
International Journal of Computer Applications (0975 – 8887)

Majan College International Conference (MIC-2014)

35

Optimized Load Balancing based Task Scheduling in

Cloud Environment

Elrasheed Ismail
Sultan

Muscat College

Noraziah .A.
Faculty of CS and SE

Universiti Malaysia
Phahang

Kuantan, Malaysia

Faisal Alamri
Faculty of CS and SE

Universiti Malaysia
Phahang

Kuantan, Malaysia

Abdulla. A
Universiti Malaysia

Phahang
Kuantan, Malaysia

ABSTRACT

Abstract. The fundamental issue of Task scheduling is one

important factor to load balance between the virtual machines

in a Cloud Computing network. However, the optimal

broadcast methods which have been proposed so far focus

only on cluster or grid environment. In this paper, task

scheduling strategy based on load balancing Quantum

Particles Swarm algorithm (BLQPSO) was proposed. The

fitness function based minimizing the makespan and data

transmission cost. In addition, the salient feature of this

algorithm is to optimize node available throughput

dynamically using MatLab10A software. Furthermore, the

performance of proposed algorithm had been compared with

existing PSO and shows their effectiveness in balancing the

load.

Keywords

Cloud computing, scheduling, Load balancing, Storage

System, Virtual machines.

1. INTRODUCTION
Cloud computing is emerging as the latest distributed

computing paradigm and attracts increasing interests of

researchers in the area of Distributed and Parallel Computing

[1], Service Oriented Computing [2] and Software

Engineering [3]. Generally speaking, the function of a cloud

workload system and its role in a cloud computing

environment, is to facilitate the automation of user submitted

workload applications where the tasks have precedence

relationships defined by graph-based modeling tools such as

DAG (directed acyclic graph) and Petri Nets [4], or language-

based modeling tools such as XPDL (XML Process Definition

Language) [17].

Among many others, one of the most important aspects which

differentiate a cloud workload system from its other

counterparts is the market-oriented business model. Such a

seemed small change actually brings significant innovations to

conventional computing paradigms since they are usually

based on non-business community models where resources

are shared and free to be accessed by community members

[5]. Meanwhile, application data can be hosted on different

storage resources at the global cloud infrastructure. When one

task needs to process data from different datacenters, moving

the data becomes a challenge [6]. In order to efficiently and

cost effectively schedule the tasks and data of applications

among cloud services, end user QoS-based scheduling

strategies are implemented, such as those for minimizing

makespan, minimizing total execution cost and balancing the

load of resources [7]. In this paper, we focus on minimizing

the execution time and the execution cost of applications on

these resources provided by Cloud service providers, such as

Cisco and Amazon.

The particle swarm method for function optimization has been

introduced by Kennedy and Eberhart [8]. The ability of groups

of some species of animals to work as a whole in locating

desirable positions in a given area is simulated. It has better

ability of global searching and has been successfully applied

to many areas [9]. This algorithm is predominately employed

to find solutions for continuous problem without prior

information. Unfortunately, workload scheduling which is one

of a variety of NP-completes is a discrete and very

complicated optimization issue. Several approaches have been

developed for PSO to solve discrete problem, such as swap

operation [10], angle modulation [11], space transformation

[12] and priority-based representation [13]. Although various

discrete PSO variants have been proposed, their performance

is generally not satisfactory when compared with other meta-

heuristics for discrete optimization [18].

More recently, set-based concept is introduced into PSO to

solve combinatorial optimization problems, such as

determining RNA secondary structure [14], traveling

salesman problem (TSP) and multidimensional knapsack

problem (MKP) [15]. This concept has been proved to be

promising. Based on the set-based scheme, we use QPSO to

minimize the total computation cost of cloud workload.

