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ABSTRACT 

Abstract. The fundamental issue of Task scheduling is one 

important factor to load balance between the virtual machines 

in a Cloud Computing network. However, the optimal 

broadcast methods which have been proposed so far focus 

only on cluster or grid environment. In this paper, task 

scheduling strategy based on load balancing Quantum 

Particles Swarm algorithm (BLQPSO) was proposed. The 

fitness function based minimizing the makespan and data 

transmission cost. In addition, the salient feature of this 

algorithm is to optimize node available throughput 

dynamically using MatLab10A software. Furthermore, the 

performance of proposed algorithm had been compared with 

existing PSO and shows their effectiveness in balancing the 

load. 

Keywords 

Cloud computing, scheduling, Load balancing, Storage 

System, Virtual machines. 

1. INTRODUCTION 
Cloud computing is emerging as the latest distributed 

computing paradigm and attracts increasing interests of 

researchers in the area of Distributed and Parallel Computing 

[1], Service Oriented Computing [2] and Software 

Engineering [3]. Generally speaking, the function of a cloud 

workload system and its role in a cloud computing 

environment, is to facilitate the automation of user submitted 

workload applications where the tasks have precedence 

relationships defined by graph-based modeling tools such as 

DAG (directed acyclic graph) and Petri Nets [4], or language-

based modeling tools such as XPDL (XML Process Definition 

Language) [17]. 

Among many others, one of the most important aspects which 

differentiate a cloud workload system from its other 

counterparts is the market-oriented business model. Such a 

seemed small change actually brings significant innovations to 

conventional computing paradigms since they are usually 

based on non-business community models where resources 

are shared and free to be accessed by community members 

[5]. Meanwhile, application data can be hosted on different 

storage resources at the global cloud infrastructure. When one 

task needs to process data from different datacenters, moving 

the data becomes a challenge [6]. In order to efficiently and 

cost effectively schedule the tasks and data of applications 

among cloud services, end user QoS-based scheduling 

strategies are implemented, such as those for minimizing 

makespan, minimizing total execution cost and balancing the 

load of resources [7]. In this paper, we focus on minimizing 

the execution time and the execution cost of applications on 

these resources provided by Cloud service providers, such as 

Cisco and Amazon. 

The particle swarm method for function optimization has been 

introduced by Kennedy and Eberhart [8]. The ability of groups 

of some species of animals to work as a whole in locating 

desirable positions in a given area is simulated. It has better 

ability of global searching and has been successfully applied 

to many areas [9]. This algorithm is predominately employed 

to find solutions for continuous problem without prior 

information. Unfortunately, workload scheduling which is one 

of a variety of NP-completes is a discrete and very 

complicated optimization issue. Several approaches have been 

developed for PSO to solve discrete problem, such as swap 

operation [10], angle modulation [11], space transformation 

[12] and priority-based representation  [13]. Although various 

discrete PSO variants have been proposed, their performance 

is generally not satisfactory when compared with other meta-

heuristics for discrete optimization [18]. 

More recently, set-based concept is introduced into PSO to 

solve combinatorial optimization problems, such as 

determining RNA secondary structure [14], traveling 

salesman problem (TSP) and multidimensional knapsack 

problem (MKP) [15]. This concept has been proved to be 

promising. Based on the set-based scheme, we use QPSO to 

minimize the total computation cost of cloud workload. 

2. TASK SCHEDULING MODEL 
Figure 1 shows the architecture model for which the proposed 

algorithm is implemented. Here  the  works  are  submitted  by 

the  user  to  the  computing  system. As  the  submitted  user 

work  arrive  to  the  cloud  they are queued  in  the  stack. The  

cloud controller  estimates  the  work  size  and  checks  for  

the availability  of  the  virtual machine  and  also  the  

capacity  of  the  virtual  machine.  Once  the  work size  and  

the  available resource  (virtual  machine)  size  match,  the  

work  scheduler immediately  allocates  the  identified  

resource  to  the  user work  in queue. Unlike the round robin 

scheduling algorithm, there is no overhead of fixing the time 

slots to schedule the works in a periodic way.  The impact of 

the proposed algorithm is that there is an improvement in 

response time and the processing time. The  works  are  

equally  spread,  the  complete  computing  system  is  load  

balanced  and  no  virtual  machines  are underutilized. The 

novel advantage, is that the computational cost and the data 

transfer cost are minimized. 
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Fig. 1: Scheduling and QPSO load balancing model 

The main parts of this model consist as follows. 

