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ABSTRACT 

Several papers have addressed the production of H2 from water using catalyst. One of 

the most innovative ways is via photocatalysis. In this study, titania act as the base 

catalyst on which copper dopant varies the physicochemical properties. Ultimately, this 

work was aimed to synthesized and investigated the physicochemical properties of 

titania supported copper, (Cu/TiO2) photocatalyst for photoreaction of glycerol solution. 

The photocatalyst, Cu/TiO2 was prepared via wet impregnation method with doped 2, 5, 

10, 15, 20 and 25 wt% of Cu. X-ray fluorescence (XRF) showed that the composition of 

Cu followed the doped weight percentage on TiO2 and liquid-nitrogen physisorption 

showed that the BET specific surface area decreased with the increment of Cu loading. 

Thermogravimetric analysis (TGA) showed that Cu decomposed around 450 to 550 K 

while X-ray diffraction (XRD) proved the Cu/TiO2 was anatase with a new peak 2θ = 

13° found as the appearance peak of CuO species. The measured densities were differed 

from the theoretical calculated densities. The photoreactivity of Cu/TiO2 was tested 

with methylene blue decomposition and the results have indicated that Cu/TiO2 

possessed photoreactivity. The conversions for all the photocatalysts with Cu loading 

were higher than the pristine TiO2. This has confirmed that Cu loading has effectively 

increased the photoreaction of methylene blue solution. The 15 wt% Cu/TiO2 

photocatalyst showed the highest conversion at 44%. For loadings lower than 

15wt%Cu, the photocatalytic activity increased with Cu deposition on TiO2. The 

concentration profiles were fitted to the first order reaction rate law, the rate constant for 

each Cu/TiO2 was calculated and 15 wt% Cu/TiO2 has the highest rate constant (9.70

10
-3

 min
-1

). The photocatalyst loading and concentration loading were conducted. In 

photocatalyst loading study, 1.0 g/L of 15 wt% Cu/TiO2 can be concluded as the 

optimum weight loading for 300 mL of MB solution. In the concentration study, the 

amount of photocatalyst (0.25g) considered not optimum to yield the maximum 

conversion. The photocatalytic performance of Cu/TiO2 photocatalyst in various copper 

loadings has revealed that hydrogen generation activity was disadvantageous of high 

copper loading as it displayed an inferior activity.  
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ABSTRAK 

 

Beberapa jurnal teleah mengemukakan tentang penghasilan H2 dari air dengan 

mengguna pemangkin, salah satu cara yang inovatif ialah menggunakan photo-

pemangkin. Dalam kajian ini, titania (Ti) menjadi sebagai tapak pemangkin dan copper 

(Cu) sebagai pendopan. Kajian ini bertujuan menghasil dan mentakrifkan sifat-sifat 

copper-titania (Cu/TiO2) untuk photoreaksi larutan gliserin. Cu/TiO2 dihasilkan dengan 

cara menperdopankan 2, 5, 10, 15, 20 dan 25 wt% Cu atas Ti.  X-ray fluorescence 

(XRF) menunjukkan komposisi Cu mengikut peratusan pendopan atas Ti. Di samping 

itu, BET specific surface area menunjuk pengurangan dengan penambahan Cu. 

Thermogravimetric analysis (TGA) menunjukkan Cu mengurai dekat 450 hingga 550 

K. X-ray diffraction (XRD) membuktikan Cu/TiO2 ialah anatase, puncak 2θ = 13° 

ditemui dan puncak ini dipercayai sebagai kemunculan spesies CuO. Kepadatan 

Cu/TiO2 mengukur dengan gas pycnometer menunjukkan perbezaan dengan kepadatan 

teori. Photoreaksi Cu/TiO2 dicubakan dengan mengguna methylene blue, reaksi 

methylene blue membuktikan pemangkin kajian ini berfungsi. 15 wt% Cu/TiO2 

mempunyai reaksi yang paling tinggi dengan bacaan 44%. Untuk beban yang lebih 

rendah daripada 15wt% Cu, aktiviti meningkat dengan Cu penimbunan pada 

TiO2.Kadar pemalar setiap pemangkin dikirakan, 2 wt% Cu/TiO2  mempunyai kadar 

pemalar yang tertinggi, 9.7010
-3

 min
-1

. Kajian ini diteruskan dengan tambahan berat 

pemangkin dan kepekatan larutan metilena biru. Dalam kajian penambahan berat 

pemangkin, 1.0g/L 2 wt% Cu/TiO2 mempunyai reaksi yang tertinggi. Dalam kajian 

penambahan kepekatan larutan metilena biru , 25ppm larutan gliserin mempunyai reaksi 

yang terbaik. Prestasi photocatalytic daripada Cu/TiO2 fotomangkin dalam pelbagai 

bebanan tembaga telah mendedahkan bahawa aktiviti penjanaan hidrogen adalah 

merugikan muatan tembaga yang tinggi kerana ia menunjukkan satu aktiviti rendah. 
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CHAPTER 1  

INTRODUCTION 

 

1. 1 Introduction 

Recently, the issue of energy security has continuously hogged the limelight in lieu of 

scarcity of hydrocarbon reserves and stagnation in technology breakthrough (Yang et al., 

2010). Furthermore, there is a consistent shift towards green energy policy in the face of 

growing environmental awareness among the literate society.  

According to Liu et al. (2008), in order to mitigate this and promoting further the 

context of clean energy production via harnessing the abundantly available renewable 

resources, hydrogen generation from water photo-splitting clearly presents itself as one of the 

most viable technology. The significance of this area can be seen from the voluminous 

publications in particular pertaining to the selection of cheaper yet effective materials that are 

responsive towards water photosplitting. By breaking the hydrogen bond in water molecule, 

hydrogen (H2) and oxygen gases could be simultaneously extracted from photocatalysis 

reaction. 

In 1972, Fujishima and Honda demonstrated that overall water splitting can be 

achieved over pristine titanium dioxide (TiO2) electrode under ultraviolet (UV) irradiation. 

Ever since, application of various metal oxide semi-conductors as candidate for water 

splitting photocatalysts has attracted much attention. During photoreaction, a pair of electrons 

and holes will be produced inside the photocatalyst matrix upon absorption of UV radiation 

either from sunlight or illuminated light source such as fluorescent lamps. When the electron 

in the valence band of TiO2 becomes excited, it promotes the electron to the conduction band, 

creating the negative-electron (e-) and positive-hole (h+) pair. This stage is known as the 
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semiconductor's 'photo-excitation' state. The energy difference between the valence band and 

the conduction band is known as the 'Band Gap'. 

               Millions of various coloured chemical substances have been created within the last 

century or so, 10,000 of which are industrially produced (Zollinger., 1991). Over 0.7 million 

tons of organic synthetic dyes are manufactured each year mainly use in the textile, leather 

goods, industrial painting, food, plastics, cosmetics, and consumer electronic sectors. A 

sizable fraction of this is lost during the dying process and is released in the effluent water 

streams from the above industries. Hence, decolorization and detoxification of organic dye 

effluents have taken an increasingly important environmental significance in recent years 

(Brown et al., 1993 and Rajeshwar & Ibanez., 1997) 

1. 2 Problem Statement 

Photo-splitting of water to yield hydrogen  can potentially address two greatest global 

issues, viz. global warming and nonrenewable fossil fuel consumption. Hydrogen is a clean 

energy carrier since the chemical energy stored is easily released when it combines with 

oxygen. Therefore, it yielded water as a by-product. The added advantages of hydrogen are 

the ease of transportation and storaged for extended time (Ho et al., 2011). 

The presence of dyes in wastewaters has been recognized as one of the most 

important environmental hazardous substances, and the discharge of dyes in the waste waters 

is a matter of concern from both toxicological and esthetical reasons (Hu et al., 2011). Many 

new approaches have been investigated and chief among these, photocatalytic reaction has 

attracted great attention as emerging successful technology (Chen et al., 2007).  

 The potential of TiO2 as a photocatalyst has been widely studied, as highlighted by 

Dholam et al. (2011). Significantly, the advantages of using TiO2 as photocatalyst are 

numerous such as cheap and easily available, energy band edges which are well matched with 

the redox level of water, high resistance to corrosion and photo-corrosion in aqueous media 

as well as electronic properties that can be varied by just changing the lattice defects 

chemistry or the oxygen stoichiometry 

In addition, the positive-hole of the TiO2 breaks the water molecule, and forming 

hydrogen gas and hydroxyl radical. In a simultaneous reaction, the negative-electron reacts 
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with oxygen molecule to form oxide anion. This repeated reaction cycle is continued as long 

as the light is available. 

1. 3 Objectives 

Two main objectives are envisaged to be achieved from the current work: 

i. To synthesize composite of photocatalyst from different metals loading 

ii. To investigate the yield of hydrogen gas produced via water photo-splitting 

iii. To investigate the photodecomposition of Methylene Blue via photocatalysts 

1. 4 Scopes of Study 

To achieve the outlined objectives, the following scopes will be covered for the entire 

duration of this study: 

i. To synthesize Cu/TiO2 photocatalyst using wet impregnation method with the dopant 

metal loading of : 

a. 2 wt% 

b. 5 wt% 

c. 10 wt% 

d. 15 wt% 

e. 20 wt% 

f. 25 wt% 

 

ii. To characterize the physicochemical properties of Cu/TiO2 photocatalyst using 

spectroscopic analyses such as: 

a) X-ray fluorescence (XRF) 

b) Liquid-nitrogen physisorption (Brunauer-Emmett-Teller, BET) 

c) X-ray diffraction (XRD) 

d) Thermogravimetric analysis (TGA) 

e) Gas pycnometer 

 

iii. To study the effect of different loading of Cu/TiO2 photocatalyst on the photo-

splitting of water to yield hydrogen under UV-light and photodecomposition of 

methylene blue. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2. 1 Photocatalytic of Water-Splitting 

Titania (TiO2) is a strong oxidizing agent that can lower the activation energy for both 

organic and inorganic compounds decomposition (Castellote & Bengtsson, 2011). Figure 2.1 

illustrates the water-splitting process via a pair of TiO2 n-type semiconductor photoelectrode 

(oxidizing regions) and platinum, Pt counter electrode (reducing regions) in a ground-

breaking work by Fujishima and Honda back in 1972. 

 

Figure  2-1 Honda-Fujishima effect water-splitting using a titanium dioxide (TiO2) photo-

electrode (Fujishima & Honda, 1972). 

