
CUTTING PERFORMANCE OF DIFFERENT COATINGS DURING MINIMUM 

QUANTITY LUBRICANT MILLING OF AA6061T6 

 

 

 

 

 

 

 

MOHD KHAIRIL HAFIZI BIN KHAIROLAZAR 

 

 

 

 

 

 

 

 

Report submitted in partial fulfillment of requirements 

for award of the Degree of 

Bachelor of Mechanical Engineering 

 

 

 

 

 

 

 

 

Faculty of Mechanical Engineering 

UNIVERSITI MALAYSIA PAHANG 

 

 

 

 

 

 

 

 

JUNE 2013 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UMP Institutional Repository

https://core.ac.uk/display/159183159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


vii 

 

 

 

ABSTRACT 

 

This report presents an experimental investigation on the effects of output 

parameters which are surface roughness, tool wear and material removal rate during 

machining aluminum alloy 6061-T6 using minimum quantity lubricant (MQL) 

technique. The minimum quantity of lubrication technique was becoming increasingly 

more popular due to the safety of environment. The cutting speed, depth of cut, feed rate 

and MQL flow rate were selected input parameters in this study. This experiment was 

conducted based on central composite design (CCD) method. To develop a model of 

process optimization based on the response surface method. MQL parameters include 

nozzle direction in relation to feed direction, nozzle elevation angle, distance from the 

nozzle tip to the cutting zone, lubricant flow rate and air pressure. To achieve a 

maximum output parameters based on the optimized process parameters for coated 

carbide cutting tools (CTP 2235). The surface roughness was increased with decrease of 

cutting speed. The optimum cutting condition for MQL and flooded are obtained. For 

MQL, the feed rate, depth of cut, cutting speed and MQL flow rate are 379 (mm/tooth), 

2 (mm), 5548.258 (rpm) and 0.333 (ml/min) respectively. For flooded, the feed rate, 

depth of cut, cutting speed and MQL flow rate are 379 (mm/tooth), 2 (mm) and 

5563.299 (rpm) respectively. It was seen that a majority of coated carbide inserts had a 

long tool wear when exposed to high cutting speed, and feed rate leading to breakage of 

the inserts. 
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ABSTRAK 

 

Laporan ini membentangkan siasatan ujikaji mengenai kesan parameter 

pengeluar iaitu kekasaran permukaan, pemakaian alat dan kadar penyingkiran bahan 

semasa pemesinan aloi aluminium 6061-T6 menggunakan minimum kuantiti pelincir 

(MQL) teknik. Teknik minimum kuantiti pelinciran menjadi semakin popular kerana 

keselamatan alam sekitar. Kelajuan pemotongan, kedalaman pemotongan, ‘feed rate’ 

dan kadar aliran MQL dipilih menjadi parameter kemasukan dalam kajian ini. 

Eksperimen ini telah dijalankan berdasarkan reka bentuk komposit pusat (CCD) kaedah. 

Untuk membentuk model pengoptimuman berdasarkan kaedah gerak balas permukaan. 

Parameter MQL termasuk arah muncung berhubung dengan makanan haiwan arah, 

sudut ketinggian jarak muncung dari hujung muncung ke zon pemotongan, kadar aliran 

pelincir dan tekanan udara. Untuk mencapai parameter pengeluar maksimum 

berdasarkan proses parameter dioptimumkan untuk bersalut alat pemotong karbida 

(CTP 2235). Kekasaran permukaan telah meningkat dengan penurunan kelajuan 

pemotongan. Keadaan pemotongan optimum untuk MQL dan ‘flooded’ diperolehi. 

Untuk MQL, ‘feed rate’, kedalaman potongan, kelajuan pemotongan dan kadar aliran 

MQL adalah 379 (mm / gigi), 2 (mm), 5548,258 (rpm) dan 0.333 (ml / min) masing-

masing. Untuk ‘flooded’, ‘feed rate’, kedalaman potongan, kelajuan pemotongan dan 

kadar aliran MQL adalah 379 (mm / gigi), 2 (mm) dan 5563,299 (rpm) masing-masing. 

