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Abstract 

 

An effective way to improve forecast accuracy is to use a hybrid model. This 

paper proposes a hybrid model of linear autoregressive moving average (ARIMA) 

and non-linear GJR-GARCH model also known as TARCH in modeling and 

forecasting Malaysian gold. The goodness of fit of the model is measured using 

Akaike information criteria (AIC) while the forecasting performance is assessed 

using mean absolute percentage error (MAPE), bias proportion, variance 

proportion and covariance proportion.   

 

Keywords: ARIMA-GJR, TARCH, hybrid model, heteroscedasticity, volatility 

clustering   

 

1 Introduction 
 

Malaysian gold bullion coins called Kijang Emas are legal tender coins whose 

market price depends on their gold content. The price depends on the prevailing 

international gold price. They are investment coins where the daily selling and 

buying prices of these coins are important to investors in order to make an 

investment decision. 
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For forecasting purposes, Autoregressive Integrated Moving Average 

(ARIMA) models have been widely used to capture the long term trend in a time 

series. In time series where volatility clustering, the situation when large changes 

in the data tend to cluster together and resulting in persistence of the amplitudes of 

the changes are prevalent, ARCH based models have been used. In the case of 

Malaysian gold prices, a hybrid model was considered an effective way to 

improve forecast accuracy [1]. ARIMA-GARCH model was developed and it 

outperformed ARIMA model. However, in the study of symmetric and 

asymmetric Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

models for forecasting Malaysian gold prices, a variant of GARCH, called 

TGARCH was shown to outperform GARCH, GARCH-M and EGARCH models 

[2].   

 

This paper proposes a hybrid of linear autoregressive moving average 

(ARIMA) and a variant of non-linear generalized autoregressive conditional 

heteroscedasticity (GARCH) called GJR-GARCH in modeling and forecasting 

Malaysian gold price. 

 

In this study, the goodness of fit of the model is measured using Akaike 

information criteria (AIC) while the forecasting performance is assessed using 

mean absolute percentage error (MAPE), bias proportion, variance proportion and 

covariance proportion. All analyses are carried out using a software called 

E-views. 

 

In the next section, the methodology of the study is presented. This is followed 

by data analysis in Section 3. The study is concluded in Section 4.  

 

2 Methodology 
 

Hybrid ARIMA-GJR Models 

Box and Jenkins developed a general class of models called ARIMA for 

forecasting non-stationary time series [3]. Non-stationarity exists in mean and/or 

in variance. To remove non-stationarity in mean, transformations such as 

differencing can be applied. Non-stationary in variance on the other hand, can be 

removed by a proper variance stabilizing transformation introduced by Box and 

Cox [4]. The ARIMA (p,d,q) can be written as 

 

tqt

d

p ByBB  )()1)((   

 

where 
p

pp BBB   ...1)( 1 is the autoregressive operator of order p; 

q

qq BBB   ...1)( 1  is the moving average operator of order q; (1B)d  is 

the dth difference; B is backward shift operator; and t is the error term at time t. ) 

Using a sample data, the orders are identified through the autocorrelation function 
(ACF) and the partial autocorrelation function (PACF). The error terms are generally 
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assumed to be independent identically distributed random variables (i.i.d.) 

sampled from a normal distribution with zero mean, t ~ N(0,σ2) where σ2 is the 

variance. At this point, the model can be used for forecasting.  

 

Not all time series errors satisfy the assumption of common variance. 

Sometimes, the variances are time-varying and conditional. Engle in 1982 

developed autoregressive conditional heteroskedasticity (ARCH) class of models 

to describe a series with time-varying conditional variance. These models were 

generalized by Bollerslev in 1986 and are known as GARCH models [5]. The 

GARCH models are able to capture volatility clustering or the periods of 

fluctuations, and predict volatilities in the future [6]. In the GARCH model, past 

variances and past variance forecasts are used to forecast future variances. The 

standard GARCH model is symmetric in response to past volatility and variance. 

The GARCH (p, q) model is 

tty     

where   yt = time series data; ttttt hu   2
,   )1,0(~ Nt  
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where  10 1   , 2

tth  , 111    for stationarity, 0, ji   

The GARCH term is  2, where the last period forecast variance is of order p, 

The ARCH term is  2, which is the information about volatility from the previous 

period measured as the lag of squared residual from the mean equation. It is of 

order q. 