 

Similar to characteristic of other semiconductors, Titania possesses a conduction band 

independent of the valence band by a band gap with certain width. When the incident light 
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energy is larger than the band gap, electrons (e
-
) and holes (h

+
) are generated. The photo 

generated electrons and holes will induce redox reactions, i.e. water molecules are reduced by 

the electrons to form hydrogen (H2) and oxidized by the holes to form oxygen (O2) for the 

overall water splitting. The general chemical reactions are shown as (Fujishima & Honda, 

1972): 

Separation of carriers:  TiO2  +  hv  →  h
+
  +  e

- 
     (1) 

Oxidation of water:  H2O  +  h
+
  →  ∙OH  +  H

+
      (2) 

Reduction of oxygen:  O2  +  e
-
  →  ∙O

-
2                 (3) 

Overall equation:  H2O  +  hv  →  H2  +  ½ O2      (4) 

 

 

2.2 Photocatalysts for Aqueous Solution  

In photocatalysis of water-splitting, the oxide photocatalyst consisting of d
0
 metal 

cations, which can be classified into Groups 4, 5 and 6. Due to constrain such as light 

sources, reaction cells, and the difference of reaction scale, it will lead to the different in 

photocatalyst activities (Kudo & Miseki, 2008). The types of common oxide photocatalysts 

for water splitting under UV irradiation are summarized in Table 2.1 below. 

On the other hand, the chemical reactions as shown in Equations (1) to (4) had shown 

that photocatalytic water-splitting is a promising technology in producing “clean” hydrogen 

(Liao et al., 2012). As can be seen in Table 2.1, TiO2 is an ideal photocatalyst due to its 

stable, non-corrosive, environmentally friendly, abundant, and cost-effective characteristics 

compared to other photocatalysts.   
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Table  2-1 Oxide photocatalysts based on d0 metal ions for water splitting under UV irradiation (Kudo & Miseki, 2008) 

Photocatalyst Crystal Structure BG/eV 
Co-

catalyst 

Light 

Source 

Reactant 

Solution 

Activity/ μmol h
-1

 
QY (%) 

Ref. (Year) 

H2 O2  

Ti Photocatalyst  

TiO2 Anatase 3.2 Rh Hg-Q Water vapor 449  29 Yamaguti (1985) 

Rb2La2Ti3O10 Layered Perovskite 3.4 – 3.5 NiOx Hg-Q 0.1M RbOH 869 430 5 (at 330nm) Takata et al. (1997) 

La2Ti2O7 Layered Perovskite 3.8 NiOx Hg-Q Pure Water 441  12 (< 360nm) Kim et al. (2005) 

La2Ti2O7:Ba Layered Perovskite  NiOx Hg-Q Pure Water 5000  50 Kim et al. (2005) 

KaLaZr0.3Ti0.7O4 Layered Perovskite 3.91 NiOx Hg-Q Pure Water 230 116 12.5 Reddy et al. (2003) 

La4CaTi5O17 Layered Perovskite 3.8 NiOx Hg-Q Pure Water 499  20 (< 320nm) Kim et al. (1999) 

Y2Ti2O7 Cubic Structure 3.5 NiOx Hg-Q Pure Water 850 420 6 (at 313nm) Abe et al. (2006) 

Nb Photocatalysts  

K4Nb6O17 Layered Structure 3.4 NiOx Hg-Q Pure Water 1837 850 5 (at 330nm) Domen et al. (1986) 

Rb4Nb6O17 Layered Structure 3.4 NiOx Hg-Q Pure Water 936 451 10 (at 330nm) Sayama et al. (1996) 

Ca2Nb2O7 Layered Perovskite 4.3 NiOx Hg-Q Pure Water 101  7 (< 288nm) Kim et al. (1999) 

Ba5Nb4O15 Layered Perovskite 3.85 NiOx Hg-Q Pure Water 2366 1139 7 (at 270nm) Miseki et al. (2006) 

Cs2Nb4O11 Pyrochlore Like 3.7 NiOx Hg-Q Pure Water 1700 800 3 (at 270nm) Miseki et al. (2005) 

Ta Photocatalysts  

K3Ta3Si2O13 Tungsten Bronze 4.1 NiO Hg-Q Pure Water 2390 1210 6.5 (at 254nm) Kurihara et al. (2006) 

LiTaO3 Ilumenite 4.7 None Hg-Q Pure Water 2180 1100 20 (at 270nm) Kato & Kudo (2004) 

KTaO3:Zr Perovskite 3.6 NiOx Xe-Q Pure Water 19800 9700 56 (at 270nm) Kato et al. (2003) 

SrTa2O6 CaTa2O6 (orth.) 4.4 NiO Hg-Q Pure Water 960 490 7 (at 270nm) Kato & Kudo (1996) 

Sr2Ta2O7 Layered Perovskite 4.6 NiO Hg-Q Pure Water 1000 480 12 (at 270nm) Kudo et al. (2000) 

K2Sr1.5Ta3O10 Layered Perovskite 4.1 RuO2 Hg-Q Pure Water 100 39.4 2 (at 252.5nm) Yao & Ye (2007) 

KBa2Ta3O10 Layered Perovskite 3.5 NiOx Hg-Q Pure Water 170  8 (< 350nm) Kim et al. (1999) 
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2.3 Titanium Dioxide as Photocatalyst 

Titanium is the world’s fourth most abundant metal after aluminium, iron and 

magnesium; and the ninth most abundant element which constituting about 0.63% of 

the earth crust. It was discovered by Reverend William Gregor in 1791 in England. 

According to Carp et al. (2004), titanium metal is not found unbound to other 

elements but occurs primarily in minerals like rutile, ilmenite, leucoxene, anatase, 

brookite, perovskite, sphene and also found in titanates and many iron ores. 

Titanium dioxide or titania (TiO2) is the transition metal oxides. TiO2 started 

replacing toxic lead oxides as pigments for white paint industrial since the beginning 

of the 20
th

 century and the annual production of TiO2 exceeds 4 million tons 

(Greenwood et al., 1997; Natara et al., 1998). Overall, approximately 51% of TiO2 

production is used as a white pigment in paints, 19% in plastic, 17% in paper and 

others in minor sector.  

 

2.3.1 Properties of Titanium Dioxide   

 As compared with other semiconductors (cf. Fig. 2.2), TiO2 is considered as a 

good photocatalyst for hydrogen generation because of its stability. TiO2 can only 

absorb photon near UV-range which 380 nm or less due to its large band gap of 

3.2eV, and the e
-
 can only be excited in this UV-range (Tang et al., 2012).  

 According to Yoong et al. (2009), the use of UV radiation alone for 

photocatalytic reaction is not an economically option, it is a must to shift the edge of 

adsorption of Hence, many efforts have been made to extend the optical response of 

TiO2 from UV-range to visible light range (400 – 750 nm). Unfortunately, there is 

limit in the research associated with visible light range. Melo and Silva (2011) have 

mentioned that many efforts have been commenced to extend the optical response of 

TiO2 towards the visible region in order to fully harvest solar energy, since it accounts 

for approximately 43% of the incoming solar energy spectrum.  
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Figure  2-2 Energy band gap of various semiconductors in aqueous electrolyte at pH = 

1 (Yoong et al. 2009) 

 

Table 2.2 shows the physical and mechanical properties of TiO2 researched by 

CREAM Research Ltd. during year 2002.  

Table  2-2 Typical physical and mechanical properties of TiO2 

Property Value 

Density 4 g/cm
3
 

Porosity 0 % 

Modulus of Rupture 140 MPa 

Compressive Strength 680 MPa 

Poisson’s Ratio 0.27 

Fracture Toughness 3.2 Mpa/m
-1/2

 

Shear Modulus 90 GPa 

Modulus of Elasticity 230 GPa 

Microhardness (HV0.5) 880 

Resistivity (25ºC) 10
12

ohm.cm 

Resistivity (700 ºC) 2.5x10
4
 ohm.cm 

Dielectric Constant (1MHz) 85 

Dissipation factor (1MHz) 5x10
-4

 

Dielectric strength 4 kV/mm 

Thermal expansion (RT-1000 ºC) 9x10
-6

 

Thermal Conductivity (25 ºC) 11.7 W/mk 
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2. 4 Hydrogen as an Alternative Energy 

In recent application, most of the energy used is derived from fossil fuels 

(petroleum and coal). The combustion of these fuels will release carbon dioxide (CO2) 

to the environment. The increases of greenhouse gases will contribute to the climate 

changes whilst these resources are consistently depleting (Solomon et al., 2009). 

Several alternatives have been developed such as wind, hydropower, solar, and 

geothermal-based renewable energy to fulfil the worldwide energy demand. However, 

several drawbacks emerged such as energy storage, high installation cost, and 

intermittent nature. In order to overcome these challenges, hydrogen is proposed 

which is also ideal energy storage medium or carrier due to the advantages such as 

(Liao et al., 2012): 

i. The most abundant element that exists in both water and biomass 

ii. Has higher energy yield (122 kJ/g) compared to conventional fuels such as 

gasoline (40 kJ/g) 

iii. Environmentally friendly since it would not produce pollutants, greenhouse 

gases, or causes any harmful effect to environment 

iv. Can be stored in gaseous, liquid or metal hydride form 

v. Can be distributed over large distances through pipelines or via tankers. 

According to Midilli et al. (2005), there are some limitations in hydrogen 

energy application technologies such as: 

i. Advanced compression process is needed in minimize hydrogen storage 

volume  

ii. Costly storage process for hydrogen hydride, since metal hydrides are 

expensive, heavy and have a limited lifetime 

iii. Inadequate hydrogen fueling infrastructure and high production cost caused 

the difficulties in introduction of hydrogen vehicles into commercial market. 

 

However, breakthrough was achieved through a promising technology, viz. 

photocatalytic water-splitting where “clean” hydrogen can be produced with the 

advantages as follow (Liao et al., 2012): 

i. Reasonable solar-to-hydrogen efficiency 

ii. Low processes cost 
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iii. The ability to achieve separate hydrogen and oxygen evolution during reaction 

iv. Small reactor systems suitable for household application 

2. 5 Mechanism of Photocatalytic Water-Splitting 

The main processes of photocatalytic water-splitting can be categorized as 

below (Kudo & Miseki, 2008): 

 

Figure  2-3 Main process in photocatalytic water splitting (Kudo & Miseki, 2008) 

i. Absorption of photons to form electron-hole pairs 

Most of the heterogeneous photocatalysts have semiconductor properties. 

Semiconductors have a conduction band, which is separated from the valence 

band by a band gap with certain band width. When the incident light energy is 

larger than the band gap, electrons and holes are generated. The photgenerated 

electrons and holes will induce redox reactions, which are water molecules are 

reduced by the electrons to form hydrogen (H2) and oxidized by the holes to 

form oxygen (O2) for overall water splitting. In this reaction, the 

semiconductor materials are determined by the band gap width and levels of 

the conduction and valance bands. At bottom level of conduction band, the 

energy is more negative than the redox potential of H
+
/H2 (0V vs. NHE), 

while the valance band top level has a more positive potential than the redox 

potential of O2/H2O (1.23V). Hence, the theoretical minimum band gap energy 

for water splitting is 1.23 eV or corresponding to light with 1100 nm. 
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Figure  2-4 Principle of water splitting via semiconductor photo catalysis 

ii. Charge separation and migration of photo generated carriers 

Crystal structure, crystallinity and particle size are the major concern of water 

splitting. The higher the crystallinity, the smaller the defects detected. The 

defects operate acted as a trapping and recombination centres between photo 

generated electrons and holes, which will caused a decrease in photocatlytic 

activity. With a smaller particle size, the distance of the photo generated 

electrons and holes to migrate to surface reaction site will be shortening. 