Ia dilihat bahawa majoriti ‘insert’ bersalut karbida mempunyai pemakaian alat yang 

lama apabila terdedah kepada kelajuan pemotongan yang tinggi, dan ‘feed rate’ yang 

membawa kepada kerosakan kepada ‘inserts’. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  INTRODUCTION 

 

Manufacturing in general term is the use of machine, tools and labor to produce 

things for sale. In this field of expertise, the competition is indeed fierce and 

manufacturer have to produce new products in a very short time and with reduced costs, 

whereas customers require more and more quality and flexibility, as explained by 

Kebrat et al. (2010). Manufacturing usually occur in large scale that involve mass of 

production. Beside the manufacturers in the competitive marketplace because of the 

manufacturing environment, low costs, goals of high rates of production, and high 

quality. The minimization of cutting fluid also leads to economic benefits by way of 

saving lubricant costs and workpiece/tool/machine cleaning cycle time (Dhar et al., 

2006). In order to improve the traditional manufacturing, many technologies are 

developed and it’s cause many machine are created as well as tool itself. There are 

many types of machine and tool that are used to process the material in manufacturing 

process. Some of them may involve high cost to operate the process such as cost of 

machine, cost of maintained, energy consumption, labor and so on. Therefore, in mass 

production, there is important to consider the economic aspect due to make the industry 

profitable and growth. Many traditional techniques and hybrid methodologies are 

developed to make the manufacturing process more effective by many ways such as 

directly assess the machining performance (Jawahir et al., 2003).  

 

An ultimate machine required ultimate tool to operate at full of performance. We 

can use high quality of material to created better tool for example by using TiN-coated 

carbide cutting tool as it can stand at high temperature, high cutting-speed and it was 
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prove that can improve the tool life. The coated tools are used more than 40% in 

industry and perform more than 80% to all machining use (Cselle and Barimani, 1995). 

However, the performance of that cutting tool is depending on many variable of cutting 

condition.  

 

This project focused the technique of minimum quantity lubrication performed 

for machining of AA6061T6 using coated carbide tool and CNC end milling machine. 

The mechanical properties for AA6061T6 depends on the greatly on the temper, or heat 

treatment, of the material. The aluminum offers advantages over other materials because 

of its relatively low density, high recyclability, design flexibility in mass production and 

economic benefit (Chu and Xu, 2004). Besides that, the aluminum with increasing 

concern of fuel economy and stringent government emission regulations, light weight 

materials, specifically aluminum, are being extensively adopted by design engineers for 

structural components. Surface finish is essential factor in evaluating the quality of 

products and surface roughness (Ra) most used index to determine the surface finish. 

The response surface method (RSM) as a statistical method that been used to optimize 

the surface responses. The RSM quantifies the relationship between response surfaces 

and input parameters. Fuh and Hwang (1997) constructed a model that can predict the 

milling force in end milling operations by using RSM method. They measured the speed 

of spindle rotation, feed per tooth and axial and radial depth of cut as the three major 

factors that affect in milling operation. The authors had made a comparison between the 

experimental data and the values predicted by this prediction model showed the model’s 

accuracy to be as high as 95%. In this experiment focuses on best usage of machining 

AA6061T6 and coated carbide in respect to the cutting force, tool life and surface 

roughness using the RSM approaches in the CNC milling machine as explained by Fuh 

and Hwang (1997).  

 

1.2 PROBLEM STATEMENT  

 

Performance of milling machine almost depending in how fast the machine can 

cut the work piece, meaning that even a slight change in machining element such as 

implementing a suitable coating on the cutting tool could improve the machinability of a 

material (Chattopadhyay et al., 2009). High productivity needed high rate of metal 
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removal, so it will reduce manufacturing cost and operation time. The large amount of 

the cutting fluid contain potentially damaging or environmentally harmful possibly 

damaging chemical elements that can expose skin and lung disease to the operators plus 

air pollution (Sreejith (2008) . The minimal quantity lubrication (MQL) will be used in 

our experiment compare another cutting fluid. MQL in an end-milling process is very 

much effective regarding (Lopez de Lacalle et al., 2001) and they mentioned that MQL 

can reach the tool face more easily in milling operations compared with other cutting 

operations. AA6061-T6 is more suitable choice due to its cost-efficient element 

(MacMaster et al., 2000) and economical aspect has always been important when it 

came to mass production while there is more material such as aluminum alloy AA 6069 

(Chu and Xu, 2004). Ghani et al (2004) investigated that the coating typically reduced 

the coefficient of friction between the cutting tool and reduce the tool wear. Eventually, 

sudden failure of cutting tools lead to loss of productivity, rejection of parts and 

consequential economic losses. The coated carbide tool is to be considered in this study 

to evaluate the performance of a machining process depends on tool wear or tool life.  

