

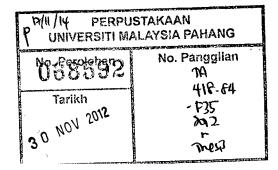
INSTANTANEOUS FREQUENCY

ANALYSIS

by

Mohd Fairusham Ghazali

A dissertation submitted to the University of Sheffield for the degree of Doctor Philosophy


May 2012

Department of Mechanical Engineering

The University of Sheffield

Mappin Street, Sheffield, S1 3JD

United Kingdom

Summary

Leaking pipes are a primary concern for water utilities around the globe as they compose a major portion of losses. Contemporary interest surrounding leaks is well documented and there is a proliferation of leak detection techniques. Although the reasons for these leaks are well known, some of the current methods for leak detection and location are either complicated, inaccurate and most of them are time consuming.

Transient analyses offer a plausible route towards leak detection due to their robustness and simplicity. These approaches use the change of pressure response of the fluid in a pipeline to identify features. The method used in the current study employ a single pressure transducer to obtain the time domain signal of the pressure transient response caused by a sudden opening and closing of a solenoid valve. The device used is fitted onto a standard UK hydrant and both cause a pressure wave and acquire the pressure history.

The work described here shows that the analysis using Hilbert transform (HT), Hilbert Huang transform (HHT) and EMD based method is a promising tool for leak detection and location in the pipeline network.

In the first part of the work, the analysis of instantaneous characteristics of transient pressure signal has been calculated using HT and HHT for both simulated and experimental data. These instantaneous properties of the signals are shown to be capable of detecting the reflection from the features of the pipe such as leakages and outlet. When tested with leak different locations, the processed results still show the existing of the features in the system.

In the second part of the work, the study is based on newly method of analysing nonstationary data called empirical mode decomposition (EMD) for instantaneous frequency calculation for leak detection. First, the pressure signals were filtered in order to remove the noise using EMD. Then the instantaneous frequency was calculated and compared using different methods. With this method, it is possible to identify the leaks and also the features in the pipeline network. These were tested at different locations of a real water distribution system in the Yorkshire Water region.

ii

Table of Contents

.

Sun	nmaryii		
Ack	nowledgementsiii		
Tab	Table of Contentsiv		
List	of Figuresix		
List	of Tablesxv		
Abt	previationsxvi		
Non	nenclaturesxviii		
Cha	pter 1 Introduction1		
1.1	Structure of water supply system2		
1.2	Pipe assets4		
1.3	Effect of corrosions on leakage and pipe failure mechanism		
1.4	Water Losses in a network		
1.5	Leak and public health risk10		
1.6	Consequence of leakage and water loss12		
1.7	Leakage solutions and control14		
1.8	Leakage Detection16		
1.9	Summary16		
1.10	Research scope and objectives17		
1.11	Thesis organization17		
Cha	pter 2 Review of Leak Detection Techniques19		
2.1	Introduction19		
2.2	Leakage detection techniques21		
	2.2.1 Leak detection based on external methods		

iv

	2.2.1.1 Visual observation
	2.2.1.2 Tracer injection
	2.2.1.3 Thermography24
	2.2.1.4 Ground penetrating radar (GPR)24
	2.2.1.5 Acoustic leak detection
	2.2.1.6 Pig based method27
2.2.2	Leak detection based on internal methods
	2.2.2.1 Hydrostatic-testing
	2.2.2.2 Mass balance method
	2.2.2.3 Pressure point analysis (PPA)
	2.2.2.4 Statistical analysis model
	2.2.2.5 Transient based methods
2.3 Summ	ary37

Cha	pter 3 Propagation of Waves in Pipelines	.39
3.1	Introduction	.39
3.2	Water hammer phenomenon in a pipeline	.39
3.3	Ideal propagation of transient pressure waves in pipe	.43
3.4	Effect of a leak on a pressure wave	.44
3.5	Effect of features on the pressure wave	.46
3.6	Dispersion and attenuation	.51
3.7	Effect of noise in the system	.54
3.8	Summary	.54

