X]1

sinh X+Xcoshtmax

u(x)—	 k rsinh X(l-a)+A.cosh X(l-a)

k	 [x( - L)+l-a2)]+(XL+)
tmax tmax x	 L2	 T

where A.=

and

(2.39)

0<x^(l -a)L
(2.40)

(1-a)L<x^L

(2.41)

(2.42)

Substituting x=L into equation(2.40) leads to the displacement at the right hand side of

the bar:

k 1+?.2a[2+{1+?tanhX(la)1[TttanhX(la)+A])
	

(2.43)

Equations(2.39) and (2.43) represent a set of two parametric equations which define the

relationship between the force and deformation at the right hand end of the bar. Unlike

other models discussed in foregoing sections, it is extremely difficult, if possible at all, to

find the deformation directly from the magnitude of the external force (or vice versa).

Therefore, microslip models based on the bilinear element are usually more complicated

to derive than models based on the dry friction element.

§2.8.3 Comments on Two Basic Groups of Joint Models

Two groups of microslip models have been discussed so far, one is based on the group

of models using the dry friction element and the other is the group of models based on the
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bilinear element. These two groups of joint models are most commonly used. Usually a

closed-form analytical model is obtained.

The models based on dry friction elements are usually easier to derive than the models

based on the bilinear elements. Indeed, because of the difficulties in deriving the bilinear

element based joint models, only two models with very simple configuration have been

developed; one is the model developed by Menq er al [59], and the other will be
presented in §2.15.1. On the other hand, since the models based on the bilinear element

effectively include the effects of elasticity of the asperities at the interfaces, it is more

realistic than the models based on the dry friction element. -

However, there are two problems which need to be considered carefully when modelling

a friction joint:

1) The assumptions made during derivations of the dry friction element or bilinear

element based models.

Because of the effects of the asperities, the dry friction element is clearly not realistic

when the magnitude of the motion is small; replacement of the dry friction element by the

bilinear element in modelling the friction joint is an effort to make the model more

realistic. However, the bilinear element itself is still an idealised assumption. The

assumption of a bilinear element effectively means that all of the asperities are elastic and

the same in all the properties. Clearly, this assumption is not realistic either. If the force-

deformation relation of a joint is to be modelled accurately, the force-deformation relation

at very small area must first be modelled accurately. The ability to represent the

relationship between the force (stress) and deformation (strain) at a very small area is

clearly of the utmost importance in accurate modelling of friction joints.

2) Joints with complicated configurations.

All the models mentioned so far are represented in a closed-form analytical formulae.

However, in order to achieve these closed-forms, the configuration of the joint, the

pressure distribution and surface conditions over the interface must be simple.

Unfortunately, real engineering joints are usually much more complicated. Accordingly,

practical applications of these closed-form analytical models are severely limited.

In the remaining parts of this chapter, these two problems are dealt with. First, the

relationship between the force and deformation at a small interface area is investigated

and a new element is developed; then the method to find the overall behaviour of a joint

with complicated configuration and interface conditions is investigated.
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§2.9 MECHANISMS OF MICROSLIP

In the foregoing sections, the microslip caused by the elasticity of a joint component is

studied. However, this is not the only possible cause of microslip, microslip can also be

caused by other mechanisms.

In practice, asperities are different both in size and in shape, therefore, when two

interfaces are pressed together, big asperities contact and deform first. Accordingly, the

pressure in asperities is different. When a tangential force is applied, asperities deform in

the tangential direction and due to the difference of the asperities, the nature of the

deformation of the asperities are different; some asperities deform elastically, some

plastically and others may break up completely. These different types of deformation will

clearly introduce a nonlinear relation between the load anc deformation. Therefore,

even if there is no deformation on the joint component, microslip can still occur.

Another mechanism for microslip to take place is when the shear stress limits over the

interface are different. This can be caused by different surface conditions due to different

surface treatment, it can also be the results of uneven pressure at the interface due to

concentrated normal loads, waviness of the contact surface, etc.

If the joint component is soft, the motion at different part of the interface will be

significant, in other words, if part of the interface is subjected to a large motion, most of

the asperities will break up and slip against each other. Therefore, a dry friction model

(also the bilinear contact model in slipped range) will be a good assumption; if at some

other parts of the interface, the deformation level is much smaller, asperities act

elastically, hence the bilinear element is representative. However, if the joint component

is stiff, various parts of the interface are subjected to similar motion, and the difference

between asperities will play a significant role. The assumption of dry friction or bilinear

friction is not appropriate under these circumstances.

From the above discussion, it can be stated that microslip can be affected by the

following:

i) different properties of the asperities at the interface

ii) different pressure over the interface caused by concentrated normal load, flatness of

interface etc.

iii) different deformation over the interface of the joint caused by either deformation of a

component or rotation of a component.

The microslip due to i) occurs on a 	 micro-scale and this type of microslip is

referred as the micro-microslip; the microslip effects due to ii) and iii) only become
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significant over a large interface, therefore, they are called the macro-microslip in the
following analysis.

§2.10 TYPES OF MICRO-MICROSLIP MODELS (MICROSLIP
ELEMENTS)

Although microslip due to asperities (micro-microslip) was first recorded a long time ago,

the real mechanism of microslip has never been fully understood, and surprisingly very

few theoretical models have been developed to quantitatively simulate micro-microslip at

the metal interface. To the author's knowledge, there are only-two physically meaningful

micro-microslip models (microslip element), namely Burdekin's model [48] and

Shoukry's model [49]. In both of the cases, Masing's rule holds.

§2.10.1 Burdekin's Model

Burdekin er al [48] proposed a microslip element in 1978. To the author's knowledge,

this is the first analytical model which considers the effects of asperities. Each asperity is

represented as a prismatic rod with the same stiffness and each rod is modelled as a

bilinear element. After assuming a linear height distribution of rods, the initial loading

relation is found as:

T=au+bu	 O<u<-

1	 (2.44)
a2	 a

where a and b are parameters determined by the apparent contact area, normal and shear

stiffness of the asperities, normal displacement, friction coefficient and a constant relating

the number of contacts to the normal displacement of the surfaces.

§2.10.2 Shoukry's Model

Shoukry [49] developed another microslip element using Mindlin's spherical contact

element [79] as the basic element. Therefore, microslip can occur at each asperity. After

assuming exponential distribution of peak height of spherical contact element, the force-

deformation relation was found to be:

Yu
T=N(1-e a)
	

(2.45)

where .t,N are the friction coefficient and normal force respectively,

a is the standard deviation of the peak height distribution, and

y is a constant which is equal 
2(1-v) 

where v is Poission' ratio.
i(2-v)



K=	 =J::N
du10	 :Y

(2.47)
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Unlike Burdekin S model, the joint parameters of Shoukry's model can be measured
directly.

It is interesting to point out that before Shoukry's work, Rogers et al [30] had proposed
a mathematical expression for the loading relation of a metal interface joint in the

tangential direction based on the shape of the experimental loading curve, the formula
was written as:

Ku
T=T(1-eTs)
	

(2.46)

where Ts is the friction limit which is equal to l.LN in Shoukry's expression.
dTand K is the initial stiffness, i.e. K=d u-O

It can be found from equations (2.45) and (2.46) that these two formulae are the same

with

KK y
and -=--=-	 (2.48)

TSN c

However, the formula used by Shoukry is physically more significant, not only because

the formula is derived from a physically meaningful model, but the joint parameters in a

loading curve (e.g. initial stiffness, friction limit) are related to other physical

parameters(normal pressure, friction coefficient etc). Accordingly, the joint properties can

be predicted from other physical parameters; direct testing for the force-deformation

characteristics may not be necessary.

§2.11 DEVELOPMENT OF A NEW MICROSLIP ELEMENT

§2.11.1 New Approach for Modelling the Micro-microslip Mechanism

For both Burdekin's and Shoukry's elements, the single asperity is the basic element;

either a bilinear or a spherical contact element is assumed for each asperity. These

assumptions are clearly idealised. In practice, according to the plastic deformation in the

normal direction when a normal load is applied, when an asperity is subjected to

significant relative motion with respect to the size of the asperity, plastic deformation of

the asperity is bound to occur. Because of the simplified assumption made on the basic

element, it will be seen later that both Burdekin's model and Shoukry's model have

difficulty fitting the experimental results accurately. It is believed that these idealised
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assumptions are mainly responsible for the discrepancies between the experiment and

theory.

A new element will be introduced below. In the following analysis, a small area of the

interface is considered as the basic element. Each tiny area can comprise several asperities

or contain only a part of an asperity.

To simplify the problem, the whole interface of a joint is divided into a series of tiny

areas and each tiny area is modelled by a bilinear element. All the bilinear elements have

the same stiffness. These assumed bilinear elements may not necessarily represent the

real area at the interface.

The assumptions made in this section are more realistic than those made by Burdekin eta!

(48] and Shoukry [49]. This is because the bilinear element does not represent one single

asperity. If one asperity is twice as stiff as another asperity, then the first asperity is

modelled by two bilinear elements and the second by one. Because the properties of

plastic deformation of metals can be modelled by a bilinear assembly system [78], even if

an asperity acts plastically in the tangential direction, provided each asperity can be

modelled by a bilinear assembly system, the assumption that a tiny area can be modelled

by a bilinear element is still valid.

First, stiffness-area (S-area) is defined as a proportion of the total initial stiffness

contributed from an interface area; if two small areas at an interface have the same initial

stiffness, these two areas are considered to have the same S-area. The total stiffness area

(S-area) of the interface is unity.

If the joint has a displacement u at the interface, slip may occur over some of the stiffness

area; the slipped stiffness area (S-S-area) is represented by a variable h. Clearly, h is a

function of the motion u. Assume the relationship between the motion u and the S-S-area

to be a function u=u(h) (or h=h(u)).

When u ^ u(0), there is no slip over any S-area of the interface, hence the whole interface

acts as a single spring with a stiffness k. When u^u(l), slip occurs over the whole

surface, i.e.macro-slip starts. Once macro-slip has started, Coulomb's dry friction law is

held.

When the displacement is between u(0) and u(l), slip can only occur at some parts of

the interface. Therefore, for the new model, there can be three different displacement

ranges; elastic deformation, microslip and macroslip, a schematic diagram for these three

displacement ranges is shown in figure 2.13.
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Employing the relation u=u(h), one can convert the problem in the displacement domain

[0, 00] to the h-domain [0,1].

Because any tiny area can be modelled by a bilinear element, the force-deformation

relation will be linear until slip starts. Accordingly, the total interface is divided into two

parts: the elastic part and the slipped part. For the slipped part, the force at any tiny area is

their friction limit f(h)=ku(h)dh, and the contribution in the slipped S-area to the

tangential force is an integration over an h range [0,h], i.e.

0

.2

rh
TsJ f(h)dh =kJ u(h)dh

0	 0

(2.49)

For the elastic part, the force-deformation relation is linear, hence the contribution from

the area must be

Te=kU(h)(1h)
	

(2.50)

The total tangential force is the sum of contributions from the slipped area and the elastic

area, hence

TTs+Tek J:uhdh +(l-h)u(h))
	

(2.51)

rh

J
u(h)dh and (1-h)u(h) are represented by the two shaded areas in figure 2.13.

0

Equation(2.51) is the implicit formula for the force-deformation relation of the new

microslip element.

Differentiating both sides of equation (2.51) with respect to u leads to

=k(l-h)	 (2.52)



dT
du

hence h =1-
k (2.53)
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Equarion(2.52) shows that the slipped S-area can be detected from the local stiffness in a

force-deformation curve. The local stiffness is only contributed from the non-slipped S-

area.

When u is greater than u(1), slip occurs all over the interface (macroslip), and the

tangential force cannot increase any further with displacement, therefore, the limit of the

tangential force is k fu(h)dh which is equal to the product Of the normal force and the

friction coefficient (i.e. Np.).

To summarise; the force-deformation relationship over the loading is:

I

T= k fu(h)dh
0

h

T= k (fu(h)dh +(l-h)u)
0

1= ku

u(l)^u

u(0)<u<u(l)

u^u(0)

(2.54)

The three formulae in equation(2.54) represent the force-deformation relationship in

elastic deformation, micro-slip and macro-slip range of displacement. Once the relation

u=u(h) is known, the relationship between the force and the deformation of the initial

loading can be found from equation(2.51), and unloading and reloading curves can be

obtained from Masing's rule.

§2.11.2 Generality of the New Model

So far, no assumption about asperity distribution has been made, therefore,

equation(2.51) is a generalised formula which can represent any micro-slip mechanism

that obeys Masing's rule.

To prove the generality of the new model, one only needs prove that there is a function

u=u(h) for any Masing type model, so that the force-deformation relation of a joint model

can be represented by equation (2.51) exactly.

dT.	 .	 .	 .
Since - is a function of u, equation (2.53) is exactly the function h=h(u). Since h=h(u)

is a one-to-one function, its inverse function u=u(h) uniquely exists. Since equation

(2.53) is directly deduced from equation(2.5 1), the generality of the model is proved.
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To illustrate the generality of the model, consider Shoukry's model

T=a( 1-e')
	

(2.55)

(2.56)

Substituting equation(2.56) into equation(2.52) yields

u(h) =-	 (2.57)

If equation (2.57) is substituted into equation(2.54), equation(2.55) is obtained.

Therefore, equation(2.57) is the relation between the displacement and the slipped

stiffness area for Shoukry's model.

§2.12 TWO APPROACHES TO OBTAIN THE JOINT PARAMETERS:

PREDICTION AND IDENTIFICATION

For Burdekin's element, the joint parameters are not available until the loading relation in

the tangential direction is obtained from an experiment; the parameters of a joint can then

be found from the loading curve. This approach may be referred to as identification.

For Shoukry's element, the joint parameters can actually be obtained by other

experimental means (not to measure the tangential loading relation experimentally). This

approach is referred to as prediction.

From the design point of view, the prediction approach is much more desirable than

identification, because some of design parameters (normal pressure, friction coefficient,

parameters for roughness of the surface etc) can be used directly to predict the force-

deformation relation of a joint. Indeed, if this can be done accurately, the friction joint

will not be a problem in structural analysis and the damping capacity of the friction joint

can be optimised for the reduction of the response of the structure.

Unfortunately, the prediction approach is often not a realistic one because of the

complexity of the joint. The joint properties are believed to be determined by normal

pressure and surface condition, there is also evidence [31][33] that the properties of a

joint depend on the contact duration time and contamination of the interface, and indeed,

many other unknown factors. However, the design parameters for the surface condition

is usually represented by the roughness, the flatness and the hardness. Clearly, these

design parameters can be too approximate to represent the effects of the surface

conditions on the interface. Actually, even if it is known how the basic parameters affect

the joint properties (which must be formidably complicated if it is possible at all), the

parameters will be extremely difficult to obtain. As a result, only some of these
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parameters can be used to quantify the joint. However, the joint properties are too

difficult to be predicted by a few design parameters accurately. Therefore, although the
prediction approach is attractive, it is not a feasible approach, at least in the foreseeable

future.

For the identification approach, however, the basic parameters are not used to determine

the properties of the joint, instead, some intermediate parameters can be used. The final

purpose of these intermediate parameters is to represent the loading relation of a joint

accurately. Pure mathematical curve fitting has be proposed [35], usually, polynomials

are used to fit the experimental results. However, these mathematical expressions are

usually not very satisfactory. Alternatively, one can develop some mathematical formulae

with parameters having physical significance. One example is Rogers's formula [30].

In the last section, a new micro-microslip model is proposed. The model is generalized

so that it can represent any Masing type joint. More importantly, the joint is represented

by a function u=u(h) in an h-domain[O,l]. The function u=u(h) is physically meaningful;

it represents the total slipped s-area corresponding to the motion u. Therefore, it must be

a smooth and continuous increasing function. Consequently,it may be easier to find a

mathematical expression u=u(h) than to find a loading relation T=f(u) directly to yield a

satisfactory fit to the experimental results. Once u=u(h) is assumed, the relation T=f(u)

can be found from equation(2.51)

§2.13 NUMERICAL METHOD FOR IDENTIFICATION OF MODEL

PARAMETERS FROM EXPERIMENTAL LOADING CURVE

An assumed function u=u(h) can only be an approximation and also because of the

measurement errors in experimental data, an analytical model usually can not fit

experimental data exactly, therefore, one must aim to minimize the difference between the

analytical and experimental data. The most commonly used method is to minimize the

sum of the square difference, i.e.
n

AE= (TeTa)2 - minimum	 (2.58a)
i=1

or in a non-dimensional form (which is used in the following analysis)

Ty.T	
- minimum

1=1 maxcl'e(i))
(2.58b)

where subscripts e and a represent experimental and theoretical data respectively.

Unless Ta is an polynomial in u, the minimisation can not be obtained directly and

iterative methods have to be used. Usually the number of parameters for a joint model is

small (less than 5 in the following analysis), the Pattern Search algorithm proposed by

Hook and Jeeves [84] is used for the identification of the joint parameters. The Pattern
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Search method is one of the simplest search methods in fmding a minimum for a given

objective function.

The method comprises two kinds of moves: exploratory and pattern. A significant

advantage of this method is that the derivative of the objective function is not required.

The method is briefly described as follows:

If an initial estimation is(a('))=(a1....,a )T at point A0, we first search in the direction

(1,O,O,...,O }T with a step-length A from A0 to a point A 1 so that iE(A1)<iE(A0),

then search in the second direction fO,1,O,...,O }T with a step-length i to another point

A2 so that E(A 1)<1E(A2), repeat searching in a different direction until the last search

ends at point A with E(A)<AE(A..1) (these searches are called exploratory). After

exploratory, we search from A in the direction (A-A0 ) until a minimum A in this

direction is found (which is called pattern search). The process is repeated with a new

estimate A0=A. When A-A0=O, the step length has to be reduced, convergence is

assumed and the process is terminated when the step size falls below a pre-selected

value.

The pattern search method may not be very efficient in terms of computing times,

however, the method is very simple and easy to program (even with a very complicated

objective function). The method is most appropriate in those cases with only a few

variables.

§2.14 IDENTIFICATION OF PARAMETERS FOR A TRANSLATIONAL

MICROSLIP MODEL USING EXPERIMENTAL DATA

The experimental data for identification purpose obtained by Masuku et a! [29] on a

bolted joint. Three materials were tested; mild steel, brass and cast iron. In their

experiment, a tangential load was applied through a rigid base, hence a uniform shear

stress distribution was applied at the interface and different areas at the interface were

subjected to the same displacement, which is an ideal case to verify microslip elements.

The original Masuku's data are shown in figure 2.1, the deformation measured consists

of two parts, one is the deformation at the interface, the other is contributed to by other

deformation of components (which is elastic). The second part deformation is estimated

approximately from another specimen made from the same material and has the same

geometric shape as the jointed specimen (but without interface). The second part

deformation is irrelevant to properties of the joint interface, therefore, it is subtracted

from the total deformation in the identification process.

Basically, the identification process is a kind of curve fitting process. To achieve accurate

results, the measured data must have high accuracy and also cover a sufficiently wide



u^u(0)

u(1)<u

(2.54)
u(0)<u^u(1)
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range. Usually, the higher the error levels, the wider the data range required.
Accordingly, to determine parameters for microslip models accurately, the following two
basic requirements on measured data must be satisfied:

1) displacement at interfaces must be a significant part in the whole displacement so as to
ensure the accuracy of the measured deformation at the interface.

2)microslip must occur over a sufficiently large area so that enough information is

available to determine the model variables.

Based on the above two requirements, two brass interface loading curves (normal load

250kg and 300kg) and two mild steel loading curves (normal load 50kg and 100kg) are

selected in the following analysis.

Three microslip elements (micro.-microslip models) are investigated, i.e.

1) Generalised micro-microslip model

1
T= k Ju(h)dh

0
h

T= k (fu(h)dh +(1-h)u(h))
0

T= ku(h)

where u=u(h,a,b,..)

2)Shoukry's model

T=a (1-e")
	

(2.45)

3) Burdekin's model

T=bu+au	
- a

1	 a	
u^ - a
	 (2.44)

In the above three models, k, a and b are joint parameters determined from experimental

datL

To determine the theoretical expression of u=u(h) for new generalized micro-microslip

model, the slopes of the loading curves are estimated. From equation (2.53), a set of

(u,h) data are obtained and plotted on a graph.



u>a

u^a
jI= ka
1T= ku

(2.61)
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The following estimation function
	

is used according to the shape of the u-h curve:

u=ae(bh)
	

(2.59)

More complicated formulae are also tested such as i)u=bh c+a or ii)u=ae(bh) .ic, which
have three variables, However, it is found that the assumed formula u=ae(bh) gives very

satisfactory results fitting the experimental data, hence three variables are not necessary.

In addition, it is found that if the function has more than two variables, it tends to be

extremely difficult to determine (a,b,c) uniquely; two different sets of (a,b,c) may both fit

a loading curve with the same order of accuracy. Fixed order polynomials, such as

u=bh2+a and u=bh3+a are also tested, and it is found that the results using these formulae

are poorer than the expression u=ae(tth). For the above reasons, equation (2.59) is used.

Substituting equation(2.59) into equation(2.54) leads to a loading relation for the

generalized microslip model:

1 - 
ka(eb1)

I	 -	 b
1 T— k(u-a+u(b-logu+loga))
I -	 b
1. T= ku

u>ae b

a<u^aet
	

(2.60)

u^a

Physically, parameter a' represents a limit that slip can start at the interface, and

parameter b represents the levels of difference between asperities at the interface, the

greater the difference between bilinear elements, the greater the parameter b.

It can also be noted that a special case for the new micro-microslip model is b=0, the new

micro-microslip model becomes a bilinear element, with

The maximum friction force when gross slip starts can also be predicted. From

equatior2.60)(2.45) and (2.44), it can be found that the maximum friction force for

different models are:

i) New micro-slip model

ii) Shoukry's model

iii) Burdekins model

- ka(e'1)
Tm— b

Tm,a
a2

Tm— 4b

(2.62)

(2.63)

(2.64)
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Tables 2.1, 2.2 and 2.3 show some identified variables for different models.

a	 b	 k	 K	 T
(10 8m)	 (lO7kg/m) (1012N/m/m2) 	(kg)	 (10)

50kg mild steel 	 3.43	 2.79	 5.82	 2.26	 10.95	 0.2 19	 0.390

100kg mild steel 	 2.18	 3.90	 8.51	 3.54	 23.00	 0.230	 0.301

250kg brass	 3.19	 3.59	 4.20	 1.78	 13.19	 0.053	 0.127

300kg brass	 1.33	 3.75	 9.12	 3.80	 13.55	 0.045	 0.519

300kg brass	 0.53	 4.97	 10.5	 4.37	 15.82* 0 .053*	 0.863

Table 2.1 Parameters for new micro-slip model

a	 b	 k	 K	 Tm	 p.
(kg)	 (106m) (lO7kg/m) (1012N/m/m2) 	(kg) _______ (1O-)

50kg mild steel	 11.67	 4.50	 6.43	 2.67	 11.67	 0.233	 0.385

100kg mild steel	 16.87	 5.28	 8.91	 3.70	 16.87	 0.169	 0.590
250kg brass	 12.54	 2.87	 4.21	 1.76	 12.54	 0.050	 0.636

300kg brass	 12.58	 7.14	 8.98	 3.73	 12.58	 0.042	 0.180
300kg* brass	 15.05*	 5.39	 8.11	 3.37	 15.05' 0.050'	 6.20

Table 2.2 Parameters for Shoukry's model

	

a	 b	 k=a	 K	 Tm	
.'

(107N/m) (10 13N/m2) (107N/m) (10' 2N/m/m2) (Kg) _____ (1O)

50kg mild steel	 5.60	 -8.09	 5.60	 2.32	 9.742 0.195	 4.2

100kg mild steel	 8.55	 -15.86	 8.55	 3.56	 11.54 0.115	 1.1

250kg brass	 3.75	 -3.68	 3.75	 1.58	 9.79 0.040	 3.5

300kg brass	 8.06	 -16.41	 8.06	 3.35	 9.90 0.033	 5.5

NB: * pre-set values

Table 2.3 Parameters for Burdekin's model

Figure 2.14 shosome regenerated loading curves of a mild steel interface and of a brass

interface together with experimental data.

2.14 Comparison between theoretical and experimental results on a
translational joint

In all the cases, the new microslip model gives the best fitting results while Burdekin's

model gives the worst (This can be noted by comparing both the values of the objective

function E in tables 2.1-2.3 and from figures 2.14 and 2.15. Burdekin's model is

clearly unsatisfactory to fit experimental data quantitatively compared with the other two

models, the predicted maximum friction forces are even smaller than the force actually
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applied in the micro-slip range, therefore, the model may not be as useful as the other two

models in quantitative analysis. Shoukry's model leads to very satisfactory results in the

displacement range measured, however, the predicted friction coefficients under different

pressures vary significantly (about 27% for mild steel interfaces and 16% for brass

interfaces), which indicates the limit of this model in the large displacement range. This

limit is expected because the model is based on elastic spherical contact, and this

assumption is not valid for large deformation.

The new microslip model not only gives very satisfactory results in the measured

displacement range, but also gives a satisfactory predictionof friction coefficient in the

case onild steel interface (about 5% variation of friction coefficient). The predicted

friction coefficients for the brass interface are not so consistent (with a variation of about

15%). However, for the case of the brass interface, when the clamping force is 300kg,

the displacement at the interface is about a half the elastic deformation and also the change

of slope of loading curve (which indicates the scale of microslip) is insignificant; in other

words, the two basic requirements are not satisfied, hence poor results are expected.

If a friction limit of 300kg is pre-set for the brass interface before identification (hence

parameters a, b, k are no longer independent) according to the friction coefficient

identified in the case of 250kg clamping force, a new set of variables are found (which is

shown in the last row of the table 2.1 and table 2.2). The regenerated loading curves

from the new micro-microslip model and Shoukrys model with the pre-set friction

coefficient are shown in figure 2.15 together with experimental data and the regenerated

loading curves without pre-set condition. It can be seen that the new micro-microslip

model still yields good agreement with experimental data (LE=8.63x10 5 ) but results

from Shoukry's model have deteriorated (.E=6.20x10).
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gure 2.15 Comparison between theoretical and experimental results on a
translational joint (brass interface, 300kg normal clamping force

From figure 2.14 and figure 2.15, it can also be noted that unloading and reloading

curves from the new micro-microslip model yields good agreement with experimental

data, which indicates that Masing's rule is appropriate for the unloading and reloading

process, the discrepancy between experimental data and regenerated data is insignificant.
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§2.15 NEW ROTARY JOINT MODEL BASED ON A MICROSLIP
ELEMENT

§2.15.1 Formulae Derivation

In the last few sections, a new generalized micro-microslip model (microslip element) has

been proposed and verified by the experimental data. In this section, several micro-

rnicroslip models are applied to a joint where deformation levels at different area of

interfaces are different, this being a rotary joint.

A rotary joint consists of two cylinders as shown in figure 2.16. A pure torque is applied

to the top cylinder and this causes a rotational displacement. The difference between a

rotary joint and a translational joint [59] is that displacements at different parts of a rotary

joint interface are different, they are proportional to the distance to the centre of the

cylinder (i.e. the radius), therefore, if the cylinder has an uniform surface condition and

pressure distribution over the interface, the part with large radius will slip first. Both the

micro-microslip and the macro-microslip have effects on the overall behaviour of the

joint.

The equilibrium condition must be satisfied, hence:

M=J2ltr2t(r, e)dr	 (2.65)

where r1 and r2 are the inside and outside radii respectively

U is the angular displacement

t(r,9) is the shear stress area at radius r

If the whole interface has the same surface condition and is subjected to a uniform

pressure distribution, the shear stress t(r,9) at the interface will be a function of the

deformation rU, i.e.

t(r,U)=t(rU)=t(u(r))
	

(2.66)

Substituting formulae for Shoukry's(equation(2.45)), Burdekins(equation(2.44)) and

the new generalised micro-microslip model (equation(2.60)) into equation(2.65) yields



(2.69)

It(r,O)=b(r8)2+ar8

a2
--

-
20b

a
r^ --

28b

b
ae

r^ -
e

a	 aeb
—^r<
o	 8

a
r <-

0

(2.71)
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For Shoukry's model

'r(r,O) =a (lebO))

-br8	 -brO	 -bree	 2re	 2	 r2
+M=2ica( 3	 bO	 (b@)2 + (be)3

For Burdekin's model

(2.ó7)

(2.68)

rO	 r2

M= $2 1rr2 (b(r8)2+ar8}dr+ J27cr2 (	 }dr
ri	 tO

2be2(r05-r1 5) irae(r04-r1 4) lra2(r23-r03)
—	 5	 +	 2	 -	 12b

awhere r0=min(r2 ,max(r 1 , - -)J

(2.70)

For the new micro-microslip model

ka(ebl)
b

e - 
k(r8-a+r8(b-Iog(rO)+loga))

t(r, -	 b

t(r,8)= krO

(2.72)
irkOr4 ra	 + 1	 1	 a	 2irkar3 r,	 2lrka(e"-1)r31r2
2 ri + (itk8r —	 +log(—)J - 3b	 'ra ^	 3b	 1fl,

where ra=min(r2 ,max(r i ,-)) and rb=min(r2,max(rl	 (2.73)

The first term of equation(2.72) is a contribution from the micro-elastic band to the

total friction torque while the second and the third terms correspond to contributions from

the micro-microslip band and micro-macroslip band respectively.
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If b=O, the rotary joint based on the bilinear element is achieved. The micro-microslip

band vanishes. Taking the limit of b=O for equation(2.73), the loading relation is:

irk9r4 ra 2ltkar3ur2
M— 2 ri+ 3 'r

where ra=min(r2,max(ri,!))

(2.74)

(2.75)

The friction torque reaches its limit when micro-macroslip start at inside radius r 1 , then

the limit for friction torque is

r2

Max(M)= J2r2tmaxdr_2tmaxr I r
3

ri
(2.76)

where tmax is the maximum shear stress of microslip element and can be found from

equation(2.62)(2. 63) (2.64).

§2.15.2 Identification of Rotary Joint Parameters Using Experimental

Data

An ideal source of experimental data is provided by Burdekin et a! [32]. The tangential

displacernentsof a stack of circular cast iron joint rings with inside and outside diameter of

O.051m and O.076m respectively were measured. The thickness of each ring was

O.0127m. The material used was cast iron; two kinds of interfaces were tested, these

were ground to ground(G/G) interfaces and ground to hand-scraped(G/H) interfaces. The

deformation due to other elastic components is subtracted by using the data from an

elastic solid cylinder with the same geometric shape as the cylinder with joints. Similar

curve-fitting techniques to §2.8 (pattern search method) are used to identify model

parameters.

Tables 2.4-2.7 show some identified model parameters for different micro-slip models,

and figure 2.17 and figure 2.18 show regenerated loading curves with experimental data

under different normal load for GIG and G/H machined surfaces. The results are very

similar to the case of translational joint in §2.14. Again, the new micro-microslip model

fits the experimental data best. Shoukry's model gives reasonable results, while

Burdekin's model is clearly less appropriate. The rotary model based on the bilinear

model is not adequate either, the micro-slip range of displacement (i.e. between elastic

deformation and macro-slip) is much smaller than measured data, this indicates that

micro-microslip are mainly responsible for overall microslip behaviour of the joint, the

micro-slip due to macro-microslip only plays an insignificant role. Therefore, the bilinear

element assumption, which is mainly to represent the effects of macro-microslip, is not

representative.
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NB: * preset values

Table 2.4 New micro-slip rotary model

a	 b	 k	 T
(105 N/m2) (106m) (10 11 N/m/m 2) (105N/m2)	

(1O)

G/GPnI.5X106 N/m 2	2.65	 2.70	 7.14	 2.65	 0.177	 4.26

GIG P=2.0xl06 N/m2	3.15	 3.03	 9.53	 3.15	 0.158	 8.67

GIG P=3.0x106N/m2	4.52	 2.88	 13.00	 4.51	 0.150	 9.65

GIG P=4.0x106 N/m2	6.52	 2.41	 15.68	 6.51	 0.163	 4.05

GIG P=6.0x106 N/m2	8.50	 2.69	 22.80	 8.50	 0.142	 5.93

C/H P=2.0x106 N/m 2	2.90	 6.53	 18.97	 2.90	 0.145	 5.24

C/H P=4.0x106N/m2	5.94	 5.37	 31.80	 5.94	 0.149	 3.56

C/H P=9.0x106 N/m2	7.27	 9.60	 69.97	 7.27	 0.08 1	 0.45

C/H P=9.0x106N/m2	 13 . 82*	 4.07	 56.24	 13.82*	 0. 153*	 18.58

NB: * preset values

Table 2.5 Rotary model using Shoukry's element

a	 b	 k	 Tm	 p.	 iE
(10 11 N/m/m2) (1017	,%n2) (101 4Tv1i) (105N/m2)	

(10)

GIG P=1 . 5x10ôN/m 2	5.83	 3.54	 5.82	 2.34	 0.160 20.91

GIG P=2.0x106N/m2	7.74	 5.13	 7.73	 2.92	 0.146 27.16

GIG P=3.0x106 N/m2	10.98	 7.58	 10.96	 3.97	 0.132 15.45

GIG P=4.0x06 N/m2	12.67	 6.90	 12.65	 5.82	 0.146 16.77

G/GP=6.0x106 N/m2	21.24	 15.98	 21.21	 7.06	 0.118 13.15

0/H P=2.0x106N/m2	16.00	 25.38	 16.00	 2.52	 0.126 15.42

C/H P=4.0x106 N/m2	27.88	 39.72	 27.88	 4.89	 0.122 9.33

C/H P=9.0xl06 N/m2	65.55	 202.60	 65.55	 5.30	 0.059	 1.06

Table 2.6 Rotary model using Burdekin's element



Table 2.7 Rotary model using bilinear element
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Figure 2.17 Comparison between theoretical and experimental results on
a rotary joint with GIG cast iron interface
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For all the microslip models, the friction coefficient identified for 0/H surfaces under
9xlO6N/m2 clamping force are obviously underestimated (compared with that identified

in the cases under a clamping force 2x106N/m2 and 4x106N/m2). Actually, it can be seen
that the change of slope of loading curve is very small under a 9x10 6N/m2 clamping

force. In other words, microslip only exists over a small S-area of the interface. Hence

the prediction can be inaccurate. If a friction coefficient is pre-set according to that

identified under a smaller clamping force (an intermediate value 0.153 was chosen), a

new set of variables can be identified for different models. The new set of identified

variables are shown in the last rows of table 2.4 and table 2.5 for the models based on the

new micro-slip model and Shoulay's model, their regenerated loading curves are shown

in figure 2.19. The results from Burdekin's model and the rotary bilinear model match

experimental data poorly and are not listed. Similar results for the brass interface under

300kg normal force are found; the results from Shoukry's element based model

deteriorate much more significantly than from the new microslip element based model

when a friction coefficient is pre-set. This, again, shows that the new microslip model is

more representative and flexible to fit the experimental data.
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§2.16 FINITE ELEMENT JOINT MODEL

§2.16.1 Theory

In this section, the second problem mentioned in §2.8.3 is investigated.

It is shown in §2.8.1 that the formulation of the model becomes very complicated when

the bilinear element is used to replace the dry friction elemenq the formula will become

much more complicated when a micro-microslip element is used to replace the bilinear

element. However, despite the complexity of the formulae, the joint models discussed in

the foregoing sections are actually still idealized, in other words, the assumptions of

uniform pressure, uniform surface condition and simple geometric configurations are

made.
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In practice, the real engineering configuration of structures and joints are usually much

more complicated. Consequently, it is extremely difficult, if not impossible, to obtain an

analytical model directly from the classic stress analysis approach. As a result, the joint

models formulated from classic stress analysis methods are usually only useful in

modelling some simple joints in a laboratory and act as an tool for understanding the

microslip phenomenon. However, it is often not practical to apply these methods to real

engineering joints.

Apart from the difficulties in theoretical analysis, neglect of inertia force of the joint can

also make the above analysis erroneous at high frequencies, even for some simple joints.

In these cases, the fmite element method should be used to find the deformation of the

joint under an external load.

The finite element algorithm for calculating the deformation under a prescribed load is

discussed in detail in many books (e.g. [2]). The basic strategy is as follows:

For any physical system, the equilibrium equation can be written

(F(u))=(P}
	

(2.77)

where (F(u) } is the node point force vector corresponding to the deformation { u), and

(P} is an external force vector applied to the node point.

If the system is linear, a stiffness matrix [K] can be found to relate the deformation vector

and node point force vector as

F(u)=[K] (u)
	

(2.78)

Therefore, the deformation of the system subjected to load (P) is

fx)=[K]'fP)
	

(2.79)

For a nonlinear system, however, an iteration process has to be used to find a

deformation vector (u) to satisfy equation(2.7. The most commonly used method for

static analysis is the Newton-Raphson method:

If an estimation for the deformation is {u(1))=(u1(''),u2('').....,un(1))T and the

corresponding node point force vector is (F(i-l))=(Fi(i-l),F2(1l),F(i4)}T, the

unbalanced excitation force P(11) will be

p(i-1)=p(i-1)	 (2.80)

This unbalanced force will cause ftmher deformation. A linear approximation can be used

to predict this further deformation as



aF1_____

aF2	 aF2
(i-1)

aF	 aF
i-1)

(2.83)

is the local stiffness matrix at

From equation(2.8 1), a better estimation can often be found from

(u(1) } = ( (i-I) +[K(11)]1i.P(11)
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[K(1-')] (áu('))={i.P(1)}
	

(2.81)

where (u(1))=(u(1)}-{u(1))
	

(2.82)

is a modification on the estimation

au1(1- 1)

aF2

-	 .and [K(1	

aF1

aF

(2.84)

The local stiffness matrix [K()] is often referred to as the Jacobian in,1 general Newton-

Raphson method. A schematic diagram for the Newton-Raphson method is shown in

figure 2.20

= = k 1 =
F2

1)

O)

II
u" ii-" u

Figure 2.20 Schematic diagram for the Newton-Raphson method

The iteration process is repeated until convergence is achieved. Strictly speaking, for the

Newton-Raphson method, the Jacobian should be updated in each iteration, however,

calculation of [K(1 ')]' at each iteration can be prohibitively expensive when the size of

the system is significant. Fortunately, the updating of the Jacobian at each iteration is

often not required. Actually, depending on the nature of the nonlinearity, the [K(1)]

matrix may only need to be updated every few iterations [2]. By doing so, the

computation cost can be significantly reduced. A schematic diagram to use initial local

stiffness [K(0)] in the iteration process is shown in figure 2.21.
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For a nonlinear system, the fmal deformation can be path dependent, (i.e. multi-value

nonlinearity), in other words, the final deformation is not only determined by the final

load applied, but also by how the load is applied. An example is the deformation of a

joint in the tangential direction; even if the final load magnitudes are the same, the

deformations during the initial loading and unloading are certainly different. Because of

the nature of the nonlinear problem, it is essential to calculate the deformation in a step by

step approach to simulate the loading history [2].

Even if a nonlinear system is independent of the loading history (i.e single value

nonlinearity), the step by step method should still be applied. This is because the

Newton-Raphson method is a first order approximation method and requires a good

estimation to ensure convergence. If the initial estimation is too far from the solution, the

algorithm can diverge, i.e

11(P) - (F(i- l ) ) 11< 11(P) - (F( i)) fi
	

(2.85)

The linear approximation will be accurate only if the estimation is sufficiently close to the

true solution. Therefore, in order to achieve convergence, the basic strategy of the step by

step method is to find an estimation close enough to the real solution. Unfortunately, a

good estimation to the final solution is often very difficult, and sometimes impossible to

obtain. Therefore, an incremental approach (step by step) should be employed.

When the load is zero, the deformation is zero, hence the exact result is known. If a

sufficiently small load increment is then applied, the structure will deform, but in most

cases, the deformation is not far from the zero deformation. Therefore, the equilibrium

position corresponding to a small load can be found using the Newton-Raphson method

with zero deformation as an initial estimation. This deformation state will be a good

estimation for the system subjected to a further load increment. Repeating the process, the

final deformation of the system subjected to a prescribed load can be found. Therefore,

the convergence can usually be achieved by using a step-by-step incremental approach.

If the external load is cyclic, both inertia force and damping force can be significant. If

this is the case, the inertia and damping force must be included in the equilibrium
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equation. For most structural problems, the mass of a structure is constant, and if the

nonlinear force is also independent of the excitation frequency, then the equilibrium

equation can be expressed as:

[M]{x)+[C]{x)+(F(x))={P}
	

(2.86)

The general method for solving equation(2.86) will be discussed in chapter 3. In this
chapter, only the problem with negligible inertia and damping force are to be investigated.

§2.16.2 Numerical Case Studies

In this section, results from three case studies are presented. In the first case, a simple
geometric translational model is studied. Bilinear contact is assumed to model the

properties at small interface areas. The results using the FE method are then compared
with the results from Menq's analytical model to demonstrate that the FE method is

appropriate; in the second case, a more complicated translational model is studied, the
newly developed microslip element is used to model the contact at the interface and

different beam and joint parameters are assumed to simulate different pressure and surface
conditions over the whole interface. It is extremely difficult to obtain an analytical
solution, however, it is shown that there is no additional difficulty by using the FE
Method. The case three demonstrates the signhticance ot micro-microslip under some
circumstances.
§2.16.2.1 Case One

The system studied is a uniform cross-section bar as shown in figure 2.22. Since dry

friction elements can be considered to be a special case of the bilinear element with the

very large initial stiffness (theoretically infinite), the friction force at the interface node

point is assumed to be bilinear.

Elastic ring Uniform normal pressure 	 Elastic bar

__________________	 Tangential load
[1_(:gid base

2.22 Diagram for case one

The distributed friction shear stress over an element is replaced by two concentrated
loads at two node points with their magnitudes equal to half of the total shear friction

force over the interface.

Figure 2.23 shows the loading curve of the finite element model under static load with 5,

and 20 elements. It can be noted that the results from 5 and 20 elements models match
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analytical results (Menq's model) very well. Clearly, the finite element method cart be

accurate with appropriate meshes.

§2.16.2.2 Case Two

The system for the second case study is shown in figure 2.24. The system has non-

uniform cross-section and non-uniform interface conditions.

4, Concentrated normal load

(	 Elastic Bar

Tangential force

________________________________________	 Rigid base
igure 2.24 Diagram of an elastic bar with complicated geometric shape

and non-uniform surface interface condition

The system is modelled by twenty ID-bar elements and twenty-one new micro-microslip

elements. The parameters for these beam elements are shown in table 2.8. If more

accurate results are required, smaller meshes should be used. However, to illustrate the

FE method, the above simplification is appropriate.

The results of the loading curve is shown in figure 2.25. There is no additional difficulty

in the FE analysis for the system with complicated geometry, friction limit and contact

elements.
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NB: L=length, W=Width, H=Height, E=Youngs Modulus

Table 2.8 The joint component and interface data for Case Two

§2.16.2.3 Case Three

The purpose of this study is to illustrate similarity and difference of the joint models

generated from bilinear elements and micro-microslip elements. Three contact elements

are used, one is the new microslip element with a=5x10 8m, b=3 and k=2x1O12N/m/m2,

the other two are bilinear elements with the same friction limit as the microslip element,

one bilinear element has the same initial stiffness as the microslip element, the other has

the same limit for macroslip to occur. The relations between these elements are shown

schematically in figure 2.26.
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V

'— Hard bilinear element

°	 Microslip element
.__4__ Soft bilinear element

a	 a&'
re 2.26 Relations between three surface contact

Two small cases are studied, for both cases, the joint components are elastic bars with all

the properties as the same as those in case One except for the length. In the first case

(Case A), the length of the bar is im, and in the second case (Case B), the bar is only

0.lm in length.

Surface conditions (interface parameters) are the same. The only difference between case

A and case B is that the length of the bar in case B is one-tenth of that in case A, hence the

bar in case B is 10 times stiffer than the bar in Case A.

Figure 2.27 and figure 2.28 show the loading curves for case A and case B. It is noted

that when the joint component is flexible (case A), the differences of the results from

different models are small; however, the difference is much more significant when the

joint component is stiff.

.-E— B,l.r,ar (soil
Bilinear (st.lf

-.0.- Microslip elementz
04

U

o2
I-

0
12	 14	 16	 18	 21

Displacement ( • o -s m)

Figure 2.27 Loading curves of case A

2 4 6 6 10 12 14 6 16 20 22 24 26 2830

Displacement ( •10' m)

Fi gure 2.28 Loadin g curves of case B
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The above results demonstrate the effects of the macro-microslip and the micro-rnicroslip.

When the joint component is flexible, microslip is dominated by the effects of macro-

microslip; when the joint component is stiff, the effects of the asperities become

significant.

§2.17 CONCLUSiONS

In this chapter, the relationship between the load and the deformation of friction joints

slipping in the tangential direction are studied. It is shown that when the joint component

is elastic, slip can initiate at some parts of the interface and ex.tend towards the rest of the

area as the load increases. Energy is dissipated due to slip and a hysteresis loop is formed

when the joint is subjected to a cyclic load.

A review of the available microslip models is presented. It is summarised that the

available models are either based on the dry friction element or the bilinear element. The

problem with these two types of basic element is discussed.

Masing's rule, which is useful in predicting unloading and reloading behaviour of the

tangential joint, is presented and proved. This rule can be applied to any system which

consists of elastic elements and dry friction elements. For Masing type nonlinearity, the

properties are fully defined by the force-deformation relation of the initial loading. The

analysis process can be significantly simplified with the help of Masing's rule, and

properties of the joint, such as unloading, reloading and energy dissipation per cycle, can

be found directly from the initial loading relation. When a Masing type joint is subjected

to a cyclic load, the energy dissipated per cycle is independent of the absolute value of the

load or deformation, but is a function of the peak to peak value of the load (and also the

deformation).

The microslip mechanism is discussed, it is shown that microslip can be caused by non-

uniform deformation and non-uniform pressure distribution over the interface (macro-

microslip), microslip can also be caused by the difference between the asperities on the

interface(micro-microsl ip).

When the joint component is flexible, the effects of macro-microslip is dominant,

therefore, the models derived from dry friction and bilinear friction element will usually

yield good agreement with experimental results. However, when the joint component is

rigid and has small interfaces, micro-microslip plays the most important role, in this case,

micro-microslip element must be used to model the joint.

Two approaches may be used to obtain joint parameters. One is the prediction approach,

which predicts the joint properties from basic parameters; the other is the identification

approach which identifies some intermediate parameters for the joint model. The
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prediction approach is more desirable; however, within the foreseeable future, the

prediction approach is unlikely to be employed to obtain accurate results. It is suggested

that the identification approach should be used if an accurate joint model is required.

A new micro-slip model (element) is proposed for a friction joint, the model is

generalized and is able to represent any Masing type joint. The new model uses the

concept of stiffness area, which turns the loading problem in a deformation domain [O,00]

into an h-domain [0,1].

A function u=aebh is proposed for the new joint model and thus the derived model is able

to represent measured loading relations quantitatively for both translational and rotary

joints. The model is more flexible than models developed by Shoukry and Burdekin, the

regenerated loading curves are closer to the measured data.

Shoukry's model is found to be useful in a small displacement range while Burdekin's

model may only be useful in qualitative analysis.

If the joint is too complicated to be studied analytically, the finite element method should

be used for obtaining the loading property of the friction joint. For a nonlinear problem,

because the final solution may depend on the loading history, the Newton-Raphson

iterative algorithm and step by step procedure should be used. The numerical results from

the FE method are also presented and compared with the results from an analytical model.

It is shown that FE method can yield very accurate results when proper meshes are

chosen.



CHAPTER

PREDICTION OF THE RESPONSE OF A STRUCTURE WITH
NONLINEAR JOINTS ATTACHED

§3.1 INTRODUCTION

In the last chapter, various friction joint models have been discussed. These models are

characterised by the relationship between the deformation at the joint and the external

load. This relationship is not usually linear and a hysteresis loop is formed if a cyclic load

is applied.

