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ABSTRACT 

 

Molecularly imprinted polymer (MIP) is an attractive technique for the synthesis of 

highly selective polymeric receptors having artificial generated recognition sites. These 

materials were synthesized with polymerizable functional monomers and crosslinker that 

were surrounded around the template molecule. After polymerization, a template 

molecule was removed leaving in the polymer selective recognition sites with shape, 

size and functionalities complementary to the template. This study presents a synthesis 

of MIP selectively for glucose binding. Glucose phosphate salt (GPS) was used as a 

template molecule with poly(allylamine hydrochloride) (PAA.HCl) as a functional 

monomer. Three types of crosslinkers which are epichlorohydrin (EPI), ethylene glycol 

diglycidyl ether (EDGE) and glycerol diglycidyl ether (GDE) were studied during the 

MIP synthesis. MIP prepared using EPI as a crosslinking showed the highest glucose 

binding capacity around 0.84 mg glucose/mg dried gel. The binding capacity of MIP 

prepared using EGDE and GDE are 0.78 mg glucose/mg gel and 0.38 mg glucose/mg 

gel respectively. It is also found that the increase on GPS monomer concentration will 

contribute to increase in glucose binding. 
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ABSTRAK 

 

Molecularly imprinted polymer (MIP) adalah salah satu teknik yang menarik dalam 

menghasilkan bahan polimer yang mempunyai sifat keupayaan untuk menarik sesuatu 

komponen secara spesifik. Bahan ini dihasilkan melalui sintesis monomer berfungsi 

melalui bahan pengikat di sekitar molekul template. Selepas pepmpolimeran, molekul 

template dikeluarkan untuk menghasilkan ruang yang selektif untuk mengikat molekul 

tersebut berdasarkan bentuk, saiz and kumpulan berfungsi. Dalam kajian ini, MIP 

disintesiskan spesifik untuk menyerap glukosa. Glucose phosphate mono-sodium (GPS) 

digunakan sebagai molekul template dengan poly(allylamine hydrochloride) (PAA.HCl) 

sebagai monomer berfungsi. Tiga jenis bahan pengikat iaitu epichlorohydrin (EPI), 

ethylene glycoldiglycidyl ether (EDGE) dan glycerol diglycidyl ether (GDE) telah 

dikaji. MIP yang terhasil daripada bahan pengikat EPI menunjukkan kadar penjerapan 

gula yang paling tinggi iaitu sebanyak 0.84 mg glukosa/mg MIP, diikuti oleh bahan 

pengikat EGDE iaitu sebanyak 0.78 mg glukosa/mg MIP dan akhir sekali bahan 

pengikat GDE iaitu sebanyak 0.38 mg glukosa/mg MIP. Selain itu, melalui kajian ini 

juga didapati bahawa semakin tinggi kepekatan molekul template iaitu GPS akan 

meningkatkan kadar penyerapan terhadap glukosa. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research Background 

 

The growing interest in biotechnological production of biofuels and specialty 

chemicals from lignocellulosic waste or biomass is justifiable as these materials are low 

priced and renewable. Biomass is the term used to describe all biologically produced 

matter. World production of biomass is estimated at 146 billion metric tons a year, 

mostly wild plant growth (Ahyan Demirbas, 2001). Biomass product can be hydrolyzed 

into several sugar components such as xylose and glucose.  

Xylose is a hemicellulosic sugar which can be economical starting raw material 

from biomass product for the production of a wide variety of compounds or fuel by 

chemical and biotechnological process. One of these compounds is xylitol that is 

extensively utilized in the food, pharmaceutical and odontological industries (Rafiqul & 

Mimi Sakinah, 2012, Nikhil et al., 2010). Xylitol is used as a sweetener and for 

medicinal purposes. In addition, xylose is safe for use in foods because it is contain 

natural healing agents that good for our health. However, in order to obtain high purity 

xylitol, other hemicellulosic sugars especially glucose need to be eliminates. 

Furthermore, the conversion of xylose into xylitol is very limited in the presence of 
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glucose. Glucose needs to be separated out from the xylose by any of the sugar 

separation method.  

Molecularly imprinted polymer (MIP) is an attractive technique for the synthesis 

of highly selective polymeric receptors having artificial generated recognition sites. 

These materials were synthesized with polymerizable functional monomers and 

crosslinkers that are surrounded around the template molecule. After polymerization, 

template molecule was removed leaving in the polymer selective recognition sites with 

shape, size and functionalities complementary to the template (Okutucu et al., 2011).  