Cha	apter 4 Signal Analysis Methods for Leak Detection	55
4.1	Introduction	55

v

4.2	Funda	mental Concepts5	56
	4.2.1	Fourier Transform5	56
	4.2.2	Cepstrum5	;9
	4.2.3	Wavelet6	52
		4.2.3.1 Continuous Wavelet Transform (CWT)	52
		4.2.3.2 Discrete Wavelet Transform (DWT)6	53
	4.2.4	Hilbert transform and analytical signal6	54
	4.2.5	Hilbert-Huang Transform6	57
		4.2.5.1 The Empirical Mode Decomposition (EMD)6	58
		4.2.5.2 The Sifting Process6	59
		4.2.5.3 Instantaneous Frequency (IF)7	16
		4.2.5.3.1 Hilbert transforms (HT)7	16
		4.2.5.3.2 Normalized Hilbert Transform (NHT)7	77
		4.2.5.3.3 Direct Quadrature (DQ)7	19
		4.2.5.3.4 Teager Energy Operator (TEO)7	19
		4.2.5.4 Recent Development	30
4.3	Nume	rical simulations to test leak detection algorithm8	32
	43.1	EMD analysis8	33
	4.3.2	Comparison with the others signal analysis methods	35
4.4	Summ	ary8	37
		Leak Location in Pipe Networks Modeled with Transmission 8	39
		niques (TLM)	
5.1		uction	
5.2	I ransi	nission Line Modeling (TLM)9	10

	5.2.3	Waves	at junction	S	.94
	5.2.4	User in	put resista	nce and assumptions involved in TLM	.96
5.3	Pipe n	etwork s	imulation	and analysis	.97
	5.3.1	Simulat	ted Models	5	.98
		5.3.1.1		esistance location 11m from the end of the pipe =17m and C=11m)	.99
			5.3.1.1.1	The HT analysis	.100
			5.3.1.1.2	The HHT analysis	.102
		5.3.2.1		esistance location 17m from the end of the pipe s=11m and C=17m)	.106
			5.3.2.1.1	The HT analysis	.107
			5.3.2.1.2	The HHT analysis	.109
5.4	Summ	ary			.110

Chapter 6 Instantaneous Phase and Frequency for the Detection of Leaks 112 and Features in a PVC Pipeline 112 6.1 Introduction 112 6.2 Description of experimental set up. 113 6.2.1 Signal acquisition 115 6.3 Analysis of Pressure Signals 119 6.3.1 Simulated Pressure Signal 120 6.4 Results 121 6.4.1 The HT analysis 121 6.4.2 The HHT analysis 129 6.6 Summary 137

Chapter 7 Comparative Study of Instantaneous Frequency Based139Methods for Leak Detection in Pipeline Networks				
7.1 Introduction				
7.2 Leak detection scheme outline	140			
7.2.1 Implementation	140			
7.2.2 Numerical simulations to test leak detection algorithm	141			
7.3 Experimental method	146			
7.3.1 Field site 1 -Field operators training site, Esholt	146			
7.3.1.1 Test results	150			
7.3.2 Field site 2 – Yorkshire Water's distribution network (Roach Road, Sheffield)	155			
7.3.2.1 Test results	158			
7.3.3 Field site 3 – Yorkshire Water's distribution network (East Bank Road, Sheffield)				
7.3.3.1 Test results	163			
7.4 Summary	165			
Chapter 8 Conclusions and future work	166			
8.1 Overview	166			
8.2 Conclusions	167			
8.3 Recommendations for Future Works	169			
References171				
Appendix A: List of publications181				

viii

List of Figures

.