In this and the subsequent chapters, the problem considered is the calculation of the

response of a structure containing nonlinear joints when the structure is subjected to a

well-defined excitation (in contrast to random excitation). Time domain integration

methods are investigated in this chapter, other approximate methods are discussed in

Chapter 4.

For a linear system, time-domain integration methods can be categorised into two groups:

1)Decoupling and Duhamel integration method [81].

2) Step-by-step Time-domain Integration method (STI)[2, 85-89].

The Duhamel integration method is relatively simple and has effectively only one version;

for STI methods, there are many different algorithms. The most basic method for solving

differential equations is the Runge-Kutta method [85]. However, the Runge-Kutta

method tends to be computationally inefficient for solving second-order problems because

the size of the problem is effectively doubled. As a consequence, some other specific

methods have since been developed, namely, the indirect integration method [86], the

central difference method [2], the Houbolt method [87], the Wilson-e method [88] and

the Newmark-13 method [89]. For each of these methods, there can be several modified

versions. The step-by-step integration methods are believed to be the only practically

applicable methods for calculating the transient response of a general nonlinear system.
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§3.2 THEORETICAL BACKGROUND

§3.2.1 General Introduction

All the STI methods utilise a numerical step-by-step procedure; the response at a time t is

obtained from the response information prior to the time t and the external force at and/or

prior to the time t. Almost all the STI methods are constructed on the basis of the

following two strategies [2]:

1) Instead of satisfying the equilibrium condition at any tim&t, it is aimed to satisfy the
equilibrium condition only at discrete time points with an interval i apart

2) The assumption of variations of displacement, velocity and acceleration within each

time interval must be made.

The key point for an STI method is the computation efficiency. Theoretically, provided

the time interval z is small enough, accurate results can usually be obtained by using any

of the STI methods. When increases, the accuracy of the numerical results from all the

methods deteriorates, but at a different rate.

For some of the methods, if i exceeds a certain limit (usually a fraction of the period of

the highest natural frequency of the system), the numerical process becomes unstable and

the numerical response of a physically stable system becomes unbounded, these methods

are called conditionally stable methods; for other methods, the numerical results are

always bounded (although not necessarily accurate), no matter how great is. These

methods are called unconditionally stable methods. Greater i can often be used for

unconditionally stable methods.

The methods can also be direct or indirect depending on whether an iteration process is

required at each time step.

In general, the unconditionally stable and direct methods are more desirable in terms of

the computation efficiency. However, due to other factors such as the accuracy of the

results, the conditionally stable and indirect methods have also found their applications.

Mathematically, it may be more appropriate to group STI methods according to the time

point at which the equilibrium condition is applied. Methods which use the equilibrium

condition prior to the current time point are called explicit methods; methods which

use the equilibrium condition at the current time point are called implicit methods.

Explicit methods have a significant advantage in dealing with displacement dependent

nonlinear problems, because iteration is usually not required; for implicit methods,
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however, an iteration process is inevitable although some of these can be direct methods

for the analysis of a linear system.

Two of the most commonly used methods for linear systems, namely the Newmark-13

method and the central difference method, are discussed in this chapter. To overcome the

shortcomings of these two methods in nonlinear analysis, two unconditionally stable

algorithms are introduced.

§3.2.2 The Central Difference Method

The central difference method uses finite difference in place of the derivatives, i.e.

assume

(Xi)=—(X2-2x1+XO)
	

(3.1)

and (i)=(x2-xo)
	

(3.2)

where fx2}, (xi) and ( xo j are the displacement vectors at t (current time), t-i. and t-2i

respectively.

Substituting equations (3.1) and (3.2) into equilibrium equation (3.3) at time ti

[Mllxi )+[C]( x 1 )+[K] (xi)=(P1)
	

(3.3)

leads to

[-M+-C](x2)=(P1)-[K--M](x1)- [-M--C](x0) 	 (3.4)
2	 22 2

Equation(3.4) requires both information at time ti and at t0=t1-i. Therefore a special

procedure is required to start the first step. A commonly used procedure is to use the

Taylor Series expansion

2..
(xo)=(x-i x1 +-yxi)	 (3.5)

The initial condition is often defined by the displacement (xi) and the velocity

while the acceleration {xi Jis not directly given. However, the acceleration can be

calculated from the equilibrium equation (3.3).

The main advantage of the central difference method is that it is an explicit method, for

both linear and (displacement dependent) nonlinear analysis, the iteration process is not

required.
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The major shortcoming of the central difference method is that it is only conditionally

stable; if A is greater than the limit in, the numerical procedure becomes unstable (where

T is the period of the highest natural frequency of the structure).

§3.2.3 Newmark-f3 method

Newmark [89] proposed an STI method in 1959. Because a parameter 13 is used, his

method is often referred to as the Newmrk-13 method. Several different expressions have

been proposed, the expression proposed by }iitchins [86] is presented here due to its

simplicity.

The Newmark-13 method uses the following assumption:

(x2)=(1+4 (1)+( 1-?) ( x2} +(q}, and
	

(3.6)

A2..	 A2..
(x2)=(2+I3)--- (xi) ^ (1-13)-- (x2) +A(xi)+(xi) 	 (3.7)

Parameters 13 and y are introduced for the purpose of stabilizing the integration process.

Substituting equations (3.6) and (3.7) into the equilibrium equation at t2

[M](x2)+[C] (2)+[K] (x2)=(P2)
	

(3.8)

yields:

AA2	 •.	 A..	 .	 A2..

(3.9)

The Newmark-[3 method is unconditionally stable for a linear system when parameters y

and 13 are chosen properly. The most commonly used values are

(3.lOa)

azkd (3=- 0.5,	 (3. lOb)

which ensures that the algorithm is unconditionally stable,

§3.2.4 Stability Analysis

For all the Si'! methods, the response at time t2 is obtained from the response prior to

time t2 and the external load at and/or prior to the time t2.
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It is always possible to relate the current state response with the response at the last time

point as:

(X)2=[B](X}1+(L)1	 (3.11)

where {X} 2 and (XJ1 are vectors storing the response quantities at t2 and t1, and (L) 1 is

the load vector ax time t. Applying equation(3.11) recursively yields:

(X) 1+ =[B] n (X) i+[B]' (LI 1+[A]n.2(L)2+....+[B] (U n-r11-In	 (3.12)

Should an algorithm be stable with time interval A, the magnitudes of the elements in the

matrix [B]' must not increase continuously with n. Otherwise, the effects of small errors

in the response at former steps are magnified continuously in the solution later and the

solution becomes unbounded. The matrix [B] is called a character matrix.

Using spectral decomposition for matrix [B] yields:

[B]=[P][J][P]-1
	

(3.13)

where [J] is a diagonal matrix containing the eigenvalues of the matrix [B].

From equation (3.13)

(3.14)

If the magnitude of the highest eigenvalue I?.hI of the matrix [B] is greater than 1, the

magnitude of elements in matrix [J]fl, and hence the magnitudeof elements in the matrix

[Bin , will increase with n. As a result, the algorithm is unstable. The criteria for an

algorithm to be stable is that the magnitude of the highest eigenvalue of the matrix [B]

must be smaller than 1.

The analysis of stability can be very expensive if all the eigenvalues need to be calculated,

since the size of the [B] matrix is usually twice or three times the spatial matrix (i.e. a

mass or a stiffness matrix) (see §3.3.3.3).

If damping of a system is proportional, however, the equilibrium equation(3.8) can be

decoupled into N SDOF equations. When these N SDOF equations are integrated with the

same A, the final results must be exactly the same as that from integrating on the original

system. Since N SDOF equations are identical in their forms, only one SDOF equation

needs to be studied [2], hence the computation cost becomes negligible. If damping is not

proportional, then strictly speaking, the analysis cannot be simplified as a problem with

N-SDOF systems. However, it is stated in [90] that since the magnitude of the damping

force is usually much smaller than inertia or restoring force, the damping of the system

usually does not change the overall stability characteristics of an integration scheme.
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When a system is nonlinear, it is not usually possible to have an analytical solution for the

stability analysis. However, at each time interval, a nonlinear system can be considered as

a linear system [2], thus, the basic requirement for applying an algorithm on a nonlinear

system is that the algorithm should be stable for all the approximated linear systems.

Further discussion on the stability of an STI method on a nonlinear system is presented in

§3.3.3.3.

§3.3 STI METHODS FOR NONLINEAR ANALYSIS

The algorithms discussed in the last few sections are for the analysis of a linear system.

However, these STI methods can also be applied to the analysis of a nonlinear system.

The basic idea for nonlinear analysis is the same as that for linear analysis, the aim is to

achieve the equilibrium condition at discrete time points t1,t2,...t etc.

The equilibrium condition for a nonlinear system can be expressed as:

[MJ(x}+{F(x, x))=(P)
	

(3.15)

If the nonlinear part of the internal force F is independent of the velocity, then the

equation(3. 15) becomes

(3.16)

or [M](x}+[C]fx)+[K](x)+(F(x))=(P}
	

(3.17)

Clearly, the system with friction joints attached is characterised by equation (3.17).

Therefore, in this chapter, only the nonlinear problems which can be represented by

equation(3.17) are investigated.

§3.3.1 Direct Extension of Linear STI Methods for Nonlinear Analysis

For the problem such as analysing a system containing friction joints, the following two

points can be noted:

1) the joints are only located in parts of the structure; except for the joint part, the property

of the structure is linear, i.e. nonlinear part is localised and

2) the force-deformation relation of the joint is displacement dependent

Because the nonlinearity is localised, the nonlinear force of a joint can be treated as an

external force and the equilibrium condition can be expressed as

[MI (X} +[C] (x}^[K] [x)=(P)-[F(x))	 (3.18)
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For the central difference method, substituting equations (3.1) and (3.2) into equation

(3.18) yields

[1M-s--C](x2)=(Pi)-fF(x1))-[K- 2 M](x1)-	 (3.19)
A2 2A A2 2A

For the Newmark- method, substituting equations(3.6) and (3.7) into equation (3.18)

and setting 0 and f3=-0.5 yields

AA2	 ..	 A..	 A2..
[M^ C^--K] (x2) =(P2J- {F(x2))-[C] {-xi+x )-[K] fTx1±	 +x)	 (3.20)

Both sides of equation (3.20) contain terms at t2, therefore, it must be solved iteratively,

an iterative form for equation(3.20) can be presented as

AA2	 •.	 ..	 .	 A2..
[M+ C+-4-K] (x2)(k)=(P2) (F(x2))(1)-[C] k xi+xi )-[K] (-4--x1+Ax1+x1) (3.21)

Direct use of the linear STI methods for nonlinear analysis has the advantage that the

computer code for the linear analysis only needs a small modification. However, the

shortcomings are also significant. For the central difference method, the time interval is

severely limited by the highest natural frequency of the sucture. For the Newmark-13

method, the algorithm becomes indirect, and experience appears to indicate that the

iterative process ofequation(3.21) ,often slow and may not converge unless A is small

enough. Thus, other algorithms are required.

§3.3.2 Algorithm One --An Extension of the Static Analysis

§3.3.2.1 Formulation

The algorithm presented in this section is an extension of the algorithm for the static

nonlinear problem (see §2.16) with an inclusion of the effects of the inertia and damping

forcej. Bathe [2] presented a formula for the system without damping, a modification is

made here to include the damping force.

The iteration equation at time t2 is

[M](x2)(k)+[C](x2)(k)+[Ki](8x2)(k)=(P2}(F(x2)}(), and 	 (3.22)

(x2)O)=fx2}O)+(6x2)O')
	

(3.23)

where [Kj]_	 -1-I(x)(xi) is the local stiffness matrix at deformation (xi)(see §2.16

for more details), and f F(x) } =[K] (x) + { F(x)} is the total restoring force.
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Substituting equations(3.23) and (3.10) into equations(3.6) and (3.7) and rearranging

yields

)-(x I ={x2( I)+6x2Oc)xl)(xl ), and	 (3.24)

(3.25)

Substituting equations(3.24) and (3.25) into equation (3.22) leads to the final iterative

equation:

[k1 ] ( 8x2)(k)=(P2)

(F(x2))OC1)[M](-(x2(ki) x i )-(; ) -f ))[C]((x2(k4)xi )-(q }) (3.26)

where [k1]=-[M]-41[C]+[K1]
	

(3.27)

This method is referred to as Algorithm One to distinguish it from other versions of the

Newmark-13 method.

For a nonlinear system, [K1] changes at each step. Accordingly, [K1] should be updated

and a matrix inversion of [k 1 ] is required at each step too. This tends to make the

computation very expensive. However, if the nonlinearity is not very severe, it is

possible to update [K1] for every few steps (see §2.16). Indeed, if a global stiffness

matrix [Kig] is used to replace [K1] at different steps, the inversion only needs to be

calculated once. If the property of quick convergence is retained, the computation cost can

be reduced significantly.

In computer code, [t i ] is only updated if iteration does not converge after N cycles

(where N is a positive number. Experience indicates that convergence, if the process is

converging, can usually be achieved in under 20 iterations. In order to leave a margin for

convergence, N is set to be 30 in the computer code).

The speed of convergence is usually related to the property of the nonlinear force. If the

change of [K1] at each time interval is insignificant, the convergence will be very fast,

otherwise, convergence can be very slow, and sometimes may not converge at all. From

equation(3.27), it is noted that the matrix [K1] will be dominated by the mass effect when

is very small, as a result, convergence can usually be achieved by usingiery small &
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§3.3.2.2 Convergence Criteria

It is very important to apply the iterative process as Bathe [2] stated:

'The iteration can actually be of the utmost importance since any error admitted in the

incremental solution at a particular time directly affects in a path-dependent manner the

solution at any subsequent time".

If improper convergence criterion are used, the solution can be inaccurate, and

sometimes, the procedure may even be unstable.	 -

Two convergence criterion have been proposed in [2]. An extension to these convergence

criterion by including the damping effects are

1' (P2)(F2) 14M1 (x2)(l)-[C] (x2)O-')II ^ RTOL	 (3.28)
II ( P -Fj-[M]	 -[C] ()II2(1r1a)

(x2)O'))
and I

	

	 I^ETOL	 (3.29)

(6x2)(l)TUP2)_(Ft)_[M](xi)_[C] (ii))

where t is the time point at which	 112 is the maximum,

and RTOL and ETOL are the force and the energy convergence criterion respectively.

The convergence is reached when both equation(3.28) and (3.29) are satisfied.

The above criteria work well for the system in which the inertia force is insignificant.

However, when the inertia force is significant, the restoring force and the inertia force can

be balanced by each other, hence

11(P2)- (F2}(k-1)_[N41 (X2) (k-1)_[C] (x2)(k-1)II

and

are of the same order, the appropriate values of convergence criterion are different at

different frequencies. In addition, it can be noted that

II	 -{M] (x) -[C] (x.) 112(max)

and I{5x2)(l)T((P2}_(Fi)_[M](xi}_[C](Xi}) I

are closely related to the rime interval . Therefore, the proper values of the convergence

criterion also depend on the time interval i; an RTOL or ETOL can be too tight (small

quantity) to achieve for integration with a small , while too loose to yield accurate
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results with a large ó. Without prior knowledge of the response, it is extremely difficult

to select proper values with the above criteria.

In this chapter, the following two criteria are used:

II (P2)_{F2}(k-l)_[M] {)(1).[q tX2W')hl ^ FTOL, and
II (F2 )(k- 1)II+lI[MI ()(k-1)II+II[q (i2}O-l)II2

II{6x2)II
^XTOLII (x2j II

(3.30)

(3.31)

Convergence is reached when conditions (3.30) and (3.31) are satisfied. FTOL and

XTOL should be tight enough to ensure accurate results.

§3.3.3 Algorithm Two--An Extension of the Central Difference Method

§3.3.3.1 Formulation

Algorithm One uses the same assumption on the variation of acceleration and velocity as

the Newmark- method in linear analysis, however, unlike the Newmark-13 method,

Algorithm One is an indirect method, and an iterative procedure has to be applied.

For the explicit algorithm (i.e. the central difference method), the nonlinear

force is determined by the displacement level prior to the current time, hence iteration is
not required. However, there is a severe limitation on for the numerical process to be

stable.

Based on the same idea of the Newmark-3 method, the central difference method can be

modified to yield an algorithm which is unconditionally stable for a linear system and is

still a direct method for nonlinear analysis. Such a modification is proposed in [90] which

approximates the displacement vector (xl) partly by the linear interpolation of

displacement vectors ( xo) and (x2) as:

(xi)=(ax2+(l-2a)xl+axfJ)
	

(3.32)

Substituting equations(3.32), (3.1) and (3.2) into equation(3.t) leads to:

2A 
+ [K1(ax2+(1-2a)xl+axo)=(Pl)-(Fn(xl))

	
(3.33 a)

Rearranging equation(3.33a) yields

(x2)=(P 1 )(Fn(xi))+[.a.M(12a)jçj (xi) [. -M+--C-aKJ (xo)
A2	A2 2A

(3.33b)
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If a=0, this becomes the central difference method.

Parameter "a" is introduced for the same purpose as "y" and "3" in the Newmark-

method to force the algorithm to be unconditionally stable. Therefore, equation(3.33) can
be considered as a particular form of the Newmark- method. This method is referred to

as Algorithm Two in this chapter.

In order to provide statically correct solutions for massless degrees of freedom, it is

suggested [90] that the load vector (P) should be averaged over three adjacent time steps

in the same way that (x} is averaged, The final equation then becomes:

[-M^-C+aK](x2)

=( aP2+(1-2a)P1+aPo}-(Fn(xi) )+[2M-(l-2a)K] (xi )+[ ----M+ - 1--C - aK] (xe) (3.34)
2	 2i

1	 .
It has been proved [90] that if a^, the integration scheme is unconditional stable for a

linear proportionally damped system (i.e (F(x))=(0}). To provide a margin of stability

for a more general problem (e.g those in which the damping is non-proportional or in

which nonlinear terms occur), is suggested for the value of a.

§3.3.3.2 Start Procedure for Algorithm Two

Algorithm two is an extension of the central difference method, therefore, the start

procedure in §3.2.2 can be used directly. However, the procedure can be erroneous when

, is large. This is because the start procedure is based on a truncated Taylor series. A

must be sufficiently small for the truncation to be accurate.

For the central difference method, since A is restricted by the period of the highest natural

frequencyof the system, it is usually sufficiently small to yield an accurate approximation

by using the truncated Talyor series. However, for Algorithm Two, A is not directly

related to the highest natural frequency and A can be much greater than the period of the

highest natural frequency of the system. As a result, the truncated Taylor series can be

erroneous.

* If the system is nonlinear, A is restricted by the highest natural frequency of an

equivalent system with the replacement of nonlinear elements by linear elements which

have the maximum local stiffness of the nonlinear elements.
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For example, consider the free vibration of an SDOF system with m=lkg, k=1N/m and

c=ON/m/s. If the initial conditions are x=1m, and xi=Om/s, then from equation(3.5)

2..
XO=X P1X1+X1

=( l - y)xi

When >2, Ixtjb. 1; in other words, the magnitude of the vibration is magnified.

An alternative start procedure is to use Algorithm One to calculate the first step.

For the case that the system is excited from its rest position (i.e. (x)=(0), (x)=(0)), it

may also be appropriate to set (x) = (O}. This simple assumption usually does not cause

significant error.

In the following analysis, only the start procedure which uses Algorithm One is used.

§3.3.3.3 Stability Analysis

The technique for stability analysis of a linear system is well-developed as shown in

§3.2.4. In contrast, the stability analysis for nonlinear systems is rather under-developed.

Indeed, the literature survey on the integration method produced nothing specific for

nonlinear stability analysis the only relevant discussion was found in the MSC/Nastran

manual [90] and Bathe's book [8].

Bathe [2] stated "in nonlinear analysis, for each time step, the nonlinear response

calculation may be thought of, in an approximate way, as a linear analysis."

This idea is used for the stability analysis on the nonlinear system.

For a linear system, it is usually found that a stiffer system (i.e. a system with a higher

resonance frequency) is likely to cause unstable integration for an STI method. On the

basis of this point, a hypothesis is made for the following analysis:

An integration algorithm for a nonlinear system is stable if the algorithm is stable for a

linear system which is stiffer than the nonlinear s ystem at any time steo.

With this hypothesis, the nonlinear stability study can be effectively turned into a linear

problem. For the central difference method, the Newmark-f3 method and Algorithm One,

the analyses are the same as the analysis on an ordinary linear system, and the

conclusions are the same. However, for Algorithm Two, the stability analysis is slightly

different.



.4i
dx

(3.36)
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The stiffer linear system to be analysed is

[M](x)+[C] (x}+[K](x)=(P)-[Kje](x)
	

(3.35)

where [Kjel is a stiffness matrix which is stiffer than the local stiffness associated with
he nonlinear force, i.e. the i'th nonlinear element is replaced by a linear spring with the stiffness

and the integration formula is

[---M+-C+aK](x2)
A2 2A

=(aP2-f-(1-2a)Pi-I-aPo}-[Kje1(xi)+[-M-(l-2a)K](xi)+[ -1M+-C - aK]( x0) (3.37)
A2 2A

Rearranging equation (3.37) with (P2}=(Pi)=(PoJ and combining with the identity

(xi} = (xi) yields

r --[M]+--[C]+a[K] [01 X2}A2	2A

LEO]

1r --[M]-(l-2a)[K]-[Kje] -
2A

]{i	
(3.38)

[I]	 [0]

Therefore, the character matrix is

[B]=[ 
*[M]+J-[C]^a[K] [0]	 2[M1-(l-2a)[K]-[K] - [M]+[C]-a[K}

LEO]	 [I]J	 [I]	 [0]

(3.39)

The highest eigenvalue of the [B] matrix can be greater than 1 even if a ^ , and [K]

must be small enough in order to ensure that the highest eigenvalue of the matrix [B] is

not greater than 1. To illustrate this, consider an SDOF system
_______	

2m	 m c
c -I-ak)x2=aP2-I-(l-2a)P1+apo-kJx1+(--- - (1-2a)k)xi A

2 2AA22A

(3.40)



k
k+kje a (3.42)

k+kr
ae—	 ak^k (3.44)
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Rearranging equation(3.40) yields

(ktjX2+( 12	 )x1+kxo I = (P1 1 (3.41)

It is noted that the effective parameter is

When kje>O, ae<a

In order to ensure stability, ae must be greater than

A remedy to improve the stability of the integration algorithm is suggested in [90], which

is to add to both sides of equation(3.35) another stiffness term:

[MJ(x)+[C] (x)+[K+Kr] (x) = (P)[KjeKrl(x)
	

(3.43)

Element in matrix [Kr] should be so chosen that the matrix [KjeKr] corresponds to a
structure with negative stiffness.

For an SDOF system, it can be proved in a similar way to equation (3.40) that the

effective parameter is:

When kr>kje, ae>a

Since equation(3.43) cannot be decoupled into a set of independent linear equations, no
mathematical proof can be given (at least to the author's knowledge, no proof has been

published). However, it will be seen later that the numerical studies carried out in this

chapter seem to agree with this explanation on the effective parameter "ae".

Based on the above discussion, the nonlinear force in a friction joint should be divided
into elastic and nonlinear parts as

FnKrX+FnO	 (3.45)

where dp^0	 (3.46)

In other words, the local stiffness of the nonlinear force should be zero or negative, the

equilibrium equation of the nonlinear system becomes

[M](x)+[C](x)+[K+Kr](x)=(P)- ((Fn(x))4Kr](x)) 	 (3.47)
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For all the tangential joint models discussed in chapter 2, maximum stiffness is at the

beginning of the initial loading. The stiffness of the joint at the beginning of the initial

loading can be used as the elastic part of the force in the joint, ie.

1_d(F(x))
- d(x) IL	

(3.48)

§3.4 REDUCTION OF THE SIZE OF THE PROBLEM: CONDENSATION

When a real engineering structure is modelled using FEM, it is common to end up with a

system possessing a large number of DOFs. Usually, the model is only representative for

the low frequency dynamic behaviour of a real structure, the high frequency property of

the model is inevitably determined by the numerical modelling process and has little

physical justification. However, these incorrect or inaccurate properties play significant

roles in the numerical integration process.

If the frequency of interest is lower than the highest natural frequency of the model

(which is true for almost all cases), the time interval A for a conditionally stable method is

limited by the highest natural frequency of the model rather than the frequency of interest;

for a unconditionally stable method, although the stability limit on A does not exist, A has

to be small enough to yield accurate results. Even with a small A, the numerical

integration on a large DOF model can still be formidably expensive.

Since the highest natural frequency and the properties of the model at high frequency are

determined purely by the modelling process, and the frequency range of interest is usually

much lower, there is an incentive to develop a coordinate transformation, which will

condense the number of DOFs, and hence reduce the highest natural frequency of the

model, yet still retain the properties of the original model in the frequency range of

interest. By doing so, the cost of the computation can be reduced.

The basic idea is as follows:

For an N-DOF linear model., the equilibrium equation of motion is

[MJ(x)+[C](x}+[K](x)=(P}
	

(3.49)

Applying a linear transformation

{x}=[T]{q}
	

(3.50)

where (q) is the new (or generalized) displacement vector and m is an NxN non-

singular matrix.
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to equation(3.49) and pre-multiplying it by [T]T leads to the equation of motion with

respect to the new displacement vector (q):

[MI ( +[] (cj}+[(K] (q)=(P}-(P(q))
	

(3.51)

where [Mi=mT[Mim, ci=mTiclm, []=flT[}q[fl P=mTPl

and (P)=mT(Fn)

The property of the model is unchanged after the linear transformation if the

transformation matrixtTi is not singular, and the original response can be found from

equation(3.50)

If a transformation exists so that the response of the system at any time can be

approximately expressed as:

where M<N,

(3.52)

then the size of the problem can be reduced by substituting equation(3.52) into
equation(3.49) and pre-multiplying it by [T1]T:

[M 1 ] ( cii I +[C 1 ] (q 1 ) +[i] ( q i I =(P )+(Pi(qi)}	 (3.53)

where [M1]=[T1]T[M][T1], [1]=[T1]T[C][T1], [1]=[T1]T[K][T1], ( P 1 }=[T1]T(p)

and (1)=[T1]T{F)

The new mass, stiffness and damping matrices have a reduced size of MxM.

The transformation in equation(3.52) can only be an approximation, the accuracy of the

condensation depends on the accuracy of the transformation in equation(3.52).

Various condensation procedures have been proposed for linear systems and summarised

by Hitchins [861, among which the Guyan reduction [91J is the most commonly used. In

order to achieve the desired accuracy, a sufficient number of DOF has to be retained. In

many cases, the number of the retained DOF can still be too large (hence the computation

cost can be too high) for the numerical integration methods to apply. Therefore, further

reduction is required.

In the remaining part of this section, this further reduction is discussed.



(3.54)
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A subspace condensation method has been investigated by Yao [92]. The basic strategy is

to integrate the full system for a certain period of time and then extract a subspace from

the vibration shapes of the structure at different time points. This approach can be

expensive to apply due to the integration on the full size system.

For the nonlinear problem caused by nonlinear joints, however, a simpler approach can

be adopted. Instead of finding the subspace by integrating the full size system, it aims to

find a subspace from a linear system.

For a linear system, it is known that the vibration of a structure can be well represented

by some mode shapes of the system, i.e, the transformation is

Clearly, the most important task is to fmd a linear system, i.e. to determine the matrix

[Km] in

{MJ(xJ+[Km](x)=(0)
	

(3.55)

with mode shapes [] which form a representative subspace for the nonlinear system.

In this chapter, two types of [Km] matrices are tested; for the first case, the sum of the

linear stiffness matrix and the initial stiffness matrix of the joints (i.e.[K]+[KjoJ) is used

as the [Km] matrix; for the second case, the linear stiffness matrix (without joints) [K] is

used as the [Km] matrix. The first condensation is referred to as the lock-mode

condensation, and the second is referred to as the free-mode condensation.

The first 11Km] is introduced in an attempt to preserve the properties of the original

nonlinear system (i.e. the natural frequency and the mode shape). If the joint is linear, the

condensed system has exactly the same natural frequencies and mode shapes of the

original system.

The second 11Km] is based on the fact that the nonlinear force at the joint can be

considered as the external force, and the properties of the remaining system are

characterised by the matrices [MJ and [K], hence the mode shape of the remaining system

should form a representative subspace for the vibration of the nonlinear system. It should

be noted that when the joint is linear, the condensed system does not have the same

natural frequency as the original system.

The numerical results and further discussions on these two condensation approaches are

presented in §3.6.7.
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§3.5 CALCULATION OF NONLINEAR FORCE FROM THE RESPONSE
AT THE JOINT

As discussed in chapter 2, the nonlinear element can be categorised into two groups;

for the first group, the nonlinear force is completely determined by the current state of

the response (displacement and velocity), i.e. the force is a single value function of the

current response. The integration scheme discussed in the foregoing sections can be
applied directly to this type of nonlinearity. For the second group of elements, the

nonlinear force is not only determined by the current response state, but also depends

on the loading path (i.e. loading history). A special procedure has to be used to

calculate the force from the information of both the current response and the loading

history. The friction joint in the tangential direction belongs to the second group.The

friction joints are substantially velocity independent.

Two algorithms for calculating the force of a Masing type nonlinear joint from its
response are proposed in the next two sections.

§3.5.1 Algorithm A:

In Chapter 2, it has been proved that any Masing type nonlinear element can be

represented by a new microslip model.

Define a shear stress distribution relation for the microslip model in the h-domain as

s=s(x,h). Physically, this means the shear stress at h with respect to a displacement x.

The force in the nonlinear element is an integration of s(x,h) with respect to h in [0,11,

i .e.

F= fs(x,h)dh
	

(3.56)

The interface is divided into two regions, one is the elastic region in which the shear

stress is proportional to the displacement, the other is the slipped region in which the

shear stress is equal to the shear limit, i.e.

[sj(xj,h)=kx(h)	 h >h1

Lsj(x,h)=kxj	 h ^h1	
(3.57)

If the nonlinear element is subjected to a further displacement dx, the slip region will

change. The new stress distribution can be calculated in two steps.

i) the new stress distribution due to the additional elastic deformation dx is calculated as:

s(x,h)=sj_i(x_i ,h)+k dx
	

(3.58)

ii) the calculated s'1(x,h) is compared with its shear limit.
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Since s(x,h) must be bound in a range [kx(h),-kx(h)], i.e.

kx(h)^ s1(x,h) ^-kx(h)

The new stress must be

I s1(x1,h)=kx(h)
s(x,h)=s(x,h)

I s1(x1,h)=-kx(h)

s(x,h)>k x(h)
-kx(h) ^s(x,h) ^ kx(h)

s(x,h) <-kx(h)
(3.59)

With the new stress distribution, the nonlinear force-can be calculated from

equation(3.56).

To start the procedure, if x=O, sj(O,h)=O; if x^O, assume xoi =O, sj. i(O,h)=O and

dx=xo.

Only the stress distribution at one response state needs to be stored for this algorithm, and

this stress distribution should be updated at each time step. Because the integration of

equation(3.56) is actually achieved by using finite summation in the h domain, a

sufficient number of points has to be used to ensure accuracy.

§3.5.2 Algorithm B:

§3.5.2.1 Corner Points and Effective Corner Points

This algorithm is also based on Masing's rule and is superior to Algorithm A in many

aspects. Figure 3.1 shows a loading curve of a nonlinear element.

1 A schematic diagram of the loading curve of a joint

Some observations can be made: if the initial loading is F=f(x), the force corresponding

to a displacement can be determined from the current displacement, and the force and
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displacement at a certain point at which loading changes direction (these points are

referred to as corner points (cp), e.g. points CP1 and CP2).

If the levels of the displacement and force at the corner points are recorded, the force

corresponding to any displacement is determined by the initial loading relation F=f(x) and

the information at one corner point (which is referred to as the effective corner point

(ecp)), that is:

if the effective corner point (ecp) is o, then

F=f(x)=sign(dx)xf(IxI)
	

(3.60)

for all other cases

(3.61)

where f and x are the force and displacement at the effective corner point.

The effective corner point is o if and only if the magnitude of the displacement exceeds

the magnitude of the maximum displacement in the foregoing loading.

For all other cases, an effective corner point is determined by the local loading loop(e.g.

the effective corner point for point A is point CP3, and the effective corner point B is Cp.

Clearly, the major task is to determine the effective corner point, which can be achieved

as follows:

If the effective corner point is CP1 for displacement x-dx, if loading changes direction,

then the new effective corner point is at (x-dx, F(x-dx)); otherwise, if the displacement

does not exceed the displacement level at CP..1, i.e.

xdx<x(CPj-i) dx

then the effective corner point is CP 1, or the displacement exceeds the local loop (and

enter another local loop), the new effective corner point becomes CP 1..2. If the

displacement increment is large enough, the loading may exceed the local loop to which

CP..2 belongs, then the effective corner point will be one in CP, CP....CN-(where

k=1,2..) depending on the magnitude of the displacement increment.

§3.5.2.2 Computer Program

A computer code was written to implement both Algorithm A and Algorithm B. The code

for Algorithm A is simple and will not be explained further.The flowchart for Algorithm

B is shown in figure 3.2.
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From main program

(loading direction)

Yes

[ing change directi

NoL

Yes

'load =1100(1+1
- Xc$IIoad )=X

1cp(1Ioad )

Yes	 -	 The magnitude of the	 '
displacement exceeds the magnitude of

e initial loading X1) and FCL3)Z

No,'
ir-< Unloading?

Yes
	

'load 110a12

Yes

No

F=f(x)	 F=F,(1)+2f( x-icI) )I IF 	 1	 )-2f( cI)x)

NB:
x, F: the displacement and the force at the current state
x1 Fiast : the displacement and the force at last state
xq, Fq,: The displacement and the force at corner point

:an indicator to current effective corner point

Figure 3.2 Flowchart for algorithm B

Return
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The information of the corner points (i.e. displacement and force) are stored in two arrays

(Xmax) and force(Fp). The effective corner point is indicated by an integer The

displacement and force at the last time point are represented by two variables Xi and

F respectively.

A special case that is worth mentioning is when the magnitude of the displacement in the

negative direction exceeds the maximum displacement; there can be two options for

numbering the effective corner point. One is to set Id=O' the other is to set 'k,I=l and

update Xmax(l) and Fmax(l) simultaneously. The latter is used in the code because by

doing this, one can detect the loading direction (i.e initial loading, unloading and

reloading) from the value 'load. For any corner point indicator 'load' 1ii=O always

corresponds to an initial loading in the positive direction, any other even Ii corresponds

to a local minimum of the loading, and odd Ijj corresponds to a local maximum of the

loading. In other words, an even 'load represents a local reloading and an odd 'load

corresponds to a local unloading.

It can also be noted from 	 equation(3.60) and equation(3.6l) that 	 , the

local stiffness for initial loading is

k——'1 dX dx

for all the other cases

k — _df(y)
' dx — dy Ir—(x-xecp)/2

§3.5.3 Comments on the Two Algorithms

(3.62)

(3.63)

Algorithm B is computationally more effective and accurate than Algorithm A

(theoretically, Algorithm B is exact, while Algorithm A is only an approximation due to

the finite summation in the place of the integral), therefore, it is selected for study in this

chapter. However, there are some cases in which the Algorithm A may be more useful.

One example is when a very lightly damped structure is subjected to an impact; in this

case, after reaching its maximum deformation, the magnitude of the vibration decays each

cycle. If the Algorithm B is used, 1ld increases in rate to more than 2 per cycle, very

large arrays have to be allocated, for Algorithm A, however, the memory required is

unchanged.

Another case when Algorithm A should be used is when the clamping force is also

subjected to a variation, Algorithm B is not applicable, while for Algorithm A, all the

process is the same except that the shear stress limit at the interface changes at each step.
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Figure 3.3 shows three loading loops using Algorithm A and Algorithm B for a new

microslip element (with a=5x10 8m, b=3 and k=106N/m). Two loops using Algorithm A

have the interval in the h-domain O.1(N=1O) and O.O1(N=100) respectively. It can be

seen that the difference between loops from Algorithm B and Algorithm A with hO.O1

is hardly distinguishable.

4.O - __

., r -
z

U--
0
0

—2.0-

-4.0 -
—1.0	 —0.5	 0.0	 0.5	 1.0

DISPLACEMENT (1 .E-6 M)

Figure 3.3 Hysteresis loops from Algorithm A

§3.6 CASE STUDIES

Numerical studies have been carried out in order to evaluate the STI methods discussed in

the foregoing sections. Three aspects are of particular interest for evaluation of a method:

1) stability

2) accuracy

3) efficiency (computation time required to implement the job)

The central difference method is only conditionally stable, and it will not be investigated

further. The Newmark-13 method and Algorithm One use the same assumption on the

variation of the response between the neighbouring time points (i.e. equations (3.6) and

(3.7)), hence they yield the same accuracy. The only difference between these two

methods is that different iteration formulae are used. Experience shows that in almost all

the cases, Algorithm One needs less iterations than the Newmark-f3 method

(equation(3.26)), and Algorithm One converges in the case when the Newmark-3 method

diverges; therefore, the Newmark- method will not be investigated further either. The

two methods investigated are Algorithm One and Algorithm Two.

§3.6.1 Description of the System Studied

The system used for studying the STI methods is an 18 DOF finite element model

consisting of two beams as shown in figure 3.4. The odd number coordinates correspond
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to the translational DOFs in the vertical direction and the even number coordinates

correspond to the rotational DOFs.

k,trCtCd as joint part
fl k r' treated as structure

.r' real nonlinear joint

Beam 1

"I,,,

Joint 1

1,2	 \ 3,4	 5,6	 7,81

L J 
r____'Joint

9,10	 11,12
	

13,14	 15,16	 17,18

Barn 2

E=2.07E1 iN/rn p =7574kg/rn w=O.05m L=O.2m
For beami: hi =O.012m	 For beam 2: h2 =O.015m

Figure 3.4 The diagram of the beam system

Proportional viscous damping (i.e. [C]=a[K], where a is a positive number) is

frequently used, however, such a system tends to have unreasonably high damping at

high frequencies. To overcome this problem, the following scheme is used to introduce

damping:

Let [] be the eigenvector matrix of the problem

[K](4}=X[M](4)	 (3.63)

and

['k ]=[4]T[K][4]

['m.]=[4]T[M][4J

The damping matrix [C] is constructed as

[C]=2[4J -T[' Jk1[4]-' (3.66)

where is the damping ratio.
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The system with this damping matrix has the same level of damping at every resonance.
In the following case studies, is set to be 0.01.

There are two joints in the system; one connects coordinates 5 and 13, the other connects

coordinate 7 to a rigid base. The system is similar to some real structures such as a bladcd
turbine disc; for a bladed turbine disc, the first and the second joints can be used to

represent the contact at the root of a blade and at the platform between the blades

respectively.

For simplicity, the two joints have the same properties. Two types of nonlinear elements

are used to simulate the friction joints. The first is the bilinear element with the initial

loading relation

The second is the new microslip element developed in Chapter 2 with the initial loading

relation

F— ka(eb 1)
I	 -	 b

F— k(x-a+x(b-logx+loga))
b

I.. F= kx

It should be noted that although only two joint models are used, the computer code is

capable of dealing with any Masing type nonlinear joint. The parameters of the nonlinear

joints for case studies are shown in table 3.1.

Joint Type	 a (rn)	 b	 k (N/rn)	 Tm(m)	 Note

A	 00	 0	 106	 00	 Inear

B	 4x10-7	 0	 106	 0.4	 bilinear

C	 4x10-9	 0	 108	 0.4	 bilinear

D	 4x10-11	 0	 1010	 0.4	 bilinear

E	 6.36x10-8	 3	 106	 0.4	 microslip

Table 3.1 Parameters for different joints

Two pseudo linear stiffness elements are introduced for each joint, the stiffness of these

two elements is the same in magnitude but opposite in sign. The overall effects of these

two elements on the structure are zero. [Kr] is treated as part of the system stiffness,

while the force [-Kr] {x) is treated as an external force.
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For clarity, in some cases, the results of an integration are presented by only two values;

one is the maximum magnitude in the integration which is referred to as the magnitude of

the transient response, the other is the magnitude of the steady-state response. In other

cases, the results arc presented in the time domain.

If the former method is used, the accurate results are at the points with small time interval

or tight convergence criteria TOL

The excitation is p=sin(lOOirt), applied at coordinate 5 unless specified.

§3.6.2 Results for Systems with Different Type of Joints

Figures 3.5-3.9 show the displacement at point 5, relative displacement at joint 2, friction

force at joint 2 and the hysteresis loop of joint 2 for systems with different types of joints.

Sufficient time step i is used to ensure the accuracy of the numerical results. The results

from Algorithm One are plotted using a solid line and those from Algorithm Two
using a dashed line. Because the results from the two algorithms are very close, they are

hardly distinguishable.

In all the cases studied, the numerical results indicate that all the steady-state responses of

systems containing different joints are periodic. It is also noted that the waveform of the

displacement is distorted (i.e. not sinusoidal) except for the system with A type joints.

The response on the structure (e.g. coordinate 5) is closer to a sinusoidal form than the

relative displacement at the joint (e.g. joint 2). The waveform of the relative displacement

can have more than one positive(or negative) peak at each cycle of the excitation, which

forms a subloop in the loading curves.

If the initial stiffness is significant (i.e. joint type C and D), the calculated friction force at

certain periods of a cycle changes violently, these periods correspond to the time when

the joint is in the elastic range (i.e. the interfaces 'stick' together). However, although the

friction force at these periods changes violently, both the response at point 5 and the

relative displacement at joint 2 are very smooth.

Since the friction force calculated from Algorithm One and Algorithm Two are very close,

the calculated friction force and displacement are believed to be accurate. The results

indicate that the friction force at the joint varies violently at certain time in a cycle.

Compared with the results with B and C type joints, it can be noted that the variation of

the friction force becomes more significant as the magnitude of the initial stiffness of the

joints increases. When initial stiffness of the joint is significant, the joint in the elastic

range can be considered to be 'stuck' together. The above results show that the joint can

be in a series of stick-slip motions if its initial stiffness is significant.
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Figure 3.5 Numerical results for the system containing A type joints
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Figure 3.6 Numerical results for the system containing B type joints
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Figure 3.7 Numerical results for the system containing C type joints
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Figure 3.9 Numerical results for the system containing E type joints
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In the remaining part of the case studies, attention is paid to the factors which affect the

efficiency and accuracy of the integration results. For simplicity, bilinear joint models are

used, but the conclusions drawn in the next few sections are also applicable to the system

with different joint models.

§3.6.3 Investigation on Algorithm One

Since Algorithm One is iterative, it is believed that convergence criteria is the most

important factor.

Figures 3.10 and 3.11 show the magnitudes of the integration results against the

magnitude of the convergence criteria TOL (the displacement convergence criteria and the

force convergence criteria are set to be the same, i.e. Xi=Fi=TOL).

It can be noted that although the excitations are the same, the values of TOL to achieve

convergence are significantly affected by the time interval i and the property of the joint

(mainly the initial stiffness k 1). Loose criteria can be used for small and k1. If TOL is

too loose, the integration may be erroneous; if TOL is too tight, the computation cost can

be very expensive, and sometimes the iterations may fail to achieve the convergence at a

certain step and hence the whole process may fail (eg. convergence can not be achieved

for TOL<10 9 with a time step of l0sec)
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Numerical results show that TOL=1O is a proper value for Algorithm One.

The initial stiffness of the joint has a significant effect on the efficiency of the integration.

Figure 3.12 shows the computation cost (in terms of the average iteration number at each

step) against the magnitude of the convergence criterion.
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3.12 Effects of convergence criteria on the cost of comoutation

The relationship between the number of iterations and the convergence tolerance

(logarithmic scale) is approximately linear. The slope is largely affected by the time

interval and the joint property (initial stiffness). Convergence is more difficult to

achieve for a system with higher k. Indeed, if i is not smaller than O.00lsec, no
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convergence can be achieved for the system with k1=108N/m but convergence can be

easily achieved for the system with lq=106N/m.

The effects of initial stiffness of the joint will be further discussed in §3.6.5.

§3.6.4 Investigation on Algorithm Two

§3.6.4.1 Stability.

The stability analysis of Algorithm One is effectively the same as that of the Newmark-13

method, and it has been proved [2] unconditionally stable for a linear system. Since the
Newmark-3 method has been studied in detail [2], the results of the stability analysis on

Algorithm One will not be presented.

For an ordinary linear system, Algorithm Two is always unconditionally stable [90], i.e.

the highest eigenvalue of the character matrix is unity. In the following part of this

section, the effects of [Kr] on the stability of Algorithm Two is studied.

The two joints for this study are A type joints (see table.3. 1). The matrix [Kr] consists of

two identical springs with stiffness kr. Figure 3.13 shows the highest eigenvalue of the

character matrix of Algorithm Two. It is noted that kr must be greater than a certain value

for a particular . The greater the , the greater the kr required to ensure stability.

However, providing that kr is greater than the stiffness of an A type joint (i.e.kr

>106N/m), the algorithm is unconditionally stable.

—10 —8 —6 —4 —2 0 2 4 6 8 10
Kr (1 .E6)

Fi gure 3.13 Stability of Algorith Two

To examine the assumption made in §3.3.3.3, numerical integration is carried out on the

system with B type joints. Figure 3.14 shows die results of the system with kr=ON/in and

k1.=106N/m under excitation Psin(20itt) at coordinate 5 and with a =0.001sec. A

feature of figure 3.14 is that all the results are well-bounded. However, the results with

krON/m are inaccurate, and actually these results are not related to the excitation directly.



Chanter 3 Prediction of the Response of a Structure With Nonlinear Joints Attached	 page -92-

This is shown more clearly in figure 3.15 in which the excitation force is

P=O.Olsin(2Oirt) at coordinate 5.

Inaccurate and well-bounded results for the system with K=ON/m are believed to be

caused by unstable integration at some tune steps and stable integration at the others.

When the displacement is small, the stiffness is too high for the integration to be stable.

Therefore, the displacement level tends to increase. When the displacement increases, the

stiffness at the joint drops, accordingly, the integration tends to be stable. The ultimate

result of these two factors is that the numerical results are well bounded, but have no

physical significance. This situation can be referred to as a special type of instability.

Since the results are well bounded, detection of this type of instability can be very

difficult, particularly for a transient response; for example, it is almost impossible to

recognize the instability from the results in figure 3.14.

For the integration with kr=106N/m, the results are accurate (compared with integration

results using very small i) and no bounded instability has been observed.

The above results clearly agree with the stability analysis in §3.3.3.3.

1 .0-	
- _ - k=ON/m

- ,.	 '	 ' kr=106N/m
U-U	 ,	 - accurate

0.0

—6.0 -	 k	 '

0.0	 0.1	 0.2	 0.3	 0.4	 0.5
TIME (SEC)

Figure 3.14 Results for the system containing B type joints (P=sin(20 itt))

0.2-

!1	 .,

k.=OI4/rn'	 Ifl
I	 k=lO6N/m	 :

0.0	 0.1	 0.2
TIME(SEC) _________________

Figure 3.15 Results for the system containing B type joints (P=O.O1 sin(2Oirt))
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§3.6.4.2 Effects of kr on Accuracy of Algorithm Two.

As shown in the last section, the stability of Algorithm Two depends on the magnitude of

kr. In order to ensure a stable integration, icr must be great enough so that the force in a

joint has a negative slope. In §3.3.3.3, it has been shown that the magnitude of k affects

the effective parameter 'ae', hence it has effects on the accuracy of the integration results

too. In this section, the effects of k . on the accuracy of the integration are studied.