 

Figure  2-5 Effects of particle size and boundary on photocatalytic activity 
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iii. Surface chemical reactions 

The major concerns of surface chemical reactions are the surface character 

(activities sites) and quantity (surface area). Although the photogenerated 

electrons and holes are possess thermodynamically suitable for water splitting. 

Usually, co-catalyst such as platinum (Pt), Nitrogen Oxide (NiO) and RuO2 

are loaded to introduce active site for hydrogen (H2) production without 

catalytic assistance.  

 

Figure  2-6 Conditions that will affect photocatalytic activity of TiO2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 

 

2. 6 Characterization of Photocatalysis 

Lattice structure of TiO2 can be categorized into rutile and anatase, which 

have a higher photocatalytic activity (Augustynski, 1993). The unit cell structures of 

the rutile and anatase structure are shown in Figure 2.1 below: 

 

Figure  2-7 Structure of rutile and anatse TiO2 

These structures can be illustrated via a chain of TiO6 octahedra, which are 

differ by distortion of each octahedron and octahedral chains assembly pattern. Each 

Ti
4+

 ions is surrounded by an octahedron with six O
2-

 ions, and causing rutile showing 

a slight orthorhombic distortion. As refer to Figure 2.1, its shows that a rutile structure 

is contact with 10 neighbour octahedrons (two sharing edge oxygen pairs and eight 

sharing corner oxygen atoms) while for anatase structure, each octahedron is in 

contact with eight neigbours (four sharing an edge and four sharing a corner). All 

these had indicate the different in mass densities and electronic ban structures for 

these two types of TiO2 lattice structure. 

Figure 2.8 below shows the geometric model structures for rutile single 

crystals – TiO2 (110) surface, which is the most thermodynamically stable. According 

to Zschack (1991), this structure has three types of oxygen vacancy sites, besides 
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others faces will reconstruct as the structure is heating to high temperature. At this 

moment, this structure will produce (110) facets. 

 

Figure  2-8 Defect sites of TiO2 (110) 

 

2. 7 Photochemistry of Water on TiO2 

H2O cannot be photodecomposed on clean TiO2 surfaces, even though TiO2 

can be easily photoexcited under band-gap irradiation. As refer to research done by 

Jaeger and Bard (1979), the band-edge positions of TiO2 relative to electrochemical 

potentials of H2/H2O redox couple and O2/H2O redox couple had been illustrated in 

below Figure 2.3. It was shown that water photolysis is energetically favourable. 

 

Figure  2-9 Potential energy diagram for the H2/H2O and O2/H2O redox couples 

relative to the band-edge positions for TiO2. 



15 

 

Due to large overpotential for the evolution of H2 amd O2 on TiO2 surface, 

TiO2 will be inactive. This will induce photoassisted oxidation of oxygen vacancy 

sites on reduced TiO2, for hydrogen evolution from wet TiO2.  

From past research experiment by Duonghong (1981), the experiment 

configuration is designed to separate the photogenerated electrons and holes for 

maximum photoreaction yield. From Figure 2.4 below, it shows that TiO2 powders 

with deposited metal particles, e.g. Pt for H2 evolution and metal oxide particles, e.g. 

RuO2 for O2 evolution. This is a short-circuited micro photoelectrochemical cell, 

which Pt is cathode and RuO2 is anode. Band-gap excitation in the TiO2 substrate 

injects negatively charged electrons into Pt particles, while holes with positive charge 

into RuO2. Trapped electrons will reduce water to hydrogen and trapped holes in 

RuO2 oxidized water to oxygen. Therefore, the presence of Pt and RuO2 can reduce 

overpotential for H2 and O2 production. 

 

Figure  2-10 Photosplitting of water on composite catalyst 
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2.8  Chemisorption surface on TiO2  

2.8.1 Water Adsorption 

The interaction between water and TiO2 surfaces was stimulated by the 

photocatalytic splitting of water on TiO2 electrodes, in which the surface hydroxyl 

groups present after H2O adsorption at 300K on a slightly defective TiO2(110) surface 

with photoemission (UPS) (Henrich et al). According to Madey group’s research on 

synchrotron photoemission study, the amount of water dissociatively adsorbed at 

300K was below one monolayer. Besides that, the coverage of OH(a) was found to be 

independent of the coverage of surface oxygen vacancy defeat sites, which would 

cause a slightly increase during H2O adsorption on surface defeat coverage. Based on 

the results, it believed that an adsorbed H2O molecule reacts with a bridging-oxygen 

atom to form OH groups at a temperature below 160K. Hydroxyl groups were 

produced by water dissociation upon heating the physisorbed layer to above 200K, 

where the hydroxyls were not completely removed from the surface until 350-400K. 

According to Hunenschmidt et al. study on XPS and TPD on four different 

adsorption states for H2O on TiO2 (110). From the experiment result, it was found that 

a 500K TPD peak occurred due to surface hydroxyls bound to oxygen vancancies, a 

375K peak due to dissociated H2O adsorbed at Ti
4+

 sites, a 170K desorption feature 

due to molecular H2O bound to bridging-oxygen anion sites, and lastly a 160K 

multilayer state. In addition to the molecular and dissociative adsorption, water 

molecules can be reduced at the Ti
3+ 

sites on TiO2 (110) surface to produce hydrogen 

gas (Lu et al.). The oxygen atom in the water molecule is preferentially extracted by 

the substrate to fill the surface oxygen vacancies. This selective reduction process can 

be used to infer the relative coverage of oxygen vacancy defeat sites. 

The interaction of water with other single-crystal TiO2 surfaces and powdered 

TiO2 has been investigated by Bustillo et al. and Lo et al. According their study on the 

thermal desorption of water from the TiO2 (100) surface, it was reported that there is a 

dissociative adsorption of water. On powdered TiO2, three TPD peaks can be 

observed, where a poorly resolved doublet at 211K was attributed to multilayer and 

monolayer adsorption, a 311K desorption peak was assigned to a different form of 

molecularly adsorbed H2O, and lastly a 568K desorption was thought to arise from 

dissociatively adsorbed H2O. The production of hydrogen gas was also detected for 
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H2O adsorption on reduced TiO2 powder, indicating that the reduction property is 

characteristic of the Ti
3+

 defeat sites. 

2.8.2 H2 Adsorption  

 

The adsorption of hydrogen on the TiOz(110) surface using temperature 

programmed desorption (TPD), electron paramagnetic resonance (ESR), and 

measurements of surface conductivity (Ao) and work function (Acp) had been studied 

by Gopel et al. The surface defect sites (oxygen vacancies) were found to act as 

electron donors, besides role as the specific sites for H2 adsorption. After Hz 

dissociative adsorption at the defect sites, chemisorption of hydrogen at 300 K forms 

ionic titanium hydride bonds Ti
4+

-H
-
, in which it involves the transfer of two electrons 

before adsorption. They were attributed to one oxygen vacancy site (with two Ti
3+ 

present), which caused two hydrogen atoms can easily recombine during subsequent 

thermal desorption measurements and exhibiting first-order desorption kinetics. The 

adsorbed hydrogen atoms also diffuse into the bulk at 300 K, causing a nearly linear 

increase in conductivity (Ao) when the Ti02 (110) crystal is exposed to a continuous 

flow of molecular hydrogen. An initial sticking coefficient of 1 x was reported for H2 

adsorption on TiO2 (110) at 300 K. In the absence of surface defects, the activation 

energy to dissociate the H2 molecule is too high, and no adsorption was observed. 

A very low sticking probability for H2 adsorption on TiO2- (110) was studied 

by Pan et al. (1992), in which the hydrogen adsorotion was enhanced by low-energy 

H2
+
 ion bombardment. In addition, the surface Ti

3+
 coverage was found to increase 

with increasing hydrogen exposures, together with surface hydroxyl groups were 

generated upon hydrogen ion exposures.  

On powdered TiO2 surfaces, Beck et al. reported TPD spectra typical of 

weakly adsorbed molecular hydrogen, while different adsorption behavior for 

hydrogen on anatase and on rutile TiO2 was observed by Iwaki. On both types of TiO2 

powders, chemisorption of hydrogen took place only when hydrogen was introduced 

above 623K. 
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2. 9 Photodecomposition of Organic Dyes 

As an environmental application, photocatalysis process is a relatively novel 

subject with tremendous potential in the future (Al-Rasheed, 2005). A lot of organic 

matters can be decomposed into inorganic and low-toxicity smaller compound 

through photocatalysis process (Meng & Juan, 2008). Photocatalysis reaction needs 

only light, catalyst as well as air, and the processing cost is lower; hence becoming a 

new promising method for liquid waste processing. However, different types of 

catalysts will significantly affect the efficiency. A wide range of semiconductors may 

be used for photocatalysis, viz. TiO2, CdS, SnO2, WO3, SiO2, ZrO2, ZnO, Nb2O3, 

Fe2O3, SrTiO3, CeO2, Sb2O4, V2O5 etc. (de_Richter & Caillol, 2011).  

Significantly, voluminuous publications of past photocatalysis research works 

can be found in the open literature. Some of the signifantly important past research 

works are summarized in the Table 2.3.  
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Table  2-3 The summary of past researches on photocatalysis process. 

Photocatalyst Activator Substrate Results Reference 

Manganese oxides UV-light Phenol 

 

92% of the substrate decomposed. Zhang et al. ,2011 

TiO2 UV-light Methyl orange  

 

71.9% of methyl orange degraded. Liao et al., 2004 

Cu–Cr layered double 

hydroxide (LDH) 

Visible light 2,4,6-Trichlorophenol 

 

 

Less than 10% of 2,4,6-Trichlorophenol 

present after 200 minutes 

Tian et al., 2012 

Fe2O3–TiO2/ACF Visible light Methyl orange [C/Co] ratio of methyl orange dropped to 0.32 

after exposing under sun for 4 hours. 

 

 Zhang & Lei, 2008 

Fe2O3 and ZrO2/Al2O3 

(9.1, 31.5, 54.1 wt% 

respectively) 

 

UV-light Phenol 93% phenol removed after 120 minutes.  Liu et al., 2012 

Fe2O3/SnO2 Visible light Acid blue 62 98.0% acid blue 62 can be degraded in 60 min 

under illumination of the visible light 

 

 Xia et al., 2008 

CeO2 UV-light Methylene blue Almost 100% methylene blue is converted 

over 100 minutes. 

 

Qian et al., 2010 

CeO2 UV-light Toluene Deactivation of catalyst doesn't occurs. 

 

 

Hernández-Alonso, 

2004 



20 

 

 

 

CHAPTER 3  

MATERIALS AND METHODS 

3. 1 Introduction 

This chapter details the preparation method for the Cu/TiO2 photocatalyst. 