Figure 1-1:	Example of the structure for water supply system 2	
Figure 1-2:	Pipe failure development 5	
Figure 1-3:	Typical installation of cathodic protection	
Figure 1-4:	Different types of pipe failure (a) Circumferential cracking; (b) Longitudinal cracking; (c) Bell splitting; (d) Bell sharing; (e) Blow out holes; (f) Spiral cracking	
Figure 1-5:	IWA standard international water balance and terminology 9	
Figure 1-6:	Hydraulic transient at position x in the system 1	1
Figure 1-7:	Leaky water pipe lay next to a sewer pipe 12	2
Figure 1-8:	Energy grade line (EGL) of a pipe segment with and without a leak	3
Figure 1-9:	The four basic components of managing real losses, with secondary influence of pressure management	5
Figure 2-1:	Estimated total leak by water companies 20	0
Figure 2-2:	Several leak detection methods by historical appearance 21	1
Figure 2-3:	GPR data before (a) and after (b) interpretation of image 25	5
Figure 2-4:	Measurement arrangement for leak using acoustic sensors 26	5
Figure 2-5:	Schematic representation of Sahara system	3
Figure 2-6:	Pressure time history during transient due to the closure of the start valve (top). Detail of the initial pressure wave including the reflected wave from the main (bottom)	l
Figure 3-1:	Valve closure in a frictionless system 41	Į
Figure 3-2:	Conceptual wave reflections at a leak 43	;
Figure 3-3:	Transient propagation in pipeline systems 43	;
Figure 3-4:	Pipeline with a leaking point and two boundaries 44	ŀ
Figure 3-5:	Transient wave propagation and its reflections from leak 46	

ix

	and pipelines boundaries
Figure 3-6:	Reflection and transmission of wave at junction 48
Figure 3-7:	Incident wave at reservoir 49
Figure 3-8:	Incident wave at dead-end/ closed valve 49
Figure 3-9:	Incident wave at diameter increase in pipe 50
Figure 3-10:	Pressure waves in an open-ended pipe 50
Figure 3-11:	Dispersion of wave pulse 51
Figure 3-12:	 (a) Top left- Elastic Pipeline for a Water Transportation System (b) Top right- Transient Pressure Head Trace in the Elastic Pipeline (c) Middle left- Visco-elastic Pipeline for an Urban Drainage System (d) Middle right- Transient Pressure Head Trace in the Visco-elastic Pipeline (e) Bottom left- Randomly Varying Pipe Diameters due to Corrosion (f) Bottom right- Transient Pressure Head Trace in the Disordered-Diameter Pipeline
Figure 4-1:	Procedure of computing the STFT 58
Figure 4-2:	Example signal s _c with an echo 61
Figure 4-3:	The complex cepstrum of the signal s_c with an echo
Figure 4-4:	A sine wave and its Hilbert transform
Figure 4-5:	Instantaneous characteristics of the Hilbert transform of sine wave
Figure 4-6:	A schematic representation of sifting process. (a) The original signal; (b) The signal in thin solid line; The upper and lower envelopes in dot-dashed lines; The mean in thick solid line; (c) The difference between the signal and mean
Figure 4-7:	Effect of repeated sifting process: (a) After 2nd sifting of the result in Figure 4.6(c); (b) After 9th sifting of the signal in Figure 4.6(c) and considered as an IMF 71
Figure 4-8:	Flow chart of EMD process
Figure 4-9:	The instantaneous frequency estimation a linear chirp signal
Figure 4-10	Time domain (top) and frequency spectrum (bottom) of example signal v(t)
Figure 4-11:	The six IMF components for the example signal v(t)