Figure 3.16 shows the integration results against the magnitude of icr for a system with B
type joints. When k1=106N/m, accurate results are obtained for both cases with i=1O(s)

and t=1O-5(s). However, the integration results become less accurate when the

magnitude of kr increases. A greater kr (108N/m) is allowed for the integration with

ó=1O, in other words, small E has to be used in order to achieve the desired accuracy

when the magnitude of icr is significant.

io 6	 10 io	 1010	 10 11	t12

Kr
(b) Steady-state response

Figure 3.16 Effects of kron the

The effects of kr on the accuracy of the integration can have a significant impact on the

application of Algorithm Two on a system containing joints with very high initial stiffness

(e.g. ±y friction type nonlinearity). In order to ensure stability, the magnitude of ic must

be set the same as the initial stiffness, while very large k means that z must be very small

to yield accurate results, hence the cost of the integration can be very expensive. This

problem will be discussed further in the next section.
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§3.6.5 Considerations on Initial Stiffness of the Friction Joint

It has been demonstrated that the initial stiffness of the joint can have significant effects

on the efficiency of both Algorithm One and Algorithm Two. For Algorithm One, the

initial stiffness determines the maximum A for the iteration to converge, and for

Algorithm Two, although there is no limit on convergence, a proper A for a desired

accuracy is largely affected by the initial stiffness. For both algorithms, A has to be

sufficiently small if the initial stiffness of a joint is significant. This means the cost of

computation can be very higl.

However, very high initial stiffness may not be necessary in the integration. It is

understandable that the change of stiffness of a very rigid joint has little effect on the

overall behaviour of the structure. Therefore, the initial stiffness of a joint can sometime&

be reduced to a much lower level without affecting the physical system significantly. For

the system with lower initial stiffness, a greater A can be used, hence, the computation

cost can be reduced.

Figure 3.17 shows the magnitudes of the integration results for the system with different

initial joint stiffness using Algorithm Two. The friction limit is the same (O.4N). It is

noted that the responses for the systems with initial joint stiffness greater than 1 08 N/rn are

very close. This can also been noted from figure 3.7 and figure 3.8.

io6	 io	 i0	 10	 1010 10 11 1012
Ki

3.17 Effects of joint initial stiffness on the response of the structure

For the joint with initial stiffness 10 10N/m, no convergence for Algorithm One is

achieved by using any A greater than 2x10 sec; for Algorithm Two, the results are

inaccurate for the integration with &>1(Y 5N/m. However, if joints with initial stiffness

108N/m are used, reasonably accurate results are achieved with A=5x10 5sec. The results

from Algorithm Two are shown in figure 3.18.
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transient displanent of the systems with C and D type joints

It can be noted that even if the real joint has an initial stiffness 10 10N/m, if A=5x105sec

is used, the integration results on a system with joint initial stiffness lO8N/m is closer to

the response of the system than the integration results on the original system

(k1=1010N/m) directly.

The proper initial stiffness for a friction joint may be estimated by calculating the response

of the system with a linear joint (with the stiffness as the initial stiffness of the friction

joint) in the place of the friction joint. The stiffness of the linear joint is reduced gradually

and the response of the system with these joints calculated. A proper initial stiffness for

the friction joint should be such that the ratio of the response between the system with

initial stiffness of the real joints and the system with reduced joint stiffness is close to

one. Because the response of the system containing friction joints has higher frequency

components (harmonics), the reduced stiffness must also be representative at the highest

frequency of interest.

Figure 3.19 shows the ratio of the magnitude of the steady-state responses (at coordinate

5) between the reduced stiffness and real initial stiffness (10 11N/m) at some frequencies.

3

2

=

.'	 1
I

0
io 6	 10	 101U	 1011

Kj

Figure 3.19 Effects of joint stiffness on the

io12

It can be noted that a reduced stiffness k 1=108N/m gives a good approximation to the

system with k= 101 1 NIm for a frequency range up to 500Hz, which suggests that
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k1=108N/m can be used for the initial stiffness of the friction joint. Clearly, it can be

noted from figure 3.18 that the above conclusion is correct

§3.6.6 Comparison Between Algorithm One and Algorithm Two

It may not be appropriate to conclude one algorithm is always superior to another. In this

section, the advantages and disadvantages of the both algorithms are analysed.

Figure 3.20 and figure 3.21 show the results from the system with B type joints and the

system with D type joints. 	 -

It can be noted that if initial stiffness is not significant (i.e. k1=106N/m), the accuracies of

these two algorithms are similar, however, the cost of Algorithm One, because of the

iteration process, is higher, which seems to indicate that Algorithm Two should be used.

If initial stiffness is significant (i.e. k1=108N/m), accurate results are more difficult to

achieve. It is noted with the same time step A, the results from Algorithm One are more

accurate than those from Algorithm Two. It can also be noted that once convergence is

achieved for Algorithm One, the results tend to be accurate, while the results from

Algorithm Two can be erroneous when A is not small enough. This seems to indicate that

Algorithm One is more reliable than Algorithm Two. However, the cost of Algorithm

One is much higher with the same time step A as shown in figure 3.21c. If the same

computation time are used, much smaller A can be used for Algorithm Two and even

more accurate results can be achieved.

The main disadvantage of Algorithm One is the cost to achieve convergence at each time

step and the main disadvantage of Algorithm Two is the errors introduced by using

equation(3.32). The computation efficiency can be significantly improved if these two

problems are solved.

The comparison between the two algorithms seems in favour of Algorithm Two in terms

of efficiency; however, Algorithm One is more reliable.
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Figure 3.20 The accuracy of the results for the system containing B type joints
using Algorithm One and Algorithm Two
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Figure 3.21 The accuracy of the results for the system containing D type joints
using Algorithm One and Algorithm Two
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§3.6.7 Condensation

In this section, the effects of condensation are studied. Sufficiently small A is used to

ensure accuracy of the numerical integration.

Figure 3.22 shows the numerical results against number of modes for the system with A

type joints. It can be noted that very accurate results are achieved with 8 lock-modes,

while 10 free-modes are required to yield similar accuracy. This indicates that lock-modes

form a better subspace for the deformation shape of the linear structure, while free-modes

can also be representative with a few additional modes. 	 -

__ 11.0

10.5
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9.0
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(b)
igure 3.22 Eff

--D---- lock-modes
free-modes

10	 20
Number of modes

nE disolacement at coordinate 5

-0--- lock-modes
4	 free-modes

10	 20
Number of modes

idy-state displacement at coordinate 5
of condensation on the system with A t OintS

It is of more interest to study the effects of condensation on a nonlinear structure. Figure

3.23 shows the results for the system with B type joints. It can be noted that 10 free-

modes are required to form a representative subspace, however, at least 14 lock-modes

should be included to yield the same accuracy as using 10 free-modes.

Clearly, the above results indicate that the free-modes are more appropriate for the

condensation of a nonlinear system. The lock-modes are not so suitable to form the

subspace of the vibration shape. The reason for the poor results of the lock-mode

condensation is that the spatial model of the system is changing all the time, while the

lock-modes are only representative for spatial systems with the joint stiffness close to the

initial stiffness. Usually, the deformation of each lock-mode at a joint is very small,

however, when slip occurs at the joint, the local stiffness at the joint drops to zero and the
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real deformation at the joint can be much greater than what the linear combination of lock-

modes can represent. Consequently, poor results are obtained. The free-modes

correspond to the system without joints, and the combination of free-modes allows

sufficient deformation at the joint, hence the deformation at the joint is preserved

accurately. Accordingly, the overall behaviour of the system is also accurately preserved.

The lock-mode condensation can be even less accurate if the joint has higher initial

stiffness. It is found (but not presented in this thesis) that at least 17 lock-modes are

required to yield a reasonable accuracy for the original system, while only 10 free-modes

are required to achieve the same level of accuracy.

Figure 3.24 bows the time domain response of the system with B type joints. The results

using 10 free-modes to 18 free-modes (i.e. no condensation) are hardly distinguishable.

14

3 10 -0---- Lock-modes
free-modes

0	 10	 20
Number of modes

(a)Transient displacement at coordinate 5

120

. 80

& 60

3 40

20

n
0	 10	 20

Number of modes
(b) Steady-state displacement at coordinate 5

Figure 3.23 Effects of condensation on the system with B ty1its
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Figure 2.24 Results of the system with B type joints in time domain

using 10 and 18 free-modes
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§3.7 CONCLUSIONS

The step-by-step time-domain integration methods for prediction of the response of a

system containing nonlinear joints have been studied in this chapter. Two of the STI

methods are investigated in detail.

Two algorithms to calculate the force of any Masing type nonlinear element from the

response are proposed. Algorithm A is more comprehensive, while Algorithm B is exact

and computationally more efficient. The computer codes are verified by numerical case

studies.	 -

For the two STI methods studied, Algorithm One is an indirect method and Algorithm

Two is a direct method. The numerical case studies indicate that Algorithm Two is more

efficient than Algorithm One. However, the results from Algorithm Two can be

inaccurate, while the results from Algorithm One are usually reasonably accurate provided

proper convergence criterion are used.

For Algorithm Two, in order to ensure the integration being stable, the component of the

force in a joint which is treated as the external force must have a zero or negative slope.

This can be achieved by adding to both sides of the equilibrium equation a pseudo

stiffness matrix consisting of the initial stiffness of the joints. However, this pseudo

stiffness matrix can affect the accuracy of the integration results. When the pseudo

stiffness matrix is significant, the time interval A has to be veiy small to achieve sufficient

accuracy.

It has also been shown that the instability of the numerical process on the system

containing a friction joint can be well-bounded. The numerical results may appear to be

reasonable, although they are completely different from the real response.

For both algorithms, the initial stiffness of the joint must not be too high. It has been

shown that a relatively soft initial stiffness can often be used without significantly

affecting the physical system. A greater time step A can be used to achieve the desired

accuracy for this modified system.

If the initial stiffness of the joint is significant, the friction force at the joint may change

violently at some periods in a cycle. These periods correspond to the stages when the joint

is in the elastic region, and can be considered as 'stuck'. Therefore, a joint may subjected

to many stick-slip motions in each cycle. The waveform of the response at the joint is

much smoother than that of the friction force.

The system studied can often be condensed and the computation cost can be reduced.

Two condensation methods have been investigated for the system containing nonlinear
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joints. It is found that the mode-shapes of the system with no joint attached forms a good

subspace for the vibration shape of the nonlinear structure. These mode shapes are

suggested for the condensation.



CHAPTER []

APPROXIMATE METHODS FOR THE CALCULATION OF

THE STEADY-STATE RESPONSE OF

A NONLINEAR STRUCTURE

§4.1 INTRODUCTION

In chapter 3, STI methods for the prediction of the response of a structure containing

nonlinear friction joints have been investigated. In general, provided the time interval is

small enough, accurate results can be achieved. For this reason, the results obtained from

these methods are often referred to as 'exact results'.

However, these STI methods have severe shortcomings; for a conditionally stable STI

method, the time interval i has to be smaller than a certain limit to ensure the stability of

the numerical process; for an unconditionally stable STI method, although the problem of

numerical instability can be avoided, the time interval i still has to be sufficiently small in

order to achieve a desired accuracy. When the steady-state response is required, the

numerical integration has to be carried out over a long period, which can be very

expensive. To make things worse, the computation cost increases dramatically with an

increase in size of the theoretical model.

Although the use of condensation can reduce the computation expense effectively, the cost

of the integration can still be high enough to prevent STI methods from being

applied to a wide range of engineering structures. After all, it is normal to have over a

hundred resonances lying within the frequency range of interest for a real engineering

structure. Apart from the cost in integration, formulation of a mathematical model (a finite

element model) can also be a significant cost.

An even more significant problem for STI methods is that a finite element model may not

be as reliable as it is expected to be. A survey DYNAS'[92] conducted for the estimation

of the reliability of the finite element method reveals the existence of a huge difference

between the results from different research institutes.
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On the other hand, once a sucture (or its component) has been made, measurement can

often be carried out and some properties (eg. FRF) of the structure can be measured

directly. After years of improvement in both measurement equipment and measurement

techniques, it is generally accepted that the measured data are usually more accurate than

the data predicted from an analytical model.

Based on this argument, it is more appropriate to use the measured data and the properties

of the friction joints to predict the response of a structure.

In this chapter, the problem of the prediction of periodic steady-state response of a

structure containing nonlinear joints is investigated. The ability to solve this problem will

certainly find wide applications in mechanical systems where the source of the excitation

arises from rotation. The purpose of this study is to develop new methods which can

solve the problem both accurately and cheaply.

§4.2 REVIEW OF APPROXIMATE METHODS

Except for the STI methods, most of the methods for prediction of the response of a

structure are based upon some pre-assumptions on the response of the structure.

Accordingly, they are often referred to as approximate methods. The accuracy of a

specific method largely depends on the accuracy of these pre-assumptions. The most

commonly used approximate methods in predicting the steady-state response of a

nonlinear structure are perturbation methods (e.g. [93]) and methods based on the balance

of the harmonic components.[94] [95] [65]

For the perturbation methods, the desired quantities are developed in powers of some

small parameters, and the original nonlinear equation is turned into a series of linear

equations. These methods are usually only applicable to a system with weak nonlinearity

and with only a few DOFs. The applications of the perturbation methods to real

engineering structures are severely limited. For this reason, no further investigation on the

perturbation methods is presented in this chapter.

Approximate methods based on the balance of the harmonics can be sub-divided into three

groups; the Harmonic Balance method (HB)[95], the Incremental Harmonic Balance

rriethod(IHB)[95] and the Higher order Harmonic Balance method [65](HHB). A brief

review of these methods is given below.

§4.2.1 The Harmonic Balance Method

The HB method is for calculating the response of a nonlinear system subjected to a

sinusoidal excitation. It is the most widely used technique in the analysis of the response

of systems containing friction joints.[5-17, 52-62]
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When a nonlinear system is subjected to a sinusoidal excitation, the response of the

system is not exactly sinusoidal. However, in most cases, the response is usually periodic
and has a period the same as the period of the excitation. The exception to this, i.e. a
non-periodic response under a periodic excitation, is often referred to as chaotic vibration
and is beyond the scale of this research.

When the response of a system is periodic, it can always be resolved into a Fourier series.
If the Fourier series is dominated by its fundamental terms, it may be reasonable to
assume that the response of the system can be represented by the fundamental terms of the
Fourier series. With a periodic response, the friction force in the joint must also be
periodic, and similarly to the response, the friction force can also be approximated by the
fundamental terms of its Fourier series. The solution of the response should be such that

all the fundamental harmonic forces are balanced by each other. To illustrate the concept

of the HB method, consider a nonlinear SDOF system subjected to a sinusoidal
excitation.

mx+cx+kx+F(x,x)=P ieit,	 (4.1)

Assume

x=ai cos cot-b1 sin cot =:XieiOX
	

(4.2)

where Xi=ai+ibi

then

F(x,)=F((ai+ib l)ei0)t,io)(ai +ib i)eKt)
	

(4.3)

is a periodic function and can be resolved into a Fourier series as:

F(t)=Fne1(0t
	

(4.4)

where Fo=4Q , F=A+iB (n=1,...,oe)

An4J 2 F(t) cos(ncot)dt
	

(4.5)

B=- J2 F(t) sin(nt)dt
	

(4.6)

T=
	

(4.7)

Ci)
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Approximating the friction force by its fundamental term (n=1) and substituting it together

with the assumed response (equation(4.2)) into equation(4. 1) yields:

-cO2mX1+iO)cX1+kX1+F1=P1 	 (4.8)

Equavion(4.8) is used to obtain X1

Equation (4.8) can be written in a different way as

X1;	
1	

(P1-F1)
-o)2m-I-k+lcoc

It can be noted that_
1	is the receptance of the linear system without joint. , and

-w2m+k+icoc

it can often be measured directly by experimental means. Therefore, for the HB method, a

spatial model (i.e. mass, stiffness and damping) is not necessary, only the FRF data are

required.

The use of FRF data has significant advantages over the use of spatial data for the

localized nonlinear problem. Not only due to its simplicity (the FRF data can be measured

directly), but also because the FRF data are usually more accurate if they are measured

directly from a real structure.

An even more attractive advantage of using FRF data is that only the coordinates where

nonlinear elements are attached need to be considered. This reduces the size of the

problem significantly. To illustrate this, consider an N-DOF system with a nonlinear joint

attached to its i'th coordinate and subjected to a sinusoidal excitation at the j'th coordinate.

The equilibrium equation in its receptance form with respect to coordinate x1 can be

written as

X i=HjJ(o))P i-H 1(o )F i
	

(4.10)

Only two real unknowns (ai,bi) in equation (4.10) are to be found for the N-DOF

system.

For a general system, the equilibrium equation with mjoint coordinates and k excitation

coordinates is:

(Xi )=E j((0)] (Pi )-[H1 (o))] (F1)
	

(4.11)

where [Hjj(o)] is an mxk matrix and [H0(w)] is an mxm matrix. (F1) is a vector

containing the fundamental terms of the friction force at the joint coordinates.

This equilibrium equation can be used to find (X 1 ) and (F1).
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Once (Fi) and (Xi) have been found, the response at any other coordinate can be

calculated from the FRF data (of the system without joints) and the excitation force (P1 1

and friction force (F1)	 without any difficulty.

The HB method is one of the most commonly used approximate methods in the analyses

of nonlinear systems containing friction joints. The advantages and shortcomings are

summarised as follows:

Advantages

1)Using FRF data, the size of the problem is independent of the actual size of the physical

system, but only depends on the number of joint coordinates; and

2) it is capable of dealing with various types of nonlinearity.

Shortcomings

1) it is only applicable when the excitation is sinusoidal or close to sinusoidal;

2) the accuracy of the results cannot be evaluated; and

3) a set of nonlinear equations have to be solved, which can be extremely difficult. In

most applications [5-17, 52-62], the assembly contains only one friction joint.

§4.2.2 Incremental Harmonic Balance Method

The Incremental Harmonic Balance method(IHB) was first proposed by Lau er al [95] in

1981. The method has been applied to various nonlinear systems(e.g.[961[97]). An

extension on the 1}IB method has been made so that it can be used for a dry-friction

damped system [63][64].

The basic principle of the method is as follows:

For a nonlinear system

If the solution for equation(4. 12) under an excitation of

N
(P(t))	 Pneh10)tj

n=O

(4.12)

(4.13)

can be approximated as:

N
Xe1flWt)
	

(4.14)
n=o
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and the nonlinear force as:

N
(F(t))=(	 Fe'°'}

n=O

then the nonlinear force and the response under the excitation

N
(P+P)eifl(0)+W)t)

n=O

can be presented as:

N
(Fn+Fn)e))t), and

n=O

N

n=O

(4.15)

(4.16)

(4.17)

(4.18)

Substituting equatior4.17) and (4.18) into equation(4.12), neglecting the higher order

incremental terms (e.g. AX 2) and setting the coefficients of the different harmonics on

the right and left hand sides of the resultant equation to be the same yields:

[A] (y) = ( R ) +[OJ (&o) +[T] (AP)
	

(4.19)

where

(y)=(rea1(Xj)T,imag(iXi)T......,real(iXn}T, imag(i.X}T)T
	

(4.20)

contains the variation of the harmonic coefficients of the displacement at joint coordinates,

and [A], [OJ and [F] are coefficient matrices and {R) is a coefficient vector. (&o) and

(AP) are the magnitude and frequency perturbations of the excitation.

Hence the solution is

(y)=[A]1((R}+[OJ ( Ac ) +m (iSP))
	

(4.21)

Since higher order incremental terms are neglected, the solution from (4.21) is usually not

exact. However, an iteration procedure can be used to yield sufficiently accurate results,

i.e.

II (RJ+[OJ (&o)+[T] (AP) II<
	

(4.22)

where e is a small positive number.
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The advantages and shortcomings of the IHB method are as follows:

Advantages

1) The desired accuracy of the solution can usually be achieved by including a large

number of harmonic terms.

2) Equation(4. 19) is linear and can be easily solved.

3)The method is capable of handling strong nonlinearity.

4) Because the information at the neighbouring state is used, the method is very efficient

for studying the variation of the response with change of excitation.

Shortcomings

1) The method is mainly for the single value type nonlinearity of which the harmonic

coefflcientsof the nonlinear force (i.e.i.F) can be represented explicitly in terms of the

polynomial of the harmonic coefficients of the response (i.e.iXn). (Although the method

has been extended to deal with thy friction type nonlinearity [63][64], the process

becomes veiy complicated.)

2) Although the principle is general, each dynamic system requires its own formulation

and the effort in formulation increases dramatically when the size of the system increases.

§4.2.3 Higher-order Harmonic Balance Method(HHB)

The IHB method is actually a kind of higher-order harmonic balance method. However,

the HHB method presented here refers to an extension of the HB method.

One of the main advantages of the HB method is that the size of the problem dealt with is

independent of the actual size of the system; the main advantage of the IHB method is that

a sufficiently accurate solution can be achieved by including a large number of harmonic

terms.

To retain the advantages and overcome the disadvantages of the RB and the IHB

methods, the HB method has been extended. Probably the most attractive method is the

Alternating Frequency/Time domain method(AFT) proposed by Cameron and

Griffin[65], which can be presented as follows:

For an M-DOF system

[M](}+[C] ()^[KI fx)+(F(x,x))=(P}	 (4.23)
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Recall the assumption in §4.2.2

N
Xe"°t)

n=O

and

N
(F(x,xJ=( Fne1)

n=O

(4.14)

(4.15)

where {X)=(a+ib) and (F}=(A+iBJ (n=1,...,N) are the harmonic coefficients of

the displacement and friction force respectively.

Substituting equations(4.14) and (4.15) into equation(4.23) yields a set of equations with
MxN complex unknowns (2xMxN real unknowns). The coefficients for all the

harmonics must be balanced, hence the resultant equations can be resolved into 2xMxN

equations, and the response ((a1),(a2),..(aN),b1},(b2),..(bN)) can be determined

uniquely.

When the nonlinearity is localized such as the case of a system containing friction joints,

the FRF data can be used in the AFT method in exactly the same way as that in the FIB

method, thus the number of unknowns can be significantly reduced. (Surprisingly, this

was not noted by Cameron and Griffin in their paper [65] .) The FRF based HHB method

can be expressed as follows:

Consider N frequency components, the equilibrium equation for a system with i joint

coordinates and j excitation coordinates is

(X1) =[H(co 1 )] (P1 )-[H(co)] (F1)

X) =[Hij(o)] (P2) -[H jj(c02)] [F2)

(XN) =[Hij(WN)] (PN) -[H11(o.j)] (FN)

(4.24)

where (Xk) and (Fk} (k=1,2,...N) are the harmonics of the Fourier series of the

response and nonlinear force at frequency o respectively.

It can be noted that the FIB method is a special case of the HHB method with one

frequency component.
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The HHB method has many advantages as follows:

1) the method can be used to deal with general type of nonlinearity;

2) when sufficient harmonics are included, desired accuracy can be achieved and

3) the method is particularly suitable for the localised nonlinear problem. By using the

FRF data, the unknown numbers can be significantly reduced.

The main disadvantage of the IIHB method is that the equations to be solved are nonlinear

and the solution is difficult to obtain. 	 -

It is believed that the difficulty in solving the nonlinear equation is the main obstacle for

the applications of the HHB. Indeed, because of the difficulty in solving the nonlinear

equations, Cameron's AFT method [65] appears to be the only publication of the HEIR

method.

In this chapter, effort is devoted to developing a new scheme to solve equation(4.24) for

the HR and HFIB methods.

§4.3 THE HB METHOD FOR A SYSTEM CONTAINING ONE JOINT

The main difficulty in the application of the HR and HEIR methods is that the equations to

be solved are nonlinear. This problem becomes even more significant when the harmonic

coefficients of the nonlinear force cannot be obtained analytically from the coefficients of

the harmonics of the displacement, i.e. the coefficients of the nonlinear force is an implicit

function of the coefficients of the displacement (which is the case for most of the friction

joint models).

In this section, a method to find the FIB solution for a system containing one nonlinear

joint is proposed, the solution can be found efficiently. The general scheme for the

solution will be discussed in the next few sections

For a system containing one joint, two variables have to be determined, i.e. the real and

imaginary parts ai, b1 of Xi from equation,

X 1=H1Pi-H1iFi
	

(4.25)

where F1 is a function of a! and bi. This is a two-dimensional problem (i.e. with two

unknowns). However, based on a physical observation, this two-dimensional problem

can be turned into a one-dimensional case and fmding a solution in a single dimension is

much simpler and faster than that in two dimensions.
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Instead of considering the excitation being LP1Ie1OX, the excitation can be considered as

P1=pr+iPi
	

(4.26)

so that

b 1=0.	 (4.27)

This does not change the properties of the system except for a shift of the signal in the

time record.

Substituting equation(4.26) and equation(4.27) into equation (4.25) leads to:

(4.28)ai=HPi-HFi

Rearranging equation(4.28) yields

,1-• 	i-i..LllJ

Now, define a function

f(al)=IP1I_Ia1+FhhlFhl

(4.29)

(4.30)

The solution a! of equation(4.28) must be a root of f(ai)

Since there is one variable ai in tOVonc4-3O) the problem becomes one-dimensionaL

Solving a one-dimensional problem is trivial. The algorithm such as the Newton-Raphson

method can be used. However, a simpler scheme based on a physical observation may be

more effective.

The observation is that a greater response ai almost always corresponds to a greater

excitation P1. and vice versa. Accordingly, the following searching scheme is adopted.

1) make an initial guess on a(1), i=0.

2) calculate f(a1 ( )); if f(ai(1))>0, ai is under-estimated; if f(a( 1)) <0 a is over-estimated.

3) if f(ai('))xf(ai(1-')) <0, go to step 6)

4) i=i+1, a i (i+l)=ai(i)+Aa, where Aa is a modification on the new estimation from step 2

5) repeat step 2)-4) until 3) is satisfied.

6) The root of f(ai) must lie within the range of [ai(11),aicI)], a one-dimensional searching

method such as Golden-Section search method is used to find the root.
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Once al is known, Pr and P can be found from equation (4.29).

If P1cos(ot)-Plsin(wt)=IPlIcos(o.)t$), then the response corresponding to the excitation

Pcos(cot) is x=alcos(wt-$), and the coefficient for the friction force F can be found

accordingly.

A similar method can be applied to a system with a nonlinear element connecting two

coordinates of the structure.

Assume the system is excited by a sinusoidal excitation at coordinate j and a nonlinear

element is connected to coordinateji and k. The equilibrium equations at coordinat5i and k

are

X i(i)=HP i-HI 1F1-H jk(-F1)
	

(4.31)

X i(k)=HP 1-Hj(-F)-Hkj(F)
	

(4.32)

Subtracting equation(4.31) by (4.32) yields

X1 (i)-X1 (k)=(H 1j-Hk)Pi -(Hjj-Hjk-Hkj+H)F1 	 (4.33)

Assume X1(i)-X1(k)=a1, F1 can be found by using the same approach discussed above,

and X1(i) and X1(k) can be found from equations (4.31) and (4.32) respectively.

§4.4 INVESTIGATION ON THE HB METHOD--GENERAL SYSTEM

The HB method is a special case of the }{HB method, therefore, all the algorithms

applicable to the HHB method can also be applied to the FIB method. However, the HB

method can sometimes be solved using other special methods. A special method is

discussed in the next few sections

§4.4.1 Direct Iteration Scheme for the HB method

Write the general equilibrium equation as:

(X1 )=[I4ij(CO)] (P1 )-[H11(w)] (F1)
	

(4.34)

The direct iteration method is expressed as [65].

(X' )=[Hj()] (P1)-[H1I(o))](F)
	

(4.35)

where superscripts (n) and (1) denote the current and new estimations.

This algorithm is simple, and in some cases, the convergence is achieved very rapidly.

However, there are even more cases that the algorithm will diverge.
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§4.4.2 Convergence Analysis on Direct Iteration Method

In order to understand which factors affect the convergence of the direct iteration method,

a linear system is considered. The linear force (F(xj)) can always be decomposed as

(4.36)(F1 )=[K] (X1 )=([K1]+i[D1]) (Xi)

hence equation(4.34) becomes

{X1 )=[Hi(o))] (P1 )[Hu(o))][K] (X1)

For simplicity, let

[A]=[Hi(o)] and [B]=[H11(a)] [K;']

Then iterative equation becomes

{ x )=[A] (P1 )-[B] (?)

(X)=[A](P1)-[B]P )

=([A]-[B][A]) (P1 )^([B])2(X?))

(4.37)

(4.38)

(4.39)

This gives a recurrence relationship so that the response at end of the n'th iteration is

(X') =([A]-[B]([AJ-[B]([A].....)))) (P ) +(-[ B])n (? )	 (4.40)

The convergence of the direct method can now be investigated by considering the

behaviour of [B] when n becomes large. The iteration process will converge if and only

if the magnitudes of elements in matrix [B] decrease as n increases. From the stability

analysis in Chapter 3. it is understood that the magnitudes of elements in the matrix [B]

are related to the magnitude of the highest eigenvalue of the matrix [B]. For the direct

method to converge, the magnitude of the highest eigenvalue of the matrix
[B]=[H(o)][K] must be smaller than 1. This usually means that magnitudes of the

elements in the matrix [B] should be sufficiently small. Since the matrix [H1j(c)] is fixed,
the elements in the matrix [K] should be sufficiently small, i.e. the stiffness should be

sufficiently low.

For a nonlinear joint, the [K] matrix changes from one iteration to the other. Therefore,

the above analysis does not hold directly. However, the principle of the analysis is still

valid. When the estimate of thesolution is sufficiently close to the Asolution, the
corresponding matrix [K()] shouldAbe close to the [K] matrix of the exact solution.

In this case, the nonlinear system can be approximated by a linear system. If the
magnitude of the highest eigenvalue of the matrix [B*(fl)]=[Hjj(co)][K)] is smaller than
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1, the iteration will converge, otherwise, even if the exact solution is used as an initial

estimation, the iteration process will still diverge due to computation errors.

§4.4.3 Equivalent Stiffness and Damping

In the last section, it has been shown that the magnitudes of the elements in the matrix
[K] must be sufficiently small to achieve convergence for the direct iteration method. In

order to enhance the convergence of the direct iteration method, the concept of equivalent

stiffness and damping is introduced in this section as follows:

If the frequency component of the deformation of the nonlinear element at frequency 0 is

(4.41)x(t)=Xicos(cüt)

then the fundamental harmonics of the nonlinear force can be written as

Fi=KXi+iDXi

where

'cr-i3x	 F(t)cos(o)t)dt

I

De	 2 F(t)sin(0)t)dt

(4.42)

(4.43)

(4.44)

T=	 (4.45)
0)

Ke and De in equation (4.42) are defined as the equivalent stiffness and equivalent

damping respectively

For a Masing type nonlinear element, the equivalent stiffness and damping can be

calculated directly from the initial loading relation (APPENDIX B)

The equivalent damping is closely related to the energy dissipation of a nonlinear element.

The damping of a structure is usually defined as a mechanism of energy dissipation. For a

linear hysteretic damping D, the energy dissipated each cycle is

E=Fddx

=j -DXsin(ox) dX1cos(ox)

=iDX	 (4.46)



E
D-2 (4.49)
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hence

ltX?
	 (4.47)

In many engineering applications, the energy dissipated by the friction force is often

approximated by a linear hysteretic damper which satisfies equation(4.47).

From equation(4.44), the equivalent damping is

1
D—	 J 2 F(X 1 cos(cut)) dX1cos(cot)

7tXJ T
(4.48)

The integral of the equation(4.48) is the energy dissipated in one cycle, hence

Comparing equations(4.47) and (4.49), it is noted that if the response is sinusoidal, the

energy dissipated by the nonlinear element is the same as the energy dissipated by a linear

hysteretic damper with the coefficient of the equivalent damping.

§4.4.4 Improved Direct Iteration Method-New Development

Recall equation(4.37) in §4.4.2

(X1 )=[Hj(o)] (P1 )-[H11(co)][K] (X1)
	

(4.37)

Equation (4.37) can be rearranged as

(X1) =([fl^[HlI(0)))[K])-'[Hij(o)] (P1)
	

(4.50)

Equation (4.50) is a direct scheme and no iteration is required.

Similar extension can be made for a nonlinear system using the concept of equivalent

stiffness and damping to yield a new iterative scheme:

( x(r') } —([fl+[H••()] [K()])- 1 [HiJ(CD)] (P1)
	

(4.51)

where [K(n)]=[K()]+i(D(g)] is the complex equivalent stiffness matrix at

Direct use of equation(4.5 1) may diverge too. Therefore, a monitoring algorithm is used

as follows:

Define f(x('))-Il { x( 1)j -([IJ^[H1(co)][K()])4 [Hj(co)] (Pi } II	 (4.52)
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If f(X(r'))<f)), the iteration is converging, hence set )4')=X(r'), and a new

iteration is carried out; if f(X(r'))>fQ()), the iteration process of equation(4.51)

diverges. In this case, a searching direction is calculated as:

{S.X I = x(^ 1) { xq')
	

(4.53)

A one-dimensional searching process is carried out to find a minimum of f(X) in the
direction (tX} from C4 ) } . i.e.to find a parameter a so that

for any parameter 3^a

The iterative process is repeated using the new estimation X)+cthX.

The solution is found if

IIf'))II<EIIX()II
	

(4.54)

where e is a small positive number.

§4.5 EXTENSION OF THE DIRECT ITERATION APPROACH TO THE

HHB METHODS

The principle of the algorithm discussed for the HB method can also be used for the HHB

method. However, some modifications have to be made.

In §4.4.3 , the concept of equivalent stiffness and damping is introduced. It is natural to

extend this concept directly in the HHB method. Unfortunately, this is not appropriate,

because the frequency component of the friction force is not caused exclusively by the
corresponding frequency component of the displacement. To illustrate this, consider a
nonlinear element with a pure sinusoidal deformation Xicos(cot). The n'th (n^1)

frequency component of the force is

F=Acos(no)t)-Bsin(not)
	

(4.55)

Since the corresponding frequency component of the displacement is zero, an infmite

equivalent stiffness (and also the equivalent damping) is obtained. This is clearly not

appropriate.

The concept of the equivalent stiffness and damping is based on the definition

K*=	 (4.56)x



dF
K da (4.57)
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A more appropriate definition for the equivalent stiffness and damping is to use the

derivatives, i.e.

For a linear system, equation(4.56) and equation(4.57) are exactly the same. However,

for a nonlinear system, equation (4.56) represents the global property of the stiffness,

while equation(4.57) represents the local property of the stiffness. In this chapter, the

local equivalent stiffness and damping are defined as follows:

If the n'th harmonic displacement component is X=a and its corresponding harmonics

of the force is Fn=An+iBn, the n'th local equivalent stiffness and damping are

aA	 aB
K=— and D=

The complex local equivalent stiffness is

K=K+iD

(4.58)

(4.59)

The local equivalent stiffness and damping can be used for both the HR and the HHB

methods in a similar way to the equivalent stiffness and damping for the HR method. The

iterative formula is

x(') } =([II+[Hij(o)k)J [K()J)- 1 ([H(coj)] (Pk) -[H j1(cOkJ] ( (F() ) -[K()] { x) }))

(4.60)

§4.6 NEWTON-RAPHSON METHOD

Experience shows that for the HB method, equivalent stiffness and clamping (or local

stiffness and damping) scheme (ESD) usually leads to convergence. However, for the

}IHB method, convergence is more difficult to achieve. In some cases, the local stiffness

and damping scheme(LESD) may fail to achieve convergence.

Use of local equivalent stiffness and damping is equivalent to assuming that the change of

the harmonics of the nonlinear force is caused by the change of the corresponding

harmonics of the deformation of the nonlinear element. In most cases, this is not true. In

some cases, if the change of harmonics of the nonlinear force is caused mainly by the

change of other harmonic components of the displacement, then the LESD scheme is

likely to faiL In order to include the effects of other harmonics of the displacement on that

of the nonlinear force, the Newton-Raphson method is suggested.
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Define a set of nonlinear equations as:

( g (y) )=Real((Xi )-[Hij(01)]{Pi )-[H (w i)] (F1))

( g2(y) }=Imag( (Xi )-[Hij(D1)] (Pi )-[H(0)i)] (F1))

(4.61)

(g2fl 1(y))=Real((Xfl }-[H J(o fl)] (P)[Hu(o)11)] (F})

(g(y) } =Imag( (X )-[Hj(o)] (Ps) -[Hjj(w)] (Fe))

where

(y)=(Real((X ))T, Imag((Xi))Te. Real((Xn})T, Imag((XpT)T	 (4.62)

is the solution for the HHB approach.

and write

(g)=((g1)T,(g2)T}T

The solution (y) for the HHB method must be such that

(g(y))=(0)

The iterative equation using the Newton-Raphson method is

(y(i+i))=(y(i))_ [JJ- 1 ( g(y(i)))

(4.63)

(4.64)

(4.65)

where	 is the Jacobian
a(y(1))

As discussed in Chapter 2, the analytical partial derivatives in the Jacobian are not

available, hence the finite difference has to be used in place of partial derivatives in the

Jacobian.

The Newton-Raphson algorithm is a linear approximation, therefore, it may diverge as

well as converge depending on both the accuracy of the estimation and properties of the

nonlinear equations. If divergence occurs, i.e. IIg( (y(i+l) ) )II>lIg( ( y(D) )II, one-dimensional

function niinimisation technique is used to determine the value of'yin equation(4.66):

( ym 1 ') = ( y(i) ) - 'i[J(y(i))]4 (g(y(i))} 	 (4.66)

so that IIg((y(l)))II is a minimum in the direction (Ay1} ..[J(y(i))]I (g(y(i))} from

(y(I)).

( ym) is then used as a new estimation for the next iteration.
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Most of the computation time is spent on calculation of the Jacobian. In order to save

computation cost, the Jacobian is only updated when

IIg( (y(i+l) ) )H>O.911g( (y(i)) )fl. 	 (4.67)

§4.7 PERTURBATION APPROACH

§4.7.1 Basic Strategy

In solving a set of nonlinear equations using an iterative method, the initial estimation of

the solution must be of sufficient accuracy. Cameron er a! [65] suggested that when the

Newton-Raphson method fails, more robust algorithms should be used. However, this

does not solve the problem completely; even the most robust algorithm may still fail to

converge to the solution if the initial estimation is too far away from the solution.

The key to the wide application of the HB and HHB methods is believed

to be the determination of a good initial estimation for the iteration

process.

Unfortunately, in many applications, little knowledge is known about the solution.

In Chapter 2, it is shown that the deformation of a system should be calculated in a step-

by-step way; for the 1IHB method, incremental parameters are used to calculate the

response at a neighbouring state. This incremental (or perturbation) approach can be

utilised to obtain an accurate initial estimate for the FIB or HHB method.

For a linear system, solution can be found by using equation(4.50), i.e. the solution for a

linear system is always available.

If the system is subjected to a small perturbation, providing the solution changes

continuously with the perturbation, the solution of the new system is usually very close to

the solution of the original system. Therefore, if the solution of the original system is

used as the initial estimate for the solution of the new system, the solution of the new

system can usually be found provided the perturbation is sufficiently small. Since the

solution for any linear system is known, a step-by-step perturbation approach can be used

to convert a linear system to the nonlinear system as follows:

Two parameters ap and cc are introduced to implement the perturbation.

Defme {P)=(aP)
	

(4.68)

and	 {F)=(aF)	 (4.69)

(P') and (F) are used in place of (P) and (F) during the iteration process.
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It can be noted that if a=O, the nonlinear force has no effect on the system, hence the

system is linear and a solution can be found; if ap is sufficiently small so that the

response of the system is small, the dynamic characteristics of the most nonlinear joints

are effectively linear, hence the whole system is substantially linear, then it is possible to

find a solution corresponding to a small ap. The CLp and a are called the excitation

increment and joint increment respectively. The perturbations using excitation

increment and joint excitation increment are called excitation incremental perturbation and

joint incremental perturbation respectively.

After a solution for a linear (a=O and a=l) or a quasi-lirrear(a=l and ap is small)

system is found, a perturbation of a=a+ia and/or a=a+Aa is made to yield a new

system, using the iteration scheme discussed in the foregoing sections, the solution

corresponding to the newly perturbed system can be found. The process of perturbation

and iteration is repeated until ctj=ct,=l is reached, then the solution for the nonlinear

system is found.

A system containing friction joints is close to a linear system under the following two

cases:

1) the excitation is very small, or

2) the excitation is very large

In the first case, the excitation incremental perturbation is more effective, and in the

second one, the joint incremental perturbation is more efficient. Depending on the

excitation level, appropriate incremental approach should be used.

§4.7.2 Initial Estimation for the Newly Perturbed System

In the last section, the latest solution is used as the initial estimation for the newly

Perturbed system, i.e.

((n+l)y(l)}=((n)y) 	 (4.70)

where the left-superscripts (n+1), (n) represent the number of perturbations

This estimation on the newly perturbed system is referred to as the direct estimation.

For most of the systems, the change of solution due to the change of the perturbation is

continuous. When perturbations have been applied several times, the variation of the

solution with the change of the excitation or joint increment contains useful information

for the solution of the new system, and they can often be used to find a more accurate

solution. In the following part of this section, linear and quadratic estimations are

proposed.
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N
direct approximation

0.
0

Real solution
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A linear approximation for the solution is proposed as follows:

let a=aj+ap	 (4.71)

If the solution with an-i is ((fl-i)y) and the solution with an is ((fl)y), then the linear

prediction for the system with ai is

((n+1)y(l))=((fl)y)+ Ufl+lUfl(((fl)y) ((fl4)y)) 	
(4.72)

an-ani

The quadratic approximation is as follows:

If the latest three solutions corresponding to an..1 and a are ((n-2)y), ((fl4)y} and

(('Oy), then for any element y(k), (k=1, ...,2n) in (y), a set of parameters A(k),B(k)

and C(k) for a second order polynomial can be defined uniquely so that

( 2)y(k)=A(k)c4j -B (k)cz..2+C(k)

("-1)y(k)=A(k)ai-B(k)a1+C(k)

()y(k)=A(k)a +B(k)a +C(k)

Then the new estimate from the quadratic approximation is

(n+ ')y(k)(')=A(k)a1+B (k)a 1+C(k)

(4.73a)

(4.73b)

(4.73c)

(4.74)

Figure 4.1 shows the predictions from equations (4.70),(4.72) and (4.74) schematically

for a one-dimensional case.

quadratic approximation

'I

I	 I

I	 I

°n-2 O 4 O	 Increment
Figure 4.1 A schematic diagram for the initial estimation

In most cases, the quadratic approximation yields the best approximation and the linear

approximation the second best. However, there can be some exceptions. In the computer
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code, all three approximations are calculated and these estimations are used to calculate the

value of the objective function IIg((yDII. The approximation which yields a minimum

value of the objective function is used as the initial estimate for the newly perturbed

system.

Higher order approximation (e.g. cubic approximation) may also be used with exactly the

same principle as the quadratic approximation. However, experience indicates that the

estimate to the newly perturbed system using a higher order approximation is usually not

more accurate than using the quadratic approximation. Indeed, because a higher order

approximation tends to be dominated by information several steps away from the current

perturbed system, the accuracy of the higher order approximation is usually lower than

the quadratic approximation.

Experience appears to indicate that much greater joint or excitation increment can be used

if linear and quadratic approximations are employed.

§4.7.3 Other Perturbation Approaches

The response of a system subjected to a periodic force is often dominated by only a few

frequency components, and sometimes by only one frequency component (i.e. the

fundamental harmonic). Therefore, the responses of these frequency components are a

good approximation to the real response which contains more frequency components.

An order-by-order perturbation approach can be used to improve the accuracy of the

solution by including more frequency components as follows:

First, some of the most important frequency components are taken, and the solution from

these frequency components is used to find the solution with an inclusion of an additional

frequency component (an additional order). When the convergence is achieved, the latest

solution is used as the initial estimate for the solution with another frequency component

included. The process can be repeated until sufficient accuracy is achieved.

Using the order-by-order approach, the initial solution may contain only a few

(sometimes only one) frequency components, thus, the computation cost can be saved

during the incremental perturbation process. However, it should be emphasised that the

most important frequency components must be included first, otherwise the order-by-

order approach may converge to a local minimum.



Chapter 4 Approximate Methods For the Calculation of the Stead y State Response...	 pare -125-

Usually, the importance of frequency components decreases with the order in the Fourier

series. The importance of the frequency can also be estimated using the following method:

If the Fourier Series of the force corresponding to the current estimate of the response is

(F(t) ) -(	 +(A)cos(nwt)-(B) sin(nox)
	

(4.75)

The n'th response caused by the corresponding nonlinear and excitation harmonic forces

is

(X }=[H (n )l fPn ) - [Hj1(no))] (Fe)
	

(4.76)

The importance of the frequency can be estimated according to the Eudidean norm of the
response, i.e. if II(Xi)II>II(Xj)II, the frequency component of niw is more important

than the frequency component of n20), and it should be included first.

Except for the order-by-order approach, the perturbation principle can also be applied to

investigate the effects of the variation of a parameter (e.g. excitation frequency, a joint

model parameter) on the overall behaviour of the suucture.

§4.8 Consideration on Computation Efficiency

§4.8.1 Calculation of the Coefficients of Fourier Series

For both the MB method and the HHB method, most of the computation cost arises from

obtaining the coefficients of the harmonics of the nonlinear force from the harmonics of

the response. This is to integrate equations(4.5) and (4.6). In most cases, the analytical

solution of equations(4.5) and (4.6) is not available, hence a numerical integration scheme

has to be used.

To implement the numerical integration, equatioi4.5) and (4.6) are approximated by a

summation as

N0-1

F(j) EXP(-i
	

(4.77)
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or

N0-1

2irj k..
Ak=	 F(j) cos(--)

N0-1

Bk= -	 F(j) sin(

(4.78a)

(4.78b)

Because discrete series of F(j) is used in equations(4.77) and (4.78), equations (4.77)

and (4.78) are often referred to as the Discrete Fourier Transform(DFI'). If all the

coefficients in equatior(4.77) and (4.78) are required, 2N 2 multiplications are required.

This can be very expensive if N is very large.

Fortunately, a remarkably efficient algorithm was developed in 1942 and has found wide

applications since 1960 [981. The algorithm reduced the number of multiplications

required for the DFT from 2N2 to 2NlogN. This algorithm is, of course, the Fast

Fourier Transform (FFT).

For the I-IHB method, only a few frequency components (say m) are required. Therefore,

one only needs to calculate m harmonics. In this case, the direct solution from

equation (4.77) requires 2Nm multiplications; if FFF is used, 2Nlog2N

multiplication is required. If DFT only needs to be calculated once, then even if

2Nm<2NlogN, the computation cost of the direct solution can still be higher than FFT,

because more values of the exponential function are calculated for the direct solution,

however, if DFT needs to be calculated many times (which is the case for the HHB

method), the values of EXP(-i	 only need to be calculated once and stored in the

computer memory, these stored values can be used in the subsequent calculation of the

DFT. Therefore, the computation cost is mainly spent on the multiplication operations. In

this case, if 2Nm<2NlogN, the direct solution for the DFT is computationally more

efficient.

Another technique to improve the computation efficiency is to use a relatively small value

of N0 during the incremental perturbation process. When ap and Xj reach unity, N0 is

doubled and a new solution is calculated. When the new solution is found, No is doubled

again and the process repeated until No reaches a pre-set value.
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§4.8.2 Switch Principle in the Computer Code

In the foregoing sections, the ESD scheme, the LESD scheme and the Newton-Raphson

method have been proposed.

The ESD scheme is much cheaper to implement than the other two methods, the LESD

scheme requires about half of the computation of the Newton-Raphson method.

However, the Newton-Raphson method converges at the time that the ESD or LESD

scheme fails and usually it needs less iterations to converge when all the methods

converge. In order to use these methods effectively, the following switch principle is

adopted.

First, the ESD method (for HB) or LESD method (for HHB) is used in the incremental

perturbation process and if IIg((y( i+l )))II<eIIg((y( i) ))II, the iteration process is repeated.

(where e is a positive number to evaluate the efficiency of the iteration, for the RB method

£=O.9, and for the HHB method, c=O.5). Experience shows that once the ESD or the

LESD method fails to converge or converges very slowly, it is likely to be unsuccessful

in the following incremental perturbation. Accordingly, if IIg((y(L+l)))Ib.eIIg((y()))II, the

Newton-Raphson method is used for the remaining process.