2. TASK SCHEDULING MODEL
Figure 1 shows the architecture model for which the proposed

algorithm is implemented. Here the works are submitted by

the user to the computing system. As the submitted user

work arrive to the cloud they are queued in the stack. The

cloud controller estimates the work size and checks for

the availability of the virtual machine and also the

capacity of the virtual machine. Once the work size and

the available resource (virtual machine) size match, the

work scheduler immediately allocates the identified

resource to the user work in queue. Unlike the round robin

scheduling algorithm, there is no overhead of fixing the time

slots to schedule the works in a periodic way. The impact of

the proposed algorithm is that there is an improvement in

response time and the processing time. The works are

equally spread, the complete computing system is load

balanced and no virtual machines are underutilized. The

novel advantage, is that the computational cost and the data

transfer cost are minimized.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UMP Institutional Repository

https://core.ac.uk/display/159183979?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Computer Applications (0975 – 8887)

Majan College International Conference (MIC-2014)

36

Fig. 1: Scheduling and QPSO load balancing model

The main parts of this model consist as follows.

User Requirement: to store the user submits the task, and tasks

are queued. Responsible for the classification and record the

user tasks. This represent as m users, as m
www ,,,

21


, n

independent tasks, as n
ttt ,,,

21


.

List of Virtual Machine: responsible for collecting and

recording information about the list of the currently idle

machine resources. This represents as kVMs, as

k
VMVMVM ,,,

21


.

List of Datacenters: responsible for selecting available host in

a datacenter, which meets the memory, storage, and

availability requirement for a VM deployment [14, 15, 16].

This represent as p datacenters, as. p
DDD ,,,

21


Cloud Controller: responsible for the collection of user

requirements; the user task submitted by the task scheduling

resources to a virtual machine to complete the scheduling task.

Works scheduling aims at assigning work to victuals

machines in the cloud so that the execution time (makespan)

of the overall tasks of work is minimized. This problem can be

formulated as follows.

 (2.1)

a set of ‘n’ works to be scheduled. Moreover, we consider for

each Userwork‘i’

2.2)

as a set of ‘m’ task partitions of worki disseminated among

‘m’ cloud datacenters (D) in order to be executed.

Consequently, each cloud datacenter can carries out a disjoint

subset of the decomposed jobs set. For its assigned jobs, MVj

ensures the execution of their tasks as follows:

 UTrjUTbjUTajMj ,,,TasksV 
 (2.3)

The union of these overall disjoint subsets gives the whole set

of works. For example, VMj carries out

 jUTjUTjUTMj 9,,6,3TasksV 
 (2.4)

which are tasks of userworkw3, w6,…, and w9, respectively.

Therefore, the total processing time of all work (‘r’ tasks)

assigned to
MjV

 would be:

Makespan(VMjTasks) =Max (UTkj.StartTime +

UTkj.ExeTime), (2.5)

whereUTkj.StartTime is the time when work task ‘k’ UTkj

starts executing on VMi and UTkj.ExeTime is the execution

time of UTkj at VMj. Thus, the work scheduling problem in

the cloud computing could be defined as searching of a set:

MvTasks = {VM1T, VM2T,…,VMpT} (2.6)

and

VMjTasks = {UTaj, UTbj, ...,UTrj} with 0 < r ≤ n (2.7)

Which reduces: Makespan(VMjTasks)

In order to evaluate the quality of the requested solution

(VMTasks), a fitness function is defined as follows (used to

calculate the above makespan):

Fitness(VMTasks) = Σ (Fitness(UTij, VMj)) (2.8)

where (1≤ j ≤m)

and

Fitness(UTij, VMj) = UTij.TimeToExe (2.9)

where,

UTij.TimeToExe is the execution time of task of job ‘i’ needs

to run in VMj.

Each population contains ‘N’ individuals (solutions) where

each one is represented by a set of datacenter. Each datacenter

carried out a set of job tasks as follows:

Set of datacenters.

VMTasks = {VM1T, VM2T,…,VMpT} (2.10)

Each datacenter contains a set of affected work tasks as

follows:

VMjTasks = {UTaj, UTbj, ...,UTrj} (2.11)

The load balancing initialization aims at the generation of the

first population in which ‘N’ individuals are randomly

selected. For example, the following individuals are selected:

VMTasks={VM1T, VM2T,…,VMmT}

={<UTa1,UTb1,...,UTr1>,<UTa’2,UTb’2,...,UTr’2>,…,<UTa

” m,UTb”m, ...,UTr”m>} (2.12)

To evaluate each individual, the above fitness function is

applied. For this step, each task is characterized by its

execution time (UTij.TimeToExe).