x

Figure 4-12:	Hilbert spectrum of IMF1-IMF3 of signal v(t) 84	
Figure 4-13:	Spectrogram of v(t) at different window size 85	
Figure 4-14:	Scalogram of v(t) at different wavelet types	
Figure 5-1:	Pipe showing upstream and downstream pressure and flows	
Figure 5-2:	Typical topology and dimensions of modelled circuit	
Figure 5-3:	Pipe network model without resistance	
Figure 5-4:	Pipe network model with resistance	
Figure 5-5:	Simulated time/pressure response of the pipeline network system)
Figure 5-6:	Instantaneous phase and instantaneous frequency analysis using HT for Test A. The signal with large resistance in thin solid line (top); The signal with low resistance in dashed lines (middle); The signal without resistance in dot dashed lines (bottom)	Ĺ
Figure 5-7:	The seven IMF components for large resistance signal 103	3 .
Figure 5-8:	Hilbert spectrum of IMF1-IMF6 of the signal with large resistance	1
Figure 5-9:	Hilbert spectrum of IMF1-IMF4 of the signal with small resistance.	5
Figure 5-10:	Hilbert spectrum of IMF1-IMF4 of the signal without resistance	5
Figure 5-11:	Simulated time pressure response of the pipeline network system for Test B 107	7
Figure 5-12:	Instantaneous phase (top) and instantaneous frequency (bottom) analysis using HT for Test B	3
Figure 5-13:	Decomposed signal of Test B 109)
Figure 5-14:	Hilbert spectrum of IMF1-IMF4 of the signal with small resistance for Test B)
Figure 6-1:	The experimental set-up at the University of Sheffield 114	ţ
Figure 6-2:	The pressure transducer attached to the hydrant 115	5
Figure 6-3:	The solenoid valve has been installed and attached to hydrant	5

.

xi

Figure 6-4:	Typical pressure response as transient device activated 117
Figure 6-5:	Leaking point distributed along the pipe
Figure 6-6:	The cap is removed to simulate the present of leak 118
Figure 6-7:	Ball valve to simulate the leak 119
Figure 6-8:	Network model without leak 120
Figure 6-9:	Network model with leak at 27m from the hydrant 121
Figure 6-10:	Sampled data from the simulated pipe network 122
Figure 6-11:	Instantaneous phase (top) and instantaneous frequency (bottom) analysis using HT of simulated networks without leak (dash line) and with a leak (solid line) located 27m from the valve
Figure 6-12:	Experimental pressure signal without the present of leak 124
Figure 6-13:	Instantaneous phase (top) and instantaneous frequency (bottom) from HT analysis of experimental data without the present of leak
Figure 6-14:	Experimental pressure signal with leak located 27m from measuring point
Figure 6-15 :	Instantaneous phase (top) and instantaneous frequency (bottom) from HT analysis of experimental data with a leak located 27m from the measuring point
Figure 6-16:	Experimental pressure signal with leak located at 35m (top) and 74.5m (bottom) from measuring point
Figure 6-17:	Instantaneous phase (top) and instantaneous frequency (bottom) from HT analysis of experimental data with a leak located 35m from the valve
Figure 6-18:	Instantaneous phase (top) and instantaneous frequency (bottom) from HT analysis of experimental data with a leak located 35m from the valve
Figure 6-19:	The IMF's and its residue of the simulation data
Figure 6-20:	HHT spectrum analysis of IMF4-IMF7 of simulated network without leak
Figure 6-21:	HHT spectrum analysis of IMF4-IMF7 of simulated network with leak located 27m from the valve

X

xii

Figure 6-22:	The IMF's and its residue of the experimental data 133
Figure 6-23 :	Experimental pressure signal for leak at 27m from measuring point and filtered signal without noise using EMD
Figure 6-24:	HHT spectrum analysis of IMF4-IMF8 of experimental data with leak located 27m from the valve
Figure 6-25:	Experimental pressure signal for leak at 35m from measuring point and filtered signal without noise using EMD
Figure 6-26:	Experimental pressure signal for leak at 74.5m from measuring point and filtered signal without noise using EMD
Figure 6-27:	HHT spectrum analysis of IMF4-IMF9 of experimental data with leak located 35m from the measuring point
Figure 6-28:	HHT spectrum analysis of IMF4-IMF9 of experimental data with leak located 74.5m from the measuring point
Figure 7-1:	Map of water companies supply each area of England and Wales
Figure 7-2:	The operation procedure of the proposed method 141
Figure 7-3:.	The synthetic signal with the present of artificial impulse 142
Figure 7-4:	The 5 IMFs component with its residue for the $s(t) = x(t) + v(t)$ 143
Figure 7-5:	The simulated signal with instantaneous frequency by HT, NHT, DQ, TEO and Cepstrum
Figure 7-6:	The 11 IMFs component with its residue for the $s(t) = x(t) + v(t) + noise$
Figure 7-7:	The simulated signal with noise and instantaneous frequency contribution by HT,NHT,DQ,TEO and Cesptrum. 146
Figure 7-8:	Yorkshire Water's field operators training site in Esholt, Bradford: (a) Google maps view(red circle); (b)View of pipeline path; (c) Schematic map pipeline arrangement
Figure 7-9:	Field site 1 test setup with distances of all features relative to the testing hydrant are shown
Figure 7-10:	The device used to generate and collect the pressure 149