§4.9 NUMERICAL CASE STUDIES

The system for investigation of the HB and HHB methods are exactly the same as the

system in chapter 3 for the study of the STI methods (see figure 3.4). Unless specified,

the excitation force is P=sin(lOOitt), applied at coordinate 5.

§4.9.1 Results

In the following sections, most of the numerical results obtained from the FIB and HHB

methods are presented in time-domain in dashed lines. The 'exact' results (obtained by

using the STI method with sufficiently small time interval i) are also presented (in solid

lines) for comparison. The response at coordinate 5, the relative displacement at joint 2

and the friction force at joint 2 are presented. The friction force is calculated from the

relative displacement at joint 2 and contains much higher frequency components than the

response.

§4.9.1.1 Results Using the Harmonic Balance Method

Figures 4.2-4.4 show the results of systems containing B, C and E type joints (see table

3.1). It is noted that all the results have reasonable accuracy. The calculated magnitude of

the response at coordinate 5 may contain 10-20% error. Because only the fundamental

harmonic term is considered, the distortion of the waveform of the response (particularly

at joint 2) cannot be accurately presented.
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The above results indicate that the FIB method may be useful for qualitative study and

quantitative study with low accuracy demand. However, the HB method is not

appropriate for the investigation with high accuracy demand.
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§4.9.1.2 Results Using the HHB Method

Figures 4.5-4.8 show the results obtained by using the HHB method.
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Because the excitation only contains odd order harmonics and the friction force is an odd

function of the displacement, the even order harmonic components of the response must

be zero and can be ignored. Five odd order harmonics (N=1 ,3,5,7,9) are considered for

the HHB method and 512 points are used in DFT.

It can be noted that the results from the HHB method are much more accurate than those

from the HB method. For the systems with B and E type joints, the results from the I{HB

method and from the STI method (i.e. the accurate results) are hardly distinguishable.

For the systems with C and D type joints, the accuracy is slightly poorer, but the accuracy

of the magnitude of the predicted response at coordinate 5 using the HHB method is still

over 95%, although the difference between the friction force from the STI method and the

HRB method significant.

The slightly poorer accuracy of the results is believed to be caused by stick-slip motion at

the join As can be noted from figure 4.6b-c and figure 4.7b-c that due to high initial

stiffness of the joint, a small error in response (which may be a result of neglecting the

harmonic components with N>9) causes a significant change in the friction force.

Accordingly, the accuracy of the results is reduced. However, an accuracy of 95% is

often well-within the demand for general engineering applications.
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If a system is in a state without (significant) stick-slip motion, higher accuracy can be

achieved for the results from the HHB method even if the initial stiffness of the joint is

significant. Figure 4.9 shows that the resuitsJv the system with D type joints, the

excitation force is p=100 sin(lOOitt). Under such a high level of excitation, stick-slip

motion can not occur. It can be noted that very accurate results are obtained.
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Even if the joint is in a series of stick-slip motion, it is believed that provided a sufficient

number of harmonics is considered for the HHB and a sufficient number of points is used

in DFI', higher accuracy can be achieved, but at the price of increased computation cost.
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Another advantage of the HHB method over the HR method is when the excitation is not

sinusoidal. In this case, the response contains more than one significant frequency

component, and the HR method is not applicable. However, using the HHB method, the

response can be calculated with no additional difficulty.

Figure 4.10 shows the system containing B type joints and under an excitation of

P=sin(10Ot)+sin(30thtt)+sin(50Oitt). The results from the STI method and the HHB

method are hardly distinguishable.

	

10.00-	 _.	 10.00- -

	

0.00 -	
0.00 - _________________

	

-10.00-	 I	 I	 I	 -10.00-	 I	 I
0.96 0.97 0.98 0.99 1.00	 0.96 0.97 0.98 0.99 1.00

TIME (sEc)	 TIME (SEC)
(a) Displacement at coordinate 5	 (b) Displacement at joint 2
0.50-

I
0.96 0.97 0.98 0.99 1.00

TIME (sEc)
(c) Friction force at joint 2

Figure 4.10 the HHB results of the system containing D type joints
under excitation p=sin(100 itt)+sin(300ia)+sin(500irt)

An even more attractive advantage of the HHB method is that the perturbation approach

can be used to obtain the response at a neighbouring state. Hence the computation cost

can be significantly reduced.

Figure 4.11 and figure 4.12 show the results of the systems with B type joints and the

system with E type joints in frequency domain. The STI method can be too expensive to

apply for this kind of study, but using the HHB method, calculation of the response at a

neighbouring frequency often requires only a few iterations. Therefore, the job was done

at a much lower cost than using the STI method.
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The displacement at coordinate 5 and the friction force at joint 2 are presented. For clarity,

both the displacement and the friction force are presented in dB with respect to the

magnitude of the excitation, i.e. if the excitation is P=psin(o.x) and the magnitude of the

n'th harmonic of the displacement (or friction force) is X (or Fe), the response (or the

friction force) in dB is 20xlogio(1) (or 2Oxlogio(I1). The magnitudes of the

excitations used are p=lOO, 2, 1,0.1,0.01 respectively. Three harmonics of the response

and two harmonics of the friction force are presented.

It is noted that in most cases, the response is dominated by the first harmonic component

(the fundamental harmonics). The ratio of the response to the excitation varies

significantly under different excitation. 20-40dB difference can be observed in figure

4.11a and figure 4.12a between the response under excitation with p=l and with p=l00

(or p=O.Ol). This clearly indicates that the significance of the friction joint on the

reduction of the response of the system.

It is also noted that the higher harmonic terms of the response vary significantwith the

level of the excitation and also the frequency of the excitation. When the excitation level is

small, the joint behaves approximately linearly, hence the higher-order harmonic

components are insignificant, an exception is at a frequency close to the 'lock-resonance'

frequency (around 55Hz), the displacement at the joint under some excitation (e.g. p=0.l)

increases to such a level that the characteristics of the joints become significantly

nonlinear, when the excitation is significant, the friction force becomes insignificant

compared with the excitation, hence the higher-order harmonics of the response

component is insignificant. In between these two extremes, the higher harmonic

components are most significant.

Since the magnitudes of the higher-order harmonic components of the response under

small excitation are much smaller than the fundamental terms except for those close to the

'lock-resonance', the results obtained at the frequencies other than those close to the

'lock-resonance' frequency are prone to numerical errors and are inaccurate in their

absolute values. However, since the magnitude of these components are insignificant,

they do not affect the overall accuracy of the HHB method (i.e. the response signal in the

time domain).

§4.9.2 Discussion

It is found that during the computing process, without using the perturbation approach,

convergence can only be achieved with a system containing weak nonlinearity (i.e. either

the excitation is very high or the excitation is very low) even if the Newton-Raphson

method is used. However, if the perturbation approach is used, convergence can be

achieved for a much wider group of systems. The ESD and ELSD methods are found to
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be effective in dealing with systems with weak nonlinearity, but convergence for systems

with song nonlinearity can only be achieved by using the Newton-Raphson method.

It is also found that computation cost heavily depends on the perturbation approach used

(i.e. joint incremental perturbation or excitation incremental perturbation). Although final

convergence can usually be achieved by using both the joint and excitation perturbation

approaches, the ratio of the computation cost between two perturbation methods may well

be over 100 times. The joint incremental approach should be used for high excitation

cases (e.g p=2 and p=100), while the excitation incremental approach should be used for

low excitation cases (i.e. p=0.land p=0.Ol). For the case with p=l, the computation cost

using these two perturbation approaches is similar.

The cost of the HHB is much lower than the STI method for a system with weak

nonlinearity (i.e. p=100, 2, 0.1, 0.01). For a system with strong nonlinearity (p=1 and

with a D type joint), the computation cost of the HIHB method for a calculation of the

response under an excitation can be up to 5 times more expensive than that of the STI

method. However, much more information is obtained from using the HHB method than

from using the STI method since the response corresponding to each perturbed system is

available. If the variation of the response against one variable (e.g. against the change of

frequency) is required, the cost of the STI method increases linearly with the number of

states to be calculated, while for the HHB method, calculation of the response at a

neighbouring state often needs a few more iterations only, hence the cost of the

calculation of the response at a neighbouring state using the HHB method is much

cheaper. What is more, because the cost of the HHB method depends only on the number

of coordinates where the nonlinear joints are attached, the ratio of the computation cost

between the HHB and the STI method should drop significantly with an increase of the

size of the theoretical model.

If the responsat several states are required and the calculation of the response at a single

state using the STI method is cheaper, then the response at the first state can be calculated

using the STI method. The response signal in the time domain can then be resolved into

frequency domain components using the Fourier series, and these frequency components

can be used for the calculation of the response at a neighbouring state using the HHB

method and perturbation approach. Consequently, the overall cost of computation can be

reduced.

In addition, if very accurate results are required, the results from the HHB method can be

used as the initial condition for the STI method.Hence the steady-state response can be

achieved in a much shorter time. Accordingly, the cost of the Si'! method for calculating

the steady-state response can be significantly reduced.
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§4.10 CONCLUSIONS

In this chapter, approximate methods based on the balance of the harmonics of the

response signal are investigated, and their advantages and disadvantages are discussed. It

is believed that in order to extend the applications of the approximate methods to

quantitative engineering problems, two problems needs to be solved; 1) the accuracy, and

2) the efficiency.

It has been shown that use of FR.F data for the FIB method is very attractive in reduction

of the computation cost since the size of the problem is independent of the complexity of

the physical system. It is also shown that accuracy can be increased by taking more

harmonics into account in the IHB and AFT methods. Based on the discussion of the

approximate metho it is concluded that the FRF based HHB method is very attractive

for calculation of the steady-state response of a system containing localised nonlinear

elements.

Because the solution of the FRF based HHB method can only be obtained by solving a

set of nonlinear equations, it is believed that the development of a new scheme for solving

these nonlinear equations is of the utmost importance for the H}IB method.

The direct iteration scheme is investigated, and based on the concept of local or global

equivalent stiffness and damping, the new direct iterative scheme is proposed. The

Newton-Raphson algorithm is proposed for the FIB and HHB methods when the direct

iterative scheme fails.

It is believed that the determination of a good estimat&- for the solution is the key to

solve the nonlinear equations. The new perturbation method has been developed.

Theoretically, provided the change of solution with the perturbation is continuous, the

solution for the FIB and HHB methods can always be found.

The change of the solution with the perturbation contains useful information for the

solution of the newly perturbed system. Linear and quadratic approximations are

proposed for the estimation of the new system. It is found that the step of the perturbation

can be significantly increased with the help of the linear and quadratic approximations,

hence the computation cost is significantly reduced. Two perturbation schemes have been

suggested; the excitation incremental perturbation is suggested for the system subjected to

a small excitation and the joint incremental perturbation is suggested for the system

subjected to a large excitation.

The HB method is a special case of the HHB method, however, if the system only

contains one nonlinear joint, the HB solution can be found more efficiently with a newly
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developed algorithm. The key point is to turn a two dimensional problem into a one

dimensional one.

Numerical case studies have been carried out. It is found that solutions from the HB

method usually have reasonable accuracy. However, if higher accuracy is required, the

HHB method has to be used. The other case when the HHB method should be used is

when the excitation contains several significant harmonic components.

It is also illustrated that using the perturbation approach, the effects of the friction joint on

the response of the system can be studied at a significantly reduced cost.

The FRF based HHB method developed in this chapter is accurate and cost effective in

calculating the steady-state response of engineering structures, particularly when the

size of the physical system is significant, and/or responses at several states are required,

and/or the nonlinearity of the system is weak.

It is believed that the HHB method can be used in place of the STI method or incorporated

with the STI method for the calculation of the accurate steady-state response of a

nonlinear system at a much reduced cost.



CHAPTER []

GENERALISED COUPLING TECHNIQUES
USING FRF DATA

§5.1 INTRODUCTION

Although systems with friction joints usually demonstrate nonlinear characteristics, there

are two extreme cases under which such a system behaves linearly. These two extremes

are the 'free-joint' case when the clamping force is zero and the 'locked-joint' case when

the clamping force is very large. These two extreme cases set the lower and upper bounds

for the natural frequencies (or to be more appropriate, the frequencies at which the

responses are the maximum) of the system with intermediate clamping force applied to the

joints. Clearly, the ability to predict the system response with 'locked joint' from the

response	 the 'free-joint' system is desirable.

The dynamic characteristics of an assembled structure (the locked joint' system) can be

deduced from the properties of the substructures (the 'free-joint' system) by imposing

some additional constraints (i.e the conditions of equilibrium and compatibility). The

process for predicting the assembly properties from the substructures is called coupling or

substructure synthesis.

Generally speaking, the coupling methods can be divided into three groups[99], the first

uses the spatial data (i.e. stiffness and mass), the second uses the modal data(e.g.[100-

102]), while the third uses the measured response data (FRFs) directly(e.g. [103][104]).

A detailed review on all three groups of methods can be found in [99],

First group methods, because stiffness and mass matrices are required, are usually only

used in theoretical analysis. These methods can be considered as special cases of the finite

element method. For the second group methods, the required modal data can be derived

from a theoretical approach (FE), it can also be extracted from the experimental data using

the modal analysis techniques. Therefore, for the second group methods, both theoretical

and experimental data can be used. However, these methods are usually only for a

structure with light damping or with proportional damping; difficulties arise when a
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structure has significant non-proportional damping, which, unfortunately, is often the

case for the structures with some friction joints.

In contrast to the first and the second group methods, the third group methods use the

frequency response data (FRFs) measured directly from experiment, and it can deal

with the non-proportionally damped system very well. For most of these methods, the

coupling process is simple, it usually only involves the basic matrix operations, no data

processing being required.

In this chapter, only the FRF coupling techniques are investigted. A new mathematically

and physically generalized FRF coupling method, which possess the advantages of the

available methods, is developed. A new algorithm to solve the coupling problem is

proposed, which is computationally simple and efficient; the matrix inversion operation is

not required. This new algorithm is also found to be very effective in detecting the linear

dependency between the joint coordinate pairs.

It is also shown in this chapter that both consistent and inconsistent measurement errors

can cause errors in the predication of the assembly response. The consistent errors are

sometimes more dangerous because the errors in the predicted response are difficult to

detect. Using the new algorithm developed, it is possible to find the lower and upper

bounds of the natural frequencies for the assembly.

§5.2 BASIC CONDITIONS FOR FRF COUPLING

For all the FRF coupling methods, the basic conditions in the coupling process are

compatibility and equilibrium. The conditions of compatibility and equilibrium are such

that if a coordinate on the assembled structure corresponds to n coordinates in the

substructure system, then the displacement and force on the assembly and the

substructure systems must have the relation

Xa=X 1 =X2 ...=Xn
	 (5.1)

and	 fi ,	 (5.2)

where subscript a refers to the coordinate on the assembly and subscripts l,2,...n refer to

the coordinates on the substructures.

If for the substructure system

(5.3)
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with compatibility and equilibrium conditions

(xs)=[T](xa)
	

(5.4)

and (fa)411T(fs},	 (5.5)

the purpose of coupling is to find the relation between displaeement ( xa) and force (fa)

of the assembly, i.e. to find the matrix [Ha] in the equation

(xa)=[H2J(fa}.	 -	 (5.6)

§5.3 CONDITIONS FOR THE GENERALIZED COUPLING METHODS

If no optimization such as the least-squares algorithm is involved in the coupling process,

the solution for [Ha] in equation(5.6) is unique. Therefore, the fmal results from different

FRF coupling methods should be exactly the same. However, due to computation errors,

the results from different coupling methods can be different. Coupling methods can also

be different in terms of the formulation, computation speed and occupied computation

memory; there can also be some restrictions on the different FRF coupling methods in

their applications. The coupling methods may be evaluated by considering:

1) Accuracy: the predicted characteristics of the coupled structure should not be sensitive

to computation errors (eg. rounding off errors).

2) Efficiency: which may have two aspects;

i) the amount of computation memory and time required to implement the coupling

process should be small, and

ii) the amount of time spent by the user in preparing the computing code and data should

be small.

3) Simplicity: all kinds of problem can be solved using the same formulae so that once a

computation code is made, it can be used to solve different coupling problems without

large modifications.

4) Generality: there should be no severe restriction on the applications of the coupling

methods, in other words, there should be no severe restrictions on the substructure

receptance matrix[Ha] and the restriction matrix m.
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The generality can have two aspects, one is physical generality, which means that the

method can predict the response of an assembled structure generated from

(i) grounding some coordinates of a structure, or

(ii) coupling several coordinates together on one structure, or

(iii) coupling several substructures.

The other aspect is the mathematical generality, which means that application of the

method should not be restricted due to numerical properties of the receptance matrix (eg.

singularity), provided the substructures can be coupled physically.

Accuracy, efficiency, simplicity and generality are the four criteria used to evaluate a

coupling method in this chapter. Simplicity is closely related to the efficiency. Practically,

with respect to the problem to be solved and the computation resources available, different

weighting should be given to the above four criteria.

The mathematical generality should be considered for all the coupling problems. For the

study of a friction joint, in addition to the mathematical generality, the physical generality

is of particular importance. It is often necessary to know the properties of the structure

when two points on it are clamped together.

§5.4 THE IMPEDANCE COUPLING METHOD

The first coupling method developed is the Impedance Coupling Method. The original

impedance coupling method was developed by Imregun et al [103] to couple two

substructures together. However, the method is actually a physically generalized coupling

method (or it can be easily extended to be a physically generalized coupling method).

Because the first step in this method is to invert the receptance matrix, this method will be

referred as the Generalized Impedance Coupling method(GIC) in the following analysis.

The basic strategy of the GIC method is as follows:

For the substructure system
(5.7)

multiplying both sides of equation(5.7) by the inverse of the matrix [H 5] yields

(5.8)



(5.11)

(5.12)
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Substituting equatior5.3) and (5.4) into equation(5.8) leads to

(fa)mT[Zs][11 (xa),

hence

[=mTIzm.	 (5.9)

Therefore

{}J[4I 1=(mT[H5] lm) l	- 	 (5.10)

Once the inverse of the receptance matrix of the substructures is calculated, the rest of the

process is the same as assembling a global stiffness matrix from local element stiffness

matrices in FE analysis.

If the substructure system has several substructures which are independent of each other,

the inversion of the matrix [H5] can be completed by inverting the substructure receptance

matrices separately and then assembling these inverted matrices. By doing this,

computation cost can usually be reduced.

The column number in the matrix [T] corresponds to the assembly coordinates and the

row number corresponds to the substructure coordinates. For an element in the

transformation matrix T(ij), if the i th coordinate in the substructure corresponds to the j

th coordinate of the assembly , then T(ij)=1, otherwise, T(i,j)=0.

If some of the coordinates are grounded, modifications have to be made. If the

substructure coordinates to be grounded are denoted by fxg), and the partitioned

displacement vector, the force vector and the t,tuntt 	 hatrix of the substructure are

( xs I = ( xn,Xg 'T

[4]J1 and
LZgnZggJ'

(f5 } = ( fn fg j T.

Since the response at grounded coordinates must be zero,

(5.13)

(xg)O.	 (5.14)

Substituting equation (5.14) into (5.13) yields

(5.15)
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Hence

[Ha][Znn]
	

(5.16)

To be compatible with equation(5.9), equation (5.15) can be expressed as:

(f)=[EII] I0'EI=r	 (5.17)ZZgg [Oh

Then equation(5.10) can be used directly.

It can be noted that the GIC method satisfies the criterion of physical generality, and it is
also very simple to implement. However the GIC method is usually computationally

inefficient: it can be seen that two inversions of the full size matrices are required. In

addition, because the full size matrix inversion is required, the numerical error levels can

be significant (especially when the full size receptance matrix is rank deficient). In the

case when the full size receptance matrix is singular, the GIC method will collapse, in
other words, the method is not mathematically generalized.

In summary, the GIC method is a physical generalized method, but not a mathematically
generalized one.

§5.5 TWO SUBSTRUCTURE RECEPTANCE COUPLING METHOD

Another coupling method often used is the receptance coupling method proposed by Tsai

and Chou[104]. The method is developed to couple two substructures only. Because this
method uses the receptance matrix directly, it will be called the Receptance Coupling
method (RC method). Write the receptance matrices of substructure A and B in
partitioned forms as

- F"mm AHmi
A un A ii

- r mm BHmi[BHI — I 	 11.	 LI..
L B"im Bu

(5.18)

(5.19)

Then the receptance of the assembled structure is proved to be

I AHnn AHnj H111 f AH II AHIm 0	 AHim 1	 1 AHim .1T

I 
AHjn liii BHJn 

I =1 
AHmiAHmm 0 

H 
AHmm I(AHmm+B1Tmm]Y h I

 AHmm
LABHIUIBHnj 	J L 0	 0 8H11J LBHjmJ	 L-BHuU

(5.20)
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where subscripts m and i represent the coordinates to be coupled (master coordinates)

and not to be coupled (internal coordinates) on the substructures. Subscripts j and n

represent the joint coordinates (corresponding to master coordinates in substructure) and

non-joint coordinates (corresponding to internal coordinates in substructure) on the

assembly respectively. AH, BH and ABH represent the receptance sub-matrices

corresponding to the coordinates on A, B and between coordinates on substructure A and

B respectively

It can be noted that the method requires only one matrix inversion and the size of the

matrix to be inverted is determined by the number of the joint coordinates on the

assembly, therefore, the RC method is computationally much more efficient and accurate

then the GIC method.

Because the matrix to be inverted is actually a summation of two receptance sub-matrices

which are much smaller than the whole receptance matrix in size, it is likely to be a well-

conditioned matrix. If a substructure receptance matrix is singular, the GIC method will

fail, but the coupling may still be completed using the RC method, that is , the RC method

is mathematically more general than the GIC method.

However, the RC method can only be applied to couple two (group) substructures. If

several substructures are to be coupled, multi-step coupling has to be used[991. Figure

5.1 shows a diagram for coupling four beams into a frame using two steps.

EL_ I U StePUT_HsteU H

An even greater shortcoming for the RC method is that the condition of physical

generality is not satisfied. The RC method is derived from the case with two (group)

substructures, it assumes that before coupling, the two substructures are independent of

each other. Consequently, some sub-matrices of the substructure receptance matrix are

always zero (This can be noted from equation(5.20)).

If coupling takes place on the same structure, i.e. several coordinates on one structure are

clamped together as shown in figure 5.2, no sub-matrix is zero and the RC method is not

applicable.
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Clamped together

two coordinates on one structure

§5.6 THE GENERALIZED RECEPTANCE COUPLING METHOD

-- A NEW DEVELOPMENT

§5.6.1 Derivation of the Basic Formulae of the Generalized Receptance

Coupling Method

The GIC and RC methods are two of the most commonly used coupling methods. The

GIC method is physically, but not mathematically generalized, while the RC method is

efficient and mathematically more generalized than the GIC method, however, it is not

physically generalized.

In considering the problem of coupling several coordinates on one substructure together,

if the whole receptance matrix of the substructure is singular, both the GIC and RC

methods will fail. Clearly, a new coupling method, which has the advantages of both the

GIC and RC methods, is required.

In this section, a new coupling method is developed to satisfy both the physical and

mathematical generality, it also retains the efficiency of the RC method. This new

coupling method will be called the Generalized Receptance Coupling method(GRC).

To be physically general, we treat all the substructures as a substructure system. For this

substructure system, the receptance matrix is partitioned in such a way that the

relationships between response and excitation are

1'a1	 IHHabHacl1'a1
. Xj, = I H Hbb H I b

	
(5.22)

[xj LHcaHcbHCcJIJcJ

For the assembled system, the relationships between response and excitation are

JXnl -	 (5.23)
lx I L	 Hjj J lfj

where subscripts a and n represent the internal coordinates on the substructure and

assembly, and subscripts b, c and j represent the joint coordinates. Substructure joint



(5.26)

(5.27)

(5.30)

(5.31)
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coordinates xb and x are so arranged that conditions of equilibrium and compatibility

yiekk

(fb)+(fc)=(fj), and
	

(5.24)

( Xi,) = (XC) = ( Xj }.
	 (5.25)

The force and the defonnation at the internal coordinates on the substructure and assembly

systems must be the same, hence

( fa)ffn), and

(Xa) (Xn).

From equations (5.22) and (5.25),

(Xb) ={Hba] (fa)+[HbbI (fb)+[Hl,c] (fc)=[HcaI ffa)+[Hcb] (fb)4{Hcc] (fe)

Substituting equations (5.24)(5.26) into (5.28) yields

([[Hbb]+1Hcc1{Hcb1[HbcI){ fb) =(([}1J(H,J) (fn)+([Hcc]-[Hbc]) (fJ))

If matrix ([[Hbb]+[Hcc][Hcb}{Hbc]) is non-singular, then

(fb)=([[Hbb]+[Hcc]-[Hcb]-[Hbc1)' ((U {J-(Hi,j) (fn)+([Hcc]-[Hbc]) (f'))

and (f)={fj)-(fb)

(5.28)

(5.29)

Substituting equations (5.30)(5.31) into (5.22) and comparing with equation (5.23)

yields:

HnnJBaa] I)( + ]4H [HCb])4 ([HbaJ[HCaJ) (5.32)

[}1nj][HacI([Hab][Hac])([Hii,]+HbJHct,])([HbcI[Hcc]) (5.33a)

(5.33b)

1pT	
(5.34)

(5.35a)

=[HthJ-(E-U bbl)([Hb,]+ J1J[HJ)-1aH,J.{Hbb}) (5.35b)

(5.35c)

(5.35d)
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Equations (5.32) to (5.35) can be ananged in a more concise form as

if (H,-Hai) TIHnnHnjl rHH1 r(H1,-H)
L	 Hjj ]1 Hca Hcc J L (Hb-Hcc) ][+-Hi-- L (HcbHcc)]	

(5.36a)

'f (HH,) 
T

I H2 H1, 1 1 (Hac-Hab)
1. H Hbb] - L (HbcHbb)	 L (Ht,cHbb)] (5.36b)

It can be noted that the GRC method is very similar to the RC method in its formulation.
Actually, the RC method can be considered as a special case of the GRC method. It is

proved (in Appendix C) that for two substructure coupling, equation (5.36) is exactly the

same as the formulae of the RC method (equation(5.20)). Therefore, the GRC method
retains all the advantages of the RC method, but it is physically much more generalized.
The GRC method can also be used to couple some coordinates on one structure or to

couple several substructures together in a single step without any difficulty.

The GRC method is physically more general than the RC method, however, to satisfy all
the generality conditions, some special considerations have to be made.

§5.6.2 Coupling with Ground Coordinates

If some coordinates on a structure are grounded, all the responses at these coordinates are
zero. Physically, the ground can be considered to be a structure with infinite mass,
therefore, to ground a structure at some coordinates is the same as coupling the structure

at these coordinates to another structure with infinite mass. The FRFs of the infinite mass
structure is zero. Therefore, setting sub-matrices [Hac],[Hbc],[Hcc], [Hcb] and [Hba] in
equation (5.36) to zero leads to the following formulae for grounding a structure

1HH1 rHO1
LH HjjJl.. 0 oJ	 L (0) j	

(5.37)

or [Hnn]=[Haa]tHab][Hbb]1[HbaJ
	

(5.37a)

[Hnjl[O],[Hjn]=[O] and [Hj]=[O]
	

(5.37b)

§5.6.3 Coupling Several Substructure Coordinates Into One Assembly

Coordinate

The GRC method satisfies the criterion of accuracy, generality, simplicity and the first

condition of efficiency. If every joint coordinate only couples with another joint

coordinate (which is referred to as pair coupling (PC)), the coupling process can be

implemented in a single step, i.e. the second condition of efficiency is also satisfied.



(5.38)

(xc) = (x2,x3 II, (5.39)
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If several coordinates (more than two) are to be coupled into one coordinate (which is
referred as Multi-Coordinate Coupling (MCC)), then coupling can be implemented
several steps. One example for coupling three coordinates together is shown in figure 5.3.

However, it is not impossible to complete the coupling in a single step even in the case of

MCC.

_____ 42'•• I
I_______

I -

_________TI ---------j
I________	 I
I F.	 :1'' ...II

I	 *3I

	

___________________ II
	 I

____ ____ I : ____ ____

__________________________

Twostepcoupling -
	 1Single step coupling using PCCI

.i examples using two step
sin gle sten counling

To complete the coupling in a single step for the MCC case, we have to employ a new
concept of Pseudo Coordinate Coupling (PCC). Suppose we want to couple three
coordinates together as shown in figure 5.3. Instead of considering point 1 as a single
coordinate, we can consider that there are two coordinates a and 3 which are located

infinitesimal distant about at point 1 (hence they have exactly the same response as point 1). If we
couple point 2 with point a, and point 3 with point j3, we turn the MCC problem into a

PC problem, and the coupling can then be completed in a single step.

Because coordinates a and f3 are actually the same point, their corresponding rows and

columns in the substructure FRF matrix will be exactly the same. However, because the
patrix to be inverted is the sum of four matrices, there will be no numerical problems if

one of these are rank-deficient. To illustrate this, consider the example in figure 5.3:

[Hbb]=[H	 ]=Hii[	
.],	

(5.40)
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H 12 H]
[hi][	

H Ii.. H12 H13J' and	
(5.41)

J H2 H23

'7H32H33

The matrix to be inverted is

(5.42)

r 1 1 11H H231 H 12 H3i rH 12 H121
1 ii L H23 H33 i-I H 12 Hl3jt H 13 H13J

j H 11 ^H22-2H 12 H11+H-H12-H13

L H 11 +H23-H 12-H13 H 1 1+H33-2H13
(5.43)

It is clear that although the matrix [H1,,] is singular, the matrix	 +H-H-Hth] is floL

Therefore, there is no numerical difficulty in inverting	 +-H-H,1.

From the computing point of view, it is only necessary to invert one matrix for the PCC

method, while utilising the multi-step GRC method involves inverting several smaller

matrices.

With recent developments in both computer hardware and software, the computation cost

and time have decreased dramatically. However, the cost of manpower in programming

becomes more and more expensive. Although the computation cost using the PCC

method can be slightly higher, the manpower required is much lower, and because there

is less intermediate matrix required for the PCC method in computing, the space required

can be smaller. Therefore, the PCC method may be more attractive than the usual Multi-

step GRC method, especially when the matrix to be inverted is not very large.

§5.6.4 Multi-step Two-coordinate Coupling (MTC)

The PCC method was originally developed for simplicity in programming. However, the

coupling can be implemented by coupling two coordinates at one time and repeating the

two coordinate coupling process until all the coordinates are coupled together. Because at

each step, there are always two coordinates to be coupled together, the multi-step two-

coordinates coupling method can be programmed systematically.

From equation(5.36), it can be noted that the assembly from coupling coordinates i andj

is

1
ftIal=ft1sl -	 ((hs}(hsj})((hs}*(hsj})T,	 (5.44)

where (h) and (h5 ) represent the ith and jth columns in the substructure matrix [Ha]

and [Ha] is the receptance matrix of the assembly.



0.
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It can be noted that the inversion for two coordinate coupling is trivial because the matrix

size is one by one. The implementation of equation(5.44) requires n2+n multiplications,

where n is the size of the substructure matrix. However, because the ith and jth

columns(rows) of the assembly are exactly the same, one of these coordinate can be

deleted, therefore, the actual multiplication required is (n-i)2+(n-i). Therefore, the total

multiplications required to couple m pairs of coordinates are

m
N1=	 (n-i)(n+l-i))
	

(5.45)
i=I

Inversion of a mxm matrix using Gaussian-elimination algorithm requires approximately
rn-I

(2(m-i)(m+l) ) +m multiplications (Appendix D), hence, the total multiplications
1=1

required(which is sum of the multiplication for the inversion and the multiplication

required to multiply the three matrices) using equation(5.36) is

rn-i
N2=mn(n-m) + (2(m-i)(m+l)}+m2

	
(5.46)

1=1

Figure 5.4 shows the ratio between the number of multiplications required using

equation(5.45) and using equation (5.46). It can be noted that in terms of the computation

efficiency, the MTC method is more attractive than the GRC method.

Inc ratio ot muuiplications be
GRC method (N=4, 10,200)

§5.7 REDUCTION OF THE EFFECTS OF NUMERICAL AND

MEASUREMENT ERRORS

§5.7.1 The Measurement Errors and the Model Inconsistency

The measured data from experiments usually contain some errors generated at different

experimental stages. Mass loading, interaction between shaker and structure, windowing

and aliasing are some common sources of measurement errors [105]. Because of these

errors, the measured data are shifted from their true values.
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The most severe problems caused by measurement errors are model inconsistency. A

receptance matrix can be generated from a spatial or a modal model [1] as

(5.47)

or 1=[d1[(ü-o2)]-' [t}T. 	 (5.48)

When the measured receptance matrix is contaminated by measurement errors, say

[HJm=[H]+6[HJ, it is not possible not find a physically meaningful spatial or modal

model which exactly satisfies

[Hlm=(4i?[MJm+[KIm+i(0[C]m+IP]m)1
	

(5.49)

or	 m=[Im[(U)r24O2)]m1[lmT,	 (5.50)

where subscript m represent the measured data.

In other words, the measured receptance matrix does not represent any physically

meaningful structure exactly. This phenomenon is called model inconsistency.

In the matrix operations, the effects of the errors is usually most significant in matrix

inversion. To illustrate the effects of inconsistent measured data, consider a 3-DOF

system with hysteretic damping as shown in figure 5.5.

lxi	
K1	

1x2	
K

M Fwl M2

Mi=lkg, =2kg, M3=0.5kg, K1=2.E6 N/rn, Kfl.E6 N/rn, [D]=0.001{K}

Figure 5.5 Diagram for a 3DOF system

Theoretically,

[Z]=[}fl-1=-co2[M]+[KJ+i[D].

Figure 5.6 shows the first elements of real and polluted receptance matrices, and figure

5.7 shows the first element of the cLa, t1ieç matrix and the first element from the

inversion of the polluted receptance matrix (with 5% random error). (A receptance matrix

is said to be polluted by 5% random errors if the real and imaginary parts of each element

in the true receptance matrix are multiplied by random numberjranging from 0.95 to

1.O5, . Fhe difference between the polluted and exact receptance data is so small that the

polluted data are shifted by 1dB. The difference between the real and predicted impedance

matrix is usually greater than 5%, in other words, the effects of errors are magnified
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through the matrix inversion. It can also be noted that the worst occu1at the frequencies

near resonance.
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At frequencies near resonance, the receptance tends to be dominated by only one mode,

which results in the columns and rows in the receptance matrix to be approximately

linearly dependent. In other words, if the receptance matrix is ill-conditioned, the

inversion of the receptance matrix tends to be erroneous even if the error levels in the

receptance matrix is small.

§5.7.2 Reduction of the Effects of Measurement Errors Using Modal

Analysis Techniques

One technique to reduce the effects of random errors is to force the receptance data to be

consistent. This can usually be achieved by extracting the modal parameters via modal

analysis techniques for each measured receptance curve [106] and forcing the modal data

from different receptance curves to be consistent. The consistent modal data are then used

to regenerate the receptance matrix from equation(5.48). Thus the generated receptance

matrix is consistent. Figure 5.6 and figure 5.7 also show that first element of the real and

predicted first element in the receptance and impedance matrix for the 3-DOF system used

in the last section, after applying modal analysis to the polluted receptance data. The

discrepancy is significantly reduced.
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It can be noted that there are still some differences between the real and predicted

impedance matrix. Using modal analysis, measurement errors can be reduced, but not

completely eliminated. The errors retained after modal analysis are called consistent errors

in this chapter, which can sometimes have significant effects on the coupling results as

will be shown later.

§5.8 APPLICATION OF PSEUDO INVERSE IN COUPLING PROCESS

In the above derivation, it has been assumed that the matrix [Hbb+Hcc-Hbc-Hcb} is non-

singular. However if the matrix bb+H-H-Hcl,] happen to be singular, its inverse

does not exist. Therefore, equation (5.36) cannot be used directly.

If the matrix bb+H-H-FIcb] is ill-conditioned, then the inversion of [Hbb+Hcc-Hbc-

H,] can be very sensitive to numerical and measurement errors.

Urgueira [99] pointed out that singular or ill-conditioned matrices may occur for the

following reasons:

1) The receptance matrix is regenerated from a set of modal data which has fewer modes

than the size of the receptance matrix to be inverted,

2) The receptance matrix is dominant by one mode at resonance, and

3) Some interface coordinates are situated on a locally rigid region.

The first type of singular problem should never be allowed. The number of modes used to

regenerate the receptance matrix effectively means the DOF of the receptance matrix.

Generally, coupling two coordinates means imposing a restriction to the system. If the

restrictions are independent, imposing one restriction means the system will have a

reduction of one in the DOF. Imposing more coupling than the DOF will certainly lead to

zero response of the assembly.

In the second case, because of the effects of other modes, the receptance matrix will not

be singular. If modal analysis is applied, the effects of the measurement error^are usually

not significant.

The worst rank deficient problem is the third. Usually, the modal analysis technique is not

effective in eliminating consistent errors. However, the consistent errors can have

significant effects on the predicted assembly response if the third type of rank-deficiency

occurs.

A common technique for solving the singular or rank-deficient problem is to apply the

pseudo inverse using singular value decomposition algorithm(SVD)[99][1071
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§5.8.1 Pseudo Inverse and Singular Value Decomposition

If the relationship between a matrix [B] and a matrix [A] satisfies the following four

equations, then the matrix [B] is called the pseudo inverse of the matrix [A] and also the

matrix [A] is the pseudo inverse of matrix [B]:

(5.51a)

(5.5 ib)

([A][B])1=[A][B], and
	

(5.51c)

([B] [A])H=[B][A]. 	 (5.5 id)

It is proved[108] that for any matrix [A], there is an unique matrix which satisfies all four

equations. The pseudo inverse [B] of a matrix A is often denoted as A+.

The pseudo inverse of a matrix can be obtained using the Singular-Value-Decomposition

algorithm (SVD) , which may be expressed as follows:

Any matrix [A]nxm (where n^m) can be decomposed uniquely into the product of three

matrices [U],[Z] and [V} as

[A1 =[U1 [1

rat
where [I]	 0

I0
Lo

is a diagonal matrix with all the diagonal element non-negative, i.e

[UJrnxm and [V]< are orthnormal matrices, i.e.

rjjH[TjI=m,

and [VIH[V]=m)

The element in the matrix [I] is called the singular value of the matrix [A].

(5.54)

(5.53)

Once the SVI) of a matrix is known, the pseudo inverse of matrix [A] is available in a

very simple form as

A+=[V](I]1U}H	 (5.56)



1
a1

where
	 1

a1

0

0	 0

Penrose [109] had proved that for a set of linear equations -

(5.57)

(5.58)
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If the notation IIxII=(x) H (x)j used for the Euclindine norm of (x} and the best solution

{xo} of equation (5.58) is defined to satisfy following conditions:

for any (x),either

1) Il[AJ (x)-{b)Ib'lI[A] (x0)-(b)II
	

(5.59)

or 2) II[A](x)-(b)II=II[A](xo)-{b)II and IxII^ItxiiI,	 (5.60)

then the best solution for equation(5.58) is

(xo)=[Ar(b).	 (5.61)

In the case that there are more than one exact solutions, the solution (x0)=[A]+(b) have

the smallest Euclindine norm.

§5.8.2 Reduction of the Effects of Consistent Errors Using SVD

Although modal analysis can reduce the effects of the measurement error significantly, the

process of extracting modal data can be time consuming. In some cases, even after

applying modal analysis, the coupled results can still be inaccurate. If the rank-deficiency

is caused by some joint coordinates located on the rigid region of the structure, use of

modal analysis may not be enough to eliminate the effects of the measurement errors, and
because the coupled results using the FRF data generated from modal data are usually

very smooth, the erroneous results can be mis-leading.

Otte er al [1071 have proposed that pseudo inverse can be used to replace the real inverse

to eliminate some noise effects.



(5.29)

(5.62)

(5.63)

(5.65)
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The basic strategy (applying to the new generalized coupling formulae) is as follows:

Recall equation (5.29)

([{]+L]-[Hcb]-[H]) ( fb) = ( ([HJ-(H]) (fn }+( H ]-[Hi]) { f })

Let [A]=[Rbb]+[HccHHcb][H]=[U][E][V]H

and (b)=(([}c(Hi,a])(fn)+([HJ[Hi,c])(fj})

then

(fb)=[VI['][UI"(b)

ufiv1

a1 i=l 2L
(5.64)

When [A] is ill-conditioned, is usually very small and also very sensitive to the noise
ai

effects. From equation(5.64), it can be noted that (fb) is significantly affected by the

small singular values and thus the measurement errors. In other words, the force (fb) can

be unrealistic due to the effects of measurement errors.

For a physical system, the structure tends to be in the minimum energy state, that is, the

structure tends to be in a state with minimum strain and stress. If [A] in equation (5.62) is

ill-conditioned, it may be a reasonable assumption that the force (fb) is very close to the

force in a neighbouring state with

where [Z'] is the same as [Z] in equation(5.58) except that all the singular values less

than a faction of the maximum singular value (Cal) are set to zero.

For the singular matrix [A'], the solution with minimum norm is

(fb)=[VJ['][UJ'1(b)

= _i.	 uibv1	 (5.66)
a1 i=l 2i

where m is the number of singular values retained, i.e.

1	 (5.67)
ai
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§5.8.3 New Development in Selection of Effective Joint Coordinates

There is a problem in using the SVD algorithm to eliminate the effects of the measurement

errors, this is the determination of the threshold e for the smallest singular value. If the

threshold is too small, the effects of errors will be significant. When the threshold is too

large, the system properties are significantly altered.

If several pairs of joint coordinates are situated in a relatively rigid region of the structure,

when one pair of these coordinates in each direction are coupled, the responses at other

pairs of coordinates will be veiy close (exactly the same if these coordinates situated in an

absolutely rigid region). Therefore, it is only necessary to couple one pair of coordinates

in one direction.

Urgueira[99] suggested that it is appropriate to eliminate some approximate linearly

dependent coordinates. He suggested that the linearly dependent coordinate pairs can be

detected using the QR factorisation on the projections of [U1][U 1 ] H. However, only a

simple case was tested and no mathematical proof was given to guarantee that the

algorithm will work for more complicated cases. The process itself can also be time

consuming.

Using the MTC method, it is possible to couple two coordinates on the same structure

together. Synthesis of substructures is implemented by coupling two joint coordinates at

one time and coupling all the joint coordinates using several steps. If the response at two

pairs of joint coordinates are linearly dependent or near linearly dependent, then once one

pair of coordinates are coupled, the responses at the other coordinate pair will be very
similar to each other (exactly the same if they are exactly linearly dependent).

The inversion for two coordinate coupling is

1
([Hii1+{Hjj][Hij][HjiI)1_hI^h_ - 2h (5.68)

If two coordinates are linearly dependent, the response at these two coordinates will be

similar , hence

(5.69)hjjhjjh

The dependency of two coordinates can be investigated using a parameter

Ihjj-h11I+Ihjj-h1I+Ih1-h1l
11+ JJ+ 

iJ

(5.70)
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The threshold MTC formulae becomes:

[Ha]4Hs] -
	

(5.71)

where	 hu+h2h	 (5.72)
lo

The linear dependency between the coordinates is automatically checked using the MTC

method, no additional checking is required (such as the method suggested by

Urgueira[99]). In addition, this method is physically more significant than Urgueira's

method.

However, experience indicates that the a value can be very large at the anti-resonance of

h1 , hj or h1 , even if the coordinate pair should be eliminated. If the a value is set to

be large enough so that the rigid joint pair are deleted at all the frequencies, some other

joint coordinate pairs can be deleted too, which results in an erroneous prediction.

An alternative way is to divide the coupling process into two steps. First, all the

coordinate pairs are coupled with a values calculated over the frequency range. These a

values are checked over a frequency range to determine if some pairs of the coordinates

should be deleted. The coupling process is carried out again with the exclusion of the

linear-dependent coordinate pairs,

§5.9 NUMERICAL CASE STUDIES

§5.9.1 Verification of Various Coupling Methods

Case A. A 7DOF System.

The substructure system consists of three substructures as shown in figure 5.8. There are

three joints to connect three substructures together, these are the coordinate pairs (2, 5),

(3, 6), and (4,7).

If the GIC or GRC are used, only one step is required to couple all three structures

together, if the RC method is used, then two steps have to be taken to couple the three

structures together, in the first step, two substructures should be coupled, then the

coupled structure and the other substructure are coupled together. If the MTC method is

used, three steps should be used.

Figure 5.9 shows the results of coupling using different methods. To distinguish the

results from different coupling methods, the curves using different methods are shifted by
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different constant levels (with even space 15dB). It can be noted that all the methods give

correct results.

xl
I	 K1

M	 M]
X5	 X7

I-	 -	 K4	 I

I___
Substructure system

Assembly system
M 1=lkg, M2kg, M3=O.5kg, M1kg, M3kg, M=1kg, M2kg

K1=2.E6 N/rn, K 1.E6 N/rn, K7.E5 N/rn, KF8.E5 N/rn
(DJ=O.001[K]

Figure 5. The substructure and assembly in Case A

-Ga. ød

Fr.qusncy

Figure 5.9 The predicted assembly point receptance (at point 1)
usin g different couD1ir1 methods for case A (error free

Case B: An 8DOF system

This case study will show an application of the PCC method. The total DOF is eight with

coordinate 1 grounded, and coordinates 3,4,5, 6 and 7 coupled together. Therefore, the

final assembly is a 3DOF system. The diagram for the substructure and assembly system

is shown in figure 5.10.
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x8

J= .- K4

K2

_LJw'J
Substructure system	 -

	

I	 Jx81I_

	

- Rigid coupling I	 K4
M5

M6

Assembly system

M1=lkg, M2=4kg, M3=2kg, M4==1kg, M6=3kg M7=2kg, M8=5kg
K1=1.E6 N/rn, Kf2.E6 N/rn, K3=4.E6 N/rn, K.4=5.E6 N/rn
K5=2.E6 N/rn, K6=1.E6 N/rn, [t)]=O.0O1[K]

Figure 5.10 The substructure and assembly in case B

The purpose of this case study is to show the principles of the PCC method. It is clear

that the ordinary RC method is not applicable in this case.

If the coupling should be implemented in a single step, the following five coordinate pairs

are assumed

(x3,x6),(x3,x4),(q,x7),(x5,x) and (xl ,x)

where coordinate xj refers to a coordinate on the ground. Consequently, there are in total

ten joint coordinates in which only six coordinates are real. In the coupling process, a 5x

5 matrix is to be inverted.

Figure 5.11 shows the coupled results using different coupling techniques.

From the above two examples, it is clear that all the methods(GIC, RC, GRC, MTC,

PCC) are correct if they are applicable. From the computational point of view, GRC,

MTC and PCC methods are more efficient
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Frequancy

the predicted assembly pomt receptance (at point 2) using
different couDlin2 methods for case B (error free

§5.9.2 The Effects of Random Noise and Elimination of Random Noise

Using Modal Analysis Techniques

When the measurement data are polluted by random noise (5% ), the coupled results

deteriorate. Figure 5.12 and figure 5.13 show the coupled results for case A and case B.

In both cases, the results from all of the coupling methods are not exact, however, the

results from different coupling methods are the same. This indicates that all the coupling

methods give exactly the same results if no numerical enors are involved.

Some peaks can be found in the coupled receptance data, which do not represent real

resonance frequencies. Further investigation indicates that the frequencies of these peaks
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correspond to the natural frequencies of the substructures. The reasons for these peaks are

that the substructure matrix at these frequencies tends to be ill-conditioned, consequently,

the errors in the measurement data are significantly magnified. In addition, the magnitude

of the substructure FRFs are much greater than the magnitude of the assembly at the

substructure resonance. From equation(5.36), it can be noted that the assembly FRF

matrix is a subtraction between the substructure FRF matrix and a product of three

matrices. These two matrices must have similar magnitudes so that the assembly response

will be much smaller than the substructure response. Therefore, the results are sensitive

to errors even if the errors in the matrix inversion are not manifled.