We choose to apply a dynamic stopping criterion. The load

balancing iterations are carried out and stopped only when the

fitness does not change during ‘NS’. It is the stagnation state.

The number ‘NS’ is a user parameter. Note that this process is

limited by an iteration maximum number ‘ItMax’.

3. THE PROPOSED QPSO LOAD

BALANCING ALGORITHM
We utilize the characteristics of particle algorithms mentioned

above to schedule task. We can carry out new task scheduling

depending on the result in the replication based task

scheduling. It is very efficient in the cloud environment. In

nwww ,,,Userwork 21 

nUTiUTiUTi ,,,UserworkiT 21 

International Journal of Computer Applications (0975 – 8887)

Majan College International Conference (MIC-2014)

37

contrast to other, PSO algorithm, the QPSO algorithm inherits

the basic ideas from PSO algorithm to decrease the

computation time of tasks executing, it also considers the

loading of each VM. We can carry out new task scheduling

depending on the result in the past task scheduling.

3.1 Initialize Pheromone of VMj
At the beginning, particles are distributed on the virtual

machines randomly, and then it will initialize the VMj

pheromone value based on

 jUTjUTjUTMj 9,,6,3TasksV  (3.1)

Where pe_numj is the number of VMj processor, pe_mipsj is

the MIPS (Million Instructions Per Second) of each processor

of VMj and the parameter VM_bwj that is related to the

communication bandwidth ability of the VMj.

3.2 The Rule of Choosing VM for Next Task
The k-particle chooses VMj for next task with a probability

that is defined as:

𝑝𝑗
𝑘 = [𝜏𝑗 𝑡]𝛼 [𝐸𝑉𝑗]𝛽 [𝐿𝐵𝑗]𝛾 (3.2)

Where

 τj(t) is the VMj pheromone value at time t.

 EV j is the computing capacity of VMj, it is defined

as follows:

𝐸𝑉𝑗 = 𝑝𝑒_𝑛𝑢𝑚𝑗 × 𝑝𝑒_𝑚𝑖𝑝𝑠𝑗 + 𝑣𝑚_𝑏𝑤𝑗 (3.3)

Where pe_numj is the number of VMj processor, pe_mipsj is

the MIPS of each processor of VMj and the parameter

VM_bwj that is related to the communication bandwidth

ability of the VMj.

LBj is the load balancing factor of VMj, to minimize the

degree of imbalance, which is defined as follows:

𝑳𝑩𝒋 =
𝒓𝒆𝒔𝒋−𝒍𝒂𝒔𝒕𝑨𝒗𝒆𝒓_𝒓𝒆𝒔

𝒓𝒆𝒔𝒋−𝒍𝒂𝒔𝒕𝑨𝒗𝒆𝒓_𝒓𝒆𝒔
(3.4)

Where lastAver_res is the average execution time of the

virtual machines in the last iteration of the optimal path, and

resj is the expected execution time of the task in the VMj,

which is defined as follows:

𝑟𝑒𝑠𝑗 =
𝑡𝑜𝑡𝑎𝑙 _𝑡𝑎𝑠𝑘𝑙𝑒𝑛𝑔𝑡 ℎ

𝐸𝑉𝑗
 +

𝐼𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒𝑠𝑖𝑧𝑒

𝑣𝑚_𝑏𝑤 𝑗
(3.5)

Where total task length is the total length of the tasks that

have been submitted to VMj, and

Input File size is the length of the task before execution.

α, β and γ are three parameters that control the relative weight

of the pheromone trail, the computing capacity of VMs and

the load balancing factor of VMs.

Once some VMs are loading heavy, it becomes a bottleneck in

the cloud and it influences the makespan of a given tasks set.