٨

xiii

	transient signal	
Figure 7-11:	The complete measurement setup during the test	149
Figure 7-12:.	Sampled data from field site 1 test.	150
Figure 7-13:	The IMF's and its residue of field site 1 test	151
Figure 7-14:	Original signal (left) and filtered signal (right) of the raw data from field site 1 test	152
Figure 7-15:	Instantaneous frequency analysis by HT,NHT,DQ,TEO and Cesptrum and Taghvaei of the field site 1 test	153
Figure 7-16:	Field site 2 configuration: (a) Google maps view (marked as red); (b) Schematic map pipeline arrangement.	156
Figure 7-17:.	Typical connection of pressure transducer to the hydrant	157
Figure 7-18:	Connection of solenoid valve to hydrant to generate pressure transient	157
Figure 7-19:	Sampled data from field site 2 test.	158
Figure 7-20:	Instantaneous frequency analysis by HT, NHT, DQ, TEO and Cesptrum and Taghvaei of the field site 2 test data using hydrant 1 (H1)	159
Figure 7-21:	Instantaneous frequency analysis by HT,NHT,DQ,TEO and Cesptrum and Taghvaei of the field site 2 test data using hydrant 2 (H2).	160
Figure 7-22:	Field site 3 test configuration: (a) Google maps view (marked as red); (b) Schematic map pipeline arrangement	162
Figure 7-23:	Sampled data from field site 3 test.	163
Figure 7-24:	Instantaneous frequency analysis by HT, NHT, DQ, TEO and Cesptrum and Taghvaei of the field site 3 test data	164

.

xiv

L.

List of Tables

Table 4-1:	Comparison of STFT, the wavelet and the HHT	87
Table 5-1:	Common junction	94
Table 6-1:	Summary result of the tests with and without leaks using HT	.128
Table 6-2:	Summary result of the tests with and without leaks using HHT	137
Table 7-1:	Summary result of field site 1 test data for different instantaneous frequency analysis	154
Table 7-2:	Summary result of field site 1 test data for different instantaneous frequency analyses: (a) Results of analysis using hydrant 1 (H1); (b) Results of analysis using hydrant 2 (H2)	161
Table 7-3:	Summary result of field site 3 test data for different instantaneous frequency analysis	165

xv

Abbreviations

DMA	District meter area
MSCL	Mild steel cement lined
PCCP's	Prestressed concrete cylinder pipes
PVC	Polynivyl chloride
EPA	Environmental protection agency
IWA	International water association
SIV	System input volume
NRW	Non revenue water
UFW	Uncounted for water
IWSA	International water supplying association
AWWA	American water works association
CIWEM	Chartered institution of water and
	environmental management
EGL	Energy grade line
EGL ALC	
	Energy grade line
ALC	Energy grade line Active leakage control
ALC PLC	Energy grade line Active leakage control Passive leakage control
ALC PLC CARL	Energy grade line Active leakage control Passive leakage control Current annual real losses
ALC PLC CARL UARL	Energy grade line Active leakage control Passive leakage control Current annual real losses Unavoidable annual real losses
ALC PLC CARL UARL FT	Energy grade line Active leakage control Passive leakage control Current annual real losses Unavoidable annual real losses Fourier transform
ALC PLC CARL UARL FT AM	Energy grade line Active leakage control Passive leakage control Current annual real losses Unavoidable annual real losses Fourier transform Amplitude modulation
ALC PLC CARL UARL FT AM FM	Energy grade line Active leakage control Passive leakage control Current annual real losses Unavoidable annual real losses Fourier transform Amplitude modulation Frequency modulation
ALC PLC CARL UARL FT AM FM STFT	Energy grade line Active leakage control Passive leakage control Current annual real losses Unavoidable annual real losses Fourier transform Amplitude modulation Frequency modulation Short time Fourier transform