 

Good news and bad news have different effects on volatility [7]. Between 

good and bad, bad news is said to have more effect on future volatility of returns. 

When this happens, symmetric GARCH models are unable to capture the 

asymmetry of volatility response. A characteristic of asymmetric volatility is 

leverage effect. Leverage effect is asymmetry in volatility induced by big 

‘positive’ and ‘negative’ asset returns. Asymmetric GARCH models are able to 

explain the leverage effects by enabling conditional variance to respond 

asymmetrically to rises and falls in volatility returns. A model that treats positive 

and negative news symmetrically as proposed by Glosten, Jagannathan and 

Runkle is Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) which is also 

known as TARCH [8].  With positive or good news, t-i < 0 and with negative or 

bad news, t-i > 0.  TARCH can capture the phenomenon of positive news hitting 

on the financial market with the market being in a calm period; and the negative 

news hitting on the financial market with the market entering into a fluctuating 

period and high volatility. The model is as follows:  

    
p

j jtjtt

q

i tit hdh
1
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1   

where 2

tth  ,   is the leverage term and i , j  and   are constant  

http://en.wikipedia.org/wiki/Independent_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Normal_distribution
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parameters. dt is an indicator imitation variable where  
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The GJR (p,q) model has p GARCH coefficients associated with lagged variances, 

q ARCH coefficients associated with lagged squared innovations, and q leverage 

coefficients associated with the square of negative lagged innovations. 

 

Augmented Dickey-Fuller (ADF) 

A unit-root test called ADF can be used to determine stationarity of a time 

series. The null hypothesis states that the series is non-stationary. The testing 

procedure is applied to the model tt

k

i itt yyty     1110  

where yt = the tested time series,  = the first difference, k = the lag order of the 

autoregressive process and ttt y    are the series residual.  

 

Akaike Information Criterion (AIC)  

The goodness of fit of a model can be assessed using AIC = 2k 2 ln (L), 

where L = the maximized value of the likelihood function for the estimated model 

and k = the number of free and independent parameters in the model.  

 

Breusch-Godfrey Lagrange Multiplier Test (BG-LM) 

Autocorrelation is tested using BG-LM test. Rejection of the null hypothesis 

state that there exists serial correlation of any order up to a certain order lag.  

 

ARCH Lagrange Multiplier Test (ARCH-LM) 

The presence of heterocedasticity is determined by using ARCH-LM test. 

The squared series,  2

t  defined as 22

22

2

110

2 ... ptpttt      is 

used to check the presence of ARCH effects where p is the length of ARCH lags 

and t is the residual of the series. Test statistic for LM test is the usual F statistics 

for the squared residuals regression. The null hypothesis states that ARCH effects 

do not exist.  

Jarque-Bera Test 

The Jarque–Bera test is a test of whether sample data have the skewness and 

kurtosis matching a normal distribution.  The null hypothesis states that the 

sample data follows a normal distribution. The test statistic is defined as 

  









22 3
4

1

6
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n
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where n = the number of observations,  S = the sample skewness and K = the 

sample kurtosis. 

 

http://en.wikipedia.org/wiki/Serial_correlation
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Test_statistic
http://en.wikipedia.org/wiki/Skewness
http://en.wikipedia.org/wiki/Kurtosis
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Mean Absolute Percentage Error (MAPE) 

The accuracy of forecasts (measured in terms of percentage) is measured 

using MAPE with the following formula:  

 

MAPE = %100/
ˆ

1




























 



n
y

yyn

t t

tt  

where ty = the actual value,  tŷ  = the forecast value and n = the number of 

periods. 

 

3 Data Analysis and Results 
 

The daily selling prices of 1 oz Malaysian gold recorded from 3 January 

2011 until 20 January 2015 were used. The data are plotted in Figure 1.    
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Figure 1: Daily 1 oz Malaysian Gold Prices from 3 Jan 2011 to 20 Jan 2015  

 

Returns were used since a downward trend exists in the data.  The return on 

the tth day is defined as rt = ln(yt)ln(yt-1). The stationarity of the returns was 

confirmed by using ADF unit-root test.    

 

Ninety percent of the observations, that is from 3 January 2011 until 20 

August 2014 which account for 90% of the data were used for modeling to obtain 

an ARIMA model. Using ordinary least squares method to estimate the 

parameters, an appropriate ARIMA model for this series is ARIMA (2, 1, 2) with 

an AIC value of 10.88681. When the model was used for forecasting, the MAPE 

value for in-sample forecast is 0.759026. Out-sample forecasts were produced for 

observations in the period from 21 August 2014 until 20 January 2015 with 

MAPE value of 0.693575.    