At frequencies other than the substructure natural frequencies, the errors in the coupled

results are much smaller.

If the modal analysis technique is applied, a consistent model can be obtained. The

receptance matrix can be regenerated from

[HM4)][	 -	 (5.65)

To simulate the data after applying modal analysis, the mode shape matrix [4)1, natural

frequencies (r=l,n) and damping ri(r=1,n) are polluted by 5%, 1% and 1% random

errors, respectively.

Figure 5.14 and figure 5.15 show the coupled results with modal analysis techniques

applied to measured substructure data. It can be seen that the results are much smoother,

the pseudo resonant peaks having disappeared. This indicates that by eliminating

inconsistent errors in the measured data, the effects of measurement errors on the coupled

results can be reduced.

rrequsncy

'een the preiicted and exact asst
for case A (usin g modal analysi
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Fr. qu sri C y

'een the predicted and exact
for case B (usin g modal an

However, the elimination of inconsistent errors does not mean that the coupled results are

bound to be accurate. Applying modal analysis cannot eliminate consistent errors, and

indeed, consistent errors may be introduced during the application of modal analysis. It is

noted that there are some shifts between the predicted and real natural frequencies of the

assembly from figure 5.14 and figure 5.15. The effects of these consistent errors will be

investigated in the next section.

§5.9.3 Effects of Consistent Measurement Errors and Reduction of the

Effects of Measurement Errors Using Threshold SVD and MTC.

Case C: An effective 7-DOF system

Applying modal analysis can eliminate the inconsistent errors, but consistent errors are

retained or even introduced during modal analysis. These consistent errors can have

significant effects on the coupling. To illustrate this, consider the li-DOF system shown

in figure 5.16. Coordinates 1,2,3,4 and 5 are coupled to coordinates 10,9,8,7 and 6

respectively.

It can be seen that ki, k4, k8 and k11 are 1000 times greater than other springs, therefore

the responses at the coordinates connected through these springs (eg. coordinates 1 and 2)

are approximately the same at low frequencies. Physically, it is known that once

coordinates 1 and 11 are coupled, the responses at coordinates 2 and 10 are very close;

further, coupling coordinates 2 and 10 together has little effect on the properties of the

assembly. Therefore, it is not necessary to couple coordinate2 and 10. Similarly, it is

only necessary to couple one pair of coordinates in the coordinate pairs (4,8) and (5,7).

Figure 5.17 show the predicted receptance from coupling	 tee pairs of coordinates

((1,11), (3,9) and (5,7)), from coupling five pairs of coordinates ((1,11), (2,10), (3,9),

(4,8) arid (5,7))	 . It is noted that the differences between the results

are negligible.
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Figure 5.16 Diagram for substructure and assembly system of case C
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5 and 3

If the receptance matrix is polluted by random errors(5%), because the substructure

receptance matrix is rank-deficient due to local rigidity of the interfaces, the coupled

results are very sensitive to noise. Figure 5.18 and figure 5.19 show the predicted
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assembly response using the GRC method. It is noted that the results from coupling three

coordinate pairs ((1,1 1), (3,9) and (4,8)) are much better than those from coupling five

coordinate pairs.

Fr.qu.nCy

assembly receptance by coupling pair
random errors)

Frequsncy

Figure 5.19 The assembly receptance by coupling 3 pair coordinates

If modal analysis is applied, inconsistent errors can be removed, but the effects of the

consistent errors are still significant. Figure 5.20 and figure 5.21 show the predicted

assembly data using simulated modal analysis data (with 5%, 1% and 1% errors in mode

shape, natural frequency and modal damping) using the GRC method. It is noted that

although the predicted results are smooth curves, it is quite different from the real

assembly response (especially for the second resonance). The second resonance

frequency is significantly shifted for five pair coupling, however, the results from

coupling only three pairs ((1,1 1), (3,9) and (4,8)) yield very high accuracy.
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Figure 5.21 The assembly receptance by coupling 3 pair coordinates

Figures 5.22, 5.23, 5.24 show the results using the GRC method with the threshold SVD

algorithm. If e=O.01, very good results are found; however, if e is too large (0.05) or too

small (0.001), the results at some frequencies are very poor. Because the proper value of

c depends on the sizeatrix to be inverted and the frequency increment, it is usually very

difficult to determine the threshold of the SVD. Indeed, if a very fine frequency increment

is chosen, it is possible that no threshold is available to yield accurate results at all the

frequencies.

To avoid the dependency of the threshold on the size of the coupling, the threshold MTC

method is used. Figures 5.25, 5.26 and 5.27 show the results using the threshold MTC
method. It is noted when e=0.3, the accuracy of the results is improved significantly,

however, at some frequency points, the results are poor (which coincides with the results

of four or five pair coupling).



-tea, ad

Figure 5.22 The assembi

Fr.quency

,tance using SVD with threshold 1.E-3

-00. Bd

-toe,

5.23 The assembi

-a0.0

- tea.

.equ.rIcy

tance using SVD with threshold 1.E-2

5
	

,uoLin Technatic Usin g FRF Data	 - 114vr I fl't -

F'r.qu.ncy

Figure 5.24 The assembly receptance using SVD with threshold 5.E-2
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Figure 5.25 The assembly receptance using MTC with threshold 5.E-2
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5.27 The assembly receptance using MTC with threshold 3.E-1

In order to obtain a more accurate assembly response, the problem of linear dependent

coordinate pairs can be dealt with systematically. The a values over the frequency range

are shown in figure 5.29 for the error-free case, figure 5.31 for the case with Consistent

errors and figure 5.32 for the case with random errors. From all of the three figures, it

can be clearly noted that the overall a values for coordinate pairs (2,10) and (5,7) are

smaller than the a values of the other pairs, which indicates that coordinate paii3 (2,10)

and (5,7) clearly tend to be dependent on other joint coordinate pairs.

The peaks of the a values for the coordinate pairs (2,10) and (5,7) in figure 5.29 and

figure 5.31 correspond to the and-resonance of the these coordinates when they are to be

coupled. The point receptance curves at coordinates 2 and 5 just before they are coupled

(i.e. the receptance at coordinate 2 after coupling coordinate (1,11) and the receptance at
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coordinate 5 after coupling coordinates (1,1 1), (2,10), (3,9) and (4,8)) for the error free

case and the case with consistent errors are shown in figures 5.28 and 5.30.

Figure 5.28 The receptance ax the coordinates 2 and 5 before they are
coupled ( error free)

Figure 5.29 The a values for different coordinate pairs using MTC
method (error free')

ihe receptance at the coordinates 2
	 are

coupled ( modal analysis)

Figure 5.31 The a values for different coordinate pairs using MTC
method (modal analysis')
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Figure 5.32 The cx values for different coordinate pairs using MTC
method (5% random errors	 -

§5.9.4 Discussion of Numerical Results

The numerical results shown above demonstrate the various coupling methods. When

numerical errors are insignificant, all the coupling methods yield the same results. Also

the newly developed GRC, PPC and MTC methods are verified in the above numerical

studies.

The measurement noise may be divided into consistent and inconsistent errors. It is

shown in the numerical studies that the inconsistent errors can be eliminated by using

modal analysis techniques. However, modal analysis techniques have little effect on

reducing consistent errors. The threshold SVD technique is useful in reducing the effects

of consistent errors, however, the choice of the proper threshold for the SVD can be

difficult

With the newly developed MTC algorithm, the linearly dependent coordinate pairs can be

detected by checking the a values. Then the dependent coordinate pairs can be deleted.

However, care should be taken in deleting approximately linearly dependent coordinate

pairs. If the one coordinate pair is not severely dependent on the other pairs, deleting this

coordinate pair will cause error in the predicted response . However, the predicted

assembly responses including and excluding this coordinate pair should yield the upper

and lower bounds of the natural frequencies for the real assembly response.

Another point that can be drawn from the numerical case studies is that the predicted

resonance frequencies of the assembly can be different from k& true values due to the

consistent errors in the measured data. In many applications, the effects of joints are often

blamed for the discrepancy between the predicted and measured assembly response. From

the above studies, one should be aware that the discrepancy can also be the results of the

consistent errors
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§5.10 CONCLUSIONS

A new generalized coupling method (GRC) method is proposed in this chapter, which is

physically more general than the RC method and is computationally more efficient than

the GIC method. The GRC method takes the advantages from both the GIC and the RC

methods, hence it is superior to the GIC and the RC methods. The RC method can be

considered as a special case of the GRC method.

Using the GRC method, the coupling procedure can be implemented in a single step. If

several substructure coordinates are to be coupled into one assembly coordinates, then the

concept of pseudo coordinates can be used, which leads to the PCC method.

In contrast to implementation of coupling in a single step, the coupling can be

implemented by coupling two coordinates at one step and complete the coupling in several

steps systematically. This leads to the MTC method. The MTC method is computationally

more efficient (it requires less multiplications than the GRC method) and also easier to

program.

The modal analysis technique is very effective in eliminating inconsistent errors, but not

in eliminating consistent errors.

The SVD algorithm can be effective in eliminating consistent errors, but it is usually not

easy to determine a proper threshold for the algorithm. When the threshold is too large or

too small, the assembly results are erroneous.

The threshold MTC method is very useful for detecting the dependency between the joint

coordinate pairs. But the process to delete the linearly dependent coordinate pair should be

used with caution.



CHAPTER j

IDENTIFICATION OF JOINT PROPERTIES
USING FRF DATA

§6.1 INTRODUCTION

In Chapter 2, various friction joint models have been discussed. Because there are too

many parameters that can affect the overall behaviour of the joint, it is suggested that the

intermediate parameters should be used to represent the joint.

Once a joint is made, most of the parameters (such as the surface conditions and the

geometric shape of the joint) are fixed. However, some parameters can still be changed,

one of these being the pressure at the interface.

In Chapter 2, it is shown that the joint parameters can be identified from the static loading

curves. Theoretically, it is possible to identify the relationship between the variation of the

intermediate joint parameters and the change of the pressure from a series of experimental

loading curves under different pressures. Once these relations are known, provided the

pressure distribution over the interface is also known, the overall characteristics of the

joint can be found using the finite element method discussed in Chapter 2.

However, the application of this approach can be rather expensive. In addition, the pre-

condition to apply this approach is that the pressure distribution over the joint interface is

known. Unfortunately, this pre-condition is not always satisfied. Apart from these

difficulties, the interface conditions may change due to some unexpected factors such as

fretting corrosion and contamination at the interface. These changes make the intermediate

joint parameters invalid. Therefore, the above approach can also be inaccurate.

When a jointed structure is excited by a dynamic load, the relationship between the

excitation and the response of the structure contains structural information (including the

joint effects). Therefore, it should be possible to identify the joint properties from the

relationship between the excitation and the response.

Although the behaviour of a friction joint is usually nonlinear, if the vibration magnitude

is small, the friction joint behaves like a linear component. On the other hand, using the

principle of the harmonic balance method, even a nonlinear joint can be treated
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approximately as a linear component (an experimental case with a nonlinear friction joint

is investigated in Chapter 7). Therefore, to identify the nonlinear joint, it is appropriate to

start by developing methods for the identification of linear joints. After a full

understanding of linear joint identification is obtained, the method may be extended to

identify the nonlinear joint, or the new method can be developed to deal with the problem

of the nonlinear joint identification based on the understanding in the linear joint

identiflcatioi approach.

In this chapter, linear joint identification methods are studied. A new FRF based method

is developed and techniques to improve the accuracy of th identification results are

presented.

§6.2 BACKGROUND OF THE JOINT IDENTIFICATION METHODS

From the research carried out, several identification methods have been proposed. As

with the coupling methods, they can be divided into two groups according to the type of

data used in identification, one uses the measured Frequency Response Function (FRF)

data [llO][1ll] directly, the other processes the FRF data first to obtain modal data and

then uses modal data for the identification of the joints [104][112][113].

For the methods using modal data, a finite element model is usually required. The basic

strategy is to minimise the difference between the measured and the predicted mode

shapes and natural frequencies (from the FE model) by adjusting the joint parameters by

using the Newton-Raphson iteration algorithm ( this technique is also referred to as the

inverse sensitivity analysis technique).

For the methods using FRF data, the basic strategy is to minimise the FRFs between the

measured assembly response and predicted assembly response.

The first group of methods has some advantages over the second group. Firstly, no data

pre-processing is required, hence no processing error is introduced. Secondly, an

analytical model is not necessary, therefore, modelling errors do not exist (and there is no

FE modelling cost either). In addition, (perhaps most attractively), the methods are

principally applicable to non-linear structures: this is discussed in §6.3.

Two sets of data are required for joint identification: one contains the system properties

without the joint (the substructure system), the other contains the system properties with

joint (the assembly system). These differences between these two systems are due to the

effects of the joint.

Usually, the assembly data are experimentally derived, but for the data on substructures,

some are obtained from an FE model and the other from measurements. If the data from

an FE model are used, the identified joint model will not be "real", but the "best" to
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compensate the effects of joint and the modelling errors in the FE model. If experimental

data are used, the identified joint model will be "real", but may be polluted by some

measurement errors. If real joint properties are required, it may be more appropriate to

use the experiment data.

The earliest joint identification method using FRF data was proposed by Tsai and Chou

[104] in 1988 and Wang and Liou [112] in 1989. The methods developed are not

generalized, the joints are explicitly [112] or implicitly [104] assumed to consist of elastic

springs.

In the following sections, two new generalized joint identification methods are developed.

It is found that unlike the coupling methods, the accuracy of the identified joint results are

closely related to the identification formulae if the FRF data are polluted by measurement

errors. A generalized method was found to be superior to the other. Similar identification

formulae have been proposed by Lee and Hong [113] very recently (1991).

Most of this chapter is devoted to developing new techniques to reduce the effects of the

measurement errors.

§6.3 DEVELOPMENT OF NEW GENERALIZED JOINT

IDENTIFICATION METHODS

§6.3.1 General

In the following studies, two systems are used. The first is a system of substructures (all

of the joints are considered as an independent joint substructure) and the second is an

assembly as shown in figure 6.1.

substructures joint structure

"a" —non-joint region	 "fl" --non-joint region

"b" --joint region on	 "j" —joint region
substructure

"C" -- joint region on	 Rigid connection
joint structure

The first system	 The second system

Figure 6.1 Two systems in joint identification

The regions in the second system are divided into non-joint and joint regions which are

represented by subscripts n and j respectively. The coordinates in the non-joint region and
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joint region are called "non-joint coordinates" and "joint coordinates"

respectively. For the first system, there is a region which corresponds to the non-joint

region in the second system, and this is represented by subscript a; the remaining region

in the first system can be subdivided into the joint region on real substructures, and on

the joint substructure, which are represented by subscripts b and c respectively.

The relationship between the displacement vectors and the force vectors for the assembly

and the substructures (excluding joint substructure) are:

and

JXnl
lxi I = L	 H1j J Ifj

Ixal rH1Ita
XbJ = LH Hbb j fb

-	 (6.1)

(6.2)

where H,x and f represent the receptance, displacement and force respectively, and

subscripts on H,x,and f represent the regions where H,x and f are related. eg. Hth is the

receptance matrix with response at region a and excitation at region b.

For the joint structure, we have

[Z] (XC) = ( fc),
	 (6.3)

where [Z] is the impedance matrix of the joint substructure.

§6.3.2 Development of Method One

The derivation of this generalized identification method is very similar to the derivation of

the formulae for the GRC method in Chapter 5. The non-joint coordinates on the

substructure and assembly systems are actually the same, hence:

(fa)E(f1},	 (6.4)

and
	

(Xa)E(Xn).	 (6.5)

The conditions of compatibility and equilibrium must be satisfied at the joint coordinates

after assembly of the structure (see figure 6.1), therefore

	

(fb) + (fc } = I f),
	 (6.6)

	and {Xj)=(Xb)=(Xc).
	 (6.7)
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Rearranging equation (6.6) as

(fbi = ( fj I - ( fc)
	

(6.8)

and substituting equation (6.8) into equation (6.2) yields

(Xb)[Hba](fa)+[I{1g,] ((f)-{fcJ)
	

(6.9)

Substituting equations (6.4), (6.5), (6.7), (6.8) and (6.9) into equation (6.2) and deleting

ffc} and (xi,), the following equation is obtained

(f)=[[II-[Zj][H]]1((f) -[ZjJ[Hai,] (fe))
	

(6.10)

Substituting equations (6.5)(6.7) and equation (6.10) into equation (6.2), and rearranging

leads to

Ixnl [[H][Hab] ([I]+[Z ] [Hbb}) 1 [ZI [HbaI [Flab] ([II+[Z] [Hbb])' 
1 JL

I.. xJ = L [Hba][Hbb]([I]+[Zj] [Hbb])' [Z] [Hba] [Hbb1([J1+[Z 1 [Hbb])'J 1. 
f1 j (6.11)

Comparing equation (6.11) with equation (6.1), it can be noted that

Flpj ]=[H] [Hab] ([I]+[ZI ft1bbI)' [ZJJ ft1baI
	

(6.12)

[H] = [Hab] ([ I ] + [Z] [H bb I )'
	

(6.13)

[}ljn]=[Hba][Hbb] ([r]+[Z] [Hbb])-' [ZJ [Hba]
	

(6.14)

[H] =[Hbb] ([I]+[Z] [Hbb])'
	

(6.15)

Substituting equations (6.13) and (6.15) into equations (6.12) and (6.14) and rearranging

equations (6.13) and (6.15), equations (6.12-6.15) become:

r [H] [Z]
	

(6.16)

J [HnjJ [Z] ft1bbl
	

(6.17)

1 [Hjj] [Z]
	

(6.18)

1_	 ][Zj][Fl]=[Hba]4Hjn]
	

(6.19)

Equations (6.16-6.19) are four basic formulae to identify the joint impedance matrix [Z].

The identification formulae are frequency based, i.e. the FRF data at one frequency are

enough for the identification. This is a very attractive property. For a nonlinear joint, the

properties at different frequencies are different, so that it is not possible to find a linear

joint to represent the nonlinear joint over a wide range of frequencies. However, at one
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LHHbbJ LZtaZbb (6.20)

(6.22)

(6.23)
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frequency or in a narrow frequency range, the properties of the non-linear joint can be

represented by an equivalent linear joint if an appropriate control process is taken in the

experiment. This is one of the main reasons why the FRF data identification method is

more attractive than modal data identification methods for non-linear joint studies.

§6.3.3 Development of Method Two

It can be noted that the procedure to develop method one in the last section is very similar

to the procedure to develop the GRC method in Chapter 5. The method developed in this

section is closely related to the other generalized coupling method, the GIC method.

Partition the inverse of the substructure (system) receptance matrix in the same way as

partitioning the substructure receptance matrix:

Because the assembly is the structure generated by coupling the substructure and the joint

together,

1Z	 Zag, T Hnnnjl 110

L z Zbb+Zj I H	 flO I

Expanding and rearranging equation(6.21) leads to

5 
[Z] [H]=- [Zba] [Hnnl -[ZbbI [H]

1.. [Z] [H j] [II-[Zba] [Hn]-[Zbb] ftljj]

(6.21)

§6.3.4 The Availability of the Measurement Data

There are measurement difficulties in obtaining FRF data. Usually, the non-joint

coordinates can be chosen for the convenience of the measurement, and therefore, the

FRFs between the non-joint coordinates (i.e [H] and [H1 ]) are easy to obtain;

however, the substructure FRFs between the non-joint and the joint coordinates

(i.e.[Hab} ) are rather difficult to measure. The substructure FRFs between the joint

coordinates (i.e. [Hbb]), and the assembly FRFs between the non-joint and the joint

coordinates (i.e. [H]) are even more difficult to obtain. The assembly FRFs between the

joint coordinates [Hj]) are the most difficult to measure.

If the receptance data of the substructure is from an FE model, then [Haa], [Hab] and

[Hl,b] are always available.

To use equations (6.16-6.19) for the joint identification, sub-matrices [HaalJ, [H1, [Flab]

and [H] must be available( so that at least equations (6.16) and (6.17) can be used); to
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use equation (6.22-6.23), [H], [H] and all the substructure receptance matrices must

be available (so that equation(6.22) can be used). The minimum data required for method

two are more than for method one.

§6.3.5 Comments on the Two New Generalized Methods

A significant advantage of the formulae developed in the last two sections over some of

the other identification (or decoupling) methods is that they are not limited to the structure

assembled from one joint and two substructures (comparing with [104]). There is also no

pre-assumption on the properties of the joint (comparing with [112]). Distinguishing joint

and non-joint coordinates gives a clearer view on the data required in the identification

(comparing with [113])

Due to the generality of the identification formulae, they can also be applied to correcting

the FE model (Model updating) using experimental data[1 14][1 15]. In fact, the problems

of analytical model updating and joint identification are to find the difference between two

systems, (i.e. for identification, one system is the assembly, the other consists of

uncoupled substructures; for model updating, one system is the real structure, the other is

the analytical model). From this point of view, model updating and joint identification are

two phases of the same problem. If the mis-modelled region is known, the coordinates in

the mis-modelled region can be treated as joint coordinates and mis-modelling parts can

be identified. If the mis-modelled region is unknown, one has to assume that modelling

errors exist in all the coordinates. In this case, the non-joint coordinates vanish and only

equation (6.19) can be used. It can be proved that equation (6.19) is still valid when there

is no non-joint coordinates and equation (6.19) becomes exactly the same as the formula

previously developed by Lin et.al for analytical model improvement using FRF data

[114].

Equations (6.16-6.19) and (6.22)(6.23) are actually a set of linear equations and solving

these equations is mathematically simple.

§6.4 ALGORITHM FOR THE IDENTIFICATION OF THE JOINT

PROPERTIES

All of the proposed identification equations (i.e.equations(6.16-6.19) or (6.22)(6.23))

have the following form

[A]fr[Zj]Nr4B]N&=[C] 	 (6.24)

where [A], [B] and [C] are coefficient matrices, and M, N and L represent row or

column numbers of a matrix. (for equations (6.22) and equation (6.23), [A] is a unit

matrix)
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If M,L^ N and matrices [A] and [B] are nonsingular, equation (6.24) becomes

determined or over-determined and [Z] can be solved uniquely. If the input data (i.e.

FRFs) are polluted by measurement errors, such over-determined equations usually have

no exact solution. In this case, a least-squares method can be applied to minimize the

effects of random errors in the input data. It has been proved [ 108][ 109] that the least-

squares solution for equation (6.24) is

[Z]= [A][q[B]^	 (6.25)

Apart from the above solution, there is an alternative to obtain the least-squares solution

for equation (6.24). Equation (6.24) is the same as a series of (Mx L) linear equations

[E1 .L)x .p) (Z ) (N2)x1 (g I (M•L)xl	 (6.26)

where E((m- 1)L+l,(i-l)N+j)=A(m,i)B(j,L)

z((i- l)N^j)=Z(i,j)

g((m- 1 )L)=C(m,L)

(m=1"M, l=1"L, i=1"N, j=1"N)

Equation (6.26) is a set of standard linear algebraic equations whose least-squares

solution is

(z}=[E](g)	 (6.27)

The solutions of both equations (6.25) and (6.27) are the least-squares solution of

equation (6.24), and hence are exactly the same.

In terms of the computation efficiency, equation (6.25) is more attractive, because

calculation of the pseudo inverses of two small matrices ([A]MxN and [BJNxL) usually

requires less computation time than that required for the inversion of a large matrix

[E](M.L)x2). In addition, the rearrangement of equation (6.26) from (6.24) also takes

time. However, equation (6.25) has some severe disadvantages which make equation

(6.27) preferable in practical applications:

(i) Due to the effects of measurement errors in the FRF data, the results from different

equations (6.16-6.19) or (6.22) (6.23) are usually different. Equation (6.26) can combine

equations (6.16-6.19) or (6.22) (6.23) into a set of linear equations and hence give the

least-squares solution to all these equations.

(ii): Equation (6.25) uses only a very small part of the available information for

identification at one time, the information at different frequencies cannot be used together.
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It will be shown later that the information at a single frequency point may not be enough
to extract the joint parameters accurately when the measured FRFs are polluted by

measurement errors. However, using equation(6.26), it is possible to combine the
equations obtained from different frequencies together, hence increasing the total
information for the identification.

(iii)Considerable effort should be devoted to collecting measured data. To use equation
(6.25), the conditions that M, L^ N and matrices [A] and [B] are not rank-deficient must

be satisfied. If equation (6.26) is used, such conditions are not necessary. From equation

(6.26), it can be seen that one row in matrix [A] and one column in matrix [B] together
with one element in matrix [C] are the data required for one equation in equation(6.26) as
shown in figure 6.2. If M,L^ N is not satisfied, the equations obtained from (6.26) at

each frequency are underdetermined, and the solution is not unique. However if the
equations at different frequency points are combined together, or some constraints are
imposed in solving equation (6.26), a unique least-squares solution can be obtained.

eAPZJI[B]@j

gure.6.2 Data required for one equation (presented in_shaded_area)

(iv)There is a danger of losing the physical interpretation of the identified joint model.
Experimental data axe always contaminated by measurement errors so that the solution can
only be an approximation. If equation (6.24) is used, we assume that no relations

between the elements in the [ZjJ matrix are known. In practice, some knowledge about
the joints is usually available and, in some cases, must be retained in the identified joint
results: for example, the symmetry of the [Z] matrix is possessed by most of the

mechanical joints some of the joint coordinates are obviously uncoupled if they belong to

different joints. These properties cannot be retained if equation (6.24) is used. However,

if equation (6.26) is used, they can be incorporated into the process for the solution by

imposing a restriction matrix: this is discussed below.

§6.5 UTILIZATION OF THE TRANSFORMATION AND RESTRICTION

Because the measured data are contaminated by measurement errors, efforts have to be
made to reduce the effects of the measurement errors on the accuracy of the identified

joint properties.

The basic strategy to improve the accuracy of the identified results is to impose all the

available constraints. In other words, the measured FRFs should be used at one time. A
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by-product of using all of the FRF data at one time is that the identified results are

consistent over the whole frequency range.

One problem in using all of the measured data at one time is to combine the information
obtained at different frequencies. If the joint properties are independent of frequency, the
equations obtained from different frequencies can be combined together directly.
However, if the joint contains mass, the impedance matrix of the joint will be frequency
dependent, then the equations at different frequencies cannot be combined directly. In this
case, the frequency dependent unknowns must be first transferred into frequency

independent unknowns.	 -

The impedance of the joint can be written in terms of the stiffness, mass and damping
matrices as follows.

[Z(cü)]=[K]-o2[M]+ i(o)[C]+[D])
	

(6.28)

where [K], [MI, [C] and [DI represent the stiffness, mass, viscous and hysteretic
damping matrices respectively

Unlike the impedance matrix, the mass, stiffness and damping matrices are frequency

independent. Arranging all the elements in a matrix into a vector (eg. from [K] to (k))
and rewriting equation (6.28) in the vector form yields

(zi(o))=(k)-&(m)+ i(0)fc)+(d))=[T](x),

where

[T0)] =[[']	 ico[IJ i[IJ],

(m)
and - (c)

(d)

Substituting equation (6.31) into equation(6.26)leads to

[E(co)][T] (x)=(g(a))

Let	 [E'(o)I =[E(co)] [Tm]

(6.29)

(6.30)

(6.31)

(6.32)

(6.33)

Equation (6.32) then becomes

[E'(w)] (x)=(g(w))
	

(6.34)
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The vector (x), which consists of the elements in the mass, stiffness and damping

matrices, is frequency-independent, thus, equation (6.34) at different frequencies can be
combined directly.

A problem with the transformation matrix [T] is that the magnitudes of the elements
corresponding to stiffness and mass (also viscous damping) elements are different by a
factor of w2 (and 0 for viscous damping), which can lead to numerical difficulties in

solving the equation (6.34). This difficulty can be overcome by using a transformation

matrix [Tf] in the place of the matrix [Tm] ,where

rrf]={[I1
- -jEll i .['] i[I]]

(1)0	 (00
(6.35)

oj is a reference angular frequency. In the following analysis, the maximum measured

frequency is chosen as the reference frequency. It should be noted that the thus identified

joint parameters with transformation matrix [Tf] are

-	 (m)
fx) { (k)

}
-	 c)

(d)

(6.36)

If some relations between the elements in {x) are known, the number of unknowns can

be reduced, and in the meantime, the physical properties of the joint retained. If the
relationship between the elements in (x) and the independent elements is linear (which is

usually the case) and the number of independent elements is ko. then the elements of (x)
can be written in terms of independent variables as follows

ko
Xj= tkyk	 (i=1•"4n2)

	
(6.37)

k= 1

where yk is the independent element, tik is the coefficient, and x is the element in (x)

matrix.

Equation (6.37) can be written in matrix form as:

(x) (4fl2)x1 = [T](4fl2)x) ( y) (k)x1
	 (6.38)

where [11 is called the restriction matrix



(6.44)

(6.45)

(6.47)

(6.48),(6.49)
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Substitution of equation(6.38) into equation (6.34) yields:

[E'] (ml)X(4n2)[T1(4n2)x(k(j) f y i (ko)xl =4 g) (mI)x1,

and let

[E(o)]=[E'(co)] m=[El [Tf] m.

Equation (6.39) thus becomes

[E(co)](y}=(g}

(6.39)

(6.40)

-	 (6.41)

In some cases, some of the independent elements are known. If the total number of

independent elements is and the number of independent unknowns is , then let

I (Yiioox'
(y)(j)x1= j

I ( Y2 I (ko-koo)xl

and partition matrix [El accordingly into

[E](mj)x(ico)=[[El] (ml)xkoo,[E2}(ml)x(ko-koo) 11

Substitute equations (6.42)(6.43) into equation (6.41) so that:

[Ei](yi) =(Pi)

where (pl)=(gI-[E21(y2)

(6.42)

(6.43)

(i I consists of real variables, but [E1] and (i} are usually complex, hence

equation(6.45) is equivalent to

í R
eal([EiDf y i) =Real((p})

1. Imag([E1])(yi} =Imag((p))
(6.46)

or	 [E0]( y1} =(pol

Real([E 1])i 	1R(tp1 1)
when	 Imag([Ei])] and fPO)Imag((pl})
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Combining equation (6.46) at different frequencies yields

[Eo(wi)}(yij =lPo(coi))

[Eo(ü)1(yi) =(po(w2))

[E0(co)] E y i } = tPo((D1))

	 (6.50)

[E0(o)] (Yi) (PO(°)n))

or	 [Ai](yi)=(bi}	 -	 (6.51)

where oj (i=1...n) are the frequencies at which the FRFs are measured, and

[A']=[	

((Ø(o))}

[EO(02)] I	 I ( po(U )) I

[Eo]J and (bi)= 
(Po(Wj))	

(6.52)(6.53)

[E0()]	 L	 J

The least-squares solution for equation(6.51)iS

(yi )=([Ai]T{Ai])[Ai]T(bi)

=[	 [Eo(coj)]T[Eo(coj)] ]	 ( [E0(oj)]T (p0(w1)) 	 (6.54)
i=1	 i=1

Equation (6.54) uses equations obtained directly at different frequencies. However, it

may not improve the results significantly. If the system is lightly damped, the magnitude

of the FRFs at resonance frequencies will be much higher than that at other frequencies.

Consequently, the magnitude of the element in matrices [[EO(øi)]T[Eo(coI)] I and

[E0( w i)] T f po(wj)) can be significantly different at different frequencies. In other

words, although all the measured data are used at the same time, the results are dominated

by the data at a few frequency points only.

To improve the results, data at all the frequencies should be considered with the same

importance. This can be achieved by using the "normalized least-squares"

method(NLSM) which is actually the same as the well-known weighted least-squares

method (eg. [116]).
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Multiplying both sides of the equations for each frequency by a constant, equation (6.50)

becomes:

ai[E(co)1 (yr) =ai tPo(wi))
a2[El(o)2)] fi} =ct2(Po(c02)}

a[E(co)1 ( y i} =adpo(o0)
	 (6.55)

adE()1{yi} Xn(PO(C')n))	 -

or	 [A21(yl)=(b2)
	

(6.56)

where XI (i=l...n) are scaling factors and

	

{a'[Eo(col)'l	

ai (po(w1)) )

	

cL2[Eo(o)2)1 I	 a2(Po(CO2)) I
aI[Eo(cD1)]

[A2)	 and	

lai0(	

(6.57,6.58)

aflt pQ() 1]

Then the solution is

ti) 
=([A2]T[AZ])4[A2]T(b2}

=[	 a ' [Eo(o)1T E0(o,)] 1'	 ( cz[E0(.o) T (p0(oi)))	 (6.59)

Scaling factors at ,a ..,an should be so chosen that a[EO(coi)]T[EO(coi)1 at different

frequencies have similar magnitudes. To simplify the problem, values of a1 can be

chosen to make the maximum element in the matrix a[EO(cji)]T[O(oi)] to be unity.

To distinguish the results obtained from one single frequency and from several

frequencies, the results obtained using information at more than one frequency are

referred to as the averaged results. The least-squares method which does not use

normalization for the equations is later noted as the "direct least-squares method" (DLSM).
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§6.6 NUMERICAL ILLUSTRATION

§6.6.1 Description of the System Studied

The system studied is a 14DOF finite element beam structure as shown in figure 6.3 and

is referred to as case A.

1.2	 3.4	 5.6	 7.8	 9,10	 11.12	 13,14

I	 I	 I	 I	 F	 I	 I

Substructure 1	 Joint	 Substructure 2

1.2	 3,4	 5,6	 7.8 V	 9.10	 11,12	 13,14

III	 II

Assembly
Figure.6.3 The diagram of a 14DOF mc rn

The assembly consists of two substructures and one joint. Substructure A consists of

three identical beam elements and substructure B has two. The beam element of the

substructure has the following physical properties:

length L =0.3 m, thickness h =0.012 m, width w =0.05m,

density p=7547 kg/rn3 and Young's modulus E=2.07x10 11 N/rn2.

The stiffness and mass matrices of a beam element are found as:

12 6L. -12 &.	 r 662400 99360 -662400 99360

	

K - El	 6L 4L2 , 2 J 99360 19872 -99360 9936
	L3	 -12 -6L 12 -6L 1 -662400 -99360 662400 -99360

6L 2L2 -6L 4L2 L 99360 9936 -99360 19872

156 22L 54 -13L r	 0.5 0.021 0.1746 -0.0126

	

- mL	 22L 4L2 13L -3L2 J 0.021 0.001 0.0126 -0.00087
and	 [M]— 420	 54 13L 156 -22L 1 0.1746 0.0126	 0.5 -0.021

-13L -3L2 -22L 4L2	 L -0.0126 -0.00087 -0.02 1 0.00 1

wh3
where m=phw and 1= 12

The damping of the beam element is assumed to be hysteretic and proportional to the

stiffness matrix, i.e.

P1= 0.001[K]
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The joint element has no mass but has the same stiffness and damping as the beam

element, i.e.

[M]=O. [KjJ=[KI and [D]=[D]

The joint element in this case is not realistic since it is the same as a finite element beani.

However, as K and D matrices are fully populated, the joint model is complicated

enough to simulate a real joint. In a real case, a joint can sometimes be modelled by

lumped parameters (therefore possessing less unknown variables), which is much

simpler.	 -

For most, if not all, mechanical joints, the impedance matrices are symmetric, hence the

condition of symmetry of the impedance matrix can always be imposed, thereby reducing
2 n(n+1)

the number of unknown variables in an nxn impedance matrix from n to 2

Equations (6.16-6.19) and (6.22)(6.23) are verified by two cases at each frequency and

over a frequency range. In the first case, all non-joint coordinates are "measured" and in

the second case, only five non-joint coordinates (1,3,5,11 andl3) are measured. Exact

results are found using any of the above equations.

§6.6.2 Joint Identification with Contaminated FRF Data

In practice, measured data are always polluted by random errors. To simulate

measurement errors, 5% random noise is added to the FRF data in the following studies.

In addition, the use of equations (6.18)(6.19) and equation(6.23) requires the matrix

[Hj] which is often very difficult to measure in practice. Therefore, in the following

analysis, for method one, equations (6.16) and (6.17) are used and for the method two,

equation (6.22) is used.

§6.6.2.1 The Identified Results Using Method One

The input data for ten numerical cases, as listed in table 6.1, are studied. The first case is

the reference one and results from the other cases are compared with the results from the

first case. The purpose of the different case studies is listed in the last column of table

6.1. Some relations between the elements in the joint stiffness and damping matrices are

used for case A9 and case AlO. These relations are shown in table 6.2.
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II 
Suit	 I &h	 I fity I	

'	 IIfrtvIv	 I
caseAl 1400

caseA2 1400
caseA3
caseA4 400
caseA5
caseA6 400
case Al
case A8 400
caseA9
caseAlO 400

45W	 101 lall
121 -

1000	 301	 all

1000	 31

1000	 31	 all

es	 I No	 l3asAc case
0	 INo	 Weihtin

Yes
	

No	 ran

Yes
	

No-

Yes
	

No
	 I coordinates-

-4
Yes	 -2 Restriction
case

Kesu-iction I
Assuming stiffness and damping matrices have the following form

Ak Bk -Ak Bk	 r Ad Bd -Ad Bd
rv.i_ Bk Ck -Bk Dk r. I Bd Cd d Dd
LjJ	 -Ak -Bk Ak -Bk	 -Act -% Ad -Bd

Bk Dk -Bk Ck	 L Bd Dd -B(j Cd

where Ak, Bk, Ck, Dk, Aj, Bd, Cd and Dd, are independent unknowns.

Restriction Tl0-2:
Assuming stiffness and damping matrices have the following form

	

Ak 99360 -A k 99360	 Ad 99.360 -Ad 99.360

	

.	 99360	 Ck -99360 9936 rr i_ 99.360	 Cd 99360 9.936

	

L"jI 	 -Ak -99360	 Ak ..99360 LJ-'jJ	 -Ad -99.360	 Ad -99.360
99360 9936 -99360	 Ck	 99.360 9.936 -99.360	 Cd

where Ak, Ck, Aj and Cd are independent unknowns and figures are exact values for the joint

Table 6.2 Restriction applied on case A9 and case AlO

The joint stiffness and damping parameters obtained at each individual frequency are far

from satisfactory; figure 6.4 shows the identified first element of the joint stiffness matrix

at each frequency, it can be clearly seen that the identified K(1,1) varies in the range by

more than -500% to +500%. With a variation of this scale, it is not possible to extract any

sensible results. This indicates that the information at a single frequency point may not be

sufficient for the identification when the FRFs are polluted with measurement errors.

Therefore information obtained over the frequency range must be used (i.e. the averaged

results).
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1.006
0.889
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0.863
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1.025
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0.883
0.905

0.970
0.990
0.979
1.232
1.011
1.000

Chanter 6 Identification of joint DroDertieS usin g FRF data	 - tac 191 -

Frequency

,1) using I'Kl at one

In the following studies, only the results identified over a frequency range will be

presented, the identified results are shown as their relative values with respect to the

corresponding true values. The perfect result will be 1. Because the identified results (i.e.

the stiffness and damping matrices) are symmetrical, only the elements in the upper

triangle of the matrix , which has 10 elements for a 4x4 matrix, are shown.

The identified stiffness and damping parameters of the joint are shown in table 6.3.and

table 6.4 respectively.

0.955
0.691
0.436
0.615
0.988
0.997
0.833
1.760
1.011
1.000

0.962
0.639
0.411
0.874
1.004
0.996
0.969
1.615
1.011
1.000

1.056
1.475
0.878
1.101

1.019
1.010
1.208
0.608
1.011
1.000

1.040
1.5 18
1.168
1.160

0.992
0.993
1.033

-0.261
0.930
0.986

0.986
0.787

-0.163
0.677
1.017
0.994
1.021
0.801
1.031
0.993

1.049
1.149

-0.675

1.0 17
0.991
1.109
0.241
1.046
1.000

0.908 I
0.2241
0.645

0.891

1.023
1.015
0.772
1.494
0.930
0.986
I one

0.981
0.675

-0.135

0.395

0.989

0.839
1.147
1.031
0.993
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The only difference between case Al and case A2 is that the weighting technique is used

for case Al; it is very clear that the results from case Al are much better. Except for a few

elements in the damping matrix, errors in the identified results do not exceed 10%, and

for most stiffness elements, the error levels are less than 5%. This proves that the

normalized least-squares method, which uses the information available more effectively,

is more appropriate for identification purpose than the direct least-squares method. For

this reason, the normalized least-squares method is used in all other cases.

From the results of case Al, case A3 and case A4, it is clear that although the number of

frequency points in the latter two cases are approximately three times the reference case,

the identified results are much poorer. This indicates that it is not the total number of

equations, but the number of effective equations that is important in identification, and

there are more effective equations in a wider frequency range than in a narrow frequency

range.

In a prescribed frequency range, using reasonably smaller frequency increments can

increase the number of effective equations, and hence improve the accuracy of the

identified results, as can be noted from the the results of case Al, case AS and case A6.

However, very small frequency increments (2Hz or smaller in this case) may not be

appropriate, because the equations accumulated tend to be proportional.

The same reasoning applies to the measured coordinates. With more coordinates

measured, the accuracy of the results is improved (case Al, case A7 and case A8).

However, using very closely located coordinates may not be effective in improving the

accuracy of identification. It is not possible to show this deduction with the 14 DOF

system studied. However, the deduction has been verified from other numerical case

studies which are not shown in this thesis due to the limited space available.

The effects of imposing restriction conditions are identified from the results of case A9

and case AlO. For case A9, there are eight unknowns (four stiffness elements and four

damping elements), and for case AlO, there are four unknowns (two stiffness elements

and two damping elements). It is clearly shown, as expected, that when there are less

unknowns to be identified, the accuracy of the results is improved.

§6.6.2.2 The Identified Results Using Method Two

Case Al is investigated using method two (as case Al 1). The identified results are shown

in table 6.5. Although the formulae of method two have been verified in §6.6.1, it can be

noted that the identified results using method two are more sensitive to the measurement

errors than using method one, for example, K(3,4) from method one is 1.056 while it is

0.688 from method two. This is clearly different from the case for coupling. In coupling,
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the results of different methods always yield the same results if the effects of numerical

errors are negliEible.

Al	 1.006 0.994 1.040 0.955 0.986 0.962 1.049 0.908 1.056 0.981
Ui 0.921 1.019 0.976 0.971 0.966 0.765 1.209 1.033 0.688 1.238

D(1,1) D(1,2) D(1,3) D(1,4) D(2,2) D(2,3) D(2,4) D(3,3) D(3,4) D(4,4)
Al 0.441 1.217 1.244 0.910 0.982 0.903 1.201 1.028 1.059 1.006
Ui 24.240 -9.872 -5.167 0.570 11.290 1.895 9.398 4.738 -3.168 6.187

5 The relative v ues of me identified results from method one and memod two

The reason that the results from these two methods have different accuracy is because

some kind of optiniizatior i. used. In both method one and method two, the

concept of the least-squares solution is used to solve a set of linear equations. i.e. to find

the least-squares solution for a set of equations with the form

[A](x)=(b).	 (6.60)

If the [A] matrix is not an ill-conditioned matrix, the accuracy of the identified results [x]

are mainly determined by the error levels in matrix [A] and vector fb).

For method two, the receptance matrix is first inverted. As discussed in Chapter 5, the

measurement errors are usually magnified during the inversion. Therefore, the error

levels in [ZJ, [Zab], [ZbaJ and [Zbb] are greater than the error levels in [HJ, {Hab],

[Hha] and [Hbb]. Consequentely, the accuracy of the results from method two is usually

poorer than that from method one.

In the following analysis, only method one is considered.

§6.7 THE REFINED WEIGHTING METHOD

§6.7.1 Theory of the Refined Weighting Method

The weighting method proposed in §6.5 is based on the observation that the FRF

magnitudes change greatly at different frequencies. To use information at all frequencies

effectively, the magnitude of the FRFs at different frequencies should be scaled.

However, sometimes the aim of weighting information at each frequency with the same

importance cannot be achieved by using the weighting method proposed in §6.5. It is
noted that [E1(coj)] is generated from multiplication of the coefficient matrix [E(wij] with

transformation and restriction matrices [Tf] and [11, and partition of the matrix at a

particular stage to distinguish the real unknowns from the independent variables.

Consequently, the elements of the resultant matrix [Ej(o)j)] do not always reflect the

magnitudes of the elements in matrix [E(o]. In other words, it is not always true that if

the FRFs have large magnitudes, the matrix [E1(coj)] must have large elements or vice

versa, especially when the matrix [E(oj)] is an ill-conditioned matrix or the magnitudes of
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the elements in the transformation matrix change greatly at different frequencies

(Examples of these two cases are the case of a free-free vibrating structure dominated by

the rigid body mode at very low frequencies, and the transformation matrices of the mass

over a wide frequency range). Therefore, it is more appropriate to impose weighting

before any transformation and restriction. i.e. to select scaling factors to make the

maximum element (or the maximum of the sum of a row or a column) in the matrix

[E(coj)} unity, this weighting method is referred as the Weighting-Before method(WB).

The weighting method in §6.5 is referred as the Weighting-After method(WA) in this

section.

As well as variations occurring in FRFs at different frequencies, FRFs at different

coordinates can also vary, and as a result, the elements of different equations at the same

frequency can also be significantly different in magnitude. When equations with small

magnitude elements are combined with equations with large ones, the effects of these

equations with small elements on the least-squares solution will be overshadowed by the

equations with large elements; in other words, the information in these small magnitude

equations are wasted. To overcome this problem, independent weighting can be imposed

on each equation according to their magnitudes, i.e. to multiply both sides of an equation

by a scaling factor so that the maximum coefficient (or the sum of the coefficient squares)

in the equation is unity. This weighting method is called the Weighting-Before

(transformation)-Single (equation) method (WBS).

Initially, the WBS method looks perfect because all the equations accumulated at all the

coordinates and frequencies are considered with the same importance. However, it is

questionable if all the equations should be considered with the same importance. The

error levels in different equations can be significantly different even if all the FRFs have

the same levels of error. This is because the [C] matrix in equation(6.24) is a subtraction

between two matrices ([C]=[C1]-[C2]). If the corresponding elements in these two

matrices have similar magnitudes (i.e. c 1 (i,j) and c2(i,j) are close to each other), the

resultant [CJ matrix (or some elements in the matrix [CI) can have very high error levels.

Fortunately, the effects of these erroneous equations on identified joint parameters are

often insignificant because the magnitude of c 1 (i,j)-c2(ij) of these equations is often very

small. However, if the WBS method is used, the magnitude of these erroneous equations

can be significantly magnified and, accordingly, the effects of these equations on the

solution can also be significant.

To overcome the shortcoming of the WBS method, these erroneous equations must be

deleted before the identification process. However, in practice, this is almost impossible

simply because it is not known how much error there is in the matrix [C1]-[C2]

(otherwise, it can be corrected).
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Fortunately, although we do not know exactly how much error there is in each equation,

we do know that if two right hand side elements c 1 (ij) and c2(ij) of an equation have

similar magnitudes, the equation is prone to have high error levels. Therefore, we can

delete the erroneous equations simply by deleting these equations with

Ic (i,j)-c2(i,j) I

Ic 1 (i,j)I+1c2(i,j)I
2

where i is a small positive number in the range 2> ^O.

(6.61)

When i=O, no equation is deleted and when i=2, all equations are deleted. When some

of the equations are deleted using equation(6.61), we not only delete erroneous ones, but

other equations with low error levels as well. Consequentely, some information is

rejected. However, this small sacrifice is proved to be worthwhile and can often be

compensated for by the reduction of the total error levels and effective use of information

in the remaining equations.

The choice of the i value should be determined both by error levels in the measured data

and by the amount of measured data. If the error levels are high and the measured data are
sufficient, a large i value may be appropriate; if error levels are low and the total

measured data are limited, then a small should be chosen. The requirement on the

accuracy of the right hand side element c1-c2 should not be set too high, otherwise, too

many equations will be deleted.