Molecular imprinting technology is a rapidly developing technique for the 

preparation of polymers having specific molecular recognition properties for a given 

compound, its analogues or for a single enantiomer (Karlsson et al., 1999; Yin et al., 

2005). Synthesis of MIP is a relatively straightforward and inexpensive procedure. As a 

technique for the creation of artificial receptor-like binding sites with a ‘memory’ for the 

shape and functional group positions of the template molecule, molecular imprinting has 

become increasingly attractive in many fields of chemistry and biology, particularly as 

an affinity material for sensors (Dickert et al.,; Haupt et al., 2000), binding assays 

(Chianella et al., 2002), artificial antibodies (eg Lavignac et al., 2004; Ye et al., 2001), 

adsorbents for solid phase extraction (Weiss et al.,; Bereczki et al., 2001) and 

chromatographic stationary phases (Hwang et al., 2001; Peter et al., 2003; Liu et al., 

2006). 

This study presents a synthesis of MIP selectively for glucose binding. Glucose 

phosphate salt (GPS) was used as a template molecule with poly(allylamine 

hydrochloride) (PAA.HCL) as a functional monomer. Three types of crosslinkers which 

are epichlorohydrin (EPI), ethylene glycol diglycidyl ether (EDGE) and glycerol 

diglycidyl ether (GDE) were studied during the MIP synthesis.  
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1.2 Objectives Of The Research 

 

The objective of this research is to synthesis MIP that can specifically bind to the 

glucose. 

 

1.3 Scope Of The Research 

 In order to fulfill the research objective, the following scopes of research has 

been outlined: 

i. To synthesis MIP from poly(allylamine hydrochloride) copolymer with 

different cross-linker and using glucose phosphate mono-sodium (GPS) 

as a template molecule. 

ii. To study the effect of different cross-linker such as epichlorohydrin 

(EPI), ethylene glycol diglycidyl ether (EGDE) and glycerol diglycidyl 

ether (GDE) during MIP synthesis. 

iii. To study the effect of GPS concentration during MIP synthesis. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Biomass  

 Biomass is a term for all organic material that stems from plants (including 

algae, trees and crops) (Mckendry, 2002). The biomass resource can be considered as 

organic matter, in which the energy of sunlight is stored in chemical bonds. When the 

bonds between adjacent carbon, hydrogen and oxygen molecules are broken by 

digestion, combustion, or decomposition, these substances release their stored, chemical 

energy. Biomass has always been a major source of energy for mankind and is presently 

estimated to contribute of the order 10–14% of the world's energy supply.  

 Biomass can be converted into useful forms of energy using a number of 

different processes. Factors that influence the choice of conversion process are the type 

and quantity of biomass feedstock, the desired form of the energy, i.e. end-use 

requirements, environmental standards, economic conditions and project specific factors 

(Mckendry, 2002). In many situations it is the form in which the energy is required that 

determines the process route, followed by the available types and quantities of biomass. 

Table 2.1 shows some example of biomass sources. 
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Table 2-1: Examples of biomass energy resources (Demirbas, 2001) 

Biomass energy resources Example 

Wastes  Agricultural production wastes 

 Agricultural processing wastes 

 Crop residues 

 Mill wood waste 

 Urban wood waste 

 Urban organic wastes 

Forest Products  Wood 

 Logging residues 

 Trees, shrubs and wood residues 

 Sawdust, bark etc. from forest clearings 

Energy Crops  Short rotation woody crops 

 Herbaceous woody crops 

 Grasses 

 Starch crops (corn, wheat and barley) 

 Sugar crops (cane and beet) 

 Forage crops (grasses, alfalfa and clover) 

 Oilseed crops (soybeen, sunflower, safflower) 

Aquatic Plants  Algae 

 Water weed 

 Water hyacinth 

 Reed and rushes 
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2.2  Ethanol Production  

 Ethanol can be produced from certain biomass materials which contain sugars, 

starch or cellulose. The best known source of ethanol is sugar cane, but other materials 

can be used, including wheat and other cereals, sugar beet, jerusalem artichoke and 

wood.  

 The choice of biomass is important as feedstock costs typically make up 55–80 

% of the final alcohol selling price. Starch based biomass is usually cheaper than sugar 

based materials but requires additional processing. Similarly, cellulose materials, such as 

wood and straw, are readily available but require expensive preparation.  

 Ethanol is produced by a process known as fermentation. Typically, sugar is 

extracted from the biomass crop by crushing, mixed with water and yeast and kept warm 

in large tanks called fermenters. The yeast breaks down the sugar and converts it to 

methanol. A distillation process is required to remove the water and other impurities in 

the diluted alcohol product (10–15% ethanol). The concentrated ethanol (95% by 

volume with a single step distillation process) is drawn off and condensed to a liquid 

form.  