User Requirement: to store the user submits the task, and tasks 

are queued. Responsible for the classification and record the 

user tasks. This represent as m users, as m
www ,,,

21


, n 

independent tasks, as n
ttt ,,,

21


.  

List of Virtual Machine: responsible for collecting and 

recording information about the list of the currently idle 

machine resources. This represents as kVMs, as 

k
VMVMVM ,,,

21


. 

List of Datacenters: responsible for selecting available host in 

a datacenter, which meets the memory, storage, and 

availability requirement for a VM deployment [14, 15, 16]. 

This represent as p datacenters, as. p
DDD ,,,

21


 

Cloud Controller: responsible for the collection of user 

requirements; the user task submitted by the task scheduling 

resources to a virtual machine to complete the scheduling task. 

Works scheduling aims at assigning work to victuals 

machines in the cloud so that the execution time (makespan) 

of the overall tasks of work is minimized. This problem can be 

formulated as follows. 

     (2.1) 

a set of ‘n’ works to be scheduled. Moreover, we consider for 

each Userwork‘i’ 

2.2)  

as a set of ‘m’ task partitions of worki disseminated among 

‘m’ cloud datacenters (D) in order to be executed. 

Consequently, each cloud datacenter can carries out a disjoint 

subset of the decomposed jobs set. For its assigned jobs, MVj 

ensures the execution of their tasks as follows: 

 UTrjUTbjUTajMj ,,,TasksV 
  (2.3) 

The union of these overall disjoint subsets gives the whole set 

of works. For example, VMj carries out 

 jUTjUTjUTMj 9,,6,3TasksV 
  (2.4) 

which are tasks of userworkw3, w6,…, and w9, respectively. 

Therefore, the total processing time of all work (‘r’ tasks) 

assigned to 
MjV

 would be: 

Makespan(VMjTasks) =Max (UTkj.StartTime + 

UTkj.ExeTime),   (2.5) 

whereUTkj.StartTime is the time when work task ‘k’ UTkj 

starts executing on VMi and UTkj.ExeTime is the execution 

time of  UTkj at VMj. Thus, the work scheduling problem in 

the cloud computing could be defined as searching of a set: 

MvTasks = {VM1T, VM2T,…,VMpT}      (2.6)   

and 

VMjTasks = {UTaj, UTbj, ...,UTrj} with 0 < r ≤ n  (2.7) 

Which reduces: Makespan(VMjTasks) 

In order to evaluate the quality of the requested solution 

(VMTasks), a fitness function is defined as follows (used to 

calculate the above makespan): 

Fitness(VMTasks) = Σ (Fitness(UTij, VMj)) (2.8) 

where (1≤ j ≤m)  

and 

Fitness(UTij, VMj) = UTij.TimeToExe (2.9) 

where,  

UTij.TimeToExe is the execution time of task of job ‘i’ needs 

to run in VMj. 

Each population contains ‘N’ individuals (solutions) where 

each one is represented by a set of datacenter. Each datacenter 

carried out a set of job tasks as follows: 

Set of datacenters. 

VMTasks = {VM1T, VM2T,…,VMpT} (2.10) 

Each datacenter contains a set of affected work tasks as 

follows: 

VMjTasks = {UTaj, UTbj, ...,UTrj}    (2.11) 

The load balancing initialization aims at the generation of the 

first population in which ‘N’ individuals are randomly 

selected. For example, the following individuals are selected: 

VMTasks={VM1T, VM2T,…,VMmT} 

={<UTa1,UTb1,...,UTr1>,<UTa’2,UTb’2,...,UTr’2>,…,<UTa

” m,UTb”m, ...,UTr”m>}   (2.12) 

To evaluate each individual, the above fitness function is 

applied. For this step, each task is characterized by its 

execution time (UTij.TimeToExe). 