Therefore we define the load balancing factor LBj in the

particle algorithm to improve the load balancing capability,

and the bigger LBj of VMj should be chosen with high

probability, that means the comprehensive ability of VMj is

power now, and then it is high desirable.

4. EVALUATION
The experiment is implemented using CloudSim platform.

The scheduling algorithms of the experiment include the

QPSOLB, the basic PSO [6] and ACO.

4.1 Assumptions
Adopting the Scheduling and the load balancing model

introduced in chapter 3, we assume that

 Tasks are mutually independent, i.e., there is no

precedence constraint between tasks.

 Tasks are computationally intensive.

 Tasks are not preemptive and they cannot be

interrupted or moved to another processor during their

execution.

Assume all tasks are executed on the Amazon Elastic

Compute Cloud (http://aws.amazon.com), all the data are

stored in Amazon Simple Storage Service and data

transmissions are fulfilled through the Amazon Cloud Front.

And assume that Service 1 to be in US, Service 3 in Malaysia

and Service 4 in Japan. Due to the varying price of service, in

the following simulation, the price at this moment is adopted.

Cost of execution of Ti on Servicej is $0.17 per hour

(resources for high-CPU, on-demand instance medium

instances, Windows 7). Taskcost = Tasktime * Price.

The scheduling problem aims to minimize the total execution

time of tasks as well as to achieve a well-balanced load across

all VMs in Cloud. That is, there are two factors considered

here. One is the minimization of the tasks completion time.

The other is to distribute workload evenly among virtual

machines

4.2 Experiment Result
We compared our QPSO algorithm with the Ant Colony

Optimization (ACO) and the basic Particle Swarm System

(PSO). The ACO and basic PSO algorithm aims to find the

earliest completion time of each task individually.

The QPSO algorithm aims to minimize the makespan of a

given set of tasks. The QPSO algorithm chooses optimal

resources to perform tasks according to resources status and

the size of given task in the cloud environment. Not only does

it minimize the makespan of a given set of tasks but it also

balances the entire system load.

In the following experiments, we compared the average

makespan of the basic PSO, ACO and QPSO algorithm with

different iterations; we also compared the average makespan

of 100-500 tasks set, and the average degree of imbalance

(DegreeImb) of each algorithm in the following experiments.

The average makespan of the basic PSO, ACO andQPSO

algorithm with different iterations is shown in Figure 5.1. In

this experiment, we used 300 tasks set to compare the average

performance of the basic PSO, ACO and the QPSO algorithm,

and we recorded the makespan using the time in the CloudSim

(ms).

International Journal of Computer Applications (0975 – 8887)

Majan College International Conference (MIC-2014)

38

Figure 5.1 The average makespan of 300 tasks set

Figure.5.1 shows that the average makespan of the basic PSO,

ACO and QPSO algorithm reduced roughly with the number

of iterations increased. But for the basic PSO, ACO and

QPSO algorithm, this change became slow after 50 iterations.

Hence, we used 50 iterations for other experiments in this

chapter. The average makespan of each algorithm with the

number of tasks varying from 100 to 500 is shown in Figure

5.1. In this experiment, we also use the time in the CloudSim

(ms) to record the makespan. At last the average degree of

imbalance (DegreeImb) of each algorithm with the number of

tasks varying from 100 to 500 is shown in Figure 5.1.

It can be seen from the Figure 5.1 and Figure 5.2, the average

performance of the QPSO algorithm is better than the basic

PSO algorithm and ACO algorithm. It means that the QPSO

can achieve good system load balance in any situation and

take less time to execute tasks. In other words, these results

demonstrated the effectiveness of the QPSO algorithm.

5. CONCLUSION
In this work, we presented task scheduling based on Quantium

Particle Swarm Optimization for load balancing. We used the

scheduling to minimize the makespan of execution of

scientific application workload ows on Cloud computing

environments.

We compared the results against basic PSO and Ant Colony.

We found that QPSO based task-resource mapping can

achieve at least three times cost savings as compared to PSO

and AC based mapping. In addition, QPSO balances the load

on compute.