 

Breusch-Godfrey Serial Correlation LM Test was performed on ARIMA (2, 

1, 2) and the model was confirmed to not suffer from serial correlation as 

illustrated in Table 1.  
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Table 1: Breusch-Godfrey Serial Correlation LM Test 

     
     F-statistic 0.202335     Prob. F(2, 887) 0.8169 

Obs*R-squared 0.407648     Prob. Chi-Square(2) 0.8156 
     

 

Figure 2 presents the descriptive statistics of the residuals where the mean of 

the residuals is close to zero and the residuals have excess kurtosis. Based on the 

Jarque-Bera statistic, the null hypothesis of residuals following the normal 

distribution is rejected.   
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Figure 2: Descriptive Statistics of the Residuals for ARIMA(2, 1, 2)  

 

Figure 3 presents the plot of the residuals where there exists clear volatility 

clustering in the residuals.   
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Figure 3: Volatility Clusterings in the Residuals for ARIMA(2, 1, 2) 

Using ARCH-LM test, ARIMA(2, 1, 2) residuals were tested for ARCH 

effects. The results as presented in Table 2 indicate that at 5% significance level,  

the null hypothesis of ARCH effects do not exist is rejected. 
 
 

Table 2: Heteroskedasticity Test for ARIMA(2, 1, 2) 

 
     
     F-statistic 34.88902     Prob. F(1,891) 0.0000 

Obs*R-squared 33.64971     Prob. Chi-Square(1) 0.0000 
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    Based on the presence of volatility clustering in the residuals and the ARCH- 

LM test result, it can be concluded that the model was not a good fit. A better 

model for forecasting Malaysian gold was deemed necessary. A hybrid model was 

considered an effective way to improve forecast accuracy [1]. In the study of 

symmetric and asymmetric Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) models for forecasting Malaysian gold prices, a 

variant of GARCH, called TGARCH was shown to outperform GARCH, 

GARCH-M and EGARCH models [2]. The TGARCH model is a GARCH variant 

that includes leverage terms for modeling asymmetric volatility clustering. Hence, 

the current study proposes using ARIMA-GRJ model to analyze the series 

understudied. Table 3 presents the estimation results for variance equation of the 

hybrid ARIMA (2, 1, 2)-GJR (1, 1) model as applied to Malaysian gold. 

 
 

Table 3: Estimation Results for Variance Equation of ARIMA (2, 1, 2)-GJR (1, 1) 

 
     

 Variance Equation   
     
     C 422.8536 82.39860 5.131806 0.0000 

RESID(-1)^2 0.125027 0.028159 4.440029 0.0000 

RESID(-1)^2*(RESID(-1)<0) 0.133392 0.035153 3.794573 0.0001 

GARCH(-1) 0.669151 0.046196 14.48512 0.0000 
     
     R-squared 0.010391     Mean dependent var -0.166667 

Adjusted R-squared 0.005938     S.D. dependent var 56.05145 

S.E. of regression 55.88477     Akaike info criterion 10.68289 

Sum squared resid 2776443.     Schwarz criterion 10.73117 

Log likelihood -4766.252     Hannan-Quinn criter. 10.70134 

F-statistic 1.166840     Durbin-Watson stat 1.937997 

Prob(F-statistic) 0.316238    
     
      

 In Table 3, since the coefficient of RESID (-1)^2*(RESID(-1)<0) is positive 

and significant, we can conclude that the model has leverage effects. This means 

that bad news can have more impact on the conditional variance than good news.   

The AIC value of the model is 10.68289. The residuals of the model are tested for 

ARCH effects using ARCH-LM test, with the results presented in Table 4. 