We choose to apply a dynamic stopping criterion. The load 

balancing iterations are carried out and stopped only when the 

fitness does not change during ‘NS’. It is the stagnation state. 

The number ‘NS’ is a user parameter. Note that this process is 

limited by an iteration maximum number ‘ItMax’. 

3. THE PROPOSED QPSO LOAD 

BALANCING ALGORITHM 
We utilize the characteristics of particle algorithms mentioned 

above to schedule task. We can carry out new task scheduling 

depending on the result in the replication based task 

scheduling. It is very efficient in the cloud environment. In 

nwww ,,,Userwork 21 

nUTiUTiUTi ,,,UserworkiT 21 
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contrast to other, PSO algorithm, the QPSO algorithm inherits 

the basic ideas from PSO algorithm to decrease the 

computation time of tasks executing, it also considers the 

loading of each VM. We can carry out new task scheduling 

depending on the result in the past task scheduling.  

3.1 Initialize Pheromone of VMj 
At the beginning, particles are distributed on the virtual 

machines randomly, and then it will initialize the VMj 

pheromone value based on 

 jUTjUTjUTMj 9,,6,3TasksV  (3.1) 

Where pe_numj is the number of VMj processor, pe_mipsj is 

the MIPS (Million Instructions Per Second) of each processor 

of VMj and the parameter VM_bwj that is related to the 

communication bandwidth ability of the VMj.  

3.2 The Rule of Choosing VM for Next Task    
The  k-particle chooses VMj for next task with a probability 

that is defined as: 

𝑝𝑗
𝑘 =  [𝜏𝑗  𝑡 ]𝛼 [𝐸𝑉𝑗 ]𝛽 [𝐿𝐵𝑗 ]𝛾 (3.2) 

Where  

 τj(t) is the VMj pheromone value at time t.  

 EV j  is the computing capacity of VMj, it is defined  

as follows:  

𝐸𝑉𝑗 = 𝑝𝑒_𝑛𝑢𝑚𝑗 × 𝑝𝑒_𝑚𝑖𝑝𝑠𝑗 + 𝑣𝑚_𝑏𝑤𝑗 (3.3) 

Where pe_numj is the number of VMj processor, pe_mipsj is 

the MIPS of each processor of VMj and the parameter 

VM_bwj that is related to the communication bandwidth 

ability of the VMj.  

LBj   is the load balancing factor of VMj, to minimize the 

degree of imbalance, which is defined as follows: 

𝑳𝑩𝒋 =
𝒓𝒆𝒔𝒋−𝒍𝒂𝒔𝒕𝑨𝒗𝒆𝒓_𝒓𝒆𝒔

𝒓𝒆𝒔𝒋−𝒍𝒂𝒔𝒕𝑨𝒗𝒆𝒓_𝒓𝒆𝒔
(3.4) 

Where  lastAver_res is the average execution time of the 

virtual machines in the last iteration of the optimal path, and  

resj is the expected execution time of the task in the VMj, 

which is defined as follows: 

𝑟𝑒𝑠𝑗 =
𝑡𝑜𝑡𝑎𝑙 _𝑡𝑎𝑠𝑘𝑙𝑒𝑛𝑔𝑡 ℎ

𝐸𝑉𝑗
 + 

𝐼𝑛𝑝𝑢𝑡𝐹𝑖𝑙𝑒𝑠𝑖𝑧𝑒

𝑣𝑚_𝑏𝑤 𝑗
(3.5) 

Where total task length is the total length of the tasks that 

have been submitted to VMj, and  

Input File size is the length of the task before execution.  

α,  β and γ are three parameters that control the relative weight 

of the pheromone trail, the computing capacity of VMs and 

the load balancing factor of VMs.   

Once some VMs are loading heavy, it becomes a bottleneck in 

the cloud and it influences the makespan of a given tasks set. 