 

1.3  OBJECTIVES OF THE PROJECT 

 

 The objectives of this project are as follows: 

 

i. To experimentally investigate the machining characteristics of aluminum alloy 

in end mill processes for MQL techniques.  

ii. To investigate of coated carbide cutting tool performance on surface finish by 

using MQL method. 

iii. To study the tool wear and the material removal rate regarding the MQL 

technique. 

 

1.4  SCOPE OF THE STUDY  

 

i. Using CNC milling machine to operate the end milling on AA6061T6 by coated 

carbide using MQL. 
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ii. Determine optimum performance of coated carbide cutting tools in milling 

operation by vary machining parameter which is cutting speed, feed and depth of 

cut.  

iii. Design of experiments and optimization model is prepared using MiniTab 

software.  

iv. Mathematical model using Response Surface Method (RSM). 

 

 

1.5 ORGANIZATION OF REPORT 

 

There are five chapters including introduction chapter in this study. Chapter 2 

presents the literature review of previous studies includes the end milling, process 

parameters, response parameters, prediction modelling. Meanwhile, Chapter 3 discusses 

the design of experiment, preparation of experimentation, mathematical modeling 

techniques and statistical methods. In Chapter 4, the important findings are presented in 

this chapter. Chapter 5 concludes the outcomes of this study and recommendations for 

future research. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1       INTRODUCTION 

 

This chapter provides the review from previous research efforts related to 

milling process, CNC milling machine, cutting parameters in milling machine, and 

cutting tools. This chapter also involves a review some research studies like the 

statistical method and artificial neural network which are related to the mathematical 

modelling the present study. Substantial literature has been studied on machinability of 

aluminum alloys which is covers on surface roughness, tool life, tool wear cutting force 

and chip formation. This review has been well elaborate to cover different dimensions 

about the current content of the literature, the scope and the direction of current 

research. This study has been made in order to help identify proper parameters involved 

for this experiment. The review is fairly detailed so that the present research effort can 

be properly tailored to add to the current body of the literature as well as to justify the 

scope and direction of present. 

 

2.2       END MILLING 

 

Milling is the most common form of machining process used in the production 

of moulds/dies, due to the high tolerances and surface finishes by cutting away the 

unwanted material. A serious attention is given to accuracy and surface roughness of the 

product by the industry these days (Nagallapati et al., 2011). Surface finish has been one 

of the important considerations in determining the machinability of materials. In end 

milling process, the end-milling cutter are discretized into limited number of elements, 

and the forces exerted by each element regarded as oblique cutting are calculated (Wang 
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et al., 2004) By summing up the cutting forces generated by elemental edges, the 

instantaneous cutting forces of end milling can be determined. Wang et al. (2004) also 

stated that the end-milling operation is an oblique cutting process. There have been a lot 

of important factors to predict machining performances of any machining operation, 

such as surface roughness and dimensional accuracy. Ibraheem et al. (2008) 

investigated the effect of cutting speed, feed, axial and radial depth of cut on cutting 

force in machining of modified AISI P20 tool steel in end milling process. They 

concluded that, higher the feed rates, larger the cutting forces. They also developed the 

genetic network model to predict the cutting forces. Abou-El-Hossein et al. (2007) 

developed the model for predicting the cutting forces in an end milling operation of 

modified AISI P20 tool steel using the response surface methodology. End milling has 

been the most versatile form of milling for quite and the fact that it can be used to 

machine slots, shoulders, die cavities, contours, and profiles is indeed magnificent. It is 

one of the most common processes in product manufacturing and is very commonly 

employed in a lot of machines (Li and Li, 2004). However numerical control machines 

are the kind of machine that had been employed for material removal operations. Li and 

Li (2004) later also added that the prediction of cutting forces in milling is of 

fundamental importance in order to establish optimization of the cutting processes. 

There were many force models developed for milling processes. However, despite the 

increased sophistication and usefulness of the models developed in recent years, the 

predictive capability of the force and surface error predictions rely on the empirically 

established milling force component coefficients for each cutter design. Usually there 

are a lot of other limitations can be prevented by modeling a milling force in a more 

scientific nature. Based on the research carried out by Wang et al. (2004), the precise 

metal cutting has become more and more important for productivity and reliability 

requirement for modern industry. There are a lot of sources when it comes to the causes 

the vibration in cutting process. Dynamic change in cutting force is one of the major 

sources causing the vibration in cutting process. The result of this phenomenon is that 

the machining accuracy will be deteriorated. Thus, accurate modeling of cutting forces 

is necessitated for the prediction of machining performance and to determine the 

mechanisms and machining parameters that affects the stability of machining 

operations. Referring to all the facts including the difficulty of measuring the length of 

shear line and to represent it as a function of measurable variables, the linear force 
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model that is proportional to undeformed chip thickness has been widely used in 

analysis and simulation (Wang et al., 2004).  