١

•

IF	Instantaneous frequency
GPR	Ground penetrating radar
PPA	Pressure point analysis
MOC	Method of characteristics
GA	Generic algorithm
ITA	Inverse transient analysis
SWDM	Standing wave difference method
PPWM	Portable pressure wave method
EMD	Empirical mode decomposition
IMF	Intrinsic mode function
NHT	Normalize Hilbert transform
DQ	Direct quadrature
TEO	Teager energy operator
DWT	Discrete wavelet transform
CWT	Continuous wavelet transform
STP	Standard temperature pressure
EEMD	Ensemble empirical mode decomposition
HS	Hilbert spectrum
SUNAS	Sheffield university network analysis software
LEL	Leakage economic level
MDPE	Medium density polyethylene
LRM	Leak reflection method

xvii

..

Nomenclatures

а	Wave speed of fluid (m/s)
a _i	Wave speed of i-th pipe (m/s)
<i>a</i> ₀	Incoming wave speed (m/s)
A _i	Area of i th pipe (m 2)
A_0	Incoming pipe area (m 2)
b	Time translation parameter
C(k)	Wavelet coefficient
C _d	Discharge coefficient
<i>C</i> ₁	The first IMF
C _i	IMFs
<i>c</i> _n	n th IMF derive from sifting process
D	Pipe diameter (m)
d(j,k)	Detail coefficients at level j and location k
d	Distance between access points (m)
ſ	Frequency
F(w)	Fourier transform of f(t)
8	Gravity vector (m / s^2)
j	$\sqrt{-1}$
J	Number of levels of DWT decomposition
k	Elastic property (n/m ²)
М	Number of data point
Р	Pressure (Pa)
Re	Reynolds number of the flow (related to the pipe diameter)
r	Reflection factor

xviii

S	Transmission factor
t	Time (s)
t _{peak}	Time delay (s)
t _a	Time instance (s)
и	Velocity (m/s)
V	Velocity vector (m/s)
w	Angular frequency
w(t)	Window function
x(t)	Time domain factor
X_{leak}	Position of leak
ΔH	Change in head (m)
ΔH_0	Head of pressure wave (m)
ΔH_R	Head of reflected wave (m)
ΔH_s	Head of transmitted wave (m)
ΔP	Change of pressure (Pa)
ΔV	Change in fluid velocity (m/s)
Δf	Frequency resolution
Δt	Time resolution
ε	Turbulent rate of diffusion (m^2 / S^3)
k	Turbulence intensity (KW / m^2)
μ	Dynamic viscosity (Pa.s)
ν	Kinematics viscosity (Kg.m.s ⁻¹)
ρ	Fluid density (Kg.m ⁻³)
τ	Position in time of Gaussian window
$S(\tau, f)$	Short time Fourier transform of x(t)

$\psi_{a,b}(t)$	Scale version of base wavelet CWT
$\Psi_{a,b}(v)$	

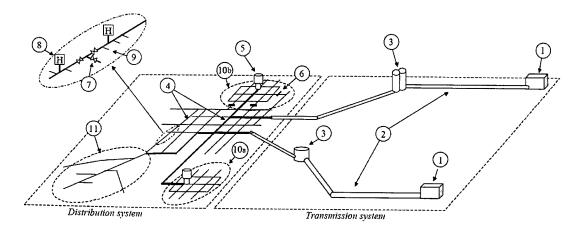
 $\psi_{j,k}$ Scale version of base wavelet for DWT

- $A_{j}(t)$ Wavelet approximation
- $D_i(t)$ Detail coefficient of DWT
- $\psi(t)$ Wavelet function
- $\phi(x)$ Scaling function
- C_{ψ} Admissibility wavelet condition
- *x*, *y*, *z* Cartesian coordinates