Therefore we define the load balancing factor LBj in the 

particle algorithm to improve the load balancing capability, 

and the bigger LBj of VMj should be chosen with high 

probability, that means the comprehensive ability of VMj is 

power now, and then it is high desirable. 

 

4. EVALUATION 
The experiment is implemented using CloudSim platform. 

The scheduling algorithms of the experiment include the 

QPSOLB, the basic PSO [6] and ACO. 

4.1 Assumptions  
Adopting the Scheduling and the load balancing model 

introduced in chapter 3, we assume that   

 Tasks are mutually independent, i.e., there is no 

precedence constraint between tasks.  

 Tasks are computationally intensive.  

 Tasks are not preemptive and they cannot be 

interrupted or moved to another processor during their 

execution. 

Assume all tasks are executed on the Amazon Elastic 

Compute Cloud (http://aws.amazon.com), all the data are 

stored in Amazon Simple Storage Service and data 

transmissions are fulfilled through the Amazon Cloud Front. 

And assume that Service 1 to be in US, Service 3 in Malaysia 

and Service 4 in Japan. Due to the varying price of service, in 

the following simulation, the price at this moment is adopted. 

Cost of execution of Ti on Servicej is $0.17 per hour 

(resources for high-CPU, on-demand instance medium 

instances, Windows 7). Taskcost = Tasktime * Price. 

The scheduling problem aims to minimize the total execution 

time of tasks as well as to achieve a well-balanced load across 

all VMs in Cloud. That is, there are two factors considered 

here. One is the minimization of the tasks completion time. 

The other is to distribute workload evenly among virtual 

machines 

4.2 Experiment Result 
We compared our QPSO algorithm with the Ant Colony 

Optimization (ACO) and the basic Particle Swarm System 

(PSO). The ACO and basic PSO algorithm aims to find the 

earliest completion time of each task individually.  

The QPSO algorithm aims to minimize the makespan of a 

given set of tasks. The QPSO algorithm chooses optimal 

resources to perform tasks according to resources status and 

the size of given task in the cloud environment. Not only does 

it minimize the makespan of a given set of tasks but it also 

balances the entire system load.  

In the following experiments, we compared the average 

makespan of the basic PSO, ACO and QPSO algorithm with 

different iterations; we also compared the average makespan 

of 100-500 tasks set, and the average degree of imbalance 

(DegreeImb) of each algorithm in the following experiments.  

The average makespan of the basic PSO, ACO andQPSO 

algorithm with different iterations is shown in Figure 5.1. In 

this experiment, we used 300 tasks set to compare the average 

performance of the basic PSO, ACO and the QPSO algorithm, 

and we recorded the makespan using the time in the CloudSim 

(ms). 
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Figure 5.1   The average makespan of 300 tasks set 

Figure.5.1 shows that the average makespan of the basic PSO, 

ACO and QPSO algorithm reduced roughly with the number 

of iterations increased. But for the basic PSO, ACO and 

QPSO algorithm, this change became slow after 50 iterations.  

Hence, we used 50 iterations for other experiments in this 

chapter. The average makespan of each algorithm with the 

number of tasks varying from 100 to 500 is shown in Figure 

5.1. In this experiment, we also use the time in the CloudSim 

(ms) to record the makespan. At last the average degree of 

imbalance (DegreeImb) of each algorithm with the number of 

tasks varying from 100 to 500 is shown in Figure  5.1. 

It can be seen from the Figure 5.1 and Figure 5.2, the average 

performance of the QPSO algorithm is better than the basic 

PSO algorithm and ACO algorithm. It means that the QPSO 

can achieve good system load balance in any situation and 

take less time to execute tasks. In other words, these results 

demonstrated the effectiveness of the QPSO algorithm. 

5. CONCLUSION 
In this work, we presented task scheduling based on Quantium 

Particle Swarm Optimization for load balancing. We used the 

scheduling to minimize the makespan of execution of 

scientific application workload ows on Cloud computing 

environments.  

We compared the results against basic PSO and Ant Colony. 

We found that QPSO based task-resource mapping can 

achieve at least three times cost savings as compared to PSO 

and AC based mapping. In addition, QPSO balances the load 

on compute. 
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