Besides that, description of the method and characterization technique will also be 

provided. The characterization techniques including X-ray fluorescence (XRF) for 

elemental compositions, liquid-nitrogen physisorption for BET specific surface area 

and pore size distribution, thermo gravimetric analysis (TGA) for thermo physical 

change, gas pycnometer for density determination and X-ray diffraction (XRD) for 

crystalline structure scanning. Moreover, the operational procedures for the 

photoreaction of glycerol solution will also be discussed in this chapter.  

 

 

3. 2 Chemicals 

Table 3.1 shows the chemicals employed in the catalyst preparation, 

photocatalytic reaction and photocatalyst characterization. These chemicals were get 

from Sigma-Aldrich. The distilled water was readily availabled from the water 

purification system in the laboratory of Universiti Malaysia Pahang (UMP). 

Table  3-1 Lists of chemicals 
Chemical Purity Application 

Degussa P25 TiO2 
80% anatase, 20% rutile, 

BET surface area 
Catalyst preparation 

Cu(NO3)2.3H2O >98% Catalyst preparation 

Glycerol solution 95% Photocatalytic reactant 
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The gases required in the study were listed in Table 3.2. All gases used in this 

project were supplied by MOX. Table 3.2 also listed the purity of the gases and their 

application in this study. 

Table  3-2 Lists of gases 
Chemical Purity Application 

Degussa P25 TiO2 
80% anatase, 20% rutile, 

BET surface area 
Catalyst preparation 

Cu(NO3)2.3H2O >98% Catalyst preparation 

Glycerol solution 95% Photocatalytic reactant 

 

3. 3 Photocatalyst Preparation 

The Cu content in the photocatalyst will affect the physicochemical properties, 

activity of photocatalyst and also affect the photoreaction of glycerol solution. Since 

catalyst design was a major part of this work, careful attention was devoted to the 

preparation of all catalysts including monitoring and controlling related variables 

especially the concentration of the copper precursor solution as it will decide the 

loading percentage of the catalyst. Besides the concentration of the precursor, the 

drying temperature and the calcination temperature of the catalysts were also strictly 

controlled throughout the catalyst preparation. Furthermore, the time of stirring after 

the solutions mixed must be long enough to allow the mixing process accomplished. 

An analytical balance (4-decimal accuracy) was used for weighing chemicals in all 

preparations. 

The photocatalyst used in the present study is Cu/TiO2. According to Yoong et 

al. (2009), the advantage of copper doping onto TiO2 semiconductor photocatalyst 

was the enhancement of photocatalytic activity. Hence, the preparation procedure 

used in this study was followed the wet impregnation method described by Yoong et 

al. (2009). Wet impregnation is a widely used catalyst preparation technique where 

the precursor material was dissolved in a solvent and mixed with the solid support.  

Degussa P25-TiO2 photocatalyst containing predominantly anatase phase and 

having a specific surface area of 50 m
2
/g was sourced from Sigma-Aldrich. The mass 

ratio of metal dopant precursor, copper nitrate trihydrate, Cu(NO3)2.3H2O (Sigma-

Aldrich, >98% purity), and TiO2 was calculated and weighed accurately and mixed in 

a 250 mL beaker. 100 mL of deionized water was added to the solid mixture to 
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dissolve the copper precursor. The solution was magnetic-stirred for 3 hour. 

Subsequently, the slurry-containing beaker evaporated at 393 K using an oven for 

overnight to allow the precursor deposition onto the base material. Finally, the solid 

left-over was air-claimed at 573 K for 30 min. Preparation of different metal loadings 

was followed the same outlined procedures but different weight ratio of 

Cu(NO3)2.3H2O and TiO2.  

3. 4 Photocatalyst Characterization 

Catalyst characterization provided useful information on the physicochemical 

properties of the catalyst. The information from various characterization techniques 

enabled to improve the understanding of the physicochemical attributes in relation to 

the photocatalytic performance. The following subsection described the fundamental 

theory and concepts of these characterization techniques used in this work. 

3.4.1 X-ray Fluorescence (XRF)  

X-Ray Fluorescence (XRF) functions via the emission of characteristic 

“secondary” (or fluorescent) X-rays from a material that had been excited by high-

energy X-rays or gamma rays bombardment. XRF analysis is one of the most 

common non-destructive methods for qualitative or quantitative determination of 

elemental composition of solids, liquids as well as powders (Arezki, n.d.). According 

to Shackley (2011), when a substance was irradiated with high energy X-rays, 

electron ejected ion from the atom then produced ion, the shells of an atom were 

called and read by the software as K through orbital (cf. Figure 3.1). The K line 

transition was where the K electron moved out of the atom entirely and was replaced 

by an L line electron and these K and L lines were technically measured with XRF. 
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Figure  3-1 Schematic view of orbital transitions due to XRF 

 
According to James (2012), modern XRF instruments in use today can be 

classified into energy-dispersive (ED) or wavelength-dispersive (WD). In the current 

work, the wavelength-dispersive XRF (brand S8 Tiger, Bruker) was employed. Figure 

3.2 shows the diagram of WD system. The instrument operates based on the principle 

of Bragg diffraction of a collimated X-ray beam. The beam emanating from the 

sample, then the detector was angularly scanned relative to the analyzing crystal, 

registering the spectrum (Jenkis, 1995).  

 
Figure  3-2 Diagram of a wavelength dispersive spectrometer (Jenkis, 1995) 
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Usually collimators were made from a series of closely spaced parallel metal 

plates, these metal plates needed to direct to beam in order to closely control the 

diffraction angle of all detected photons. The analyzing crystal angularly dispersed 

incident radiation of wavelength according to Bragg’s Law: 

2dsinθnλ       (3.1) 

where 

n = the order of reflection (integer) 

λ = wavelength of x-ray beam (nm) 

d = inter plane distance of crystal (d-spacing) 

θ = angle of incidence (degree) 

The analyzing crystal may be rotated with the detector assembly 

simultaneously revolving around it to scan through the possible wavelengths. Crystals 

with large spacing was used to resolve the wavelengths in all regions (James, 2012). 

 

3.4.2 X-ray Diffraction (XRD) 

X-ray diffractometer (XRD) is an instrumental techniques used for phase 

identification, qualitative and quantitative analysis and quality control of raw 

materials and products. According to Barbara and Christine (2012), XRD was based 

on the constructive interference of monochromatic X-rays and a crystalline sample. 

The X-rays were generated by a cathode ray tube, filtered to produce monochromatic 

radiation, collimated to concentrate and directed towards the sample. The interaction 

of the incident rays with the sample produced constructive interference when 

conditions satisfy Bragg’s Law as in Equation (3.1). 

This law relates the wavelength of electromagnetic radiation to the diffraction 

angle and the lattice spacing in a crystalline sample. These diffracted X-rays were 

then detected, processed and counted. By scanning the sample through a range of 2θ 

angles, all possible diffraction directions of the lattice were attained due to the random 

orientation of the powdered material.  
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 The mean crystallite size may be obtained by the Scherrer equation: 

cosθβ

λk
D

d

Sch      (3.2) 

where 

D = crystalline size (Å) 

kSch = Scherrer constant  

βd = angular width of half-maximum intensity (degree) 

λ = X-ray wavelength 

θ = Bragg’s angle (degree) 

In current work, XRD analysis was carried out in Rigaku Miniflex II, which is 

a desktop powder diffractometer capable of measuring powder diffraction patterns 

from 3 to 145
o
 in 2θ scanning range and equipped with a six sample holders for 

maximum automation of sample measurements. The X-ray radiation of the CuKα 

radiation filtered by a Ni filter has a wavelength of 1.54 Å. Figure 3.3 shows the 

schematic of XRD. 

 

Figure  3-3 A schematic diagram of XRD (A) Collimation (B) Sample (C) Slit (D) 

Exit Beam Monochromator (E) Detector (X) Source of X-Rays (Cullity, 1978) 
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3.4.3 Liquid N2 Physisorption (Brunauer-Emmett-Teller, BET) 

Brunauer-Emmett-Teller (BET) method (Brunauer et al., 1938), which is an 

extension of the Langmuir’s pioneer work (Langmuir, 1916) for monomolecular 

adsorption is widely used. The specific surface area of a powder was determined by 

physical adsorption of a gas on the surface of the solid by calculating the amount if 

adsorbate gas corresponding to a monomolecular layer on the surface. The most 

commonly used adsorbate is N2, which had cross-sectional area of 16.2 Å
2
. Therefore, 

the adsorption of N2 was carried out at the N2 boiling point of about 77.4 K. The 

determination method was carried out at the temperature of the liquid nitrogen. BET 

equation is shown as: 

CV

1

P

P

CV

1C

1)]
P

P
([V

1

momo
a








    (3.3) 

where 

P = partial vapor pressure of absorbate gas in equilibrium with the surface at 77.4K 

Po = saturated pressure of adsorbate gas 

Va= volume of gas adsorbed at standard temperature and pressure (STP) 

Vm = Volume of gas absorbed at STP to monolayer coverage 

C = dimensionless constant of adsorbate 

Va was measured at each of not less than three values of P/Po. The BET value 

was plotted against P/Po according to equation (3.3). The plot was yield a straight line 

usually in the approximate relative pressure range 0.05 to 0.3, the data was considered 

acceptable if the correlation coefficient, r, of the linear regression was not less than 

0.9975. From the resulting linear plot, we can get: 

CV

1)(C
Slope

m


      (3.4) 
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CmV

1
Intercept       (3.5) 

Intercept)(Slope

1
Vm


     (3.6) 

1)
Intercept

Slope
(C       (3.7) 

Then, the specific surface area can be calculated from Equation (3.8): 

22400m

NaV
S m


      (3.8) 

where 

N = Avogadro constant (6.022×10
23

 mol
-1

) 

a = effective cross-sectional area of one adsorbate molecule 

m = mass of solid catalyst 

The total pore volume was derived from the amount of vapour adsorbed at a 

relative pressure close to unity, by assuming that the pores are then filled with liquid 

N2. If the solid material contains no macropores (pore width > 50 nm), the isotherm 

will remain nearly horizontal over a range of P/Po near the unity (cf. Figure 3.4) and 

the pore volume was well defined. 
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Figure  3-4 Typical N2 adsorption-desorption isotherms of mesoporous materials 

Nevertheless, the isotherm rose rapidly near P/Po close to 1 for macropores, and in 

this case it may exhibit an essentially vertical rise (cf. Figure 3.5). Thus, the limiting 

adsorption may be identified with the total pore volume. The volume of nitrogen 

adsorbed (Vads) can be converted to the volume of liquid N2 (Vliq) contained in the 

pores using Equation (3.9): 

RT

VVP
V madsa

liq       (3.9) 

where 

Pa = Ambient pressure 

T = Ambient temperature 

Vm = Molar volume of the liquid N2 (34.7 cm
3
.mol

-1
)  
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Figure  3-5 Typical N2 adsorption-desorption isotherms of large macroporous 

materials 

 

Since pores which would not be filled below a P/Po of 1 had a negligible 

contribution to the total pore volume, the average pore size can be estimated from the 

pore volume. The distribution of pore volume with respect to pore size was known as 

a pore size distribution. It was generally accepted that the desorption isotherm was 

more appropriate than the adsorption isotherm for evaluating the pore size distribution 

of a solid material. The desorption branch of the isotherm exhibited a lower relative 

pressure (P/Po) resulting in a lower free energy state, and therefore the desorption 

isotherm was closer to the true thermodynamic stability (Gregg & Sing, 1982). 