 
Table 4: Heteroskedasticity Test for ARIMA (2, 1, 2)-GJR (1, 1) 

 
     
     F-statistic 0.091229     Prob. F(1,891) 0.7627 

Obs*R-squared 0.091425     Prob. Chi-Square(1) 0.7624 
     

 

Based on Table 4, at significance level of 5%, the null hypothesis of no 

ARCH effects cannot be rejected. The hybrid model is then tested for serial 

correlation as presented in Table 5. From the results in Table 5, the null 

hypothesis of no serial correlation cannot be rejected. 
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Table 5: Ljung-Box Q-statistics on squared residuals for ARIMA(2,1,2)-GJR(1,1) 

 
             
          lags AC   PAC  Q-Stat  Prob lags AC   PAC  Q-Stat  Prob   
          
          1 0.010 0.010 0.0918  19 0.011 0.010 5.5901 0.986  

2 -0.015 -0.015 0.3027  20 0.016 0.015 5.8144 0.990  

3 0.007 0.007 0.3425  21 0.006 0.007 5.8495 0.994  

4 0.030 0.030 1.1481  22 0.055 0.055 8.6658 0.967  

5 -0.022 -0.023 1.5919 0.207 23 0.040 0.037 10.112 0.950  

6 -0.002 -0.001 1.5951 0.450 24 0.014 0.016 10.283 0.963  

7 0.011 0.010 1.6972 0.638 25 0.015 0.016 10.490 0.972  

8 0.006 0.005 1.7319 0.785 26 -0.038 -0.041 11.802 0.961  

9 -0.016 -0.015 1.9645 0.854 27 -0.011 -0.010 11.915 0.972  

10 -0.021 -0.021 2.3454 0.885 28 -0.028 -0.028 12.649 0.972  

11 0.026 0.025 2.9654 0.888 29 -0.005 -0.003 12.671 0.980  

12 -0.011 -0.012 3.0730 0.930 30 0.015 0.017 12.890 0.985  

13 -0.027 -0.025 3.7310 0.928 31 0.012 0.010 13.035 0.989  

14 0.008 0.008 3.7840 0.957 32 -0.014 -0.011 13.208 0.992  

15 0.025 0.021 4.3331 0.959 33 0.035 0.034 14.366 0.989  

16 0.027 0.029 4.9740 0.959 34 0.082 0.081 20.679 0.898  

17 0.023 0.025 5.4628 0.964 35 0.011 0.013 20.785 0.917  

18 -0.004 -0.006 5.4756 0.978 36 -0.041 -0.042 22.391 0.897  
          
          

 

 

The descriptive statistics of the residuals from ARIMA-GJR model are 

presented in Figure 4.  
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Figure 4: Descriptive Statistics of the Residuals for ARIMA (2, 1, 2)-GJR (1, 1) 

 

 

The residuals are not normally distributed as implied by Jarque-Bera statistic 

in Figure 4. However, the hybrid model is used for forecasting. The results of 

in-sample and out-sample forecasting are presented in Figure 5 and Figure 6 

respectively. 
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Figure 5: In-Sample Forecasting Results of ARIMA (2, 1, 2)-GJR (1, 1)  
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Figure 6: Out-Sample Forecasting Results of ARIMA (2, 1, 2)-GJR (1, 1)  

 

4 Conclusion 
 

The results of modelling and forecasting of 1 oz Malaysian gold daily prices 
recorded from 3 January 2011 until 20 January 2015 using ARIMA-GJR are tabulated 
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in Table 5. The results are compared with the results obtained by using ARIMA 

model.  

 
Table 5: Modelling and Forecasting Results 

 

Models ARIMA ARIMA-GJR 

AIC 10.88681 10.68289 

MAPE of in-sample 0.759026 0.758841 

MAPE of out-sample 0.693575 0.689450 

Bias Proportion of in-sample 0.000000 0.000037 

Variance Proportion of in-sample 0.000013 0.000008 

Covariance Proportion of in-sample 0.999987 0.999955 

Bias Proportion of out-sample 0.013627 0.011790 

Variance Proportion of out-sample 0.036969 0.037129 

Covariance Proportion of out-sample 0.949404 0.951081 

 

Based on AIC values, ARIMA-GJR is a better model. In terms of forecasting, 

MAPE of both in-sample and out-sample using ARIMA-GJR are lower than using 

ARIMA only.  There are not much differences in bias proportion which measures 

how far the mean of the forecast is from the mean of the actual series and in the 

variance proportion which measures how far the variation of the forecast is from 

the variation of the actual series. There is also not much difference in the 

remaining unsystematic forecasting errors as measured by covariance proportion. 

However, it can be concluded that a hybrid model of ARIMA-GJR is a better 

forecasting model since even though the residuals do not follow a normal 

distribution, the model does not suffer from serial correlation and there are no 

ARCH effects.  
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