1C181-C2&21
If the errors in ci and c are ciSi and c2&2, then the error level in cI-C2	 IC1-c21' and

the worst possible case is 6 iö < 0 (let öi=-&2>O), then the error level Sis	 .Ifthe
IC1-C21

maximum error level in ci-C2 should be less than m, i.e.

IcI+c2161

IC1-C21

Then

If the error level in the measured data is 5% and the maximum error level in the equations

allowed is 10%, then from equation (6.62), i must be greater than 1. If the error in cl-c2

must be less than 5%, i>2, which actually means all the equations should be deleted,

therefore, the requirement is not achievable.
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An alternative to the WBS method is to divide the equations obtained at each frequency

into several groups and weight these groups separately. Provided the equations are

properly grouped, the erroneous equation will not be over magnified. This is because an

erroneous equation can only be over magnified if c1-c2 is much smaller than the

magnitudes of ci and c2, and also the coefficients on the left hand side of the equation

must be very small so that they are of the same order as cl-c2. When the equation is

grouped and weighted, all the equations in the group are weighted by the same factor

which is determined by the equation with the largest coefficients.Therefore, over-

magnifing erroneous equations is prevented. This weighting method is referred to as the

Weight-Before (iransformation)-Group (equations) method(WBG).

It can be noted that the WB and WBS methods are actually two special cases of the WBG

method; if all equations from equations(6.16-6.19) are treated as one group, the WBG

method becomes the WB method; if each equation in equations(6.16-6.19) is considered

as single group, the WBG method becomes the WBS method

The following method to group equations for the WBG method is proposed. From the

discussion in §6.5, it is known that each equation in (6.16-6.19) is generated from one

row of matrix[A] and one column from matrix [B]. If all equations which involve one

row of matrix [A] as one group are taken, then the equations obtained at each frequency

are divided into several groups. This is shown in figure 6.5.

_____ _____ _____ _____ Total equations
A:::: L IL _i1:CL_!

-1Thefirstgroup

L - J ZJD B H
I__ ------ iThe second group

L - I
___ -----Thethirdgr0UP

-	 O4CLj
equations into three grOUPS
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§6.7.2 Numerical Illustration

§6.7.2.1 Description of the System Studied

The system considered is very similar to that used in §6.6. The substructure system is

exactly the same, but to make the joint more complicated, the joint element has the same

mass matrix as the beam element, i.e. the joint element is exactly the same as the beam

element. Therefore, the joint has a total of 48 unknowns (16 stiffness elements, 16 mass

elements and 16 damping elements).

Based on the geometric symmetry of the joint element, it is assumed that the stiffness,

mass and damping matrices have the following restricted form:

I a c e d'
I c b -d f I

(K,M,D) = I e -d a -c I
L d f -c bi

Therefore, each of the stiffness, mass and damping matrices have six independent

unknowns and the total number of independent unknowns is 18.

The FRF data is assumed to be measured in a frequency range 100-1000Hz with a

frequency increment of 30Hz.

It will be seen later that if equations (6.16-6.19) are used together, very good results are

obtained for all the weighting methods. To illustrate the advantages of refined weighting

methods (WBS & WBG ) more clearly, only equation (6.16) is used in the second

calculation.

§6.7.2.2 Methods for Presentation of Results

When two frequency points are used, one least-squares solution can be found; when the

third frequency point is added, another least-squares solution is obtained, and so on.

Although the accuracy of results obtained using all the measured frequency points can be

used to evaluate different weighting methods, the change of the results during the

accumulation of frequency points often gives a further insight to the problems in the

different weighting methods.

For each frequency, there are three matrices (stiffness, mass and damping) and for N

frequency points, 3xN matrices are formed. An attempt to present all the results can only

cause confusion. One method of presenting the results is to plot a graph with one element

in the identified results against frequency. However, one element may not necessarily be

representative. In this section, a pair of factors is used to evaluate the accuracy of the

results and efficiency of the method.



(TYTTI 2
DTf' _	 0)

—hull h1U01l (6.64)

in
ARVF=— u,

i-i
(6.65)

Ci1 fltpr f Tdprifjctipn of joint nmIy rtis iiint P1'F dt	 - T)" 1 QX -

Upper triangular elements of an identified matrix (eg. a stiffness matrix) can be listed into

a vector V=(vi,v2,...,vn)T and if the corresponding vector for the exact results is
Vo(voi ,vo2,...,vo)T, then a Joint Correlation Factor can be defined as:

(VTV )2
JCF 11v11 ii.oji 	 (6.63)

If V and V0 are perfectly correlated, (i.e. V=V0), JCF=1; if V and Vo are not correlated at

all, then JCF=O. For the other cases, the JCF varies in a range [0,1]. A high JCF value

may indicate accurate results. However, it is not always the case; if the magnitudes of

elements in V vary greatly, the JCF will only be determinedby the elements with large

magnitudes. If one element is dominant, the JCF will be always close to one. To avoid

this problem, relative values are used instead of the absolute values.

The Relative-Joint-Correlation-Factor is defined as:

where U=(u1,u21...,u1,...u}T=(._.	 !L	 .!!L)Tand Uo=f 1,1......,1}T
VlO'V20' 'ViO'' "nO

Usually, it is better to use the RJCF value to represent the accuracy of the identified

results, unless there are some very small elements in the joint matrix; in this e, se, the

RJCF value can be significantly affected by these small elements. However, because

small elements in the joint matrix usually have little effect on the assembly, they can be

ignored. If very small values are excluded from U and Uo, RJCF values give a good

indication about the correlation between the identified and exact results.

Usually, good correlation between identified results and exact results indicates an accurate

identification. However, if the identified results are proportional to the exact results, the

RJCF value will be 1. To take this possibility into account, another Average-Relative-

Value Factor can be defined:

If the identified results are accurate, the ARVF should be close to 1.

The RJCF and ARVF are treated as a pair (RJCF, ARVF) to evaluate the accuracy of the

identified results.

§6.7.2.3 Results and Discussion

Tables 6.6-6.8 show the identified results in the (RJCF,ARVF) pair using equations

(6.16-6.19). The RJCF values for stiffness and mass matrices are higher than 98% (for
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WBS and WBG, values of RJCF are higher than 99.5%), ARVF values for stiffness and

mass fall in a range (0.99,1.01), therefore, all the weighting methods yield very

satisfactory results for stiffness and mass. The accuracy of the identified damping

matrices are not as good as those of stiffness and mass, especially for the damping

matrices using the WBS method with &c0.05. However, when a proper is chosen (eg.

0.05 or 0.1), the damping values identified are more accurate. The effects of on the

accuracy of the damping matrices using other weighting methods are not as significant as

that on WBS methods. From the above results, it is known that when the measured data
ir sufficient, a proper choice of value can improve the accuracy of the identified results

slightly. However, since very good results have been obtained even using the WA or WB

method, the choice of weighting methods is not very important.

If measured datau insufficient, however, different weighting methods can lead to a

significant difference in the accuracy of the identified results. Tables 6.9-6.11 shows the

identified results in the (RJCF IARVF) pair using equation (6.16) only, the best results

for each method are shown in BOLD. Table 6.12 shows the relative values of the best
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identified results (the case shown in BOLD in Tables 6.9-6.11) with respect to the exact

results using different weighting methods together with the exact values shown in the last

column. It is obvious that the weighting methods (especially WEG and WBS) proposed

in this section have clear advantages over the WA method in § 6.5. When =O, the WBG

method yields the best results. However, if i is correctly chosen (eg. A=005), the

results from the WBS method are the best

WA	 0.70,0.2
WB 0.64,0.4
WBG 0.91,1.1
WBS 0.64,0.79

Table 6.9 (RJ(

0

	(1(2	 (1(	 0.1	 02	 10.3	 (14	 0.5

0.70,0.28 0.70,0.28 10.70,0.28 0.69,0.27 0.70,0.28 0.62,0.25 0.7 1,0.30
0.64,0.42 0.64,0.43 10.61,0.41 0.61.0.4 1 0.65,0.43 0.65,0.43 0.67,0.44

0.92.1.12 0.91,1.10 10.89.1.09 0.89,1.09 0.9,1.11 0.88,0.66 0.88,0.65
0.69,0.78 0.99,0.9 0.99,0.89 0.99,0.89 0.99,0.87 0.98,0.73 0.97,0.60

,ARVF) pair for the stiffness matrices using equation (6.16) only

	(1(2	 0.1	 (12	 (13	 10.4	 05

A	 0.76,0.6 0.76,0.64 0.76,0.63 J0.76,0.62 0.76,0.61 0.76,0.61 0.75,0.60 0.74,0.56
B	 0.25,0.1 0.24,0.12 0.25,0.12 10.18,0.10 0.17,0.09 0.12,0.08 0.09,0.07 0.88,0.08

0.97,1.01 0.97,1.03 0.97.1.05 10.97.1.00 0.97,1.00 0.97,1.01 0.98,0.67 0.98,0.66

0.54,0.81	 0.55,0.83 0.99,0.90.99,0.86 0.99,0.86 0.99,0.84 0.98,0.68 0.94,0.56

" b1e 6.10 (RJCF,ARVF) pair for the mass matrices using equation (6.16) only

1 0	 10.1	 I°	 I	 I°	 I

0.12,0.fl 0.12,0.16 0.11,0.16 10.11.0.16 0.61,0.15 0.10,0.16 0.09,0.13 0.11,0.15

0.52,0.3 0.52,0.38 0.51,0.39 10.54,0.37 0.54,0.37 0.57,0.39 0.56,0.39 0.56,0.40
0.71,1.21 0.57,1.08 0.74,1.32 10.72,1.32 0.71,1.31 0.74,1.32 0.30,0.89 0.30.0.89
0.04,6.18	 0.04,6.59 0.65,0.6 0.55,1.00 0.57,0.99 0.5,0.99 0.23,0.85 0.19,0.74

6.11 (RJCF,ARVF) pair for the damping matrices using equation (6.16) only

(WB ())	 WBG(=0)	 WBS().05) exact values

k1(1,1)	 0.29	 0.44	 0.79	 1.02	 662400

k 1(1,2)	 0.49	 0.75	 1.32	 0.91	 99360

k 1(1,3)	 0.38	 0.39	 1.56	 0.92	 -662400

k(1,4)	 0.39	 0.57	 0.74	 1.04	 99360

k(2,2)	 0.08	 -0.16	 1.03	 1.01	 19872

k(2,4)	 -0.08	 0.68	 1.70	 0.95	 9936

m,(1,l)	 0.07	 -0.10	 1.16	 0.88	 0.50450

m(1,2)	 0.86	 0.29	 0.96	 1.00	 0.02130

m1 (1,3)	 125	 -0.35	 1.23	 0.78	 0.17470

m1(1,4)	 0.81	 0.21	 0.76	 0.99	 -0.01260

mj(2,2)	 0.545	 0.28	 1.07	 0.95	 0.00116

m 1(2,4)	 0.74	 0.23	 1.03	 0.93	 -0.00090

h(l,l)	 -0.27	 0.62	 0.87	 0.67	 662.400

h,(1,2)	 0.54	 0.61	 0.87	 0.66	 99.360

h,(1,3)	 1.00	 -0.35	 3.24	 0.70	 -662.400

h,(l,4)	 -0.28	 0.86	 0.49	 1.36	 99.360

h(2,2)	 0.12	 0.03	 1.27	 0.35	 19.872

h1(2,4)	 0.35	 0.36	 1.84	 -0.36	 9.936

Table 6.12 The relative values of the identified results using different weighting methods
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From tables 6.9-6.11, it can also be noted that i has little effect on the identified results

for WA, WB and WBG methods for <O.3, which indicates that the effects of equations

with &c0.3 on WA, WB and WBG methods are actually negligible. This means that for

these weighting methods, the information of many equations are not used sufficiently.

For the WBS method, it is clear that there is an optimum i; if i is too small, then the

error levels in accumulated equations can be very high; if i is too large (i>0.4), much

useful information is rejected, which leads to poor results. Table 6.13 shows the

identified results in their relative values with respect to the exact results utilising the WBS

Table 6.13 The relative values of the identified results with different 1 values
using WBS method

The relation between and the accuracy of the identified results can be further

understood by studying the change of identified results with the frequency points. As

shown in figure 6.6 and figure 6.7., the identified results change dramatically at some

frequencies if is small(eg. i=O), while the changes are less severe after the first few

frequency points when i is large. The dramatic change of (RJCF,ARVF) pair values at a

single frequency point indicates the effects of over-magnified erroneous equations. When

erroneous equations are deleted (by choosing a greater i value), the changes of the

(RJCF,ARVF) pair become less significant. When the i value is too large (of course it

depends on the total available data, in this case i=O.5), the changes of the (RJCF,ARVF)

pair are insignificant, however, in the frequency range measured, the (RJCF,ARVF) pair

does not tend to converge to (1,1).
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Figure 6.6 (RJCF, ARVF) for the identified joint stiffness
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Figure 6.7 (RJCF, ARVF) for the identified joint mass

As discussed above, when a proper A value is chosen, the WBS method yields the most

accurate results. However, WBG should certainly have its application in joint

identification. This is because the identified results from the WBG method are quite

accurate if the amount of the measured data is not too small and the results are not so

sensitive to the A value (in other words, the WBG method is more stable than the WBS
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method). These properties can be very useful, because the real results are unknown in

practice. If the identified results from both the WBG and WBS methods yield close

agreement, the identified results are likely to be accurate.

§6.8 ACCURACY OF JOINT IDENTIFICATION

§6.8.1 The Basic Requirement for Accurate Identification of Joints

Several factors that affect the accuracy of the identification 	 - have been studied in the

last few sections. However, there is an additional decisive factor: the nature of the

assembled system. Experience indicates that the accuracy of identification is significantly

related to the system studied.

Recall equation (6.24) as:

[A] [Z] [B]=[Cl]-[C2]
	

(6.24)

and denote the combined equations as

[A3](yl)=(b3)
	

(6.66)

To identify the joint parameters accurately, three basic conditions must be satisfied

1) the error levels in vector (b3) must be low,

2) the error levels in the matrix [A3] must be low, and

3) the matrix [A3] must be a well-conditioned matrix.

§6.8.2 Inaccurate Identification due to Not Satisfying Condition 1

If no element in the joint matrix (stiffness, mass and damping matrices) is known, the

element in (b3) is a subtraction of the corresponding elements in matrices [C1] and [C2].

If the magnitudes of elements in matrix [C1]-[C2] are always much smaller than the

element magnitudes of the matrices [C 1] or [C2] over the available frequency range, the

error levels in (b3 } are much greater than error levels in [C 1 ] or [C2]. Therefore, the

identified results will be very sensitive to errors in the measured data.

Matrices [C1] and [C2] are the measured FRF matrices of the assembly and substructures,

which are only determined by the nature of the assembly and substructure systems. This

indicates that even if the measured FRF data have the same levels of error, the accuracy of

the identified results for different assembled structures can be significantly different.

In practice, difficulties arising from the condition [C 1] [C,J in identification are often not

a real problem, because [C 1] [C2] only means that the joints are very soft and can

simply be ignored. If the joint properties must be accurately identified, then one can use
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the FRF data at low frequencies or reset the experimental rig. Some special considerations

on experimental rig design will be discussed in §6.9

§6.8.3 Inaccurate Identification due to Not Satisfying Conditions 2 and 3

If several columns in the matrix [A] or several rows in the matrix [B] in equation(6.24)

are approximately linearly dependent, the resultant [A3] matrix in equation (6.66) will be

ill-conditioned. Consequently, the identified results are usually very sensitive to

measurement errors. The results usually cannot be improved by using more frequency

points or measured coordinates. This can be explained as follows:

Consider an equation generated from the cxth row of matrix the [A] and the 13th column of

the matrix [B], the coefficients for Zik and Zjk in the [Z] matrix are ajb and a<11bi

respectively. If the ith and the jth columns of matrix [A] happen to be approximately

linearly dependent, then the coefficients of Zik and Zjk (k=l to n) will also be

approximately linearly-dependent. In other words, the matrix [A3] constructed from [A]

and [B] will still be an ill-conditioned matrix no matter how many frequency points or

measured coordinates are selected.

If no restriction and transformation matrices are imposed, the elements in the resultant

[A3] matrix are the products of the corresponding elements in matrices [A] and [B],

therefore, the element in [A3] should have the same error levels as the element in matrix

[A] and [B]. As a result, the condition )in §6.8.1 is usually satisfied.

If the [A3] matrix without imposing the restriction condition is ill-conditioned, then the

restriction condition should be imposed. When a restriction matrix is imposed, the

coefficients in the [A3] matrix will be the summation of several products, hence the error

levels can be higher. Usually, an ill-conditioned matrix can always turn into a well-

conditioned matrix by reducing the unknown numbers (an extreme case is to reduce the

unknown number to one). However, because the error levels in [A3] can be high, the

accuracy of the identified results may not necessarily be improved.

Columns and rows in the matrices [A] and [B] can be linearly dependent when the joint

coordinates on the substructure system has little deformation, and/or the joint on the

assembly has little deformation. In the first case, accuracy of the identified results can

usually be improved by imposing the restriction condition; in the second case, however,

the accuracy of the results will be very sensitive to the measurement errors even if the

restriction matrix is imposed.
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§6.8.4 Numerical Illustration

§6.8.4.1 Case C: Case Not Satisfying Condition 1 in §6.8.1

This case study illustrates the problems with very soft joints, therefore, condition 1 in

§6.8.1 is not satisfied. The system studied is very similar to the system studied in §6.6.2

The substructures are exactly the same, but the the joint has only 1% of the stiffness of

the joint in §6.6.2. For simplicity, the joint is assumed to have neither mass nor damping.

Table 6.14 shows the identified relative stiffness in a frequency range 4004000Hz with

frequency increment 20Hz, the FRF data are polluted by 5% random errors. The results

(1,3) k(1,4)

	

-1.06	 1.98

	

1.00	 1.00
elative values

(2,2) k(2,3) k(2,4) k(3,3) k(3,4) k(4,4

	

-3.27	 1.92	 0.36 -35.03 14.82 -2.9(

	

1.06	 1.00	 0.98	 0.97	 1.02	 1.01
of the identified results for case C

Figure 6.8 shows the receptance at coordinate 1 for the assembly and substructure

systems. The difference between these two curves is so small that the effects of the joint

can be ignored.

If the FRF data are measured at lower frequencies (1-50Hz), the difference between the

FRFs of the substructure and assembly is enlarged as shown in figure 6.9. As expected,

accurate results are found as shown in the second row of table 6.14. (Case C2)

-30.ød	 - RSSCIBLY
- - SUBSTRUCTURC

-

L10.ød
5L.

Frequency

Figure 6.9 Point receptance H(l,1) of the assembly and substructure
in a low freiuenc y range
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§6.8.4.2 Case D: Case Not Satisfying Conditions 3 in §6.8.1 and Results
Can Be Improved by Imposing Proper Restriction Conditions.

A schematic diagram for the case studied in this section is shown in figure 6.10.

Rotary	
13.14	 substructure B

spring	 I	 joint

L iL -	
substructureA

I	 I	 I	 I

1,2	 3,4	 5,6	 7,8	 9,10	 11,12
13,14 _________ 15,16

_____	 Assembly

II	 4I
1,2	 3,4	 5,6	 7,8	 9,10	 11,12

6.10. Diaram for Case D

The substructure A consists of five finite beam elements and substructure B consists of

one beam element. The properties of the beam element (i.e. mass, stiffness and damping

matrices) are exactly the same as those of the beam element in § 6.6.1. Substructures A
and B are coupled by 4 rotational coordinates 6, 8, 14 and 16 (corresponding to joint
coordinate ii j2, j3 and j4), hence the joint element is a 4x4 impedance matrix. The joint

consists of two springs in the rotational direction and has no mass or damping. The

stiffness of the two rotary springs of the joint element is 1987.2N.m/rad. The FRF data
are assumed to be measured in the frequency range 40Hz to 500Hz with a frequency
increment of 20Hz and polluted by 5% random errors. The impedance (stiffness) matrix
is:

rxi X2 X3 X4 1 r 1987.2	 0 -1987.2	 0

	

[zj]J 
X2 X5 x x I I	 0 1987.2	 0 -1987.2 1

I x3 X X8 X9 1=1 -1987.2	 0 1987.2	 0 IN1

L ,	 x X1I L	 0 -1987.2	 0 1987.2 J

The corresponding vector form of the joint elements is

(Zj ) = ( xl ,x2,x3,x4,x2,x5 x6,xl,x3,x6,x8,x9,x4,xl,x9,xiO )T

In the first case (case Dl), no other restriction condition except for the assumption of
symmetry is imposed. The identified results are shown in table 6.15. The identified
results are divided by the true stiffness k=1987.2N.m/Rad, therefore, the exact results

should be 1, 0 or -1. It can be seen that except for elements x i, x2 and x5, there are great

discrepancies between the identified results and their true values. However, there is

hardly any difference between the assembly FRFs regenerated from the identified joint
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stiffness and noise-free substructure FRFs and the real FRFs of the assembly (figure

6.11). This means that the identified results do represent the effects of the joint.

Frequency

receptance ana piewctea receptance trom a

To understand the problem of the large difference between the identified and the exact

joint parameters, and the insignificant difference between the predicted and true dynamic

characteristics of the assembly, consider an equation composed from one column in

matrix [A] and one row in matrix [B]. Because substructure B is veiy short and light, the

responses at points 14 and 16 are always close to each other. Consequently, one may

write the row in matrix [A] as (a,b,c+A1, c+i2) and the column in matrix [B] as

(e,f,g+t3,g+i4) T. where 1A2,3 and & are second order terms compared with C

and g and can contain high levels of measurement errors. The equation is

(a,b,c+ 1 , c+ 2 Jr Xi x2 X3 X4 1 Ic	 =h1 - h2
I x2 x5 x6 x7 II	 I
I X3 X6 X8 X9 II	 (6.67)

L X4 xi X9 XiO -' 1.g+L4J

Rearranging equation (6.67) and ignoring the second order terms yields

aex 1 ^(af+be)x2^(ag+ce)(x3+x.4)+bfx5^(bg+fc)(x^x7)+cg(xg+2x9+X 10)=h1-h2

(6.68)

It is clear that the coefficients of some elements such as X3 and x are approximately

proportional (taking the neglected second order terms into account). Therefore, if no

restriction condition is imposed, except for x, x2 and X5, the rest of the results will be
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erroneous. However, the identified x3+X4, x6+xl and x8+2x9+x10 should be accurate.

These deductions are verified from the identified results in table 6.15.

From equation (6.68), it can also be predicted that in order to ensure that the identified

results are accurate, the maximum number of independent unknowns cannot exceed 6.

However, it is not true that if the unknown number is less than 6, accurate results are

always obtained, or the smaller the number of unknowns, the higher the accuracy of the

identified results. In the following examples, it will be shown that when improper

restriction conditions are imposed, even if the total number of unknowns is less than 6,

the identified results can still be erroneous.

Case D2: Assume

O,X=O,X9=0, X8X1
	 (6.69)

Substituting these restriction conditions into equation(6.68) leads to

(ae+cg)x 1+(af+be)x2-4-(ag+ce)x3+bfx5+(bg+fc)x7+cgx 1 Q=h 1-h2	 (6.70)

All the coefficients are now independent, therefore, accurate results are expected.

Case D3: Assume xl,x2,..x7 are known, hence the total unknown number is only 3.

Substituting the restriction conditions into equation(6.68) yields

cgx8+2cgx9+cgx 10h1-h2-aex1-(af+be)x2-(ag+ce)(x3+x.4)-bfx5-(bg+fc)(x-i-x7) (6.71)

The coefficients on the left hand side of equation(6.71) are still linearly-dependent,

therefore, the accuracy of the identified results is expected to be poor although the total

number of the unknowns is less than 6.

Physically, this case is an example in which the interface part of one substructure is very

"stiff" (the word "stiff" here means that the stiffness at the interface of the substructure is

high enough so that the responses at the interface coordinates of the substructure become

linearly-dependent). Because there is only a very small relative displacement between

joint coordinates at the substructure, the two coordinates on the substructure interface can

actually be approximately treated as the same coordinate. As a result, it makes little

difference to the assembly response if a stiffness element (or a damping element) is

connected to these coordinates on the rigid interface (eg. add a rOtary spring between

coordinates 14 and 16 in figure 6.10). Figure 6.12 shows another alternative for

modelling the joint. Provided kl+k3=k2+k4=1987.2N/m, the properties of the assembly

will be very similar to the assembly with a joint consisting of two rotary springs only. In

other words, there can be several approximate ways to model the joint.
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Figure 6.l2Alternatives to model the jointin caseD

Although the joint can be modelled approximately in several ways, when the real joint

changes (eg.the stiffness of the rotary springs changes), the characteristics of the

assembly do change. For this kind of problem, if a physically sensible model is assumed

(by imposing restriction to impedance matrix of the joint), the identified results are

usually not sensitive to measurement errors.

§6.8.4.3 Case E: Case Not Satisfying Conditions 2 and 3 in §6.8.1 and

Results Cannot be Improved by Imposing the Restriction Condition

Figure 6.13 shows a schematic diagram for case E. The substructure A has three beam

elements and the substructure B has two. The stiffness of all the beam elements are the

same as those in § 6.6.2. The mass of beam elements of substructure A is also the same as

those in §6.6.2, but the mass of the beam elements of substructure B is only 0.01 of the

beam element. The damping of the substructure is assumed to be proportional and is

0.1% of the corresponding stiffness.The joint has no mass or damping. The frequency

range is 100 to 400Hz with a frequency increment of 10Hz.

1.2	 3.4	 5.6	 7.8	 9.10	 11.12	 13,14

Substructure i	 Joint	 Substructure 2

1.2	 3.4	 5.6	 7,8 V	 9,10	 11,12	 13.14

I1•	 ••1
Assembly

Figure 6.13 The diagram for case E

Because the substructure B is very light, the joint of the assembly will have little

deformation if the assembly is excited. Therefore, a row in matrix [A] (which

corresponds to the receptance related to coordinate 7,8,9 and 10) can be written as
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b-a b-a
(a,c+1,b,c+i2) where c =	 =	 if a column in [B] is (d,e,f,g)T , then any

equation constructed from these rows and columns yields:

(a,c+i 1 ,b, c-i- 2) Xl X2 X3 X4 1 1d1 =h 1 - h2
XZX5X6 X7 Ue

fl1
X4 X7 X9 xioJ(.gJ

(6.72)

or

+((c+A 1)g+(c+2)e)x7+bfx8+(bg+(c+i)f)x9+(c+A2)gx 10=h 1-h2	 (6.73)

The coefficients of X5, xy and xio (which are cc, cg+ce and cg respectively ignoring the

second order terms) are approximately linearly dependent. Therefore, accurate results

cannot be achieved. The identified results without restriction are shown in table 6.16 as

case El.

wt'iere Xje, i=i,...,iu are exact values or tne joint element
Table 6.16. Relative values of the identified results of case El, case E2 and case E3

Because the coefficients on the left hand side of equation (6.73) are approximately

linearly dependent, one may try to improve the accuracy of the identified results by

means of imposing some res1rictionon the impedance matrix of the joint. The most

effective restriction condition (if restriction has any effects) is to reduce the number of

unknowns to one, i.e. to assume the joint impedance matrix has the form:

12 61.. -12 6L

6L 4L2

[Zj]= -12 -61.. 12 -61..

6L 2L2 -6L 4L2

(6.74)

where L=0.3 and y is the only unknown

Substitution of equation (6.74) into equation (6.73) leads to the final equation:

{ (6Ld-6U+4L2e+2L2g)1 +(6Ld-6Lf+4L2g+2L2e)2 } y=h 1 -h2	 (6.75)

The significant terms (eg. ad) have cancelled each other out. Since iq and are two

small values and can contain significant levels of measurement errors, the identified

results are expected to be sensitive to errors.
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The case with only one unknown is referred to as case E2. It can be seen that even if there

is only one unknown, the identified results is still less than 70% of its true value.

Physically, this is a case that the joint stiffness is relatively high so that there is little
deformation in the joint. Because the deformation at the joint is small, increasing or
decreasing the stiffness usually makes little difference to the overall dynamic
characteristics of the assembly. Consequently, a small change of FRFs of the assembly
will mean a great change in the joint. Therefore, the identified results must be very

sensitive to the measurement noise, and imposing a restriction will usually have little
effect on improving the accuracy of the results.	 -

To improve the accuracy of the identified results, it must be ensured that the joint has
sufficient deformation. Usually, at higher frequencies, the deformation of the joint will
increase, therefore, using FRFs at higher frequenq j will be a natural choice to improve
the accuracy of the identification.

If FRF data are available in a frequency range 600Hz to 1620Hz with a frequency
increment 30Hz (case E3), the accuracy of the identified results can be improved. It can
be noted from table 6.16 that even if no restriction is imposed for case E3, the accuracy of
the identified results is much higher than the identified results from low frequency FRFs.
For most elements, the error levels are only about 1%

The problem with using higher frequency FRF data is that it is not applicable to joints
with characteristics which vary with frequency. In addition, there are practical limits on

the frequency at which the FRF data can be accurately measured. Outside the limit, the

measurement errors increase dramatically.

§6.8.5 Practical Considerations on ExperimentatSet-up for Accurate

Identification

In § 6.8.3 and §6.8.4, it is shown that if a joint ha400 small or too large deformation,

the identified results can be inaccurate. It is also shown that the proper choice of(requency

range can adjust the deformation levels. The main disadvantage in using the frequency
range to adjust the deformation levels is that the joint property must be frequency

independent. In addition, there is clear physical restriction in the frequency ranges that

can be measured.

Actually, the joint deformation levels can also be controlled to some extent by using the
correct experimental arrangement. In this section only the case with a stiff joint is

illustrated, but the principle is also applicable to the case with a soft joint although

opposite measures should be taken.
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The structure studied is the same as case E. However, instead of having substructure B in

a free-free condition, one end of the substructure B is clamped (i.e. substructure B

becomes a cantilever beam). Two springs (one translational with stiffness 662400N/rn

and one rotary with stiffness 1987.2Nm/rad) are used to simulate the boundary condition

at the clamped end of the substructure B. A schematic diagram for the system is shown in

figure 6.14 as case Fl.

I	 1,2	 3,4	 5

1,2

r ''\ Rotary spring
-'Vi--- Translational s

Figure 6.14 The

910	 1112 13,1

Substructure B

9,10 11,12	 13,

for case Fl

structure A	 Joint

3,4	 5,6	 7,8

Assembly

The FRF data is assumed to be measured in the same frequency range (100-400Hz) with

the same frequency increment (10Hz). The identified joint matrix is shown in table 6.17.

It can be seen that the identified results are much more accurate than case El.

case k1 0.88	 0.89	 0.88	 0.86	 0.91	 0.88	 0.80	 0.88
case F2 0.85	 0.85	 0.85	 0.82	 0.89	 0.85	 0.75	 0.85
case F3 1.01	 0.99	 1.01	 1.01	 1.04	 1.01	 1.01	 1.02

Table 6. 17.Relative values of the identified joint parameters
consideration on experimental arrangement

Another alternative method to increase the deformation at the joint is to add mass to the

substructure B. If a 1 kg mass is added to the free end of the substructure B as shown in

figure 6.15, the deformation at the joint will increase, therefore, the accuracy of the

identified results is improved. The calculated results are shown in the second row of table

6.17 (as case F2).

1,2	 3.4	 5,6	 7.8	 9.10	 11,12	 13.14

I	 I	 I	 1	 .1
Substructure 1	 Joint	 Substructure 2

1,2	 3,4	 5.6	 7.8V	 9,10	 11,12	 13,14

I	 I	 I	 I
1 1kg mass	 Assembly

Figure 6.15 The diagram for case F2
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If heavier masses are attached to the structure (say two 2kg masses are attached to

coordinates 9 and 13 respectively as shown in figure 6.1ase F3), even more accurate

results can be obtained, the results of case F3)own in table 6.17. It can be noted that the

average error levels in the identified results is only about 1%.

1.2	 3,4	 5.6	 78	 9,10	 11,12	 13,14

I	 I	 I	 I
Substructure 1	 Joint	 Substructure 2

1,2	 3,4	 5,6	 7,8V	 9,10 11.12	 13.14

Ill	 1•
2kg mass	 Assembly

6.16 The diazram for case F3

§6.9 APPLICATION OF GENERALIZED COUPLING TECHNIQUES TO

JOINT IDENTIFICATION

§6.9.1 Theory

It has been shown in the last section that if a joint deforms insignificantly, the identified

results are usually very severely affected by various measurement errors in the FRF data.

If a joint is very stiff, then the deformation of the joint will be insignificant no matter how

the experiment is arranged, therefore, it is virtually impossible to identify this joint

accurately. To make things worse, hard joints can affect the accuracy of identification of

other effective joints (i.e. joints with sufficient deformation).

If a joint is very stiff, it may be reasonable to assume that the joint is completely rigid, the

generalized coupling techniques can then be used to couple the substructures through the

rigid joint first, then the coupled structure is treated as a new substructure, and the FRFs

of this new substructure are used for identification. After the coupling,the hard joint is not

involved in the identification process. If the rigid joint is massless, then the joint

coordinates of the stiff joint can be completely deleted, otherwise, half the stiff joint

coordinates should be retained to r pre^et the mass effects of the stiff joints.

Figure 6.17. shows the two steps for incorporation of coupling and joint identification

techniques.

In Chapter 5, it is shown that due to the inconsistent errors, the errors in the predicted

assembly response are usually magnified. The worst case is at the resonance frequencies

of the substructure. Therefore, in the identification process, the FRFs at these frequencies

should be excluded.
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9 Effective jomt

fl substructure 3	 substructure 1

L3	 hard joint substructure 2

I	 I

JJ, Step iCouple substructure 2 and 3

- effective joint ,/' :	 7
1	 substructure 1	 Assembly

New substructure 2	 -

Step2 Identification of
effective joint

0 Identified effective

6.17 Two steps for the identification of effective joint properties

§6.9.2 Numerical Case Studies

Consider the beam system shown in figure 6.18.

1,2	 3,4	 5,6	 7 8ç'Q .' io 11,12 13,14
II	 I	 I_Ar/_......._I	 1

Substructure A	 J mt Substructure B

,9,1O 1	

H

1,2	 3,4	 5,6	 78

________________________ 	

1,12	 13,14

Sfiff	
Assembly

rotary spring
-A/'.___ Translational spring

18 The diaramforcase

The substructures A and B are exactly the same as in § 6.6.2, the joint element consists of

two springs, one translational (662400 N/m) and one rotational (1987.2Nm/rad). The

translational spring connects coordinates 7 and 9; the rotational spring connects

coordinates 8 and 10. The FRF data are measured over a frequency range 100-500Hz

with a frequency increment 20Hz and are polluted by 5% random noise. The joint matrix

is assumed to have the form

X (2 0 0

X2 X3 0 0
[K]-

0 0 X4 X5

0 0 X5 X6
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Five cases are studied and the identified stiffness in their relative values are shown in

table 6.18. When no generalized coupling technique is applied, the accuracy of the

identified joint element related to the rotary coordinates is poor, and the identified joint

parameters in the translational direction are not very accurate either (even for the case with

only two stiffness unknowns (case 03)). However, if generalized coupling techniques

are applied and the FRFs at the resonance frequencies of the coupled substructure are

excluded (Case 05), the accuracy of the identified results is improved significantly.
a	 X4	 Further Restriction Resonant Coupling

______ .L .L j kz	 k2	 k2	 ______________ FRF
CaseGi 4.8 -5.3 85 -2.3e-4 -2.6e-4 -2.8e-4	 yes	 no
CaseG2 5.6 -5.2 9.4 -4.8e-4 -5.le-4 .52c-4 **********	 no	 no
CaseG3 016 0.16 0.16 -3.5e-4 -3.5e-4 -3.5e-4 X 1-X2=X3,X4=X5=X(5 	 no	 no
CaseG4 0.40 0.55 0.36	 **	 yes	 yes
CaseG5 0.93 1.04 0.82 **	 **	 no	 yes

Table 6.18 The identified joint parameters for a structure

with both hard and effective joints

§6.10 THE EFFECTS OF CONSISTENT ERRORS, APPLICATION OF

MODAL ANALYSIS TECHNIQUES AND SELECTION OF FREQUENCY

POINTS

In Chapter 5, it is shown that using modal analysis, the effects of inconsistent errors can

be eliminated, and in most cases, the accuracy of the predicted assembly results can be

significantly improved. Therefore, it would be a natural extension to introduce modal

analysis in the joint identification.

If modal analysis is applied, the inconsistent errors are eliminated. However, the

consistent errors will be retained, and sometimes, consistent errors may be introduced

during the modal analysis. Therefore, it is necessary to study the effects of consistent

errors on the accuracy of the identification, if the modal analysis technique is to be

introduced in the joint identification.

When random error is introduced, the FRF is polluted proportionally, i.e. the error in any

FRF at any frequency does not exceed a small bound (say 5%). However, if there are

consistent errors, the resonance frequency can be shifted slightly. At frequencies close to

the resonance frequency, the error levels in the the FRFs can be much more significant.

Therefore, the frequencies close to (both the substructure and the assembly) the resonance

frequencies should not be used in the joint identification.

To illustrate the effects of consistent errors, consider the system in §6.6.1 again. Instead

of having random errors, 5%, 1% and 1% errors are used to pollute the mode shape,

natural frequency and modal damping respectively, the other parameters used are exactly

the same as that of case A in §6.6.2. Figure 6.19 and figure 6.20 show the first elements
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of the identified stiffness against the frequency and table 6.19 shows the identified

stiffness element in their relative values. It is noted that if all the frequency points are used

(case Hi), the accuracy of the identified results	 very poor; and if the FRFs close to

resonance frequencies are excluded(case H2), the accuracy of the results improved

significantly. It is also noted that if all the frequency points are used in the identification,

there is a dramatic change at around 570Hz in the identified stiffness. This frequency

corresponds to one of the substructure natural frequencies. The change is much less

significant when these frequency points are excluded. The significant change in the

identified results along the frequency axis clearly indicates the effects of the consistent

errors. Checking the identified results along the frequency axis gives a good indication

whether some of the frequency points should be excluded.

case HI 6.178 -1.16 -0.39	 1.41	 1.73	 1.80
	

6.87	 2.70	 0.43	 1.10

case H2 2.66	 0.38	 0.88	 1.03	 1.18	 1.12
	

0.88	 1.79	 0.68	 1.02

Table 6.19 The relative values of the identifiec nt parameters from data

contaminated by consistent errors.

Frequency

Figure 6.19 The identified stiffness K(l,i) using the FRE data
contaminated by consistent errors (including FRFs at resonances)

rigure o.0 ne iaenunea suirness rj&l,i) using me riu uata
contaminated by consistent errors (excluding FRFs at resonances)

The above results indicate that the consistent errors can have significant effects on the

joint identification. Unfortunately, the consistent errors cannot be eliminated from modal

analysis. Indeed, because of the effects of the modes outside the measured frequency

range, the levels of the consistent errors can actually be higher. If applying modal
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analysis can eliminate random errors, but does not introduce consistent errors, the

accuracy of the identified results should be improved, but if consistent errors are

introduced during the application of the modal analysis techniques, then the accuracy of

the results can be worse. In summary, the modal analysis techniques must be used with

great caution.

§6.11 THE BASIC STRATEGY IN DEALING WITH JOINT MASS

In the foregoing sections, various factors that affect the accuracy of the identification have

been discussed. Using the formulae proposed, it is possible to identify the stiffness, mass

and damping matrices uniquely. Experience indicates that much more FRF data are

required to identify both mass and stiffness matrices of the joint than that required for the

identification of the stiffness matrix only. This is because both stiffness and mass

contributed to the impedance element of the joint, and it is the impedance of the joint that

affects the assembly response.

In practice, the mass of the joint is usually not significant, and it can often be modelled

simply and accurately (sometimes simply by weighting). If the mass of the joint can be

evaluated, the mass properties of the joint should be used as some known parameters in

the identification process rather than to identify both the stiffness and mass matrices

together.

§6.12 JOINT IDENTIFICATION WITH INACCESSIBLE ASSEMBLY

JOINT COORDINATES

§6.12.1 Direct Solution

Sometimes, the joint coordinates are not accessible after the structure has been assembled,

i.e. for assembly, the only available receptance matrix is [Him]. Therefore, the formulae

derived (equatio(6.l6-l9)) cannot be used directly, other formulae are required.

Multiplying both side of equation (6.16) by the matrix [Ht,a] leads to

[Hnj][Zj] =([Haa]4Him]) [Hba]
	

(6.76)

Substituting equation (6.76) in equation (6.17) yields

[Hnj][Hab]([Haa][Hnn])[Hba][Hbb] 	 (6.77)

Equation(6.77) shows that the matrix [Hnj] can be found from the matrix [Hnn] and the

receptance matrix of the substructure.
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Substituting equation (6.77) back into equations (6.16) yields

([H].<[H][HnuiJ)[H1,][Hbb] } [Zj]J= J-[Hnp]	 (6.78)

Equation (6.78) at different frequencies can be combined together in the way aiready

discussed in §6.4

However, if the receptance matrix is polluted by measurement errors, the matrix [H]

calculated from equation(6.77) can contain much higher error levels than that in other

sub-matrices, therefore, the identified joint properties from equation (6.78) are usually

found to be very sensitive to measurement errors. 	 -

§6.12.2 Solution Using Indirect Iterative Methods

§6.12.2.1 General

Identification using equation(6.78) is a direct method. However, the joint properties can

also be identified using the indirect iterative method. Recall equation(6.12)

[HnnI[Haa] - [Hahi (U] +[Zj] ft1bb])' [ZI ['1ba]	 (6.12)

Matrix [H] is not required in this equation. Equation (6.12) is effectively the same as the

coupling equation in Chapter 5. From Chapter 5, it is known that when the substructure

dat2poIluted by random errors, the predicted assembly response using equation (6.12)

will usually not be smooth, but at frequencies other than the substructure natural

frequencies, the discrepancy between the predicted and real assembly response is usually

not significant. This clearly indicates that equation(6.12) is still approximately correct at

frequencies other than the substructure natural frequencies. Therefore, the [ZjJ matrix

identified from equation(6.12) should be more accurate than that identified from

equation(6.77). The problem with equation(6. 12) is that it is nonlinear and it cannot be

solved directly. Therefore, iterative methods must be used.

The methods which have been applied to solve equation(6.12) are function minimization

methods [85]( which includes the Patten Search method, the DFP method, the Powell

method and the Steepest Descent method) and the Newton-Raphson method[2] (Which is

actually also a function minimization method). It is found that the Newton-Raphson

method (or the sensitivity analysis) is more efficient than the function minimization

methods. Only this method is described in the next section.



r {real(hm-hp))

I (imag(hm-hp))
(6.79)
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§6.12.2.2 Application of the Newton-Raphson method

The aim of joint identification is to minimise the difference between the measured and

predicted assembly response. To use the Newton-Raphson method, a vector is

constructed:

where hm and h are the predicted and measured receptance elements between different

coordinates and at different frequencies.

The following iteration process is used:

(y(k+l) I (y(k) )+[J(y(k))]+{F(yOC)))	 (6.80)

or to avoid overshooting

(y(k+1))=(y(k)) +3[JyOC))]^(F(y(k))) 	 (6.81)

where

[J(y(k))]=	 (6.82)

is the Jacobian (or the sensitivity matrix), and f3 is a scaling factor on the modification

The converged solution from equation(6.8 1) is the least-squares solution for equation

(6.79), i.e.

IIF((y))II— minimum
	

(6.83)

One method to determine the 1 value is to use 1D minimization [85] so that

IIF( (y(k) ) +J3[J(y(k))]+ (F(yO)) ) )II— minimum 	 (6.84)

Experience shows that this approach is not necessary. The 1D minimization can itself be

expensive. Instead of 1D minimization, the following approach may be adopted

First set 13=1 and if

IIF( (y))+13[J(y43))][F(y()) ))II <HF( (yO) )) II	 (6.85)

then update (y(k)) with (y(k+l)}, otherwise, set 134 and repeat the checking process

until equation(6.85) is satisfied.
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The analytical Jacobian matrix is usually not available, therefore, a finite difference

approximation is used as

jJij=	
=	 28Yj

1 10-6	if 1pj1 <i0
where 6y= 10-6 

IPJI if 1pj1 ^io

(6.86)

(6.87)

To reduce the effects of numerical errors, the unknownsare so scaled that the difference

between the unknowns does not exceed the order of 102.

§6.12.2.3 Computation Consideration and Weighting

There can be practical difficulties in direct application of the algorithm discussed in

§6.12.2.2, especially when the code is run on a small computer. For the Jacobian matrix,

the number of rows is the product of the number of the elements at each frequency

(Nsjze(Nsjze+l)) taking the symmetry of [H] and the real and imaginary parts of [H]

into account, and the number of the frequency points. i.e.

Nrow=NfreqNsize(Nsize+l)
	

(6.88)

N0i=ko
	

(6.89)

where Nmw and Ni are the number of rows and columns of the Jacobian, Nfreq and

Nsjze are the numbers of the frequency points and the size of the matrix [H], and ko is

the number of unknowns.

It is noted from equatioi6.88) and (6.89) that the size of the Jacobian can be significant.

Equation(6.80) is the least-squares solution for

[J(y1)1 (1yi) =F(y1)
	

(6.90)

where ('yj}=(yi+i}-{yj}
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In §6.5, it is known that the solution for equation (6.80) can be found through its sub-

matrix operations. Let

I	 I
	[J0(w2)] I	 { F0(o)) I

and (F(y)= (F0()}
	

(6.91,6.92)

	

]	 (Fo(wn))J

where [J0(oj)] and (Fo(coij) are the sub-matrix and sub-vector at frequency wj

Then the solution is

(Li(yj)) =[	
czZ[J (01)]T[J (c)] 11'	 (6.93)

where aj is the weighting at each frequency.

If a=l, the direct solution is obtained. An alternative is to set a- 1 , which
0J0(0j)II

effectively means that all the frequency points are of the same importance.

It should be noted that the weighted equation(6.93) gives the weighted least-squares

solution, i.e.

IIF1I=aj21IFo(wj)II
	

(6.94)

The weighting is essential to ensure convergence to the true solution.

§6.12.2.4 Selection of Frequency

The measured FRFs at some frequencies should not be used, this is mainly due to the

following reasons:

1) At the substructure natural frequencies, the predicted assembly response from coupling

can be significantly affected by the measurement noise. This has been discussed in

Chapter 5.(5.9).

2) The FRFs at some frequencies can cause local minima and the solution will converge

to these local minima rather than the tue joint values.
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Consider the following two examples:

Figure 6.21 shows three FRFs. Curve B is clearly closer to curve C (the true value) than

curve A (initial estimation). However, the value of the objective function of curve B will

actually be greater than that of curve A, because one frequency point (co) coincides with

the natural frequency of the curve B, hence the differences between curves B and C are

significant. Therefore, the frequencies between the predicted and true resonance

frequencies should be excluded in the identification process.

—20.0d8 -- -_ CURVE C.

•—o-- CURVE B
-- CURVCA

	

/	 S..

-ea. ØaB

Frequency

o.i i.n exampie or possiote iocai minima
between the true and oredicted resonances.

Another possibLe case for the local minima is that one natural frequency of the predicted

assembly is closer to another natural frequency of the real assembly as shown in figure

6.22. When C0B2 approaches its true value Co&j, the value of the objective function can

actually increase. In this case, the FRFs between COAL and c0s2 should not be used in the

iteration process until the predicted ois sufficiently close to O)p.