6. ACKNOWLEDGEMENT
Appreciation conveyed to Ministry of Higher Education

Malaysia for project financing under Exploratory Research

Grant Scheme, RDU120608.

7. REFERENCES
[1] B. Raghavan, et al., "Cloud control with distributed rate

limiting," Proc. SIGCOMM’07, pp. 337 - 348, Kyoto,

Japan, 2007.

[2] D. Ardagna and B. Pernici, "Adaptive service

composition in flexible processes," IEEE Transactions on

Software Engineering, pp. 369-384, 2007.

[3] K. Bhattacharya, et al., "ICSE Cloud 09: First

international workshop on software engineering

challenges for Cloud Computing," Proc. 31st

International Conference on Software Engineering -

Companion Volume,. (ICSE-Companion 2009), pp. 482-

483. 2009

[4] W. Van der Aalst and K. Van Hee, Workflow

management: models, methods, and systems: The MIT

press, 2004.

[5] I. Foster, Zhao Yong, I. Raicu, and S. Lu, "Cloud

Computing and Grid Computing 360-Degree Compared",

Proc. Grid Computing Environments workshop, 2008.

GCE '08, pp. 1-10, 2008.

[6] D. Yuan, et al., "A data placement strategy in scientific

cloud workflows," Future Generation Computer Systems,

pp. 1200-1214 2010.

[7] S. Pandey, et al., "A Particle Swarm Optimization-Based

Heuristic for Scheduling Workflow Applications in

Cloud Computing Environments," in Advanced

Information Networking and Applications (AINA), 24th

IEEE International Conference on, pp. 400-407,2010.

[8] D. Bratton and J. Kennedy, "Defining a Standard for

Particle Swarm Optimization," in Swarm Intelligence

Symposium, 2007. SIS 2007. IEEE, 2007, pp. 120-127.

[9] M. Clerc, "Discrete Particle Swarm Optimization,

illustrated by the Traveling Salesman Problem," New

optimization techniques in engineering(Springer), 2004.

[10] G. Pampara, et al., "Combining particle swarm

optimisation with angle modulation to solve binary

problems," Proc.The IEEE Congress on Evolutionary

Computation , pp. 89-96, vol.1,2005.

[11] D. Sha and C. Hsu, "A hybrid particle swarm

optimization for job shop scheduling problem,"

Computers & Industrial Engineering, pp. 791-808, vol.

51,2006.

[12] J. Grobler, et al., "Metaheuristics for the multi-objective

FJSP with sequence-dependent set-up times, auxiliary

resources and machine down time," Annals of Operations

Research, pp. 1-32, 2008.

[13] M. Neethling and A. P. Engelbrecht, "Determining RNA

Secondary Structure using Set-based Particle Swarm

Optimization," IEEE Congress on Evolutionary

Computation, BC, Canada,pp. 1670-1677, 2006.

[14] C. Wei-Neng, et al., "A Novel Set-Based Particle Swarm

Optimization Method for Discrete Optimization

Problems," IEEE Transactions on Evolutionary

Computation, , vol. 14, pp. 278-300, 2010.

[15] Z. Wu, et al., "A Market-Oriented Hierarchical

Scheduling Strategy in Cloud Workflow Systems,"

Journal of Supercomputing, Special issue on Advances in

Network&ParallelComptg, to be appeared,2010.

[16] J. Yu and R. Buyya, "A Taxonomy of Workflow

Management Systems for Grid Computing," Journal of

Grid Computing, no. 3, pp. 171-200, 2005.

[17] X. Liu, J. Chen, Z. Wu, Z. Ni, D. Yuan, Y. Yang,

Handling Recoverable Temporal Violations in Scientific

Workflow Systems: A Workflow Rescheduling Based

Strategy. Proc. of 10th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing

(CCGrid2010), pages 534-537, Melbourne, Australia,

May 2010.

O
ve

ra
ll

St
an

d
ar

e
d

 D
e

vi
at

io
n

in

 R
an

d
o

m
 N

e
tw

o
rk

Iteration Steps

QPSO

PSO

AC