Thermo-Scientific Surfer offers the capability of using either branch of the 

isotherm for the pore size distribution calculation. Mesopore size calculations were 

executed by assuming cylindrical pore geometry using the Kelvin equation (Gregg & 

Sing, 1982): 

)PPRTln(

γ2V
r

o

m
k


      (3.10) 

where  

 γ = the surface tension of N2 at its boiling point (8.85 ergs.cm
2
 at 77.4 K) 
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Vm = the molar volume of liquid N2 (34.7 cm
3
/mol) 

R = gas constant (8.314 E
7
 ergs/K.mol) 

T = N2 boiling point (77.4 K) 

P/Po = relative pressure of N2 

rk = the Kelvin radius of the pore 

Using the appropriate constants for N2, above equation reduces to: 

)PPlog(

4.15
r

o

k      (3.11) 

The Kelvin radius is the radius of the pore in which condensation happens at 

P/Po. However, rk does not represent the actual pore radius because some adsorption 

had taken place prior to condensation on the walls of the pore. In addition, during 

desorption, an adsorbed layer remained on the walls when evaporation occurs. 

Therefore, the actual pore radius (rP) is given by: 

trr kp       (3.12) 

wheret is the thickness of the adsorbed layer. The t-value was estimated by a method 

proposed by de Boer et al., (1966) as: 

21]
034.0)log(

99.13
[




oPP
t     (3.13) 

Thermo-Scientific Surfer computed the pore size distribution using the 

methods proposed by Barrett, Joyner, and Halenda (BJH) (Barrette et al., 1951) and 

by Dollimore and Heal (DH) (Dollimore & Heal, 1964). However, the BJH method is 

the most widely used for the computation of the pore size distribution (Sing & 

Rouquerol, 1997). The BJH procedures are based on the emptying of the pores by a 

step-wise reduction of P/Po, and the derived pore size distribution is normally 

expressed in the graphical form (δVP / δrP) versus rP or dP. 
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3.4.4 Thermogravimetric Analysis (TGA) 

Thermogravimetric Analysis (TGA) is a technique in which the mass of a substance is 

monitored as a function of temperature or time as the sample specimen is subjected to 

a controlled temperature program in a controlled atmosphere. In short, TGA is that 

upon heating a material, its weight increase or decrease. 

The fundamentals principles are: 

 Changes in the mass of a sample are studied while the sample is subjected to a 

controlled temperature programme. 

 The temperature programme is most often a linear increase in temperature, 

but, isothermal studies can also be carried out, when the changes in sample 

mass with time are followed. 

 TGA is inherently quantitative, and therefore an extremely powerful thermal 

technique, but gives no direct chemical information. 

Table 3.3 shows the process that lead to weight gain or loss in TGA experiments. 

Table  3-3 Process that lead to weight gain or loss in TGA experiments 

Process 
Weight 

Gain 

Weight 

Loss 

Ad- or absorption    

Desorption, drying    

Dehydration, desolvation    

Sublimation    

Vaporization    

Decomposition    

Solid-solid reactions (some)    

Solid-gas reactions     

Magnetic transitions     

Figure 3.6 shows the instrumentation flow diagram of TGA. Temperature 

programmer is the typical operating range for the furnace which is ambient to 1773 K, 

with heating rates up to 473 K/min. The inner of the furnace consists a sample holder 

or pan to hold the sample, the furnace’s atmosphere can be reactive or inert. The TGA 
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was connected to the computer which acts as the controller and also the results 

showed in the computer in form of thermogram. Thermogram is a graph of mass 

versus temperature (Figure 3.7). With the drawing of tangent on the curve, the onset 

and offset points can be determined (Figure 3.8). Figure 3.9 shows the typical curve 

that can be obtained from thermogram. 

 
Figure  3-6 Instrumentation flow diagram of TGA 

 

Figure  3-7 Thermogram 
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Figure  3-8 Tangent curve to find onset and offset points 

 

Figure  3-9 Typical TG curves 
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3.4.5 Gas Pycnometer 

The volume and density of powders, porous and irregularly shaped solids can 

be obtained rapidly and accurately by using gaseous pycnometer. The air was 

employed for inert low-surface materials on which negligible adsorption of gas 

occurs; while helium, an inert gas was employed for the fine powders or porous 

materials, and the activated samples with high surface area (Edward, 1969).  

According to Tamari et al. (2004), there are three types of gas pycnometer, 

which are constant volume, variable volume and comparative. Figure 3.10 shows a 

constant volume helium gas displacement Pycnometer type 1305 Micromeritics. A 

constant-volume gas pycnometer was composed of a sample chamber with a screw 

cap, a tank and an absolute pressure transducer. The chamber and tank were 

connected pneumatically through a tube with coupling valve, the tank also connected 

to the pressure transducer so that the helium gas supply through the tube with a main 

coupling valve. The powder was put inside the chamber and weighted, then insert into 

the gas pycnometer to analyze the volume and the density. The test was set as five 

cycles in order to get a more accurate result. 

 

Figure  3-10 Helium gas displacement Pycnometer type 1305 Micromeritics 
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3. 5 Photoreaction  

3.5.1 Photodecomposition of Methylene Blue  

The reactions were performed at the atmospheric pressure and room temperature. 

standard calibration curves for MB would be obtained via UV-Vis spectrophotometer. 

Subsequently, aqueous slurry was obtained by adding 0.25 g of photocatalyst to 300 

ml MB aqueous solution at 10 ppm. Irradiation was performed with a 1000-W high 

pressure UV-lamp. The aqueous slurry was rigorously stirred for 30 min prior to 

irradiation to attain equilibrated-adsorption state. During the photoreaction, at 15 min 

intervals, the suspension was withdrawn and centrifuged to separate the photocatalyst 

particles followed by UV-Vis measurement at absorbance peak of 664 nm. The actual 

concentration of each sample was obtained by referring back to the calibration curve 

obtained in prior.The photoreaction (cf. Figure 3.11) testings were conducted in the 

following sequence: 

1. Catalyst screening via photoreaction over 2, 5, 10, 15, 20 and 25 wt% 

Cu/TiO2. 

2. The best conversion of MB achieved by the prepared photocatalyst was duly 

indentified from Step (1). Subsequently, the reactions were conducted to 

investigate the effects of different loading viz. 0.06g, 0.15 g and 0.30 g over 

the best photocatalyst. 

3. The best conversion of photocatalyst was chosen from Step (1), then the 

reactions were performance with different concentrations, which were 10ppm, 

15ppm, 20ppm, 25ppm and 30ppm. 
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Figure  3-11 Photoreaction of methylene blue solution 

 
 
 

3.5.2 Photo-splitting Water  

         There are several types of apparatus for water splitting. The 

photocatalytic material was evaluated for hydrogen production in 500ml a gas-

closed circulation system. The temperature was maintained at 298 K via 

water-circulation cooling system. For each runs, 0.5 g of each photocatalysts 

was suspended in 500 ml of pure water. The suspended photocatalysts were 

bubbled with N2 gas to de-aerate for 30 min. The effluent gas produced 

through photocatalytic reaction was analyzed by gas chromatography (GC) 

using TCD detector. 
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CHAPTER 4  

RESULTS AND DISCUSSION 

4. 1 Introduction 

 In this chapter, physicochemical properties of the photocatalysts were 

characterized via several well-established techniques viz. XRD, XRF, BET and TGA. 

Subsequently, photodegradation of methylene blue solution were tested by 

photocatalysts prepared followed by photoreaction of water-splitting. Besides that, 

this chapter also include Langmuir-Hinshelwood Modeling and correlations between 

the photocatalytic activity and the physicochemical properties .  

4. 2 Characterization of Catalysts 

4.2.1 Liquid N2 physisorption (BET) 

 The adsorption-desorption isotherms for the prepared catalysts are shown in 

Figure 4.1. The surface area, pore volume and pore diameter were determined based 

on these isotherms.  

 N2 physisorpion isotherns were determined at liquid nitrogen temperature (77 

K) using a Thermo-Scientific Surfer. The specific surface areas of calcined Cu/TiO2 

photocatalyst ware calculated from the N2 adsorption data according to the Brunauer-

Emmett-Teller (BET) method using P/Po values in the range 0.05-0.2. Figure 4.1 

shows typical adsorption/desorption isotherms of all the photocatalysts. All samples 

had similar N2 physisorption isotherms that could be classified as Type II accordingly 

to IUPAC convention foe adsorption isotherms. According to Rouquoel (2013), the 

characteristic of this type of isotherm is symptomatic of type II isotherm which 

represents unrestricted monolayer-multilayer adsorption, which the intermediate flat 
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region often taken to indicate the stage at which monolayer coverage is complete and 

multilayer adsorption about to begin.  

 

Figure  4-1 The isotherms for 2wt%, 5wt%, 10wt%, 15wt%, 20wt%, and 25wt% of 

Cu/TiO2 (from top to bottom) 
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 The BET specific surface area of the catalysts obtained from liquid N2 

physisorption is shown in Table 4.1. The BET surface areas of the photocatalysts 

generally decreased as the CuO loading increased. The highest measured surface area 

was 11.42 m
2
/g for 2 wt% Cu/TiO2 This can be explained by the crystallite formed 

upon the impregnation of Cu metal that has blocked the pores of TiO2 support; hence 

a decrease in BET specific surface area.  

Table  4-1 The BET specific surface area for different loadings of Cu/TiO2. 

 

 

 

 

 

 

 The volume of the pores and pore diameter of prepared photocatalysts were 

shown in Table 4.2. BJH cumulative pore volumes and BJH average pore diameters 

for all Cu/TiO2 samples were in the range 0.0367-0.0400 cm
3
g

-1
 and 13.9-23.4 nm, 

respectively. As for pore volumes, there were not much difference between the 

adsorption and desorption volume for each of the catalysts. The 5wt%Cu/TiO2 seems 

to have largest adsorption and desorption volume, which are 0.049 and 0.0496 cm
3
/g 

respectively.  Unlike pore volume, the difference between adsorption pore diameter 

and desorption pore diameter is quite significant. Generally, the adsorption pore 

diameter is larger than desorption pore diameter. According to Table 4.2, 20wt% 

Cu/TiO2 seems to have the largest pore diameter at 23.38 nm while 2wt%Cu/TiO2 

have the smallest pore diameter was 3.91 nm. In terms of desorption pore diameter, 

the prepared photocatalysts show the hyperbolic trend. The porous structure of the 

photocatalysts was consistent with density measurements. Since the pore diameters 

were fallen in the range between 2 to 50 nm, so all prepared catalysts can be 

considered as mesoporous catalysts. 