Chapter 1 Introduction

Water is an essential element for life which is necessary for the survival of human beings and is scarce supply in most parts of the world. According to the Global water Supply & Sanitation assessment report [1], at the beginning of 2000, one sixth (1.1 billion people) of the world's population was without access to a potable water supply. As a result, there is an increasing awareness around the world of the need to prevent the loss of this natural resource. In the last decade, with changing climatic conditions, population growth and the increasing cost of access to water resources, many countries must cope with limited resources. In many countries water companies have identified the problem and measures are already being undertaken to foster an approach of better management of the water distribution systems [2]. These efforts come from effective water utilisation, reduction of wastage and control policies to demand management strategies. Water loss from the water distribution systems remains one of the main problem issues facing not only developing, but also developed countries throughout the world. Aging pipes is one of the predominant factors to the water loss as water transmission and distribution networks continue to deteriorate with time [3].

It is not practical to prevent many pipes from failure since a significant proportion of pipelines was installed in the first part of 20th century and are now in poor condition. Additionally, although, pipeline systems are currently designed and constructed in accordance with relevant quality standards set by authority to maintain their integrity, leaks are an inevitable problem even in new pipeline networks. In general, pipeline systems can be considered to be in an acceptable state if they have an average annual pipe break ratio below 40 per 100 km [4].


A key to developing a leak detection strategy is to monitor the system from an early stage. Leakage occurring from transmission and distribution mains normally cause large pressure surge events, sometimes catastrophic, which can cause damage to road infrastructure and vehicles. Furthermore, due to different topology and hydraulic characteristic's component

1

of the water distribution system, separate leak detection and location methods have been proposed in the past. As it will be presented in the review of the literature in the next chapter, great efforts have been made in order to develop methodologies or devices for determination of leaks, with some limited success.

1.1 Structure of a water supply system

Water systems are lifelines of communities. Generally, the design and complexity of drinking water supply systems may be different significantly, but all of them have the same basic principle; to convey the water from the source such as treatment facility to their customers. They are made of such items as valves, fittings, thrust restraints, pumps, reservoirs, and, of course, associated pipe features. Source for municipal water supplies consists of wells, rivers, lakes, aquifers and reservoirs. It is estimated that about two thirds of the water available for public supplies around the world comes from surface water sources. An example of the structure for water supply system from water treatment plant to a distribution system is shown as Figure 1-1.

1. Water treatment plant; 2. Transmission pipeline; 3. Reservoir; 4. Distribution mains; 5. Tower; 6. Permanently closed valve; 7. Isolation valve; 8. Fire hydrant; 9. Service connection; 10. District metering area (DMA), a) as constructed, b) artificially created using permanently closed valves; 11. Branched section of the network.

Figure 1-1: Example of the structure for water supply system [3].

The whole water system can sometimes be divided into two parts [3]: the transmission lines and the distribution system. The transmission system is that part of the system which conveys a large amount of water over great distance typically from the source to the distribution system. It may consist of treatment facility and storage reservoir. On the other hand, transmission lines have few, if any, interconnections. Such lines can be built underground as well as aboveground with various lengths. In some areas, the water has to be distributed over distance of hundreds of kilometres. The main design consideration for a transmission line is that of internal pressure. Normally, individual customers are not served directly from these transmission pipelines.

The distribution piping system transport water to the residential area. In general, a distribution system has a complex topology and contains a large number of elements. It consists of a distribution main and a service connection. Distribution mains can be considered as an intermediate step towards delivering water to the end customers. It includes many connections, loops, and so forth. As shown in Figure 1-1 an urban distribution system is a combination of looped and branched topologies. The size of service pipes is smaller than distribution mains and connected from street to property.

Looped systems are preferable compared to branch system because, combination with sufficient valving, they can offer an extra level of reliability [5]. However, the installation cost for a looped system is more expensive than for a branched system. Figure 1-1 also displays closer view of the parts of the water distribution system at the street level. District meter areas (DMAs) have been installed to monitor the flow into supply zones. As we can see, a fire hydrant connector point is another common element in both transmission and distribution systems. Meanwhile, various types of valve have been installed for the purpose of isolation in case of failure remediation or maintenance work by the water companies. Distribution systems are made up of an interconnected pipe network. Tees, elbows, crosses and numerous other fittings are utilized to join and redirect section of pipes. The installation of these fittings and connections need great care to prevent longitudinal bending and differential settlement.