 Ethanol can be used as a supplement or substitute for petrol in cars. Brazil has a 

successful developed industrial scale ethanol project which produces ethanol from sugar 

cane for blending with petrol (Demirbas, 2001). 

 

2.3 Xylitol Production 

Xylitol is found naturally in fruits like strawberries, plums and pears, but in small 

quantities, which makes its extraction difficult and uneconomical. Xylitol can be 

produced by biological means from xylose by utilizing yeasts such as the species 

belonging to Candida genus, fungi such as Petromyces albertensis and also by bacteria 

like Enterobacter liquefaciens. According to previous study by Yuan et al. (2013), 

hemicellulose hydrolysate from corncobs without detoxification was used for xylitol 

production by a newly isolated and high inhibitor-tolerant yeast strain of C. tropicalis 
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CCTCC M2012462. Other than that, the research study by Santos et al. (2008) also 

provides a preliminary contribution to the development of a bioprocess for the 

continuous production of xylitol from hemicellulosic hydrolyzate utilizing Candida 

guilliermondii cells immobilized onto natural sugarcane bagasse fibers. 

 

The most important method utilized in the synthesis of xylitol involves the 

chemical reduction of xylose, which in turn is obtained by the acid hydrolysis of xylan 

present in the hemicellulose of birchwood, beechwood or the structural plant tissues 

such as corn-stalks, wheat straw, cotton seed, peanut hulls, sugar cane bagasse, wood 

pulp and flax straw.  

2.4  Molecularly Imprinted Polymer 

Molecularly imprinting polymer (MIP) is a powerful method, which provides 

synthetic polymers with specific binding sites to template molecule. The synthesis of 

molecularly imprinted polymers involves the assembly formation of monomers around a 

template molecule followed by polymerization in the presence of a cross-linker. 

Removal of the template molecule by extraction leaves sites specific for the template 

molecule in both shape and chemical functionality, thus enabling subsequent recognition 

of the template as shown in Figure 2.1 
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Figure 2.1: Synthesis of molecularly imprinted polymers (MIPs) and its selective 

recognition to target molecule (He et al. 2007). 

 

2.5 Characteristics of MIP 

2.5.1 Functional Monomers 

 Functional monomers are responsible for the binding interactions in the 

imprinted binding sites. In non-covalent molecular imprinting protocols, the monomer 

used in excess relative to the number of moles of template to favor the formation of 

template. The template to functional monomer ratios of 1:4 and upward are rather 

common for non-covalent imprinting.  

 It is clearly very important to match the functionality of the template with the 

functionality of the functional monomer in a complementary fashion (e.g. H-bond donor 

with H-bond acceptor) in order to maximize complex formation and thus the imprinting 

effect. When two or more functional monomers are used simultaneously in “cocktail” 
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polymerization, it is however also important to bear in mind the reactivity ratios of the 

monomers to ensure that copolymerization is feasible.  

 

2.5.2 Template Molecules 

 In all imprinting process, template is one of the most important components. The 

template chosen must be chemically inert and stable under polymerisation conditions 

since all polymerisations are based on the free radical interactions. The template 

molecule must not participate in the radical reaction and stable upon exposure to UV or 

high polymerisation temperature (Cormack et al., 2004). Usually, a closely structural 

analogue to the targeted analyte was chosen as template molecule. This is to prevent the 

template leaching or bleeding problem during analysis especially for quantitative 

analysis at trace level as not the entire template molecules are successfully extracted out 

from the imprinted polymer even after extensive washing (Martin et al., 2004).  

 The following are legitimate questions to ask of a template (Cormack et al., 

2004):  

(1) Does the template bear any polymerisable groups. 

(2) Does the template bear functionality that could potentially inhibit or retard a 

free radical polymerisation, e.g. a thiol group or a hydroquinone moiety. 

(3) Will the template be stable at moderately elevated temperatures  or upon 

exposure to UV irradiation.  

 

2.5.3 Crosslinkers 

 In an imprinted polymer the cross-linker fulfills three major functions (Cormack 

et al., 2004). First of all, the cross-linker is important in controlling the morphology of 

the polymer matrix, whether it is gel-type, macroporous or a microgel powder. 

Secondly, it serves to stabilize the imprinted binding site. Finally, it imparts mechanical 
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stability to the polymer matrix. High cross-link ratios are generally preferred in order to 

access permanently porous (macroporous) materials and to be able to generate materials 

with adequate mechanical stability. Polymers with cross-link ratios in excess of 80% are 

often the norm.  