 

Wt% of Cu/TiO2 BET specific surface area (m
2
/g) 

0 12.92 

2 11.42 

5 10.23 

10 9.98 

15 9.17 

20 7.49 

25 6.20 
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Table  4-2 Pore volume and pore diameter of Cu/TiO2 

Cu/TiO2 (wt 

%) 

Adsorption Desorption 

Pore volume 

(cm
3
/g) 

Pore diameter 

(nm) 

Pore volume 

(cm
3
/g) 

Pore diameter 

(nm) 

 

2 0.0400 13.9 0.0399 13.8 

5 0.0491 20.7 0.0496 19.8 

10 0.0420 19.7 0.0429 17.5 

15 0.0411 17.9 0.0410 17.7 

20 0.0387 23.4 0.0392 19.8 

25 0.0367 23.4 0.0368 13.8 

 

4.2.2 XRF Analysis 

 XRF (X-ray fluorescence)  is an x-ray instrument used for routine, relatively 

non-destructive chemical analyses of rocks, minerals, sediments and fluids. It works 

on wavelength-dispersive spectroscopic principles that are similar to an electron 

microprobe (EPMA).  XRF is used to determine the actual average composition of 

Cu/TiO2 in current study. The results obtained are summarized in Table 4.3. 

Table  4-3 Results obtained from XRF test. 

Catalyst (wt%) TiO2 (wt%) Cu (wt%) 

2 92.79 2.45 

5  88.78 5.65 

10 83.02 11.29 

15  76.77 17.97 

20 70.23 22.88 

25  62.86 27.77 

 XRF analysis confirmed that the CuO content in the Cu/TiO2 photocatalysts 

were near identical to the nominal loadings. The deviation which was based on 

copper-deposited percentage ranged from 11% to 22%. The catalyst that showed the 

highest deviation was 2wt%Cu/TiO2 which has recorded 22% deviation error whilst 

25wt%Cu/TiO2 has the least deviation from the desired loading which was only 11%. 
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4.2.3 XRD Diffraction Pattern 

 The solid phase identification of Cu–TiO2  was performed using XRD 

techniques. XRD is a non-destructive analytical technique which is widely used for 

the identification of structure, crystalline phases, and also sizes of crystallites of 

natural or synthetic materials.  

 Figure 4.2 shows the whole set results that obtained from 2θ =3° to 

80°.According to Slamet et al. (2005), the peaks on 2θ = 25.34° and  2θ = 27.42° 

correspond to the main peak of anatase and rutile, respectively. It can be seen that for 

all copper dopping TiO2 samples, only the characteristic peaks corresponding to P25 

(TiO2) were found which consisted of 79% anatase and 21% rutile. From the relative 

intensity of the anatase and rutile reflections, the anatase: rutile weight ratio in the P25 

TiO2 support was estimated to be 6:1, in good agreement with the manufacturer’s 

specifications. CuO diffraction peak appeared near  2θ = 35.6°. Besides that, a 

distinguishable peak appeared near 2θ = 12.9° for all the catalysts were found except 

for 2wt% Cu/TiO2. The peak intensities increased for higher copper loading; hence 

this peak should be copper’s peak. The disapperance of this peak for 2wt%Cu/TiO2 

indicated that the deposited copper value was too low.  

 From Figure 4.2, the peak for CuO which was near  2θ = 35.6° can barely be 

seen for 2wt% and 5 wt% of Cu/TiO2. This may be attributed to the copper content 

was small. Furthermore, the ionic radius of Cu
+ 

(0.096nm) was larger than that of Ti
4+

 

(0.068 nm).  It was difficult for doped copper ions to enter into the TiO2 lattice, hence 

copper species only stay on the surface of TiO2 or in the interstice of TiO2 (Foster et 

al., 1995). However, small peaks were observed at near 2θ = 36.7° which can be 

assigned to CuO species.  
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Figure  4-2 XRD patterns of copper-titinia catalysts: (a) 2wt% Cu/ TiO2  (b) 5wt% Cu/ TiO2 (c) 10wt% Cu/ TiO2 (d) 15wt% Cu/ TiO2 (e) 20wt% 

Cu/ TiO2 and (f) 25wt% Cu/TiO.
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 As calculated from the Scherrer equation (Equation 3.10),  the crystalline size 

of CuO were tabulated in the Table 4.4. The crystalline size of anatase was relatively 

uniform, ranging from 41.8 to 49.1 nm, whereas the copper clusters grew up with the 

increase in Cu loading. 

Table  4-4 Crystalline size of CuO for each catalyst. 

Wt% of Cu Crystalline size (nm) 

2 44.8 

5 43.1 

10 41.8 

15 49.1 

20 44.3 

25 44.9 

 

4.2.4 Density of Catalysts 

            The density of synthesized catalysts was obtained from gas pycnometer unit 

(Pycnometer type 1305 Micrommeritics). The results were repeated for five cycles for 

each catalysts and then averaged to ensure the accuracy. Table 4.5 shows a typical 

measurements. 

Table  4-5 The density of 2wt% Cu/ TiO2. 

Cycle Volume (cm
3
) Density (g/cm

3
) 

1 0.6390 2.78 

2 0.6412 2.77 

3 0.6436 2.76 

4 0.6454 2.75 

5 0.6454 2.75 

            From Table 4.5, the density of 2wt% Cu/ TiO2 was calculated based on the 

average of five measurements which was 2.76 g/cm
3
. The results for other loadings of 

photocatalysts are tabulated in Table 4.6. 
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Table  4-6 Density of Cu/TiO2 photocatalyst 

Wt%Cu/ TiO2 Density (g/cm
3
) 

2 2.76 

5 3.28 

10 3.21 

15 3.24 

20 3.17 

25 3.11 

            According to (William & David, 2008), density of a mixture can be calculated 

in terms of mass fraction as in the Equation (4.1). 

ρρρ
2

2

2 TiO

TiO

Cu

Cu

Cu/TiO

XX1


    (4.1) 

where 

ρi = density (g/cm
3
) 

Xi = weight fraction 

             The theoretical density of Cu/TiO2 was calculated and the results from the 

calculation are summarized in Table 4.7.  

Table  4-7 Theoretical density of Cu/TiO2 

Wt% of Cu/ TiO2 Weight fraction of TiO2 (wTiO2) Density (g/cm
3
) 

2 0.98 4.37 

5 0.95 4.44 

10 0.90 4.56 

15 0.85 4.69 

20 0.80 4.82 

25 0.75 4.97 

             The actual density and theoretical density from Tables 4.6 and 4.7 are plotted 

in Figure 4.3 for comparison study. 
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Figure  4-3 Densities of theoretical calculation and actual measurements of Cu/TiO2. 

             In Figure 4.3, the theoretical density are apparently diverged from the actual 

measured density. In addition, both showed contrasting trend. Theoretically, the 

density of the catalyst should increase gradually with the increment of Cu content. 

The measured density has showed contrasting trend. The discrepancy might due to the 

porous structure of catalysts after calcination process.   

4.2.5 TGA 

              The TGA of copper-doped on TiO2 catalyst samples showed the weight lost 

pattern of the material prepared freshly by wet impregnation method (Figure 4.4). The 

thermogram for 20wt% Cu/TiO2 showed the decomposition steps – from 298 until 

523 K  and another from 523 to 573 K. These can be attributed to moisture loss and 

decomposition of copper nitrate salt, Cu(NO3)2, respectively.The decomposition of 

copper nitrate can be represented by Equation (4.2). 

                                    )()(2)( 2223 gOgNOsCuONOCu                        (4.2) 
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Figure  4-4 The weight loss profile of the 20wt% Cu/TiO2. 

                The derivative weight profile for mass reduction from T= 450 to 550 K 

were amplified and plotted in Figure 4.5. No peak was observed for 2wt% Cu/TiO2 

which indicates low content of Cu; hence low copper oxide content which leads to 

insignificant decomposition. On the other hand, the peak for others prepared catalysts 

occurred within this temperature range. Significantly, the maximum peak 

temperatures seem to be invariant with the Cu loading. The intensity of the peaks 

increased with the wt% of Cu, which indicating higher content of copper nitrate 

present in the particular catalyst.  

 

Figure  4-5 Derivative weight profile of catalysts prepared from T=450 to 550 K 
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4. 3 Dark Adsorption Study 

                Methylene blue (MB) adsorption is studied by equilibrating various 

concentration of the MB solution with the powder photocatalysts in the dark for time 

periods tranging from a few minutes (~ 30min) to several hours depending the 

kinetics of the adsorptiom process. The supernatant solutions was then sampled out to 

test the amount of MB adsorbed on the TiO2 surface.According to Rajeshwar et 

al,.(2008) , dark adsortion data are processed in the form of a plot of concentration 

adsorbed (Nads ) versus equilibrium concentration (Ceq) according to the Langmuir 

adsorption isotherm: 

eqL

eqLs

ads
CK

CKN
N




1
                                         (4.2) 

                In equation 4.2 , Ns is the total number of accessible adsorption sites and KL 

is the adsorption constant (in M-
1
).However , in this case the adsorption study seems 

no significant effect in the first hours. So, the Nads is so small until insignificant that 

can be ignored. 

4. 4 Photoreaction Study 

4.4.1 Photodegradation of  Methylene Blue 

 The photoreactivity of prepared catalysts were tested with photodegration of 

methyl blue. Methylene blue is a heterocyclic aromatic organic compound with 

the molecular formula C16H18N3SCl. Significantly, the method to utilize MB dye 

solution as a standard test for photo-catalytic activity has been widely adopted and 

sanctioned by the International Organization for Standardization (ISO). During the 

sample analysis, the concentration of methylene blue solution can be obtained 

accurately by UV-Vis Spectrophotometer. Moreover, MB solution is most suitable as 

a tester among all the organic dyes for photo-activity determination due to its highly 

coloured nature, good chemical stability as well as inexpensive.  
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 Prior to reaction, standard calibration curves for MB would be obtained via 

UV-Vis spectrophotometer. Subsequently, aqueous slurry was obtained by adding 

0.25 g of photocatalyst to 300 ml MB aqueous solution at 10 ppm. Irradiation was 

performed with a 1000-W high pressure UV-lamp. The aqueous slurry was rigorously 

stirred for 30 min prior to irradiation to attain equilibrated-adsorption state. During 

the photoreaction, at 15 min intervals, the suspension was withdrawn and centrifuged 

to separate the photocatalyst particles followed by UV-Vis measurement at 

absorbance peak of 664 nm. The actual concentration of each sample was obtained by 

referring back to the calibration curve obtained in prior. Figure 4.6 shows a typical 

calibration curve obtained during the measurement.  