Frequency

An example of possible local minima because the predicted
is closer to a different resonance of the true assembly

The above two cases can cause local minima, however, these are often not the only cause

of local minima. However, different sets of data usually have different local minima (or at

least some of the local minima are different). Therefore, if the frequency points are

chosen randomly for each iteration after some of the frequencies are deleted as discussed

in the forgoing paragraph, the convergence can usually be improved. Experience shows

that selection of the frequency and imposition of weighting can actually be of utmost



-90. Oc

-170. d

-90.Oc

-150.Od

Chapter 6 Idcnuflcaiion of joint proocrties usin g FRF data	 - pace 223 -

importance for the iterative method. Without proper choice of frequency points, the

algorithm usually does not lead to the true solution.

§6.12.3 Numerical Illustration

The system used in this section is exactly the same as the system studied in §6.6.1, but

[H1 is not available and the joint has no damping. The symmetry of the stiffness matrix

is imposed and hence the total number of unknowns is 10.

Recall equations (6.77)(6.13):

Hnj]p=[Hab]m-([Haalm4HnnJm)[Hba]m[Hbb]m	 (6.77)

[Hnjlp:4Hablm([II +[Zl [Hbb] m)'
	

(6.13)

where [] and Elm represent the predicted and measured receptance matrices. When the

receptance matrices are free of measurement errors, exact results are found from both

equations(6.77)(6.13). However, this is not the case when the measured receptance

matrices are polluted by 5% random errors. Figure 6.23 arid figure 6.24 show the first

element of the predicted assembly receptance ([H(l,l)J) from equations(6.77)(6. 13)

with exact EZ] when the receptance matrices are polluted by 5% random errors. It is

noted that the predicted results from equation(6.77) are significantly different from the

real values, while results froir equation(6. 13) are reasonable except at some frequency

points which are close to one of the substructure resonance frequencies.

Frequency

6.23 Predicted

Frequency

Figure 6.24 Predicted assembly response using iterative identification
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Table 6.20 shows the identified results using equation(6.78). As expected, when there is

no error in the measured data, exact results are identified, however, when the measured

data are polluted with 5% random noise, the accuracy of the identified results is too poor

to have any practical use.

0.37 I	 0.62 I -14.561 7.34f -0.19 I	 9.08 I -6.98 I -0.10 I	 2.29 I -1.47

20 The relative values of the identified results from the direct solution

To use equation(6.12), an initial estimate has to be made. The initial joint stiffness matrix

is generated from a beam element with L=O.25n, w=O.07m, h=O.015m,

E=2.O7E11N/m2 and p=7547 kg/rn3.

Figure 6.25 shows the real assembly receptance and the predicted assembly response

with the initial estimation in equation(6.12) and the relative stiffness values of the initial

estimation is shown in the first row of table 6.21.

Figure 6.25 Predicted assembly response

If no weighting or no selection of frequency points are applied, and even if the receptance

matrices are noise free, the results do not converge to their true values.

When weighting is applied and some frequency points deleted using the method

discussed in §6.12.2.4, the results converge to the true solution. Table 6.22 shows some
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identified results during the iteration process and figure 6.26 shows the values of the

objective function against the number of iterations; the frequency increment is 20 Hz.

1.0

IIF(y1)II
IIF(,yII 

0.5

0.0
0	 10	 .	 . 20	 30

No. iteration

value of the objective function of the initial estimation) against the
number of iterations (no measurement errors)

When the receptance matrices are polluted with random noise (5%), the selection of the

frequency points becomes more critical and more frequency points around the resonance

frequencies of the substructures should be excluded. To compensate for these additional

frequency points round the resonance of the substructures, a smaller frequency increment

(5Hz) is used. Table 6.22 show some of the identified results during the iteration

process. The values of the objective function against the number of iterations is shown in

figure 6.27. It is noted that the results are less sensitive to the measurement errors than

the direct solution. Figure 6.28 shows the regenerated FRFs using the identified joint

parameter and the noise-free FRF data. Although the errors in the identified element can

exceed 40%, the difference between the predicted and true assembly response is not

significant.
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1.0

IIF(y1)II	 0.5
IIF(yII

0.0
0	 10	 20	 30

No. iteration

Figure 6.27 The values of the objective function (divided by the value
of the objective function of initial estimation) against the number of
iterations (5% random error)

Frequency

hgure O.2S Predicted assembly response
ioint Darameters and substructure FRFs
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§6.13 CONCLUSIONS

The joint identification techniques are very important in the study of the joint behaviour

and its effects on the overall structure. It is believed that in order to develop techniques

for the nonlinear joint identification techniques, the techniques on the linear joint

identification must be fully understood some nonlinear joints, if the experiment is carried

out with some control, can be approximately modelled by linear joints.

It is believed that the FRF joint identification techniques can be extended to the nonlinear

joint identification (see Chapter 7). Compared with the joint identification method using

modal data, the FRF joint identification methods are not well-developed. In this chapter,

the FRF joint identification techniques have been investigated systematically.

Two new direct identification algorithms have been developed. Method one is found to be

superior to method two. It is shown that unlike the coupling techniques in Chapter 5, the

accuracy of the identified joint parameters are heavily related to the identification formulae

used.

It is shown that information obtained at one frequency may not be enough to extract an

accurate joint model from contaminated experimental data. In order to identify the accurate

results, it is suggested that all the information available should be used together. Because

the joint impedance parameters can be frequency-dependent, they must be transferred to

frequency-independent parameters through a transformation matrix. It is also shown that

in order to retain the physical properties of the joint (eg. the symmetry of the impedance

matrix) and reduce the number of unknowns, a restriction matrix should be imposed.

Restriction techniques are very effective in improving the accuracy of the identified

results, especially when there is not suffucient data available. The mass of the joint is

usually not significant and is not difficult to model. Accordingly, it is suggested that the

mass of the joint should be calculated first and treated as a known parameter in the

identification. The identified stiffness of the joint are usually more accurate.

The frequency range and the measured coordinates are two important factors which can

affect the accuracy of the identified joint parameters significantly. A sufficiently wide

frequency range and sufficiently well-spaced coordinates should be measured. In

contrast, the total number of frequency points is not so critical, very small frequency

increments and very closely located coordinates are not necessary and hence they are not

suggested in the identification.

In order to use the available information effectively, the equations obtained at different

frequencies and different coordinates should be properly scaled. Several weighting

techniques are proposed. The WA and WB methods tend to weight the FRFs at different

frequencies with the same importance while the WBG and WBS methods not only weight
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the FRFs at different frequencies, but at different coordinates too. When the measured

data are limited, it is strongly suggested that the WBS and/or WBG methods should be

used. The use of WBS methods must be incorporated with an elimination process to

delete erroneous equations.

The accuracy of the identified joint is found to be heavily dependent on the effects of the

joint on the structure. If a small change in the joint will cause a significant change in the

predicted response of the assembly, then the joint can be accurately identified; otherwise,

the identified joint may not be accurate. Three cases in which the identified joint

parameters are sensitive to measurement errors are discussed. -

1) a very soft joint so that the assembly and substructure response are similar.

2) a very hard joint so that the response at the joint coordinates are linearly-dependent.

3) a very hard substructure interface so that the response on the interface is linearly-

dependent.

Proper restriction can improve the accuracy of the identified joint parameters significantly

in case 3, but restriction techniques are usually not effective in case 1 and case 2.

The selection of a proper frequency range can improve the conditions in identification,

i.e. a lower frequency range for the soft joint and a higher frequency range for the stiff

joint

It is also shown that the carefully designed rig can improve the accuracy of the identified

joint parameters significantly. The rule of thumb is that the joint should be situated so that

when the structure is excited, the joint deforms in a proper range.

When the joint is very stiff, it is usually not possible to identify the stiff joint. However,

if there is some other joints to be identified, these joint parameters can be significantly

affected by the measurement errors in the FRFs at the stiff joint. It is suggested that the

generalised techniques developed in Chapter 5 can be used to couple the coordinates

related to the stiff joint first, then the joint identification algorithm can be applied only to

the rest of the joints.

In most cases, random errors are used to simulate the measurement errors. However, it is

shown that the effects of consistent errors can be much more significant in identification

than the random errors. It is found that the FRFs at resonance are mostly affected,

therefore, they should be excluded in the identification process. It is also shown that the

significance of the consistent errors can usually be investigated by studying the variation

of the averaged results with frequency.
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In practice, after the sucture is assembled, it may not be possible to measure the FRFs at

the joint. The case when the FRFs at the assembled joint is inaccessible is investigated.

It is shown that a small modification to method one can be made so that a direct solution

can be found with the absence of the FRFs at the assembled joint. However, it is found

that this direct solution is very sensitive to measurement errors. Therefore, it is not

recommended.

An alternative is to solve a set of nonlinear identification equations using the Newton-

Raphson algorithm. A memory saving algorithm is proposed so that the Newton-

Raphson algorithm can be used on a computer with a small memory. In dealing with the

nonlinear identification equations, the most important thing is that there should be no local

minima between the estimation and the ue solution. It is found that imposing weighting

is very effective in eliminating some of the local minima. In order to avoid the local

minima, the frequency points used in identification should be properly selected. It is

shown that the weighting and selection of the frequency points are extremely important in

the iterative identification.

The main disadvantage for the iterative identification method is that it can be

computationally expensive. It is also necessary to have a reasonable initial estimation of

the solution.



CHAPTER

EXPERIMENTAL CASE STUDIES

§7.1 INTRODUCTION

In this chapter, the generalized coupling and joint identification techniques developed in

Chapter 5 and Chapter 6 are applied to real structures. Two experimental rigs have been

used.

Rig one was a linear structure consisting of two aluminium beams. A rigid joint and a

flexible joint were used separately to connect the two beams together. Both the coupling

and the joint identification techniques are applied. It is found that for the assembly with

the rigid joint, it is appropriate to ignore the flexibility of the joint, i.e to predict the

assembly response simply by applying the coupling technique; for the assembly with the

flexible joint, however, the properties of the joint must be considered, i.e. joint

identification techniques must be applied.

Rig two was effectively a nonlinear structure. Two beams were first connected together

through linear bolts to form a substructure system. At the middle of the two beams, a

friction joint was formed by using two aluminium pieces. The clamping force at the

friction joint was so controlled that slip was allowed under excitation. The characteristics

of the structure is "linearised" by controlling the relative displacement at the joint. The

equivalent stiffness and damping are identified. The friction joint parameters (such as the

friction limit) are then extracted from the variation of the equivalent stiffness and damping

against the magnitude of the relative displacement at the joint.

§7.2 EXPERIMENTAL CASE STUDY ONE -- LINEAR STRUCTURE

§7.2.1 Test Structure

The diagrams of the substructure and the assembly systems are shown in figure 7.1 .The

test structure consisted of two aluminium beams with the same rectangular cross section

2.54x 1.27 cm2(lx in2). One beam had a length of 102cm, the other was 91cm long.

Two joint elements have been used separately to connect the two beams to form two

assemblies. One joint element was a rectangular aluminium piece (Joint A); the other

consisted of two aluminium pieces and a steel shell element cut from a inch BSW nut
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(Joint B). Figure 7.1 also shows photographs of these two joint elements. The steel shell

element was used to introduce flexibility of the joint B.
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Figure 7.1 Diagrams of experimental rigs

§7.2.2 Measurement

The structure was suspended by using two soft strings (to simulate the free-free boundary

condition) and excited perpendicular to the line of the beam by an instrumented hammer

(B&K type 8202) . The force was measured by a force gauge (B&K type 8200) installed

at the end of the hammer; the response of the structure was detected using an

accelerometer (B&K type 8303). The mass of the accelerometer was about 3g, hence the

effect of its mass on the structure was negligible.

The signals of the force and response were sent to two charge amplifiers (B&K type

2626) which turned the charge signals into suitable voltage signals. These voltage signals

were then sent to a dual channel spectral analyser (B&K 2034). The analysed data in the

analyser (FRF data) wev then sent to a microcomputer (HP 9816) and stored in floppy

discs for further analysis. A schematic diagram for the experimental setup is shown in

figure 7.2.

Before doing any measurement, the overall measurement arrangement was calibrated

using the ratio-calibration technique [1J.

To avoid the leakage problem, an exponential window and a rectangular window were

applied to the response and the force signals respectively.

Six coordinates were measured at each beam, hence twelve coordinates were measured on
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the assembly as shown in figure 7.1. The point receptance was measured by positioning

the accelerometer at the opposite side as the excitation on the beam as shown in figure

7.2. Because the thickness of the joint A was smaller than the height of the accelerometer,

no point receptance of the assembly with joint A was measured

Charge amplifiers

I	 iS.lG.1

Hammer

.	 S

-	 Accelemmeter

for experiment one

§7.2.3 Modelling of the Joint

Because of the symmetry of the beam structure and excitation, the structure could only

vibrate in one translational direction and one rotational direction (Y and cx in figure 7.1).

The joint was assumed to have four translational DOFs, two DOFs were connected to the

long beam and the other two connected to the short beam as shown in figure 7.1. Because

the massofjointA and B were insignificant(2.5g for joint A and 12.4g for joint B), the

effects of the joint mass were ignored.

Since the joint was modelled with four coordinates and other coordinates were chosen for

convenience, only the responses in the Y direction were measured.

§7.2.4 Modal Analysis

The FRFs at coordinates 1,9, 10, 11 and 12 were analysed by using the available modal

data extracting program <<MODENTh> [106]. The modal data were first extracted from

each FRF and the extracted modal data were then forced to be consistent by making small

adjustments. The modal properties outside the measured frequency range could not be

extracted. To compensate for the effects of the modes outside the measured frequency

range, residual terrns[1] were included.
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Typical FRFs regenerated from the modal data are shown in figure 7.3

-gg 0dB	 - MSUPrC
- - RCNqr.

70 0dB
96.0I-z	 :9S.r4z

Frequency

(a)Substructure

-90 OdOl	 -
— — R(c-:

-23	 J3'
96	 -1:	 1596 'z

r req ier%c/
(b) Assembly

Figure 7.3 Typical measured and regenerated FRFs

§7.2.5 Prediction of the Assembly Response Using Generalized Coupling

Techniques

Figure 7.4a and figure 7.5a show the predicted FRFs of the assemblies obtained from the

measured substructure FRFs by using coupling techniques. The predicted FRFs are not

smooth. Some peaks are observed at the frequencies corresponding to the resonanccof

the substructures. This is clearly due to the effects of inconsistent errors, which has been

discussed in Chapter 5.

For the assembly with joint A, apart from these pseudo resonance peaks, the overall

shape of the predicted FRFs match the measured counterpart very well; the resonances of

the assembly are also well-predicted. However, for the assembly with joint B, the

difference between the predicted and measured FRFs of the assembly is much more

significant, particularly at high frequencies.

Figure 7.4b and figure 7.5b show the predicted assembly response obtained from the

regenerated substructure FRFs (from the extracted modal data). The predicted FRF are

now smooth and the magnitude of the pseudo resonance peaks are greatly reduced and
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become insignificant (e.g. a pseudo resonance peak can be noted between the third and
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______________	 (a) From measured substructure FRFs

PREDICTED
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96.0Hz	 1696.0Hz
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(b) From regenerated substructure FRFs
Figure 7.4 Coupling results for the assembly with joint A
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Figure 7.5 Coupling results for the assembly with joint B
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fourth measured resonance frequencies in figure 7.4a, but the peak can not be observed in

figure 7.4b). Again, the FRFs of the assembly with joint A are satisfactorily predicted,

but the predicted FRFs of the assembly with joint E are still significantly different from

the real ones.

For the assembly with joint A, some of the predicted resonance frequencies are lower

than the measured resonance frequencies as they should be, these difference between

resonance frequencies must be caused by measurement errors. The magnitudes of the

difference between the predicted and the measured resonance frequencies for the

overestimated and underestimated resonances are similar; therefore, the difference

between the predicted FRFs around under-estimated frequencies and their measured

counterparts can also be caused by measurement errors. Since the difference between the

predicted and measured response can be caused by measurement errors, it may not be

appropriate to try to identify a joint.

For the assembly with joint B, the predicted response is significantly different from the

measured one, particularly at high frequencies. The predicted resonance frequencies from

coupling are overestimated, which means that the stiffness of the joint is also

overestimated. Clearly, joint identification techniques should be applied.

The results in this section also demonstrate that modal analysis techniques are very

effective in eliminating inconsistent measurement errors. Accordingly, modal analysis

techniques are recommended for the applications of coupling techniques. Since the

predicted resonance frequencies from measured substructure FRFs and from regenerated

substructure FRFs are similar as shown in table 7.1, and the assembly FRFs predicted

from regenerated substructure FRFs are much smoother, the regenerated substructure

FRFs are used to predict the assembly FRFs in the next few sections.
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NB:
A I Measuied natural frequency of the assembly A
A II Predicted natural frequency of the assembly A from the measured substructure FRFs
A m Predicted natural frequency of the assembly A from the regenerated substructure FRFs

B I Measured natural frequency of the assembly B
B II Predicted natural frequency of the assembly B from the measured substructure FRFs
B III Predicted natural freouencv of the assembl y B from the regenerated substructure FRI

Table 7.1 Predicted and measured resonance frequency for assembly A and assembly B

§7.2.6 Results of Joint Identification

§7.2.6.1 Identification Using Measured FRFs Directly

Unlike the theoretical case study, the exact properties of a joint to be identified are not

known in the experimental study. Therefore, the accuracy of the identified results can

only be evaluated by means of deduction.

If the joint properties are accurately identified, the response of the assembly must be

accurately predicted from the substructure FRFs and the identified joint parameters. In

addition, the identified results from using different data sets should be close to each other,

and because the joint is approximately symmetric in its geometry, the stiffness and

damping matrices should be close to the following form

ABCD

[K]=J BADC
CDAB

LDC BA

Three cases were studied for each joint by using different data sets. In the first case, all

the data are used (12 coordinates and frequency range 96-1696Hz). For the assembly

with joint A, equations(6.16)(6.17) were used, and for the assembly with joint B,

equations(6.16-6.19) were used; in the second case, all the coordinates were used, but

only the FRFs within the frequency range 800-1696Hz were used; in the third case, only

(7.1)
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parts of the data were used (for assembly with joint A, equation(6.16) was used and for

the assembly with joint B, equation(6.19) was used).

Different weighting methods have been applied, it is found that all the weighting

techniques yield similar results, but if no weighting is applied, the accuracy of the results

is poor.

The cases including and excluding the resonance frequencies have also been calculated

and the difference between these two is insignificant, indicating that the effects of

consistent errors are insignificant. 	 -

Because of the similarity of the identified results obtained from using different weighting

techniques and from using data including and excluding resonance frequencies, only the

identified results from the WBG method using all the frequency points are presented.

The identified results are shown in table 7.2 and table 7.3. It can also be noted that

deduction from the geometry symmetry of the joint (equation(7.1)) is satisfied. In

addition, the results from different data sets are similar. Therefore, the identified results

are likely to be accurate if the predicted assembly FRFs match the measured ones.

Case Al

r 3.94 -1.74 -4.06 1.76 1.32 -1.42 -2.50 2.12 '
I .174 3.58 2.08 -3.81 -1.42 2.63 1.18 -2.26 I

IxlO6N/m]xlo7N/m [D]{[K]=I -4.06 2.08 4.01 -1.86 -2 50 118 3 29 -2.20 I

[ 1.76 -3.81 -1.86 3.83 2.12 -2.26 -2.20 2.94 J

CaseA2

r- 4.38 -1.43 -4.53 1.47

-1.69 2.54 1.59 -2.35 I
[K]	

-1.43 3.71 1.92 -4.02
IxlO6N/m1 1.47 4.02 -1.46 4.00 }107N/m

	

{ 1.23 -1.69 -2.70 2.32

-2 70 1 59 3 05 -2.36 I-453 1.92 4.31 -1.46

2:32	 35 -2.36 3.47 J

CaseA3

r 3.98 -1.59 -4.07 1.60 1.06 -1.24 -1.93 1.45 T

-1.24 2.09 1.19 -1.81 I[K]] -1.59 3.60 1.92 -3.83
Ix1O6N/m]xlo7N/m [D]{I 4.07 1.92 3.98 -1.71 -193 119 196 -1.70 I

-1.45 -1.81 -1.70 2.61 JL 1.60 -3.83 -1.71 3.90

Table 7.2 Identified results for joint A
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CaseBi

[K]	
1.53 2.89 2.18 -2.33 Llo6NIm

	
1.64 2.61 -230 -2.34

	

r 2.74 1.53 -1.93 -1.98 1	

{ 

2.44 1.64 -1.21 -1.56

]xlo5N/m

	

11:98 -2.33 1.48 2.88 J	 -1.56 2.34 1.56 2.67

	

1 93 -2.18 2.57 1.48	 -1.21 -2.30 2.14 1.56

CaseB2

	

[K]] 1.77 3.11 -2.42 -2.44 I	 1.88 2.33 -1.30 -2.21
]xio5N/m

	

r 2.78 1.77 -2.29 -2.12	

06N/m	

{ 2.19 1.88 -1.85 -1.86

lxi

	

1 -2.29 -2.42 2.86 1.51 I	 -1.85 -1.30 2.43 1.46

	

L -2.12 -2.44 1.51 3.18 J	 1.86 -2.21 1.46 1.32

CaseB3

	

[K]J 1.68 2.68 -2.44 -2.02 I	 1.92 3.24 -8.64 -3.88
]xlo5N/m

	

r 3.08 1.68 -1.79 -2.39 -i

	

{ 3.10 1.92 -3.12 -1.07

lxi

	

I -1.79 -2.44 2.52 1.65	 -3.12 -8.64 2.21 1.79

	

L -2.39 -2.02 1.65 2.70 J	 -1.07 -3.88 1.79 2.33

Table 7.3 Identified results for joint B

Figure 7.6 and figure 7.7 show the predicted FRFs of the assembly with joint A and joint

B respectively.

-,-..-y
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For the assembly with joint A, the accuracy of some predicted resonance frequencies is

improved (e.g. the last resonance frequency), while others slightly deteriorate. But

overall, it is difficult to claim that the accuracy of the predicted FRFs of the assembly is

improved by considering the flexibility of the joint.

For the assembly with joint B, however, the accuracy of the predicted assembly FRFs is

significantly improved by considering the joint effects. Not only the resonance

frequencies are accurately predicted, but the overall shape of the predicted FRFs also

matches the measured one accurately.

The accurate prediction of the resonance frequencies means that the stiffness matrix is

accurately predicted. However, a nice fit on the measured FRFs does not necessarily

mean that the damping properties of the joint are accurately identified, this is because an

exponential window has been applied to the response signal in the experiment, which

effectively introduces artificial damping into the FRFs, since the damping information in

the substructure FRFs of the substructures and assembly are not correct, the damping

identified cannot be correct either. Actually, because the artificial damping is applied to the

whole system, (i.e. the substructures are heavily damped due to artificial damping), the

change of the FRFs of the assembly due to change of the joint damping is insignificant as

can be seen in §7.2.6.3

§7.2.6.2 Joint Identification Using Regenerated FRF Data.

In this section, the effects of applying modal analysis techniques on the measured FRFs

are studied. The FRFs regenerated from the modal data are used.

Table 7.4 shows the identified joint parameters and figure 7.8 shows a regenerated FRF.

The regenerated assembly FRF does not match the real assembly FRF as well as in the

last section (Case B!), and the property of physical symmetry of the joint is not well-

preserved.
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CaseB4

	

[K]-1 1.86 1.60 -2.75 -2.41	 I 3.58 1.03 -2.05 -8.83

r 4.49 1.86 -2.98 -3.04 

]xioo	

r -0.76 3.58 -3.28 -1.06'

	

1 -2.98 -2.75 3.46 2.05	
N/in [D]	

3 28 2 05 3 06 3.70 I
L	 -2.41 2.05 3.07	 -1.06 '8183 3170 3.53 J

CaseB5

r 2.68 1.04 -2.37 -137 1	 r 2.19 1.88 -1.85 -1.86'

	

I 1.04 3.04 -221 -1.62 1 106N/	
=' 1.88 23 -130 -2.21 

'x1ON/m
237 221 644 -1.74 I 1 85 -1.30 2.43 1.46 I

	

1 1.57 4.62 4.74 5.66	 4.86 -2.21 1.46 1.32 J
Table 7.4 Identified results for joint B by using the regenerated FRF data

Frequency

identified with the re generated FRF data at all the frecjuenci

The problem in using regenerated FRF data is that although it is possible to exact some
modal parameters for FRFs so that the regenerated FRFs match the raw FRF accurately, it

is very difficult to obtain a set of consistent modal data to regenerate all the FRF data,
accurately particularly for the assembly.

Usually, it is found that the worst parts of regenerated FRFs is at the two ends of the

frequency range (i.e. around 96 Hz or 1696Hz) due to the effects of the modes outside
the measured frequency range. If the FRFs at these frequencies are excluded, the accuracy
of the identified results can be improved to some extent. The identified results from the
regenerated FRFs (excluding the frequency poinc' at both ends) are shown in table 7.4 as
case B5 and the regenerated FRF of the assembly is shown in figure 7.9. It can be noted
that although the accuracy of identified results is improved, it is still not as accurate as
those using the measured FRFs directly.
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Frequency

The results in this Section clearly agree with the conclusion drawn in Chapter 6.

Although, it may be hasty to conclude that the application of modal analysis techniques

will reduce the accuracy of joint identification, the applications of modal analysis in joint

identification are severely limited due to the difficulty in obtaining a set of consistent and

accurate modal data. Since the effects of inconsistent errors on identification are not as

severe as on coupling, the modal analysis technique, which is mainly effective in

eliminating inconsistent errors in the measurement data, is not as suitable for joint

identification as for coupling.

§7.2.6.3 Joint Identification Using the Iterative Method

In this section, iterative joint identification techniques are investigated. The FRFs of the

assembly are assumed to be inaccessible. The condition of physical symmetry of the joint

(i.e. equation(7.1)) is used which reduces the independent joint parameters from 20 to 8.

The initial estimation on the joint parameters is shown in the first column of table 7.5 and

the identified results after 11 iterations are shown in the second column. The predicted

assembly FRFs from the initial estimation of the joint and identified joint parameters are

shown in figure 7.10 and figure 7.11 respectively. From the second row of table 7.5 and

figure 7.11, it can be deduced that the joint stiffness is accurately identified. For the

identified damping, however, the diagonal terms are negative and cannot be realistically

correct. However, since the regenerated FRF fit the measured FRFs accurately, the

effects of the joint damping on the assembly are insignificant (at least after artificial

damping has been introduced).
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r 10.00 0.00 -5.00

K-	
0.00 10.00 -5.00

-5.00 -5.00 10.00
L -5.00 -5.00 0.00

Initial estimation

-5.00	 r 10.00

-5.00 I	 I 0.00
0.00 r1/m 

[D]1 
500

10.00 J	 L ...00

0.00 -5.00 -5.00

10.00 -5.00 -5.00

-5.00 10.00 0.00	
103N/m

-5.00 0.00 10.00

Identified results

r 2.46 1.42 -1.83 -2.05' 	 r -2.74 0.29 3.92 -1.31 1

1.42 2.46 -2.05 -1.83 lx1oN/
	

I 0.29 -2.14 -1.31 3.92	
05N/m

12105 1.42 -1.83 2.46	 L -1.31 3.92 0.29 .2.74]

1 83 -2.05 2.46 1.42	 3.92 -1.31 -2.74 029 xl

Table 7.5 Identified results for joint B by using iterative joint identification method

-90.

-2000d

Frequency

Fi	 .10 Predicted assembly FRF with initial estimation of the

Frequency

Figurel. 11 Predicted assembly FRF with identiofled joint parameters by
using iterative joint identification method

§7.2.6.4 Concluding Remarks

From the above studies, it is clearly that joint identification techniques (both direct and

iterative methods) developed in Chapter 6 are appropriate for practical applications. It is

also shown that the joint identification techniques should be applied to obtain the joint
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with sufficient flexibility; for very stiff joints, joint identification may not be appropriate.

An additional feature for the experimental study is reviewed, that being artificial damping

introduced during the experimental process (i.e. windowing effects). Due to the effects

of artificial damping, joint damping cannot be identified accurately.

Modal analysis techniques have proved to be effective in predicting the assembly response

from substructures (and joint). However, due to the possible consistent errors introduced

during the modal analysis process, it is shown experimentally that modal analysis

techniques may not be appropriate for joint identification. The potential danger in using

modal analysis techniques in joint identification should always be born in mind.

§7.3 EXPERIMENTAL CASE STUDY TWO -- A STRUCTURE WITH A

NONLINEAR FRICTION JOINT ATTACHED

§7.3.1 Experimental Rig

The purpose of this case study is to investigate the possibility and limitation of application

of the joint identification techniques on a nonlinear friction joint.

The substructure system in this study consisted of two mild steel beams as shown in

figure 7.l2a. One beam was 104 cm long and had a rectangular section 5.08x0.95cm2

(24 in2), the other was 9 1.5cm long and had a rectangular section 2.54x1.27cm2 (14
in2). Two beams were connected together at both ends by using two steel rods (14cm in

length and 0.4cm in diameter); the distance between the two beams was 9.1cm.

(a) Substructure

I_

(b) Assembly

(c)Joint
Figure 7.12 Diagrams of experimental rig two
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Two steel blocks (shown in figure 7.12a) were clamped to the middle of the two beams

by using two inch BSW bolts. These two steel blocks were cut from the same steel bar

and machined together, and hence they had the same thickness. The top and bottom

surfaces of the blocks were ground. Two small aluminium pieces were clamped to the

steel blocks to form two friction joints (figure 7. 12b). The contact surfaces of the

aluminium pieces were polished with abrasive paper, the contact surface at each end of the

aluminium piece was approximately 24 mm2(l2mmx2mm). The two pieces were clamped

by a bolt 0.9cm from one end (figure 7. 12c), therefore, the normal pressure at one joint

was approximately double the pressure at the other. Slip could only occur at one joint,

accordingly, the other joint could be considered as parts of the substructure. Only the

effects of the joint where slip could occur was studied.

§7.3.2 Measurement Equipment

Because the properties of a friction joint depend on the response at the joint, control of the

experimental process is essential. Probably the simplest properties of a nonlinear joint in

the spatial domain are the equivalent stiffness and damping. As discussed in Chapter 4,

the equivalent stiffness and damping are only meaningful when the structure is excited by

a sinusoidal force. Therefore, sine sweep excitation was applied, the measurement set up

was slightly different from the setup in §7.2.2 as follows:

The structure was also suspended by using two soft strings. A sinusoidal signal was

generated in a frequency analyser (Solartron type 1254), the signal was amplified in a

power amplifier (GW type ss3O) and sent to a shaker (GOODMANS type

V5OMK) to excite the structure. In order to apply excitation only in the direction intended,

a push rod, which is rigid in the direction of the excitation and relatively flexible in all

other directions, was used to connect the shaker and the structure (more detailed

discussion on the push rod can be found in [1]). The force and the response signals were

detected by a force gauge (B&K type 8200) and two accelerometers (B&K type 8303),

amplified in charge amplifiers (B&K type 2626) and sent back to the analyser for

processing. The processed data (FRF) were transferred to a microcomputer(HP 9816)

and stored in floppy discs for further procesing. A schematic diagram is shown in figure

7.13.

To simplify the properties of the joint (which is discussed in the next section), the

excitation was only applied to the mid-points of the two beams. The responses at the

middle of the two beams were measured.
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§7.3.3 Model of the Friction Joint

Because of the symmetry of the structure and the excitation, the response of the mid-point
of the beam was dominated by motion in the direction perpendicular to the beams (i.e.
rotation is negligible). Therefore, the joint was modelled by a single dimension
connection between the mid-points of the two beams. Because slip could only occur at
one joint, the mass of the two small aluminium pieces and the bolts were considered as

parts of the substructure, therefore, the joint has no mass. For a 2DOF massless joint, the
dynamic characteristics can be modelled by a spring and a damper and the coffesponding

stiffness and damping matrices are

[KJ]={ 1 -1
-1 1]kj

and [D]=I 11

Accordingly, a 2DOF massless joint only has two unknowns k and dj.

§7.3.4 Control of the Relative Displacement Level

In order to use the joint identification techniques developed in the last chapter, the

structure must be either linear or linearised. If the relative displacement at the joint is
approximately sinusoidal and the magnitude of the relative displacement of the joint is

constant, the equivalent stiffness and damping of the joint are constant too. Then the
whole structure becomes linear (or the structure is linearised)

The responses were measured by accelerometers, therefore, the signal measured was

acceleration. However, if a response is approximately sinusoidal, the displacement can be
calculated from the acceleration:
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1
x=-a	 (7.4)

where x and a are the displacement and acceleration respectively, and Co is the angular

frequency of the response.

Therefore, the relative displacement can be kept as constant by keeping the magnitude of

al-a2 constant (where subscripts 1 and 2 denote the coordinates at the two ends of the

joint respectively). Control of relative displacement was achieved by employing a

microcomputer (HP 9816) controlled feed back loop as shown in figure 7.14. The basic

strategy of the control is based on a physical observation that increase of excitation level

increases the magnitude of the relative displacement. The magnitude of the relative

displacement could usually be controlled within a variation of 1% in the experiment.

Amplifier
shaker

Ia-ad
If lAx-	 I <tolerance, next frequency point
Else
If Ax>	 increase the generater output V

a,a2
If Ax<	 mcrease the generater output VV

7.14 Control of relative disulacement

§7.3.5 Control of the Clamping Force at the Friction Joint

The normal force applied to the friction joint is an important parameter. The clamping

force is applied by using a specially made tool as shown in figure 7.15a. The elongation

of the spring corresponds to the clamping force and is recorded.

The relation between the elongation of the spring and normal clamping force at the friction

joint interface was calibrated by using a dead weight as shown in figure 7.15b. The

spring elongation at which the nut just slips corresponds to a normal force equal to the

weight.

The actual friction limit corresponding to a clamping force can be measured directly with a

static measurement set up as shown in figure 7.15c. The maximum tangential force which

can be applied is the friction limit
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Spanner	 Applied torque	
nut

(b) + weight

T= applied tangential force
(a)	 (c)

Figure 7.15 Measure of normal clamping force and tangential friction force

§7.3.6 Identification Formulation

The direct joint identification technique (equations(6.16-6.19) in Chapter 6) can be used

for the identification, however, it is found that the responses at the two ends of the joint

are very close when the joint is clamped, therefore, direct solution yields very poor

results.

Because the joint only has two unknowns, the indirect iteration technique is applied.

Recall equation(6. 15)

[HjjJ=[Hbb]([IJ+[Z] ft1bbl)'

and denote

rh(1,l) hjj(1,2)1 rhi h3

JJ1=thjj(2,1) hjj(2,2)]Lh3 h2

rhbb(l,l) hbb(l,2)1 rha hc
[Hbb]=l 

hbb(2, l ) hbb(2,2)	 h hb

1

(6.15)

(7.5)

(7.6)

(7.7)

Substituting equations(7.5-7.7) into equation(6.15) and rearranging yields

h - hph+hphhç2
1—ha+hb2ht,+h

h - hphb+hbhhc2
2—ha+hb2hc+h

h - hphb+hchhc2
h+h2h+h

(7.8-7.10)

In the experiment, to avoid introducing measurement errors due to disconnection and re-
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connection of the shaker, the assembled sucture was only excited at one point (i.e. point

1, the mid-point of the long beam), hence only hi and h3 were measured. The objective

function used was

f(k,d)= ' (h1 () - 
ha((Oi)hb(0)i)+ha(0)i)hhc2124 { 

h () - ha(WOhb(COi)+hc(0)i)hhc212

ha((I)iJ+hb((Oi)2hc(0)j)+h 	 ha(CL)j)+h(0)j}2hc(0)j)+h
1=1

(7.11)

where n is the frequency number used in mininiisation and oj is the angular frequency.

To use the concept of equivalent stiffness and damping, the responses have to be close to

sinusoidal, therefore, the assembly has to be excited at a frequency close to its resonance.

Unfortunately, the magnitude of the FRFs at the resonance are usually significantly

affected by measurement errors.

From equation(7. 11), the resonance frequency of the assembly is the frequency when

ha(U)j)+hb(COi)2hc(0)j)+h is a minimum. At frequencies close to the resonance frequency

of the assembly, it is found that the magnitude of ha(0)iJ+hb(0)j)2hc(Q)i) is much smaller

than the magnitudes of ha, hb or h, therefore, ha((I)i)+hb(0)i)2hc(COj) can contain very

high levels of errors. When h is small compared with ha(0)j)+hb(COj)2hc((Oi), the

identified results can be completely affected by the measurement errors.

There is an alternative to equation (7.11) which makes the identified results less sensitive

to measurement errors. When the joint is very tightly clamped, the flexibility of the

friction joint may be ignored, in other words, the response of the assembly can be

generated by rigid-coupling two coordinates at the two ends of the friction joint (i.e.

h=O). Hence

- - hphbhc2
hlr—h3r— ha+hb2hc

Therefore

ha+hb2hc hphbhc
2 - hphbhc2

hi	 - h3

(7.12)

(7.13)

Since ha+hb2hc from equation (7.13) is not calculated by subtraction between quantities

with similar magnitudes, it is less sensitive to measurement errors.

The average of hir and h3 can be used to represent the rigid coupled assembly, hence

ha+hb2h 2(hphbhc2) =6H
hlr+h3r	

(7.14)
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Substituting equation (7.14) into (7.8-7.11) yields

h - hphb+hphhc2

H+h

h - hphb+hbhhc2

2— 5H+h

h - hphb+hchhc2
8H+h

(7.15-7.17)

f(k,d)=	 thi(coi) - 
ha(0)j)hb((Dj)+ha(0)j)hhc2	- ha(Wi)hb(0)i)+hc(0)i)hhc2}2

(7.18)

equations(7.15-7.17) is less sensitive to the effects of measurement errors, however, because

of the assumption on which it is based, it can still be erroneous when the deformation at

the joint is small.

Another problem in the identification is the damping. The substructure has been found to

have very low damping. However, the imaginary parts of the receptance at off resonance

frequencies are much greater than they should be (which can be seen in the next section).

Since the damping in the assembly mainly arises from microslip at the joint interface, the

damping effects from other damping sources is believed to be negligible. Therefore, the

substructure FRFs can be approximated as real quantities. To make the FRFs real

quantities, the sign of the real part of the measured FRF is considered as the sign of the

processed FRF, and the magnitude of the measured FRF as the magnitude of the

processed receptance, i.e.

h=Sign(real(h)) I h I
	

(7.19)

where subscript "pro" and "rn' represent the processed and measured FRF respectively.

After the equivalent stiffness and damping at different relative displacement levels were

identified, they were used to identify the joint parameters (e.g. a,b and k for the new

microslip element in Chapter 2). The Pattern search method(see Chapter 2) is employed

and the objective function used is

(7.20)

n

f(a,b)=	

(kj(i)-kp(i))2+(dj(i)-dD(i))2

(k(i) +d(i))
1=1
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where i corresponds to the different relative displacement, subscripts j and p represent the

states of quantities identified from FRF data and regenerated from a microslip model

respectively; a,b k are parameters to defme the new microslip element in Chapter 2.

§7.3.7 Experimental Results and Discussion

Because of imperfections in the rig and errors in the excitation position and direction,

rotation also occurred at the mid-points of the beams. The rotation at the mid-points of the

beams became more significant at high frequencies. Accordingly, only the frequencies

around the first assembly resonance were used for identificalion.

Figure 7.16 shows a Nyquist plot and a damping plot of an FRF corresponding to the

assembly with relative displacement 0.8 8mm and clamping force 200N. The plot is

effectively a circle and the damping plot is effectively flat. This means that the FRF

effectively corresponds to a linear structure. The other FRFs are measured with smaller

relative displacement and are closer to the FRFs from a linear structure. Consequently, the

condition of using linear identification techniques is satisfied.

C 4L *

	

R........t*tq.n..ty •	 'I..
1.4. C...t..,	 -	 I S4!(-II I'k

	

-	 .3 3
O.	 r.*., -

7.16 Nyquist and damping plots of an FRF on rig two with relative
disvlacement 0.8mm

Figure 7.17 shows the predicted assembly response by using the coupling technique. A

significant feature of the predicted response is that damping of the assembly is greatly

overestimated (0.124% for the measured FRF and 0.403% for the predicted FRF). The

results clearly indicate that the damping properties of the substructure are overestimated in

the FRFs. Therefore, in the following analysis, the technique discussed in the last section

is used to make the substructure FRFs real quantities.

Figure 7.18 shows the identified equivalent stiffness and damping under the clamping

force 200N by using equation(7.11). Figure 7.19 shows the regenerated assembly FRFs

from the substructure FRFs and identified theoretical model of the joint (with their

measured counterparts). It can noted that the regenerated FRFs fit the measured FRPs

very well. However, this does not necessarily mean the identified results are accurate.
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In Chapter 6, it has been shown that what can be identified is the difference between the

two systems (i.e. the substructure and the assembly systems), including the difference

caused by the measurement errors. If the identified results are very sensitive to the

measurement errors, the identified results are likely to be inaccurate. To study the effects

of measurement errors on the identified results, the substructure FRFs are perturbed in

the first case, the measured ha is multiplied by a constant 1.03 , hb and h by a constant

0.97; in the second case, ha is multiplied by a constant 0.97, and hb and h by 1.03. (3%

error is chosen because the variation of the different measurements on the same FRFs is

about 0.3dB, the sign of the errors are so chosen that they cause the greatest shift in



2.0

'B
C,,

11.0

I.0.0
0.0 20.0 40.0 60.0 80.0 100.0

Relative DisplacemenL(1Orn)

z

tructure

Chapter 7 Experimental Case Studies 	 oage-252-

h3+hb-2h).The identified results for the joint with clamping force 200N are shown in

figure 7.20 and extracted joint friction joint parameters are shown in table 7.6. The

identified equivalent stiffness and damping from two perturbed cases are significantly

different when the relative displacement is small. The effects of the measurement errors

can also be noted from the coupling results as shown in figure 7.21; the predicted

resonance frequency of the assembly is very sensitive to the measurement errors.

. 2.0
E	 Q- un-oorturbed
Z	 •	 perturbedi
'2)	 _____

41.0.

d.)

jo.0.
0.0 20.0 40.0 60.0 80.0 100.0

Relative Displacement(104m)

igure I.2(

-50. OdE

I

-t20.OdE

Eiure 7.

iuentiriea equtvaien surrness ana aamping
substructure FRFs

- UN-PERTURBED

-u-- PERTURBED 1

_L.... PERTURBED 2

0Hz	 Frequency

response

______________ k (xlO6N/m) a (xlO 7m)	 b	 Tm (N)

Un-perturbed data	 3.20	 2.35	 4.32	 13.0

perturbeddatal	 7.66	 1.09	 4.39	 15.3

perturbeddata2	 2.00	 1.94	 5.09	 12.4

Table 7.6 Effects of measurement errors on the extracted friction joint parameters

However, from table 7.6, the friction limits for the three cases are not significantly

different; the variation is about 2.5N. This seems to indicate that the properties of the

friction joint with a large displacement range have been preserved. This can also be noted

from figure 7.20 that the difference from the three cases becomes insignificant as relative

displacement increases.
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The alternative identification method(equation(7. 18)) has also been used; the identified

equivalent stiffness and damping are insensitive to the small perturbations in the measured

FRF data. Figure 7.22 and figure 7.23 show the identified equivalent stiffness and

damping corresponding to clamping forces of 200N and 264N. The parameters of the

new microslip element extracted from the identified equivalent stiffness and damping data

are shown in table 7.7, and the regenerated equivalent stiffness and damping curves are

also shown in figure 7.22 and figure 7.23. The friction model fits the identified equivalent

stiffness and damping well when the relative displacement is large, however, a big

discrepancy exists when the relative displacement is small. Because of the assumption on

which equation(7.18) is based, the equivalent stiffness and damping with very small

relative displacement cannot be identified accurately. Therefore, the discrepancy may not

neccessaiy mean that the extracted friction model is inaccurate.
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Figure 7.22 Identified equivalent stiffness and damping for the joint under
200N clamping force using the modified identification technique
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Figure 7.23 Identified equivalent stiffness and damping for the joint under
264N clamping force using the modified identification technique

ciamping force (N)I 	 k (xlO6N/In)I a (x10 7m)	 b	 Tm (N)

200	 J	 8.20	 1.07	 4.27	 14.46

[	 264	 1	 6.46	 L 1.98	 4.21	 20.33

Table 7.7 Identified theoretical model for the friction joint under 200N and 264N
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From table 7.7, it can also also noted that the friction limit corresponding to clamping

forces of 200N and 264N are 14.5N and 20.ON respectively. The friction limit under

200N clamping force is similar to those identified in table 7.6.

The friction limit corresponding to clamping forces of 200N and 264N are about 16N and

22N with variations of about 5N in the static experimental test. The theoretically identified

friction limits from the microslip model are within the variation of experimental test and

are slightly under estimated. However, the static test was carried out after the dynamic

test. During the dynamic test, surface damage was observed. It is believed that the

damaged surface should have higher friction limits than the undamaged one.

The above results indicate that the properties of the friction joint in the large relative

displacement range can be identified with reasonable confidence, but joint identification

techniques are less satisfactory to apply to the friction joint in the small relative

displacement range (microslip).

§7.3.8 Concluding Remarks

Joint identification techniques have been successfully applied to identify a nonlinear

friction joint with large relative displacement. In order to linearise the behaviour of the

nonlinear joint, the relative displacement has to be controlled as a constant, which can be

achieved by means of a feedback control with the aid of a microcomputer. An

approximately linear behaviour was observed by inspecting the Nyquist plot of the

measured assembly response.

To use the principle of equivalent stiffness and damping, the FRFs close to the resonance

frequency of the assembly must be used, but at these frequencies, the joint identification

is sensitive to measurement errors. The contradictory requirement for use of linearisation

of the joint and joint identification leads to inaccurate results for the joint with small

relative displacement.

Another major shortcoming with the linearisation technique is that the technique is only

applicable to structures with one joint. Further research on development of the nonlinear

joint identification techniques is necessary.



CHAPTER

CONCLUSIONS

§8.1 MODELLING FRICTION JOINTS	 -

It is believed that the establishment of an accurate model for a friction joint is of the

utmost importance in effective utiisation of joints for controlling the vibration of

engineering structures. Lack of progress in the application of friction joints for vibration

control is believed to be due to lack of progress in friction joint modelling. In most

engineering structures, friction joints are often tightly fastened so that nonlinear pmblem

caused by these joints can be avoided, and in the mean time, the damping levels at these

joints are also reduced to their minima.

The load-deformation relationship of a friction joint in both the normal and tangential

directions is not linear. However, the relationship in the normal direction becomes

effectively linear after a pre-load and can be considered as linear in most applications,

while the relationship in the tangential direction is always nonlinear and energy is

dissipated when a cyclic load is applied. Consequently, modelling a friction joint in the

tangential direction is more difficult and also more important than in the normal direction.

The load-deformation relation is investigated in this thesis. For the first time, two

different types of microslip mechanisms are distinguished; the first is macro-microslip

which is effective only at a large flexible interface, the second is micro-microslip which is

caused by the effects of uneven asperities and has significant effects even at a very small

interface area. It is shown that macro-microslip can often be modelled satisfactorily by the

classic stress analysis technique and/or fmite element method. However, the method to

model the property of micro-microslip is still underdeveloped. Due to the complexity of

the micro-microslip mechanism, it is suggested that the identification approach is more

realistic for the establishment of the theoretical model for a friction joint than the

prediction approach. A new generalised micro-microslip model is proposed. It is shown

experimentally that the new model is superior in representing the micro-microslip

behaviour of real friction joints to other published models.

The new micro-microslip model can be used in conjunction with the classic stress

analysis technique or the finite element method to yield a realistic joint model which

includes the effects of both the micro-microslip and macro-microslip mechanisms.



Chapter 8 Conclusions	 page -256

§8.2 PREDICTION OF RESPONSE OF STRUCTURES CONTAINING

JOINTS

If the properties of a structure (including the properties of all the joints) are known, it is

of interest to know what the response will be if the structure is subjected to an excitation.