 

2.5.4 Solvents 

 The solvent serves to bring all the components in the polymerization, i.e. 

template, functional monomer(s), cross-linker and initiator into one phase. However, it 

serves a second important function in that it is also responsible for creating the pores in 

macroporous polymers.  

 

 For this reason it is quite common to refer to the solvent as the “porogen”. When 

macroporous polymers are being prepared, the nature and the level of the porogen can be 

used to control the morphology and the total pore volume. More specifically, use of a 

thermodynamically good solvent tends to lead to polymers with well developed pore 

structures and high specific surface areas, use of a thermodynamically poor solvent leads 

to polymers with poorly developed pore structures and low specific surface areas. 

Increasing the volume of porogen increases the pore volume (Cormack et al., 2004). 

 

2.5.5 Initiators 

 In principle, any of the methods of initiation described earlier can be used to 

initiate free radical polymerisations in the presence of templates. However, there may 

well be drivers for selecting one over another arising from the system under study.  

 For example, if the template were photochemically or thermally unstable then 

initiators that can be triggered photochemically and thermally, respectively, would not 

be attractive. Where complexation is driven by hydrogen bonding then lower 

polymerization temperatures are preferred, and under such circumstances 
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photochemically active initiators may well be preferred as these can operate efficiently 

at low temperature (Cormack et al., 2004). 

 

2.5.6 Molar Ratio of Template: Monomer: Cross-linker (T: M: X)  

 Quality of the MIP recognition sites are highly dependable on the molar 

relationship between template and functional monomer. The common optimum mole 

ratio of template molecule, monomer and cross-linker for production of MIP is 1: 3-5: 

20-30 (Komiyama et al., 2003).  Theoretically, high molar ratio of T: M affords less than 

optimal complexation on account of insufficient functional monomer and too low of T: 

M causes non-selective binding (Andersson et al., 1999). An excess of either template or 

functional monomer during polymerisation is unfavourable regard to selectivity 

(Andersson et al., 1999).  

 MIP prepared at T: M = 1: 15 and 1: 20 exhibited poor recognition effect as it is 

difficult to clearly discriminate them from the corresponding blank polymers (Baggiani 

et al., 2004). Experiments carried out by Theodoridis et al., 2004 showed that high 

molar ratio of T: M, high affinity recognition sites would be limited as the 

agglomeration of template in organic solvent environment could occur. Thus, polymers 

prepared at the ratio of 1: 2.7: 13.4 exhibited poor recognition properties compared to 

polymers synthesized at ratio 1: 46: 230 and 1: 4.6: 23.  

 

2.6 Advantages and Disadvantages of MIP 

Among the advantages of MIP material are (Mahony et al., 2005): 

 

i. Cost-effective alternative to biomolecule-based recognition 

ii. Ease of preparation 

iii. Enhanced thermal and chemical stability compare to antibodies 

iv. Can be prepared in different formats (bead/block/thin film) depending on 

the following need of the application 

v. Can be stored for years without loss of affinity for target analyte 
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However, MIP still has some disadvantages as follow: 

 

i. Lower catalytic capabilities than biological counterparts 

ii. Binding site heterogeneity providing a distribution of binding site 

affinities 

iii. Template ‘bleeding’ requires suitable template analogue for the 

imprinting step and affects quantitative applications 

iv. Grinding and sieving of bulk polymer for SPE/LC applications is labor-

intensive and inefficient in material yield.  

 

2.7 Applications of MIP 

 MIPs have been successfully applied to the pretreatment of analytes in foods, 

drugs, and biological and environmental samples (Chiang et al., 2007; Caro et al., 2006).  

MIP also has a potential application in pharmaceutical field such controlled release, drug 

monitoring devices and biological receptor mimetics (Allender et al., 2000).  

 

 Molecular imprinting, which allows the formation of specific recognition sites in 

polymer matrices also applied widely for developing robust sensors for industry, 

diagnostics, and environmental analysis. In these sensors, molecularly imprinted 

polymers are coupled with appropriate transducers for the quantitative detection. This 

can be shown from previous article by Isao et al. (1999), that describes the recent trends 

and some examples of sensors based on molecular imprinting. 

 

 In the last years, an area of great challenge in MIP technology is that of 

therapeutic agents, various MIPs have been used as unusual synthetic polymeric carriers 

to prepare drug delivery systems. (Sellergren et al., & Cunliffe et al., 2005; Puoci et al., 

2008). MIPs for drug delivery applications should have specific characteristics such as 

the imprinted cavities should be stable to maintain the conformation in the absence of 

the template, but also flexible to facilitate the realization of a fast equilibrium between 
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the release and re-uptake of the template in the cavity (Allender et al., 1999, Alvarez et 

al., 2004). Furthermore, MIPs should be stable to resist enzymatic and chemical attacks 

and mechanical stress that can be found in biological fluids. 