 

Figure  4-6 A typical calibration curve for methylene blue 

 The results obtained from photoreaction of methylene blue with different 

catalysts are shown in Table 4.8. From the results, the reactivity of the all the prepared 

photocatalysts are obviously showing a transient concentration reduction.  
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Table  4-8 The results of methylene blue after 1 h photoreaction. 

 

 

 

 

 

 Since the initial concentration varied slightly for different experiment sets, the 

normalized transient concentration was plotted and shown in Figure 4.7 for 

comparison purpose. The conversion of MB photodegradation was obtained by using 

Equation (4.3): 

Degradation conversion,   100%X 



Ao

AAo

C

CC
   (4.3) 

where by CAo represents concentration of MB before photoreaction begins and CA is 

the concentration of MB after 1 h of photoreaction. These calculated conversions are 

listed in Table 4.9.  

Table  4-9 The conversion of MB for various catalysts after 1 h of photoreaction. 

Cu (wt%) Conversion, X (%) 

2 25.74 

5 39.57 

10 43.32 

15 44.09 

20 34.45 

25 28.28 

 Based on the obtained result, 15wt% of Cu/TiO2 shows the best degradation 

rate by decomposing 44.0% of the MB. Significantly, the efficiency has decreased in 

the sequence of 15, 20 and 25wt%Cu/TiO2.  

Time 
Conc. (ppm) 

2wt% 5wt% 10wt% 15wt% 20wt% 25wt% 

0 11.42 10.87 10.16 11.43 9.90 10.43 

15 10.97 9.13 8.42 10.83 9.13 9.55 

30 9.75 8.87 7.35 9.14 9.00 8.80 

45 8.61 8.33 6.58 8.55 7.81 8.73 

60 8.48 6.57 5.76 6.39 6.49 7.48 
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Figure  4-7 Normalized concentration for photoreaction of various Cu-loadings. 

 It can be observed from Figure 4.7 that the 15wt% Cu/TiO2 was having the 

highest conversion (44.0%) as aforementioned. For loadings lower than 15wt%Cu, 

the photocatalytic activity increased with Cu deposition on TiO2. Nonetheless, the 

conversion decreased at Cu content exceeding 15wt%.  Most likely, since the Ti-O-Cu 

bond formed on the surfaceof TiO2, metal ions are the acceptors of electrons, and they 

can trap the electrons in TiO2 conduction band. Hence the electrons would have 

accumulate on the Cu-TiO2 particles while the holes oxidize OH
-
, H2O, or the 

organics, avoiding the electron-hole recombination. As a general trend, the lower the 

electron-hole recombination rate, the higher the photocatalytic activity of the samples. 

Moreover, the electrons trapped in Cu-TiO2 site are subsequently transferred to the 

surrounding adsorbed O2. It is generally suggested that the electron transfer to oxygen 

might be rate-limiting step in photocatalysis. Li et al. (2004) supposed that the Cu can 

accelerate this step. However, excess Cu depositing on TiO2 may have screened the 

photocatalyst from the UV source.  
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 Besides that, the increase of Cu content could increase the shading effects 

based on XRD analysis. However, its shading effect could still be covered by its high 

ability to trap electrons for the below 15wt% loading. According to Slamet et al. 

(2005), the absorption spectra pattern of low Cu-deposited catalysts was not far 

different from TiO2 and only shifted to the visible region. It can be presumed, as 

reported by Anpo et al. (2003) that in the current work, the implanted metal ions do 

not work as electron-hole recombination centers but only work to modify the 

electronic properties of the catalysts. The band gap of copper-loaded catalysts were 

smaller than TiO2, so the photon energy needed to excite electron and hole would not 

be too high. 

 

4.4.2 Langmuir-Hinshelwood Model 

 It is well known that photocatalytic oxidation of organic pollutants in the 

aqueous suspension follows Langmuir-Hinshelwood model since it is a heterogeneous 

system. Therefore, this kind of reaction can be represented as follows: 

CK

C

dt

dC

a


1

K
k- a

r      (4.4) 

where  

dt

dC
  = degradation rate of Methylene Blue (mg L

-1
 min

-1
) 

 
rk  = reaction rate constant (ppm min g)

-1 

 C = concentration of Methylene Blue solution (ppm or mg L
-1

) 

Ka = adsorption coefficient of reactant 

 When the concentration of C is very small as portrayed in the current work, 

the product of KaC is negligible with respect to the unity so that the Equation (4.4) 



52 

 

can be further simplified into a first-order kinetics and mathematically-manipulated to 

yield:  

                                                       (4.5) 

where k is the apparent pseudo first-order reaction rate constant. Figure 4.8 shows a 

linear correlation between ln(Co/C) and t for methylene blue photocatalytic 

degradation over various photocatalysts, and their corresponding first-order kinetics 

constant are shown in Table 4.10.  

 

Figure  4-8 Effect of the copper-deposited amount on the photocatalytic activity of 

TiO2. 

Table  4-10 First-order kinetics constant of TiO2 deposited with different Cu contents. 

Cu (wt%) 
First-order kinetics constant 

k (min
-1

)×10
-3

 

2 4.96 

5 8.40 

10 9.46 

15 9.70 

20 7.04 

25 5.54 

kt 
C 

C 
In   ) ( 

0 
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 Based on Table 4.10, these obtained k-values are reasonably shows a trend 

with optimum at 15wt% of Cu, which is consistent with the pore diameter discussed 

earlier that lead to higher conversion. The k-values show an increasing trend with the 

increased copper- deposited content until the optimum value at 15wt% of copper that 

is 9.70×10
-3

 min
-1

.  After that, the k-values decreasing gradually followed by 20wt% 

and 25wt% of Cu/TiO2. 

 The Langmuir- Hinshelwood model for MB was further proved by a rigorous 

error analysis. Figure 4.9 shows a parity plot between estimated value and actual 

value.  

 

Figure  4-9 Comparison between estimated value and actual value. 

 Additionally, as the residual plot depicted in Figure 4.10 shows a random 

distribution of experimental data with no apparent skewness, it can be concluded that 

the first-order model can indeed adequately described the kinetic behaviour of MB 

photodegradation. 
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Figure  4-10 Residual plot for degradation of MB. 

 

4.4.3 Catalyst Loading Studies 

 Four sets of photoreaction were conducted with catalyst loading of 0.2 g/L, 0.5 

g/L, 0.83 g/L and 1.0 g/L to determine the optimum catalyst loading for MB photo-

degradation.15wt% Cu/TiO2 was chosen as previously proven as the optimum 

performer. The outcomes of the experiments are presented in Table 4.11. 

Table  4-11 Weight loading results and conversion for 15wt% Cu/TiO2 

Time (min) 
 15wt% Cu/TiO2 

0.2 g/L 0.50 g/L 0.83 g/L 1.0 g/L 

0 1.0000 1.0000 1.0000 1.0000 

15 0.9606 0.9120 0.9235 0.8904 

30 0.8538 0.8451 0.8126 0.7858 

45 0.7539 0.7620 0.7830 0.7305 

60 0.7426 0.6769 0.6587 0.6209 

 Based on the results tabulated, the optimum catalyst loading is 1.0 g/L. About 

38% of the MB was degradated within 1 h. Generally, higher catalyst loading 

indicates higher efficiency. The degradation efficiency of MB was in tandem with the 

amount of copper deposit. As a conclusion, the catalyst loading has affected the 
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performance of the catalyst. For 15wt% of Cu/TiO2, the optimum catalyst loading was 

1.0 g/L. 

4.4.4 Concentration Effect Studies 

 The 15wt% Cu/TiO2 was still chosen as the photocatalyst to perform the 

photoreaction of MB solution for the concentration effect studies. The photoreaction 

conducted with the various concentration of MB solution ranging from 10 to 30 ppm 

over 15wt% Cu/TiO2. Table 4.12 shows conversion based on the concentration 

variation.  

Table  4-12 The conversion of 15wt% Cu/TiO2 based on different concentration. 

Concentration (ppm) Conversion, X (%) 

10 34.13 

15 23.28 

20 25.56 

25           33.17 

30 23.59 

 As shown in Table 4.12, the conversions have generally increased when the 

MB concentration was increased. This result is in line with the previous work by 

Slamet et al. (2011). They have that reported that higher MB concentration yielded 

higher conversion. However, the conversion has decreased at 30 ppm MB solution. 

This may be attributed by the insufficient loading of photocatalyst. 
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4.4.5 Water Photo-splitting  

 As for the photoreaction of water-splitting, the production of H2 was 

investigated.  The set-up used is as shown in Figure 4.11.  

 

Figure  4-11 Photoreaction setup. 

 The photocatalytic material was evaluated for hydrogen production in 500ml a 

gas-closed circulation system. The temperature was maintained at 298 K via water-

circulation cooling system. For each runs, 0.5 g of each photocatalysts was suspended 

in 500 ml of pure water. The suspended photocatalysts were bubbled with N2 gas to 

de-aerate for 30 min. The effluent gas produced through photocatalytic reaction was 

analyzed by gas chromatography (GC) using TCD detector. The photocatalytic 

activity of hydrogen production from pure water as a function of the Cu content is 

shown in the Figure 4.12. The calculation of hydrogen evolution rates with its 

dependency on copper loadings are summarized in Table 4.13. 
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Figure  4-12 Photocatalytic hydrogen production from pure water under UV light. 

Table  4-13 Hydrogen production rate of various photocatalysts. 