1.2 Pipe assets

A variety of materials and technologies have been utilized in the manufacture of water pipe supply for transmission, distribution and service lines. The material used depends on the year of installation and the diameter of the pipe. The most common materials of service connection pipes are steel, plastic and lead [6]. For larger diameters such as transmission pipelines (diameter over 300mm), steel, mild steel cement lined (MSCL) or prestressed concrete cylinder pipes (PCCPs) are usually used. Cast iron or asbestos cement is found in older distribution systems. This distribution of pipe materials in water pipeline systems is changing as a result of the current extensive use of plastic pipes[3].

The most extensive water distribution system in ancient times was built by Romans. The first aqueduct that built by Romans was in 312 B.C., which conveyed the water for long distance by means of gravity through a collection of open and closed conduits. The Romans also introduced lead pressure pipes. In the 13th century, a water supply system in Europe was built in London when a 5.5 km lead pipeline was installed to convey water from Tybourne Brook to London. Sanks [7] reported that in the mid 1700s water mains were constructed by the mixture of wood, cast iron and lead pipe. Some wooden pipes are still in service today. During the 1800s, cast iron pipe gradually replaced wooden pipes. For a long time, cast iron was used and had an excellent record of service but since the 1920s, due to introduction of better materials and pipe making technology many new pipes have been laid. For example, steel, ductile iron, asbestos cement and concrete pipes have been introduced in the water supply system around 50 years ago. Meanwhile, plastic materials have been popular and contribute a large proportion of current installations since its introduction in 1970. Overall, considering the contribution of pipe materials used in the water supply system, it is estimated that the average age of pipes in developed countries is about 50 years. Many cities experienced periods of urban expansion during late 1800s, around World War I, during the 1920s and post World War II brining them an enlargement of the water distribution systems. As a result, the use of old pipe networks for long periods of time has been affected by deterioration processes ever since the initial installation. As point out by Misuinas [3] pipe failure can be described as multistep process as shown in Figure 1-2.

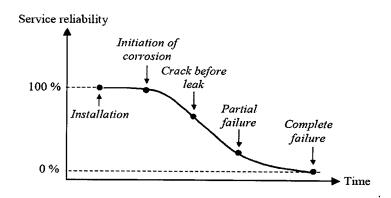


Figure 1-2: Pipe failure development [3].

The process consists of installation, initiation of corrosion, crack before leak, partial failure and complete failure. The corrosion develops internally and externally after the pipe has been operated for some time. These processes can cause anomalies such as cracks, corrosion pits and graphitisation. In some cases, cracks can be initiated by mechanical stress. None of them are severe enough to induce leaks, but the residual strength of the pipe is reduced below the internal or external stresses and the pipe wall breaks. Therefore, depending on the size of the break the leak or burst will be initiated. Finally, the complete failure of the pipeline can be caused by a crack, corrosion pit, pre-existing leak burst or interference by third party. As a result, the water can appear on the ground surface.

A failure sequence as shown in Figure 1-2 is not necessarily applicable to all pipes. As reported by Wang and Aatrens [8] the stress corrosion cracks are likely developed with time, that is, active cracks. The materials of the pipe also influence the temporal development of the pipe failure [9]. For steel and ductile iron pipes leak normally occur before they break. It's different with the cast iron and larger diameter prestressed concrete pipes where break come first before the leak. Meanwhile, PVC and plastic pipes can do either depending on the installation and operational conditions. Obviously, the failure development is more likely to be specific for a particular pipe and very difficult to predict. Involvement of third parties and other external forces make the situation become more complex and challenging. Failure of early leak detection of the water pipe supply can cause big disasters such as flooding, water pressure drop and costly waste from the water distribution system.