 

2.8 Sugars Separation Methods 

 Membrane technology has shown advantages as compared to other separation 

and purification techniques, including lower energy consumption, sustainable 

processing, simple modification of the operational variables and relatively easy scale-up. 

As a main section of membrane technology, pressure-driven membrane separation 

including microfiltration, ultrafiltration, nanofiltration and reverse osmosis had attracted 

great attention for their unique ability to separate and purify process streams.  

 Hydrolyzates separation by membrane is a promising and economic way to 

remove inhibitors and simultaneously concentrate sugar to a high extent. Study by 

Sagehashi et al. (2007) separated phenols and furfural from biomass-superheated steam 

pyrolysis-derived aqueous solution by a RO membrane NTR-759HR, and the solution 

was concentrated effectively during the process. Qi et al. (2011) investigated 

nanofiltration for furfural removal from monosaccharides with synthetic solution, and 

66.2% of furfural removal as well as 98.5% of sugars recovery were obtained by NF90 

at 3.5 MPa in diafiltration experiments. 

In a study of Sjoman et al. (2008), nanofiltration is investigated as a possible 

separation method to recover d-xylose into the permeate from a hemicellulose 

hydrolyzate stream. In this NF process xylose is purified, i.e. the xylose content in the 

total dry solids of the permeate is increased as higher molar mass impurities are rejected 

by the NF membrane. 

 Since the pKa value for neutral sugars is about 12, neutral sugars can be retained 

in an anion exchange polymer if strongly-basic mobile phase is used. In such cases, an 

approximately 0.1-M sodium hydroxide solution is used as the mobile phase. In general, 

sugars elute in order from monosaccharides to oligosaccharides. When combined with a 
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gradient method that varies the concentration of sodium hydroxide, multiple components 

can be separated at the same time. 

 

 Size exclusion method can be used to separate sugars based on molecular weight. 

It provides a distribution of molecular weights ranging from several hundreds to several 

millions. Essentially, separation is based on molecular size, so components with the 

same molecular weight cannot be separated. A hydrophilic polymer is used for packing 

material, and only water is generally used as the mobile phase. However, a salt is 

sometimes added to the mobile phase for ionic or other components, which can interact 

with the packing material.  
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CHAPTER 3 

 

 

METHODOLOGY 

 

 

3.1  MIP Hydrogel Synthesis 

 The MIP was synthesized according to the method developed by Wizeman et al. 

(2001). 25% w/v of PAA.HCl solution was mixed with GPS. Under continuous stirring, 

NaOH was added to neutralize amines site about 2 hours. Cross-linker was then added 

and allows to stir for 20 minutes. The polymerization solution was poured into the petri 

dish to form a gel slab. After gelation, the polymer was allowed to stand overnight to 

ensure complete crosslinking. The polymer was then cut into 2cm x 1cm squares and 

washed in 1M aqueous NaOH solution for at least 48 hours to remove GPS imprint. In 

order to remove the remaining NaOH, the polymer was washed with deionized water in 

1-2h intervals, 3-4 times per day. Finally, the completely washed gels was dried under 

air at 50°C in an oven. Figure 1 showed the MIP gel formed during this study. 
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(a)    (b)    (c) 

Figure 3.1: MIP hydrogel synthesis for different crosslinkers, (a) EDGE, (b) EPI and (c) 

GDE  

3.2  Verification of Imprinting Technique 

 The freshly synthesized hydrogel contain GPS imprint was placed in a known 

volume of deionized water and stirred slowly for 48 hours. An aliquot of the wash water 

was taken out. Then, the quantity of the phosphorus contain in the sample was 

determined by Hach’s total phosphorus method. The pH of the diluted sample was 

checked to ensure it is between 6.5-7.5. The phosphorus concentration should be about 

2% which is less than of what would be expected if all the GPS used in the synthesis 

were present in wash solution. Then, the same polymer was placed in a known volume 

of 1M NaOH solution and was equilibrated for 48 hours. The filtered aliquot was taken 

out and diluted appropriately for the Hach’s total phosphorus test. The pH was adjusted 

by using HCL so that it is between 6.5-7.5. Again, the solution was tested for total 

phosphorus. According to Paraskevi et al., (2004), this test was useful to verified the 

absence of imprint removal in distilled water, indicating good template immobilization. 

 

 