Sample 

Wt% of Cu 

*
Hydrogen production rate 

(μmol h
-1

g
-1

) 

2 42.89 

5 8.00 

10 1.36 

15 0.08 

20 0.03 

*
Collected after 5 h of water photo-splitting 

 In pure water system, the photocatalytic performance of Cu/TiO2 

photocatalysts in various copper loading revealed that hydrogen generation activity 

was disadvantageous of high copper loading, displaying an inferior activity as can be 

seen in the Figure 4.12. It can be observed that all the photocatalysts rarely generated 

hydrogen in the 1
st
 h of reaction. Significantly, this delay could be due to the 

stabilization in the solution. Moreover, the rate of reaction progressively declined to 

zero at copper content of 10wt%. This phenomena is probably due to the fact that the 
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excess electrons in CuO could transfer to the valance band and induce electron-hole 

recombination in TiO2, resulting in the suppression of hydrogen evolution rate 

activity. This result indicated that the optimal Cu loading on TiO2 photocatalysts for 

hydrogen production from pure water splitting was 2wt%. This was due to the fact 

that the concentration could effectively balance an increase in trapping sites leading to 

longer lifetime for interfacial charge transfer (Xu et al., 2011). Other possible reason 

may be that the higher Cu loading has initiated the isolated CuO and CuO bulk 

transfer than the interface, blocking the sensitization of TiO2.  
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

 

 

 

5. 1 Conclusions 

 In this thesis, the roles of Cu/TiO2 photocatalysts in the of methylene Blue 

photodecomposition and water photo-splitting were studied. From the liquid N2 

physisorption analysis, the catalysts were found to be porous, which is consistent with 

the discrepancy in the density comparison. The BET specific surface area of these 

photocatalysts generally decreased with the increased Cu loading due to formation of 

CuO crystallite that has blocked pores of TiO2 support. Moreover, BJH cumulative 

pore volumes and BJH average pore diameters for all Cu/TiO2 samples were in the 

range 0.0367 to 0.0400 cm
3
g

-1
 and 13.9 to 23.4 nm respectively. All the prepared 

catalysts can be considered as mesoporous catalysts since the pore diameters were in 

the range of 2 to 50 nm. Following the XRF analysis, it can be concluded that the 

CuO content in the Cu/TiO2 photocatalysts were near identical to the nominal 

loadings with mild deviation from 11 to 22%. In terms of crystallography study, peaks 

synonymous with CuO species were recorded at 2θ =35.6° for all Cu/TiO2 with 

exception to 2 and 5wt%Cu/TiO2. Besides that, Cu species was discovered at 2θ = 

12.9° except for 2wt% Cu/TiO2 which indicated that the content of copper was 

probably insignificant. Gas pycnometer measurements gave actual density of 

synthesized catalysts that ranged from 2.76 to 3.28g/cm
3
, which were much lower 
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than theoretical density calculations (4.37 to 4.97 g/cm
3
). This can be attributed to the 

porous structure of the catalyst. From TGA analysis obtained from temperature-

programmed calcination, a peak was observed at around 500 K for all the catalysts 

except 2wt% of Cu/TiO2. The observed peak represents the thermal decomposition of 

copper nitrate to CuO. Significantly, for 2wt% Cu/TiO2, the aforementioned 

decomposition may not be visible from the non-isothermal heating probably due to 

the low copper nitrate composition. This was also consistent with XRD’s findings. 

 The Cu/TiO2-assisted photodegradation of 10 ppm aqueous Methylene Blue 

(MB) solution, a common industrial dye organic contaminant, was examined at 0.83 

g/L catalyst loading. The photoreaction was carried out under 1000-watt UV 

irridiation for 1 h. UV-VIS spectrophotometer was employed to measure the transient 

MB concentration. Based on the screening results, 15wt% Cu/TiO2 photocatalyst 

yielded the highest conversion at 44%. Significantly, the decomposition of MB 

solution was found to follow a first-order kinetics derivable from Langmuir-

Hinshelwood model. Moreover, 15wt% Cu/TiO2 also possessed the highest specific 

reaction constant at 0.009690 min
-1

. Significantly, the obtained results can be 

explained by Ti-O-Cu bond formed on the surface of TiO2, metal ions are the 

acceptors of electrons, and they can trap the electrons in TiO2 conduction band. Hence 

the electrons do accumulate on the Cu-TiO2 particles while the holes oxidize OH
-
, 

H2O, or the organics, avoiding the electron-hole recombination  

 Besides that, the catalyst loading studies were also determined by running 

photoreaction with different loadings of 15wt%Cu/TiO2. An optimum point was 

discovered at 1.0 g/L of MB. As a conclusion, higher catalyst loading yielded higher 

conversion. Subsequently, the concentration effect studies were conducted. the 

conversion increased as the MB concentration increased from 15 to 25 ppm. This 

results may be attributed by higher concentration yield higher conversion.  
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 In addition, water photo-splitting for the production of H2 was also 

investigated over the same types of catalyst. The photocatalytic performance of 

Cu/TiO2 photocatalyst in various copper loadings has revealed that hydrogen 

generation activity was disadvantageous of high copper loading as it displayed an 

inferior activity.  

 As a conclusion, the current research has shown that the role of Cu/TiO2 plays 

the different role in the methylene blue decomposing and water photo-catalytic. It 

shows that photocatalysts will have different effect for different photoreaction studies  

 

 

5. 2 Recommendations 

 Based on the findings and observations of this research projects, the following 

suggestions are proposed for future studies. Firstly, during photocatalysts preparation, 

suitable methods and parameters must be employed to inprove the reactivity of 

catalysts. For current study, the catalysts were prepared by using wet impregnation 

method and air-calcined at 673 K for 30 min. Further study may be required to find 

the suitable methods and paramenters for better catalysts. Moreover, the 

photocatalysts should be sieved to maintain the particle size once after calcined. 

Besides, the operating temperature has to be maintained throughout the experiment 

for more accurate results. UV light will emit high amount of heat energy causing the 

operating temperature to increase with irradiation time. Proper cooling steps must be 

taken to maintain the temperature. In addition, the results for each samples should be 

repeated to ensure accuracy during the analysis of UV-Vis. Finally, the experiments 

for water photo-splitting for the production of H2 gas should be directly connected to 

gas chromatography for analysis since the production of H2 is too small. 
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APPENDICES 
 

 

Appendix A 

 

Wet Impregnation Method 

The calculation of mass of Cu(NO3)2.3H2O needed: 

2 wt% Cu/TiO2 preparation calculation: 

Molecular weight of Cu 63.5 

Molecular weight of Cu(NO3)2.3H2O 241.5 

Photocatalyst produced 40 g 

Mass of Cu 0.8g0.0240   

Mass of Cu(NO3)2.3H2O 
3.0438g0.8

63.5

241.5
   

 

Photocatalyst preparation: 

Cu/TiO2 (wt%) Cu(NO3)2.3H2O (g) 

2 3.0438 

5 7.6063 

10 15.2126 

15 22.8189 

20 30.4252 

25 38.0315 
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Appendix B 

 

Gas pycnometer 

Gas pycnometer: 2 wt% Cu/TiO2 

 
 

Gas pycnometer: 5 wt% Cu/TiO2 
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Gas pycnometer: 10 wt% Cu/TiO2 

 
 

Gas pycnometer: 15 wt% Cu/TiO2 
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Gas pycnometer: 20 wt% Cu/TiO2 

 
 

Gas pycnometer: 25 wt% Cu/TiO2 
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X-ray Fluorescence (XRF) 
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X-ray Diffraction (XRD) 

XRD: 2 wt% Cu/TiO2 

 
 

XRD: 5 wt% Cu/TiO2 

 
 

 

 

 

 

 

 

 

    

         0

       500

      1000

      1500

[1
], 

d
=

6
.9

1
(3

),
 2

-t
h

e
ta

=
1

2
.8

0
(6

)

[2
], 

d
=

3
.4

9
1

5
(6

),
 2

-t
h

e
ta

=
2

5
.4

9
0

(5
)

[3
], 

d
=

2
.4

1
8

9
(1

6
),

 2
-t

h
e

ta
=

3
7

.1
4

(3
)

[4
], 

d
=

2
.3

6
8

7
(6

),
 2

-t
h

e
ta

=
3

7
.9

5
5

(1
0

)
[5

], 
d

=
2

.3
2

1
2

(8
),

 2
-t

h
e

ta
=

3
8

.7
6

2
(1

4
)

[6
], 

d
=

1
.8

8
5

9
(2

),
 2

-t
h

e
ta

=
4

8
.2

1
4

(7
)

[7
], 

d
=

1
.6

9
5

3
(3

),
 2

-t
h

e
ta

=
5

4
.0

4
9

(1
0

)
[8

], 
d

=
1

.6
6

1
8

(2
),

 2
-t

h
e

ta
=

5
5

.2
3

0
(9

)

[9
], 

d
=

1
.4

7
5

6
(4

),
 2

-t
h

e
ta

=
6

2
.9

3
(2

)

[1
0

], 
d

=
1

.3
6

1
1

(3
),

 2
-t

h
e

ta
=

6
8

.9
3

1
(1

5
)

[1
1

], 
d

=
1

.3
3

5
2

(2
),

 2
-t

h
e

ta
=

7
0

.4
6

9
(1

2
)

[1
2

], 
d

=
1

.2
6

2
2

1
(1

6
),

 2
-t

h
e

ta
=

7
5

.2
1

7
(1

1
)

[1
3

], 
d

=
1

.2
4

8
3

(3
),

 2
-t

h
e

ta
=

7
6

.2
1

(3
)

20 40 60 80
      -300

      -100

       100

       300

In
te

n
s
it
y
 (

c
p
s
)

2-theta(deg)

In
te

n
s
it
y
 (

c
p
s
)

    

         0

       500

      1000

      1500

[1
], 

d=
6.

82
1(

4)
, 2

-th
et

a=
12

.9
68

(7
)

[2
], 

d=
3.

49
82

(1
1)

, 2
-th

et
a=

25
.4

41
(8

)

[3
], 

d=
2.

42
31

(1
0)

, 2
-th

et
a=

37
.0

70
(1

6)
[4

], 
d=

2.
37

12
(7

), 
2-

th
et

a=
37

.9
13

(1
1)

[5
], 

d=
2.

32
70

(1
4)

, 2
-th

et
a=

38
.6

6(
2)

[6
], 

d=
1.

88
76

(3
), 

2-
th

et
a=

48
.1

68
(8

)

[7
], 

d=
1.

69
64

(3
), 

2-
th

et
a=

54
.0

11
(1

0)
[8

], 
d=

1.
66

30
(2

), 
2-

th
et

a=
55

.1
86

(8
)

[9
], 

d=
1.

49
07

(4
), 

2-
th

et
a=

62
.2

26
(1

8)
[1

0]
, d

=
1.

47
84

(2
), 

2-
th

et
a=

62
.8

00
(1

0)

[1
1]

, d
=

1.
36

25
(3

), 
2-

th
et

a=
68

.8
52

(1
7)

[1
2]

, d
=

1.
33

63
(3

), 
2-

th
et

a=
70

.3
98

(1
6)

[1
3]

, d
=

1.
26

30
2(

17
), 

2-
th

et
a=

75
.1

60
(1

2)
[1

4]
, d

=
1.

24
86

(4
), 

2-
th

et
a=

76
.1

8(
3)

20 40 60 80

      -300

      -100

       100

       300

In
te

ns
ity

 (
cp

s)

2-theta(deg)

In
te

ns
ity

 (
cp

s)



 78 

XRD: 10 wt% Cu/TiO2 

 
 

XRD: 15 wt% Cu/TiO2 
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XRD: 20 wt% Cu/TiO2 

 
 

XRD: 25 wt% Cu/TiO2 
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Liquid N2 Physisorption (BET) 

BET : 2 wt% Cu/TiO2 
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BET : 5 wt% Cu/TiO2 
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BET : 10 wt% Cu/TiO2 
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BET : 15 wt% Cu/TiO2 
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BET : 20 wt% Cu/TiO2 
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BET : 25 wt% Cu/TiO2 
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Thermogravimetric Analysis (TGA) 

TGA:  2 wt% Cu/TiO2 

 
 

TGA:  5 wt% Cu/TiO2 

 
 

 

 

 

 

 

 

 



 87 

 

TGA:  10 wt% Cu/TiO2 

 
 

TGA:  15 wt% Cu/TiO2 
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TGA:  20 wt% Cu/TiO2 

 
 

TGA:  25 wt% Cu/TiO2 

 

 

 