If the structure is linear, the response of a structure can usually be found using Duhainel

integration or the Step-by-step Time-domain Integration method(STI). If a structure is

nonlinear, it is believed that the STI method is the only possible way to calculate the

transient response.

A problem with the STI method is the computation cost. It has been shown that if a very

small time interval is used, accurate results can usually be achieved. However, if a

relatively large time interval is used, some algorithms remain stable, while others become

unstable, and the numerical results become unbounded or physically meaningless. Except

for the limit of stability, the computation cost can be significantly different at each time

step; some algorithms are direct and others are iterative (indirect). For the indirect

method, some involve matrix inversion at each iteration, while for other methods, the

matrix inversion only needs to be calculated once for several time steps or for all the time

steps. Several integration algorithms have been discussed and two computationally

efficient algorithms are suggested for calculating the response of a structure containing

nonlinear friction joints; one is direct and the other is iterative. A new start-up procedure

using an iterative algorithm (Algorithm One) is suggested for the direct algorithm

(Algorithm Two) to overcome the disadvantages of the commonly used start up

procedure.

Very high initial stiffness of the joint can cause problems in integration for both of the

suggested algorithms. It is found that reduction of the initial stiffness to a reasonable level

can often improve the accuracy of the numerical results.

In order to reduce the computation cost, the size of the problem should be reduced if

possible. The size of the problem can often be reduced by using the linear transformation

technique. It is found that the free-modes obtained from the linear system without joints

form a representative subspace for the condensation.

Another difficulty in the application of STI for a structure containing joints is to calculate

the force conesponding to a deformation at the joint. Two algorithms based on Masing's

rule have been developed for calculation of the friction force from the relative

displacement The algorithms are simple to program and computationally efficient

Although the STI method is the only method to calculate the transient response of a

nonlinear structure, in many cases, the steady-state response of a nonlinear structure can

be obtained by other means. These methods become important when the cost of the STI
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method is significant. If a structure is lightly damped, the transient response can last for a

significantly long period, when the size of the structure is also significant, the

computation cost to calculate the steady-state response can be prohibitively expensive.

Therefore, alternative cheap methods to calculate the steady state response are in great

demand.

The most commonly used method is the Harmonic Balance method, however, it has very

significant disadvantages. To overcome the shortcoming of the HB method, a new

Higher order Harmonic Balance method(HHB) is developed. FRF data are used so that

the number of unknowns can be significantly reduced. Although the principle of the new

method is simple, it has not received wide application because of the difficulty in

obtaining a converging solution. A new incremental approach is proposed, and linear and

quadratic approximations are proposed for the new estimation in the incremental process.

The new HHB method is very accurate and efficient. These advantages become more

significant when the size of the system is significant. It is believed that calculation of

accurate steady-state response of a real engineering structure may no longer be an

expensive job with the development of the HHB method.

§8.3 PREDICTION OF PROPERTIES OF THE STRUCTURE AFFER

COUPLING

In chapter 5, commonly used coupling techniques are investigated and four criteric. are

set to evaluate a coupling method; it is shown that these methods are either not

mathematically generalised or not physically generalised. A new coupling method which

is both physically and mathematically generalised has been developed. The method is also

computationally efficient. Based on the new method, a more effective coupling algorithm

(MTC) is proposed; the MTC algorithm requires no matrix inversion operation and can

save the computation cost for up to 30%. The new algorithm is also simpler and easier to

program than any other coupling methods.

The modal analysis technique is widely used for eliminating measurement errors so as to

improve the accuracy of the properties of the predicted assembly. However, it is shown

that results thus obtained should still be treated with care. Application of modal analysis

techniques can eliminate some of the measurement errors, but in the meantime, may

introduce some errors to the processed data. The effects of the remaining errors are very

difficult to detect. The joint is often blamed for the discrepancy between the predicted and

real response of the assembly, but in fact, the real cause may well be the effects of the

measurement errors. Unfortunately, this simple truth is often neglected. In Chapter 5, this

point is emphasised with the results of numerical case studies.
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It is shown that the effects of measurement errors on the accuracy of the predicted

assembly response can be significantly magnified under some circumstances. The new

coupling algorithm is found to be more effective in detecting these circumstances.

Although it is not possible to elinilnate the effects of the measurement errors completely,

it is possible to evaluate the reliability of the predicted assembly response with the help of

the new coupling algorithm.

§8.4 IDENTIFICATION OF JOINT PROPERTIES FROM DYNAMIC

TESTS

It is believed that an understanding about the identification of linear joints has significant

importance in the development of techniques for nonlinear joint identification. On the

other hand, linear joint identification techniques are also of interest for the study of the

friction joint, since a friction joint with high level clamping force or with low level

excitation is effectively linear.

FRF joint identification methods are studied. It is believed that the principle of most FRF

joint identification methods can be extended for nonlinear joint identification. In theory,

what can be identified is the difference between the substructure and assembly systems.

Due to the effects of measurement errors, identification of an exact joint model is

impossible, thus the identified joint model can only be an approximation by some means

to minimise the difference between the two systems. Based on different means of

minimisation, various identification methods have been developed. It is shown in chapter

6 that unlike the coupling problem, the accuracy of the identified results from different

methods is significantly different. Thus, effort should be devoted to developing an

identification method which is insensitive to measurement errors.

It is found that if more information is used, the accuracy of the identified results can be

improved. Accordingly, a good identification method should utilise the available

information fully, i.e. available data should be used together in identification and the

measured coordinates should be well spaced and measured FRFs should cover a

sufficiently wide frequency range. Apart from using more measured data, it is also found

that the accuracy of the identified results can be improved significantly by using the

available information effectively. Several weighting methods have been developed to

achieve this purpose. The accuracy of the identified results can also be improved by

imposing some constraint conditions.

Apart from the levels of measurement errors, the accuracy of the identified results is

significantly related to the nature of the joint. It is shown that both very stiff and very soft

joints are difficult to identify accurately. Rigid joint components can also cause difficulty

in identification, but the difficulty can often be overcome by imposing constraints on the

joint model. It is further shown that some difficulties in identification can be overcome by
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carefully designing the experimental structure, sometimes it simply means to clamp or to

free some parts of the structure. If a joint is very stiff, it is not recommended to try to

identify it; the assembly response from rigid coupling is often more accurate than that

assembled from the substructures and the identified joints. It is also indicated that

replacement of some stiff joints by rigid joints can often improve the accuracy of the

identification on other effective joints.

In some cases, some of the FRF data at a joint may be difficult to measure after the

structure is assembled. A new iterative method is proposed in chapter 6. The main

shortcoming for the iterative method is that the results may converge to some values (local

minima) other than the true solution. Accordingly, some efforts are spent in eliminating

these local minima by choosing proper measured data and proper weighting of the

available information.

Experimental results indicate that the joint identification techniques developed in this

thesis can be applied to real structures

§8.5 SUGGESTION FOR FURTHER STUDIES

Extensive research work on the establishment of joint models and the prediction of

dynamic properties of a fabricated structure has been carried Out ifl this thesis. The work

completed so far forms a good basis for further development. Some general suggestions

for possible further studies are summarised as follows:

1) Establishment of the theoretical model for a joint

Due to the limited period available, the joint identification methods have only been applied

to a simple beam structure. Applications to more complicated engineering structures are

recommended.

The new microslip element developed in Chapter 2 has been proved realistic and

representative. However, since the parameters of a new element based joint model must

be identified by experimental means, development of nonlinear joint identification

techniques is necessary. In Chapter 7, the iterative identification methods together with

the HB principle have been applied to identify a nonlinear joint, due to contradictory

requirement on identification and harmonic balance techniques, the application of the

above technique is severely limited. However, it is believed that the principles of the

iterative identification method in Chapter 6 and the Higher order Harmonic Balance

method in Chapter 4 may be combined to yield a new nonlinear joint identification

method. Since there is no contradictory requirement from the iterative identification

method and the HHB method, the limitation of the method used in Chapter 7 may be

overcome.
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2) Prediction of the response of a structure containing nonlinear joints

In chapter 3, it has been shown that for Algorithm One, the most important thing is to

achieve convergence at each time step. The convergence is largely determined by the

property of the matrix [k1 ] in equation (3.27). It may be worthwhile to investigate new

algorithms for constructing the matrix[]. The efficiency of Algorithm One may be

improved significantly if a proper [k1] can be determined.

The time interval for Algorithm Two has to be extremely small to yield accurate results if

the initial stiffness of the joints is very high. The reason for this is that the local stiffness

of the joint can be much smaller than the initial stiffness at some time points, which

causes very large effective parameter ae at these time points. If the magnitudes of the

elements in the [Kr] matrix at these points are reduced, the effective parameter ae can be

reduced too, hence a greater time interval i may be used for the same accuracy.

3) New research field

Without establishing a theoretical model, friction joints may still be used for vibration

reduction. The basic idea is as follows:

Under an excitation, the response of the structure can be altered by changing the clamping

force at a joint. If the clamping force is changed in such a way that the response is a

minimum, then the vibration of the structure can be significantly reduced.

Using this approach, the property of a joint is not required, in other words, the joint can

be treated as a 'black box'. A microcomputer may be used for adjusting the clamping

force to its optimum value to minimise the response of a structure by using function

minimisation techniques (e.g. the Newton-Raphson method).



APPENDIX A: PROOF OF MASING'S RULE

Assume that the relation between force and deformation (or deformation and force) of a

joint in initial loading is

u=f(F) or F=g(u)
	

A.1

and the area that slipped is

A=A(u)
	

A.2

If the initial tangential load is applied in the opposite direction, the distribution of the slip

region at the interface of the joint is exactly the same as that when a positive force is

applied, but in the opposite direction. Therefore, the total deformation will be the same as

the positive loading, but in the opposite direction, hence

u=-f(-F) or F=-g(-u)
	

A.3

For the unloading, one can consider it as applying an additional force F-F after the

initial load F1 is applied. If the friction force at the interface is considered as an external

force, then the rest of the joint is linear and the principle of superposition holds.

The direction of the additional force F-F is opposite to the direction of the initial loading

force F and hence causes some of the slipped area to slip in the opposite direction.

However, the reversed slip can only occur at the area where the shear stress changes from

the positive friction limit to the negative friction limit, this is equivalent to a change in the

shear stress from zero to double the negative friction limit. Therefore, for the additional

force F-F, the friction coefficient is effectively doubled. In order to generate the same

slip area in the reversed direction as in the initial loading, the magnitude of the reversed

force must be doubled. Since both external force and shear stress in the slipped area are

doubled the additional deformation must be doubled too.
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Therefore:

f(	 !
2	 ' 2

Since u= UU-U1 and F=F-F,

Substitution of equation(A.5) into (A.4) leads to.

	

U-Uj -
	

F-F1

	

2 --	 2

Hence

U= uj -2 f(Fiu)

A.4

A.5&A.6

A.7

A.8

When the unloading level reaches the level of initial loading, i.e. F =-F1 or F-F=-2F

the initial slipped area is completely and exactly reversed, therefore, further unloading is

the same as initial loading in the opposite direction, hence

u =-f(-F)	 A.9

For the reloading process to Fr, one can consider the process as applying an additional

force FrFu in the positive direction. When the magnitude of FrFu increases, the reversed

slipped area will be reversed back and applying the same principle as unloading, hence

UrUu —f FrFu
2 -( 2

or ur= U 
+2 f(FrFU)

When the reversed slipped area during unloading is exactly reversed, the stress

distribution as the interfaces will be exactly the same as the initial loading, therefore,

further reloading will be exactly the same as initial loading. Hence

Uf(Fr)	 A.12

It can be noted that if IukIu 1I. the deformation to completely reverse the slipped area

during unloading should satisfy

uruu-(uu-uj)
	

A.13

therefore

UrUj	 A.14
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If Iu 1 >Iu, the slipped area in initial loading is completely reversed and slip can also occur

in the additional area during unloading, therefore, the reloading can be considered as the

'unloading' to the real unloading, hence, to reverse the slipped area in unloading,

UrIUuI.	 A.15



B.1

B.2

B.3

B.4

APPENDIX B

CALCULATION OF EQUIVALENT STIFFNESS AND
DAMPING

If displacement is

x=xo cos 0

the unloading and reloading force can be expressed as:

F=Fo - 2f(XO(l-COS 0))

F= -FQ + 
2f(XO( 1 +cos 0))

then the equivalent stiffness is

1	
S

F COS 0 dO+	 Fr COS 0 dO
ICxØdO	 It

4 c 
xo( 1 -cos 0)

2	 )cosOd9
txo

and equivalent damping is

d=-	 Fsin OdO+	 Fr sinOdO)
7tXØ

= _!. ( I xOf(x)th - F(xO)xO)	 B.5
7tx0 Jo



APPENDIX C

RELATION BETWEEN RC AND GRC METHODS

For two sucture coupling,

c1[Hcb][O]

JAH1
[Haa]1 0 BHÜ

ro
[Hab]	 T.

L B Aim

I Aim
[Hac]7

[Hbb]=[B}imm]

[Hcc]=[AHmm]

Substituting equation C. 1-6 into equation (5.36) yields:

I AHnn AB}inn}{AHiI 0 ] r-AHim]	 1r-AHim1T
C.7-	 I(AHmm4BHmm) 

L BHim]ABHnn BHnn	 0 BH11 L BRim J

IAHnjl IAHjml
LBHflJJI. 0 j [

im](AHmm+BHmm hI AHmm J	 C.8

[Hjj]4AHmmJ1AHmm](AHmm+BHmmTh' [AHmm]	 C.9

Equations (C.7)(C.8)and (C.9) can be written in a more compact form as

rAH AHnjAB1 rAHd AHim 0 irAHimi	 rAHimlT

I AHJn	 3HJ	 AHrniAHmm 0 H AHmm (AHmm+BHmm]) u 1 AHmm I C.10
BHnj BHnn J L 0	 0 BHÜJ LBHjmJ	 LBHimJ

C.'

C.2

C.3

C.4

C.5

C.6

which is exactly the same as the RC formulae



APPENDIX D
NUMBER OF MULTIPLICATION FOR MATRIX INVERSION

USING GAUSSIAN-ELIMINATION METHOD

Gaussian-eliniitation is an algorithm which turns an extended matrix [A: I] into a matrix

[I: B] through linear combination of rows in the extended matrix. The matrix [B] is the

inverse of the matrix [A].

Figure 5.1 shows sub-stages of the elimination process and the number of multiplications

required at each stage.

The total number of mutiplications N is the sum of the multiplication at each step, hence
rn-i

N= (2(m-i)(m-+-1))+m2
i= 1

rn-i	
I

(m+1-i)(m-i) 
JJ

i=i rn-I	
r'-.i

(m-i)

i=i	

r^i

i(m-i)

m(m-i) Jj,

m24J

Tatol mutiplication	 r	 :.
rn-i	 rn-i

i(m-i) + m(m-i) +	 (rn-i)
i=i	 i=1

rn-I	 rn-I

N=m2+ (m+1-i)(m-i) +
i=i	 i=1
rn-I

m2	2(m+1)(m-i)
i=1

NB:A—thematrixtobeinverted
U -- a upper triangular matrix
C—afullsizematrix

B--theinverseofmairixA
L -- a lower triangular matrix
D-- a diagonal matrix



REFERENCES

[1] Ewins,DJ
"Modal analysis:Theory and Practice"
Research Studies Press LTD, John Wiley&SONS INC, 1985.

[2] Bathe, K J
"Finite Element Procedures in Engineering Analysis"
Prentice-Hall. 1982

[31	 Beards, C F
"The Damping of Structural Vibration by Controlled Interfacial Slip in Joints"
An ASME publication, 8 1-DET-86.

[4]	 Ren, Y
"Damping in Structural Joints"
M.Sc Thesis. Imperial College, London University, 1988.

[5] Earles, S W E and Mott, N
"A Response Predication and Optimisation of a Frictionally Damped Structure"
The 13th International MTD&R Conference, Manchester University, September,
1972. Paper 43.

[6] Earles, S W E and Mansoor, F S
"Frictional Damping applied to a Cantilevel-beam Structure: A Theoretical and
Experimental Response Comparison".
mt. J. Mach. Tool. Des. Res, Vol.14, pp1 11-124, 1974

[7] Williams, E J and Earles, S W E
"Optimization of the Response of Frictionally Damped Beam Type Structures with
Reference to Gas Turbine Compressor Blading"
Journal of Engineering for Industry. ASME, Vol. 76 pp47l-476, 1974.

[8] Beards, C F and Neroutspoulos, A A
'The Control of Structural Vibration by Frictional Damping in Electro-discharge
Machined Joints"
An ASMIE publication, NO.79-DET-79.

[9] Beards, C F and Imam, I M A
"The Damping of Plate Vibration by Interfacial Slip Between Layers".
International Journal of Machine Tool Design and Research, Vol.18, ppl3l-137.
1978



Reference	 page -268.

[10] Beards, C F and Williams, J L
'Tne Damping of Structural Vibration by Rotational Slip in Joints"
Journal of Sound and Vibration, Vol.53(3), pp333-340, 1977.

[11] Beards,CFandWoowat,A
"The control of frame vibration by friction damping in joints"
An ASME publication, 83-DET-76,1983

[12] Beards,CF
"Some Effects of Interface Preparation on Frictional Damping in Joints"
Tnt. J. Mach. Tool. Des. Res, Vol.15, pp77-83, 1975.

[13] Beards,CFandRobb,DA
'"The Use of Frictional Damping to Control the Vibratit)n of the Plates in
Structures".
International Conference on Recent Advances in Structural Dynamics,
Southampton, England. pp749-760. July, 1980.

[14] Dowell, E H and Schwartz, H B
"Forced Response of a Cantilever Beam with a Dry Friction Damper Attached,
Part I: Theory"
Journal of Sound and Vibration, Vol.91(2), pp255-267, 1983

[15] Dowell, E H and Schwartz, H B
"Forced Response of a Cantilever Beam with a Dry Friction Damper Attached,
Part II: Experiment"
Journal of Sound and Vibration, Vol.91(2), pp269-291, 1983.

[16] Menq, C H, Bielak, J and Griffin, J H
"The Influence of Microslip on Vibratory Response, Part I: A New Microslip
Model"
Journal of Sound and Vibration. Vol.107(2), pp279-293, 1986.

[17] Menq, C H, Griffin, J H and Bielak J
"The Influence of Microslip on Vibratory Response, Part II: A Comparison with
Experimental Results"
Journal of Sound and Vibration. Vol. 107(2), pp295-307, 1986

[18] Cuschieri, J M and Desai, V R.
"Friction Damping due to Interfacial Slip"
Proceedings of the 3nd International Conference on Recent Advance in StrucniiL
Dynamics, pp449-458, 1988

[19] Jones, D I G and Muszynska, A
"Effect of Slip on Response of a Vibrating Compressor Blade"
An ASME publication, 77-WA/GT-3. 1977.

[20] Martins, J A C, Oden, J T and Simone, F M F
"A Study of Static and Kinetic Friction"
International Journal of Engineering Science, No.1, pp29-9l, 1990

[21] Den Hartog, J P
"Forced Vibrations with Combined Coulomb and Viscous Friction"
Journal of Applied Mechanics, ASME, APM-53-9, ppl07-1l5, 1931.

[22] Yeh, G C K
'Forced Vibrations of a Two-degree of Freedom System with Combined
Coulomb and Viscous Friction"
J.Acoust. Soc. Am, Vol. 39, pp 14-24, 1966



Reference	 nage -269-

[23] Levina,ZM
"Research on the Static Stiffness of Joints in Machine Tools"
Proceedings of the 8th International. MTDR Conference. pp737-758,
University of Manchester Sept, 1967.

[24] Mindlin, R D, Masan, W F, Omer, T F, and Dereiswicz, H
"Effects of an Oscillating Tangential Fotte on the Contact Surfaces of Elastic
Spheres"
Proceedings of the 1st US National Congress on Applied Mechanics, pp203-2O8,
1951.

[25] Goodman, L E and Brown, C B
"Energy Dissipation in Contact Friction: Constant Normal and Cyclic Tangential
Loading"	 -
Journal of Applied Mechanics, ASME, Vol. 32, pp 17-22, 1962.

[26] Earles,SWEandPhilpot,MG
"Energy Dissipation at Plane Surfaces in Contact"
Journal of Mechanical Engineering Science, Vol.9, No2, pp86-97, 1967.

[27] Dekoninck, C
"Deformation Properties of Metallic Contact Surfaces of Joints under the
Influence of Dynamic Tangential Loads".
mt j. Mach. Tool Des. Res, Vol.12, ppl93-l99, 1972.

[28] Masuko, M, Ito, Y and Fujmoto, C
"Behaviour of the Horizontal Stiffness and the Micro-sliding on the Bolted Joint
under the Normal Pre-load"
The 12th International MTDR Conference, University of Manchester, paper 1007,
September, 1971

[29] Masuko, M, Ito, Y and Koizumi, T
"Horizontal Stiffness and Micro-slip on a Bolted Joint Subjected to Repeated
Tangential Static Loads"
Bulletin of the JSME. Vol. 17, No 113. pp1494-l5Ol, 1974

[30] Rogers, P F and Boothroyd, 0
'Damping at Metallic Interfaces Subjected to Oscillating Tangential Loads"
Journal of Engineering for Industry, ASME. Vol.97, pplO87-lO93, 1975

[31] Kirsanova,VN
"The Shear Compliance of Flat Joints"
Machines &Tooling Vol. XXXVIII. pp3O-34, 1967.

[32] Burdekin, M, Back, N and Cowley, A
"Experimental Study of Normal and Shear Characteristics of Machined Surfaces
in Contact"
Journal of Mechanical Engineering Science. Vol.20, No.3, pp 129-132, 1978.

[33] Bell, R and Burdekin, M
"A study of the Stick-slip Motion of Machine Tool Feed Drives"
Proc Insm Mech Engrs. Vol.184. Pt.1. No.30. pp543-555, 1969-70.

[34] Padmanabhan, K K and Murty, A S R
"Damping in structural Joints Subjected to Tangential Loads"
Proc Instn Mech Engrs. Vol. 205. pp 121-129, 1991



Reference	 page -270-

[35] Villanueva-Leal, A and Hinduja, S
"Modelling the Characteristics of Interface Surfaces by the Finite Element
Method".
Proc Instn Mech Engrs, Vol. 198c. No.4, pp9-23, 1984

[361 Vinogradov, 00 and Pivovarov, I
"Vibrations of a System with Nonlinear Hysteresis"
Journal of Sound and Vibration. Vol.111(1). pp145-152, 1986

[37] Pivovarov.I and Vinogradov.O.G
"One Application of Bouc's model for Non-linear Hysteresis"
Journal of Sound and Vibration. Vol 118(2).pp209-216, 1987

[38] Wen,YK	 -
"Method for Random Vibration of Hysteretic Systems"
Journal of the Engineering Mechanics Division. ASCE. No EM2. pp249-263,
1976.

[39] Oden, J T and Pires, E B
"Nonlocal and Nonlinear Friction Laws and Variational Principles for Contact
Problems in Elasticity"
Journal of Applied Mechanics, ASME. Vol.50, pp67-76, 1983.

[40] Srinivasan, A V and Cassenti, B N
"A Nonlinear Theory of Dynamic Systems with Dry Friction Forces"
Journal of Engineering for Gas Turbines and Power, ASME. Vol.108,
pp525-530, 1986

[41] Nan, T H H and Hallowell, F C
"Structural Damping in a Simple Built-up Beam"
Proceedings of the 1st US National Congress on Applied Mechanics, pp97-lO2,
1951

[42] Mindlin, R D and Deresiewicz, H
"Elastic Spheres in Contact under Varying Oblique Forces"
Journal of Applied Mechanics, ASME. Vol.20, pp327-344, 1953

[43] Pian,THH
"Structural Damping of a Simple Built-up Beam with Riveted Joints in Bending"
Journal of Applied Mechanics, Vol.24, pp35-38, 1957

[44] Iwan,WD
"On a Class of Models for the Yielding Behaviour of Continuous and Composite
Systems"
Journal of Applied Mechanics, ASME, Vol.64, pp6l2-6l7, 1967

[45] Metherell, A F and Duller, S V
"Instantaneous Energy Dissipation Rate in a Lap Joint-uniform Clamping
Pressure".
Journal of Applied Mechanics, ASME. Vol.65, ppI23-128, 1968

[46] Ungar,EE
"The Status of Engineering Knowledge Concerning the Damping of Built-up
Structures"
Journal of Sound and Vibration, Vol.26(1), ppl4l-154, 1973

[47] Richardson, R S H and Nolle, H
"Energy Dissipation in Rotary Structural Joints"
Journal of Sound and Vibration. Vol. 54(4), pp577-588, 1977



Reference	 page -271-

[48] Burdekin, M, Cowley, A and Back, N
"An Elastic Mechanism for the Micro-Sliding Characteristics between Contacting
Machined Surfaces"
Journal of Mechanical Engineering Science. Vol.20, No.3, pp 121-127, 1978.

[49] Shoukry, S N
"A Mathematical Model for the Stiffness of Fixed Joints Between Machine Parts"
Proceedings of the NUMETA '85 Conference, pp851-858, Swansea, 1985.

[50] Shoukry, S N
"Assessment of Frictional Damping in Tangentially Loaded Metallic Interfaces"
Proceedings of the3rd International Conference on Recent Advances in Structural
Dynamics, pp437-448, University of southampton, 18-22 July 1988.

[51] Menq,CH
"Modeling and Vibration Analysis of Friction Joints"
Journal of Vibration, Acoustics, Stress, and Reliability in Design, ASME.
Vol.111, pp7l-76, 1989

[52] Iwan, W D
"The Steady-State Response of a Two-degree-of-freedom Bilinear Hysteretic
System"
Journal of Applied Mechanics, ASME, Vol.62. ppl5l-l56, 1965.

[53] Dowel, E H
"The Behaviour of a Linear, Damped Modal System with a Non-linear Spring-
mass-thy Friction Damper System Attached"
Journal of Sound and Vibration. Vol.89(1). pp64-84, 1983

[54] Fern, A A and Dowell, E H
"The Behaviour of a Linear, Damped Modal System with a Non-linear Spring-
mass-diy Friction Damper System Attached, Part II"
Journal of Sound and Vibration. Vol.101(1). 55-74, 1985.

[55] Dowel!, E H
"Component Mode Analysis of a Simple Non-linear, Non-conservative System",
Journal of Sound and Vibration. Vol.80(2). pp233-246, 1982

[56] Sinha, A and Griffin, J H
"Stability of Limit Cycles in Frictionally Damped and Aerodynamically Unstable
Rotor Stages"
Journal of Sound and Vibration, Vol.103(3), pp341-356, 1985

[57] Menq, C H and Griffin, J H
"A comparison of Transient and Steady State Finite Element Analyses of the
Forced Response of a Frictionally Damped Beam"
Journal of Vibration, Acoustics, Stress, and Reliability in Design, ASME,
Vol.107, ppl9-25, 1985.

[58] Menq, C H, Griffin, J H and Bielak, J
"The Forced Response of Shrouded Fan Stages"
Journal of Vibration, Acoustics, Stress, and Reliability in Design, ASME,
Vol.108, pp5O-55, 1986

[59] Menq, C H, Griffin, J H and Bielak, J
"The Influence of a Variable Normal Load on the Forced Vibration of a
Frictionally Damped Structure"
Journal of Engineering for Gas Turbines and Power, ASME, Vol.108,
pp300-305, 1986



Reference	 pare -272-

[601 Griffin, J H and Menq, C H
"Friction Damping of Circular Motion and Its Implication to Vibration Control"
Journal of Vibration, Acoustics, Stress, and Reliability in Design, ASME,
Vol.113, pp225-229, 1991.

[61] Menq, C H and Chidamparma, P
'Triction Damping of Two Dimensional Motion and Its Application in Vibration
Control"
Journal of Sound and Vibration, Vol.144(3), pp427-447, 1991.

[62] Anderson, J R and Fern, A A
"Behaviour of a Single-degree-of-freedom System with a Generalised Friction
Law"
Journal of Sound and Vibration, Vol.140(2), pp287-304, 1990.

[63] Pierre, C, Fern, A A and Dowel, E H
"Multi-hannonic Analysis of Diy Friction Damped Systems Using an Incremental
Harmonic Balance Method"
Journal of Applied Mechanics, ASME, Vol.52, pp958-964, 1985.

[64] Fern, A A and Dowel, E H
"Frequency Domain Solutions to Multi-degree-of-freedom, Dry Friction Damped
Systems"
Journal of Sound and Vibration, Vol.124(2), 207-224, 1988.

[65] Cameron, T M and Griffin, J H
"An Alternating Frequency/Time Domain Method for Calculating the Steady-state
Response of Nonlinear Dynamic Systems"
Journal of Applied Mechanics, ASME, Vol. 56, ppl49-l54, 1989.

[66] Pratt, T K and Williams, R
"Non-linear Analysis of Stick-slip Motion"
Journal of Sound and Vibration, Vol.74(4), pp531-542, 1981.

[67] Muszynska, A and Jones, D I G
"On Tuned B laded Disk Dynamics:Some Aspects of Friction Related Mistuning"
Journal of Sound and Vibration, Vol.86(1), pplO7-128, 1983.

[68] Shaw, S W
"On the Dynamic Response of a System with Dry Friction"
Journal of Sound and Vibration, Vol.108(2), pp305-325, 1986.

[69] Vinogradov, 0
"Effect of Frequency on Losses in a Dry Friction Joint"
The DAMPING 89 conference, pp2-lO, Florida, U.S.A, February 1989.

[70] Dweib, A H and D'Souza, A F
"Self-excited Vibrations Induced by Dry Friction, Part 1: Experimental Study",
Journal of Sound and Vibration, Vol.137(2), pp 163-175, 1990.

[71] Dweib, A H and D'Souza, A F
"Self-excited Vibrations Induced by Dry Friction, Part 2: Stability and Limit-cycle
Analysis"
Journal of Sound and Vibration, Vol.137(2), pp 177-190, 1990.

[72] Paranjpe, R S
'Dynamic Analysis of a Valve Spring with a Coulomb-friction Damper"
Journal of Mechanical Design, ASME, Vol.112, pp509-5l3, 1990



Reference	 naye -273.

[73] Cheng, S P and Perkins, N C
"The Vibration and Stability of a Friction-Guided Translating String"
Journal of Sound and Vibration, Vol.144(2), pp281-292, 1991.

[74] Thomson, W T
"Analog Computer for Nonlinear System with Hysteresis"
Journal of Applied Mechanics, ASME, Vol.24, pp245-247, 1957.

[75] Jones, D I G
"Recent Advances in Structural Damping"
Proceeding of the 3nd International Conference on Recent Advances in Structural
dynamics, pp409-428, 1988.

[76] Thornley, 0 H, Connolly, R, Barash, M and Koenigsberger, F
"The Effect of Surface Topography Upon the Static Stiffness of Machine Tool
joints".
hit. J. Mach. Tool. Des. Res. Vol.5. pp57-74, 1965.

[77] Herrera.I
"Dynamic Models for Masing Type Materials and Structure."
Boletin Sociedad Mexicana Dc Ingenieria Sismica, Vol.3, pp 1-8, 1965

[78] Whiteman, I R
"On the Deviation of the Stress-strain Diagram from a Statistical Approach".
Aerospace Engineering Vol.2 1, pp56-57&69-73, 1962

[79] Mindlin.R.D
"Compliance of Elastic Bodies in Contact"
Journal of Applied Mechanics. AS ME. Vol.16, pp259-268, 1949.

[80] Goodman.LE and Klumpp.J.H
"Analysis of Slip Damping With Reference to Turbine-Blade Vibration."
Journal of Applied Mechanics. ASME.Vol.23, pp42l-429, 1956

[81] Meirovitch.L
"Elements of Vibration Analysis"
Macmillan, 1975

[82] Timoshenko, S, Young, D H and Weaver, J R W
"Vibration Problem in Engineering"
John Wiley & Sons mc, 1974

[83] Greenwood.J.A
"Surface Modelling in Tribology"
Published in "Applied Surface Modelling" Ed by Creasy.C.F.M and Craggs.C.
Ellis Horwood Limited. 1990.

[84] Brent.R.P
"Algorithms for Minimization without Derivations".
Englewood Cliffs, 1973.

[85] Press, W H, Flannery, P B, Teukolsky, S A and Vetterling, W T
"Numerical Recipes ".
Cambridge Umversity Press, 1988



Reference	 page -274-

[86] Hitchins, D
"Fmite Element Methods for Structural Dynamics".
Short course note, Imperial College, London SW7, 2AZ. 19-20th June, 1989.

[87] Houbolt.J.0
"A Recurrence Matrix Solution for the Dynamic Response of Elastic Aircraft".
Journal of Aeronautical Science. Vol.17, pp54O-55O&594, 1950.

[88] Wilson.E.L, Farhoornand.I and Bathe.KJ
"Nonlinear Dynamic Analysis of Complex Structure".
International Journal of Earthquake Engineering and Structural Dynamics. Vol.1.
pp24 1-252, 1973

[89] Newmark.N.M
"A Method of Computation for Structural Dynamics".
A.S.C.E, Journal of Engineering Mechanical Division. Vol.85, pp67-94, 1959

[90] Macneal,RH
"NASTRAN Theoretical Manual."
The Macneal-Schwendler Corporation, 1972

[91] Guyan,RJ
"Reduction of Stiffness and Mass Matrices"
AIAA, Vol.3, p380, 1965

[92] Yao, M S
"Linear and Geometrically nonlinear structural dynamic analysis using reduced
basis finite element technique"
Ph.D thesis, Imperial College, London University, 1990

[93] Ewins, D J and Imregun, M
"State-of-the-Art Assessment of Structural Dynamic Response Analysis
Methods(DYNAS)"
Shock and Vibration Bulletin, Vol. 56, pp59-90. 1986.

[94] Minorsky, N
"Nonlinear Oscillations"
Robert E. Krieger Publishing Company. Florida. 1988

[95] Lau, S L and Cheung, Y K
"Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic
Systems"
Journal of Applied Mechanics, ASME, Vol.48, pp959-964, 1981.

[96] Lau, S L, Cheung, Y K and Wu, S Y
"A Variable Parameter Incrementation Method for Dynamic Instability of Unear
and Nonlinear Elastic Systems".
Journal of Applied Mechanics, ASMIE, Vol.49, pp849-853, 1982.

[97] Cheung, Y K and Chen, S H
"Application of the Incremental Harmonic Balance Method to Cubic Non-lineanty
Systems".
Journal of Sound and Vibration, Vol.140(2), pp273-286, 1990.



Reference	 pa'e -275-

[98] Cooley, J W, Lewis, P and Welch, P
"Historical notes on the Fast Fourier Transform"
TVFP Transactions on Audio and Electroacoustics, VoLAU-15, pp76-79, 1967

[99] Urgueira,APV
'Dynamic Analysis of Coupled Structures Using Experimental Data"
Ph.D thesis, Imperial College, London University, 1989.

[100] Hurty.W.0
"Dynamic Analysis of Structural Systems Using Component Modes"
AIAA Journal, Vol.3(4), pp678-685, 1965

[101] Craig.R.R and Bampton.M.C.0
"Coupling of Substructures for Dynamic Analysis"
AIAA Journal, Vol.6(7), pp1313-1319, 1968

[102] Hou.S
"Review of Modal Synthesis Techniques and a New Approach"
Shock and Vibration Bulletin, Vol.40 (4), pp25-39, 1969

[103] Imregun.M, Robb.D.A and Ewins.D.J
"Structural Modification and Coupling Dynamic Analysis Using Measured FRF
Data"
The 5th IMAC, ppll36-ll4l, 1987

[104] Tsai, J S and Chou, Y F
"The Jdentification of Dynamic Characteristics of a Single Bolt Joint"
Journal of Sound and Vibration, Vol. 125(3), pp487-502, 1988

[105] Newland, D E
"An Introducation to Random Vibration and Spectral Analysis"
Longman, New York, 1984.

[106] Robb,DA
"User's Guide to Program MODENT"
Dynamic section, Dept of Mech. Eng, Imperial College, London, U.K.

[107] One, D, Leuridan, J, Dc Vis, D Grangier, H and Aquilina, R
"Coupling of Structure Using Measured FRFs by means of SVD Based Data
Reduction Techniques"
The 8th IMAC, Florida. pp213-220. 1990

[108] Penrose, R
"A Generalized Inverse for Matrices" Pro.Camb.Phil.Sco Vol.5 1, pp406-413.
1955.

[109] Penrose,R
"On Best Approximate Solutions of Linear Matrix Equations"
Proc.Camb.Phil.Soc, Vol.52, ppl7-l9, 1956

[110] Huckeibridge, A A and Lawrence, C
"Identification of Structural Interface Characteristics using Component Mode
Synthesis".
Journal of Vibration, Acoustic, Stress and Reliability in Design. ASME Vol.111.
ppl4O-147, 1989.



Reference	 page -276-

[111] Carneiro,SHSandArruda,JRF
"Updating Mechanical Joint Properties Based On Experimentally Determined
Modal Parameters"
The 8th IMAC. pp1 169-1175, 1990.

[112] Wang,JHandLiou,CM
"Experimental Substructure Synthesis with Special Consideration of Joint Effect"
The International Journal of Analytical and Experimental Modal Analysis,
Vol.5(1), ppl-12, January 1989.

[113] Hong,SWandLee,CW
"Identification of Linearised Joint Structural Parameters By Combined Use of
Measured and Computed Frequency Responses"
Mechanical Systems and Signal Process, VoL5(4), pp267-277, 1991

[114] Lin,RMandEwins,DJ
"Modal Updating Using FRF Data"
Proc. the 15th International Seminar on Modal Analysis, pp 141-162,
K.U.Leuven, Belgium, Sept 1990.

[115] Friswell, M I and Penny, J E T
"Updating Model Parameters Directly fmm Frequency Response Data"
The 8th IMAC, pp843-849, 1990

[116] Isenberg, J
"Progressing from Least Squares to Bayesian Estimation"
An ASME publication, No. 79-WA/DSC-16, 1979.


	DX187948_1_0001.tif
	DX187948_1_0003.tif
	DX187948_1_0005.tif
	DX187948_1_0007.tif
	DX187948_1_0009.tif
	DX187948_1_0011.tif
	DX187948_1_0013.tif
	DX187948_1_0015.tif
	DX187948_1_0017.tif
	DX187948_1_0019.tif
	DX187948_1_0021.tif
	DX187948_1_0023.tif
	DX187948_1_0025.tif
	DX187948_1_0027.tif
	DX187948_1_0029.tif
	DX187948_1_0031.tif
	DX187948_1_0033.tif
	DX187948_1_0035.tif
	DX187948_1_0037.tif
	DX187948_1_0039.tif
	DX187948_1_0041.tif
	DX187948_1_0043.tif
	DX187948_1_0045.tif
	DX187948_1_0047.tif
	DX187948_1_0049.tif
	DX187948_1_0051.tif
	DX187948_1_0053.tif
	DX187948_1_0055.tif
	DX187948_1_0057.tif
	DX187948_1_0059.tif
	DX187948_1_0061.tif
	DX187948_1_0063.tif
	DX187948_1_0065.tif
	DX187948_1_0067.tif
	DX187948_1_0069.tif
	DX187948_1_0071.tif
	DX187948_1_0073.tif
	DX187948_1_0075.tif
	DX187948_1_0077.tif
	DX187948_1_0079.tif
	DX187948_1_0081.tif
	DX187948_1_0083.tif
	DX187948_1_0085.tif
	DX187948_1_0087.tif
	DX187948_1_0089.tif
	DX187948_1_0091.tif
	DX187948_1_0093.tif
	DX187948_1_0095.tif
	DX187948_1_0097.tif
	DX187948_1_0099.tif
	DX187948_1_0101.tif
	DX187948_1_0103.tif
	DX187948_1_0105.tif
	DX187948_1_0107.tif
	DX187948_1_0109.tif
	DX187948_1_0111.tif
	DX187948_1_0113.tif
	DX187948_1_0115.tif
	DX187948_1_0117.tif
	DX187948_1_0119.tif
	DX187948_1_0121.tif
	DX187948_1_0123.tif
	DX187948_1_0125.tif
	DX187948_1_0127.tif
	DX187948_1_0129.tif
	DX187948_1_0131.tif
	DX187948_1_0133.tif
	DX187948_1_0135.tif
	DX187948_1_0137.tif
	DX187948_1_0139.tif
	DX187948_1_0141.tif
	DX187948_1_0143.tif
	DX187948_1_0145.tif
	DX187948_1_0147.tif
	DX187948_1_0149.tif
	DX187948_1_0151.tif
	DX187948_1_0153.tif
	DX187948_1_0155.tif
	DX187948_1_0157.tif
	DX187948_1_0159.tif
	DX187948_1_0161.tif
	DX187948_1_0163.tif
	DX187948_1_0165.tif
	DX187948_1_0167.tif
	DX187948_1_0169.tif
	DX187948_1_0171.tif
	DX187948_1_0173.tif
	DX187948_1_0175.tif
	DX187948_1_0177.tif
	DX187948_1_0179.tif
	DX187948_1_0181.tif
	DX187948_1_0183.tif
	DX187948_1_0185.tif
	DX187948_1_0187.tif
	DX187948_1_0189.tif
	DX187948_1_0191.tif
	DX187948_1_0193.tif
	DX187948_1_0195.tif
	DX187948_1_0197.tif
	DX187948_1_0199.tif
	DX187948_1_0201.tif
	DX187948_1_0203.tif
	DX187948_1_0205.tif
	DX187948_1_0207.tif
	DX187948_1_0209.tif
	DX187948_1_0211.tif
	DX187948_1_0213.tif
	DX187948_1_0215.tif
	DX187948_1_0217.tif
	DX187948_1_0219.tif
	DX187948_1_0221.tif
	DX187948_1_0223.tif
	DX187948_1_0225.tif
	DX187948_1_0227.tif
	DX187948_1_0229.tif
	DX187948_1_0231.tif
	DX187948_1_0233.tif
	DX187948_1_0235.tif
	DX187948_1_0237.tif
	DX187948_1_0239.tif
	DX187948_1_0241.tif
	DX187948_1_0243.tif
	DX187948_1_0245.tif
	DX187948_1_0247.tif
	DX187948_1_0249.tif
	DX187948_1_0251.tif
	DX187948_1_0253.tif
	DX187948_1_0255.tif
	DX187948_1_0257.tif
	DX187948_1_0259.tif
	DX187948_1_0261.tif
	DX187948_1_0263.tif
	DX187948_1_0265.tif
	DX187948_1_0267.tif
	DX187948_1_0269.tif
	DX187948_1_0271.tif
	DX187948_1_0273.tif
	DX187948_1_0275.tif
	DX187948_1_0277.tif
	DX187948_1_0279.tif
	DX187948_1_0281.tif
	DX187948_1_0283.tif
	DX187948_1_0285.tif
	DX187948_1_0287.tif
	DX187948_1_0289.tif
	DX187948_1_0291.tif
	DX187948_1_0293.tif
	DX187948_1_0295.tif
	DX187948_1_0297.tif
	DX187948_1_0299.tif
	DX187948_1_0301.tif
	DX187948_1_0303.tif
	DX187948_1_0305.tif
	DX187948_1_0307.tif
	DX187948_1_0309.tif
	DX187948_1_0311.tif
	DX187948_1_0313.tif
	DX187948_1_0315.tif
	DX187948_1_0317.tif
	DX187948_1_0319.tif
	DX187948_1_0321.tif
	DX187948_1_0323.tif
	DX187948_1_0325.tif
	DX187948_1_0327.tif
	DX187948_1_0329.tif
	DX187948_1_0331.tif
	DX187948_1_0333.tif
	DX187948_1_0335.tif
	DX187948_1_0337.tif
	DX187948_1_0339.tif
	DX187948_1_0341.tif
	DX187948_1_0343.tif
	DX187948_1_0345.tif
	DX187948_1_0347.tif
	DX187948_1_0349.tif
	DX187948_1_0351.tif
	DX187948_1_0353.tif
	DX187948_1_0355.tif
	DX187948_1_0357.tif
	DX187948_1_0359.tif
	DX187948_1_0361.tif
	DX187948_1_0363.tif
	DX187948_1_0365.tif
	DX187948_1_0367.tif
	DX187948_1_0369.tif
	DX187948_1_0371.tif
	DX187948_1_0373.tif
	DX187948_1_0375.tif
	DX187948_1_0377.tif
	DX187948_1_0379.tif
	DX187948_1_0381.tif
	DX187948_1_0383.tif
	DX187948_1_0385.tif
	DX187948_1_0387.tif
	DX187948_1_0389.tif
	DX187948_1_0391.tif
	DX187948_1_0393.tif
	DX187948_1_0395.tif
	DX187948_1_0397.tif
	DX187948_1_0399.tif
	DX187948_1_0401.tif
	DX187948_1_0403.tif
	DX187948_1_0405.tif
	DX187948_1_0407.tif
	DX187948_1_0409.tif
	DX187948_1_0411.tif
	DX187948_1_0413.tif
	DX187948_1_0415.tif
	DX187948_1_0417.tif
	DX187948_1_0419.tif
	DX187948_1_0421.tif
	DX187948_1_0423.tif
	DX187948_1_0425.tif
	DX187948_1_0427.tif
	DX187948_1_0429.tif
	DX187948_1_0431.tif
	DX187948_1_0433.tif
	DX187948_1_0435.tif
	DX187948_1_0437.tif
	DX187948_1_0439.tif
	DX187948_1_0441.tif
	DX187948_1_0443.tif
	DX187948_1_0445.tif
	DX187948_1_0447.tif
	DX187948_1_0449.tif
	DX187948_1_0451.tif
	DX187948_1_0453.tif
	DX187948_1_0455.tif
	DX187948_1_0457.tif
	DX187948_1_0459.tif
	DX187948_1_0461.tif
	DX187948_1_0463.tif
	DX187948_1_0465.tif
	DX187948_1_0467.tif
	DX187948_1_0469.tif
	DX187948_1_0471.tif
	DX187948_1_0473.tif
	DX187948_1_0475.tif
	DX187948_1_0477.tif
	DX187948_1_0479.tif
	DX187948_1_0481.tif
	DX187948_1_0483.tif
	DX187948_1_0485.tif
	DX187948_1_0487.tif
	DX187948_1_0489.tif
	DX187948_1_0491.tif
	DX187948_1_0493.tif
	DX187948_1_0495.tif
	DX187948_1_0497.tif
	DX187948_1_0499.tif
	DX187948_1_0501.tif
	DX187948_1_0503.tif
	DX187948_1_0505.tif
	DX187948_1_0507.tif
	DX187948_1_0509.tif
	DX187948_1_0511.tif
	DX187948_1_0513.tif
	DX187948_1_0515.tif
	DX187948_1_0517.tif
	DX187948_1_0519.tif
	DX187948_1_0521.tif
	DX187948_1_0523.tif
	DX187948_1_0525.tif
	DX187948_1_0527.tif
	DX187948_1_0529.tif
	DX187948_1_0531.tif
	DX187948_1_0533.tif
	DX187948_1_0535.tif
	DX187948_1_0537.tif
	DX187948_1_0539.tif
	DX187948_1_0541.tif
	DX187948_1_0543.tif
	DX187948_1_0545.tif
	DX187948_1_0547.tif
	DX187948_1_0549.tif
	DX187948_1_0551.tif
	DX187948_1_0553.tif
	DX187948_1_0555.tif
	DX187948_1_0557.tif
	DX187948_1_0559.tif
	DX187948_1_0561.tif
	DX187948_1_0563.tif
	DX187948_1_0565.tif
	DX187948_1_0567.tif
	DX187948_1_0569.tif
	DX187948_1_0571.tif
	DX187948_1_0573.tif
	DX187948_1_0575.tif
	DX187948_1_0577.tif
	DX187948_1_0579.tif
	DX187948_1_0581.tif
	DX187948_1_0583.tif
	DX187948_1_0585.tif
	DX187948_1_0587.tif
	DX187948_1_0589.tif
	DX187948_1_0591.tif