 

Figure 2.1 shows cutting force coefficients and cutting force models (Dang et al. 

2010). Cutting force coefficients are determined directly from milling tests, using a 

specific cutter / work piece combination in this direct calibration method. The cutting 

forces were presumed to be directly proportional to the uncut chip thickness, which 

somehow explained that in other words, the cutting force coefficients were constants. 

The non-linear connection exists between the cutting forces coefficients and the prompt 

uncut chip thicknesses. The cutting force coefficient has the tendency to increase 

quickly as the instantaneous uncut chip thickness becomes smaller. This is the so-called 

size effect, which to put it simply is vice-versa, where the cutting force would be much 

weaker when the chip thickness where to be larger in size. The designated feed per tooth 

is large enough and the employed radial depth of cut is identical, the total cutting forces 

will be roughly in quantity to the flank instantaneous uncut chip thickness under the 

condition that only the first disc element of any edge is in cut at the prime phase of each 

tooth period. Sun et al. (2009) explained that the ball-end milling is widely used in 

machining parts with curved geometries such as die, mould, propellers and turbine 

blades. There are bound to be challenges and difficulties in whatever the system that has 

to work with and with that, regardless of the emergence of many advanced CAM 

systems, machining of complicated surfaces is still acknowledged as a challenge. All 

these little elements had no doubt contributes to high demand for tolerance, roughness 

and more often than not, it affects the machinability of difficult-to-cut materials. The 

cutting force modeling has become an essential step to understand the behavior of 

cutting process and it can serve as a stepping stone to further ensure the stability of 

machining system and the optimization of process parameters. 
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Figure 2.1: Modeling of flat end milling  

Source: Dang et al. (2010) 

 

Figure 2.2 shows a chip load distribution model in end milling where another 

investigation to reveal the relationship between the cutting force and cutting depth, the 

change of cutting force at the instant when a flute passes point p was examined. There 

are supposedly a lot of things to be considered in this issue. However, in this case, seven 

engagement cases were established within the range of cutting depths being considered. 

The behavior of chip loads for these cases were examined in a similar manner as 

described above. Based on this study, the initial conclusion is that the cutting force at 

the instant when a flute passes point p is at a maximum for most cutting conditions. 

Generally speaking, there are many factors and causes that may affect CNC machining 

result many aspects including the form error. The final deviation is the combined result 

of errors in CNC machine tool elements (geometry, orientation, and relative motion), 

errors in control (servo and NC program), errors from structural compliance (tool, 

machine tool, and fixture), and environmental effects (temperature). The form of error 

in ball milling has been dominated by tool deflection, particularly in the precision 

milling machining process. Li and Li (2004) also experimenting about the predictive 
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force model for which oblique cutting can be established by using a machining theory in 

which the cutting forces can be calculated from the input data of workpiece material 

properties, tool geometry and cutting conditions. The study and analysis of the stress 

distribution and tool chip interface had always been the basis of the theory. The shear 

plane and the tool chip interface are estimated to be a direction of maximum shear stress 

and maximum shear strain rate. The end milling process where it’s consists of a 

cylindrical cutter that has multiple cutting edges on both its periphery and tip, 

permitting end cutting and peripheral cutting. These cutting edges or flutes are usually 

made helical to reduce the impact that occurs when each flute engages the work piece.  

 

 

Figure 2.2: Chip load distribution model in end milling. 

 

2.3 RESPONSE SURFACE METHOD  

 

Many researchers have conducted studies on predicting cutting forces produced 

in machining operations using theoretical and analytical approaches. The response 

surface method is a powerful reliability method that approximates the limit state 

function with a polynomial expression using the values of the function at specific 

points, explained Allaix and Carbone 2011. The difficulties with these methods are that 

they are grounded on a big number of estimations that are not included in the analysis. 

This may reduce the reliability of the calculated cutting force values found by these 

methods. In addition, these approaches may be successfully applicable only for certain 
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ranges of cutting conditions (Kadirgama et al. 2008). The authors had describe in detail 

regarding the present study regarding the effect of simultaneous variations of four 

cutting parameters (cutting speed, feed rate, radial depth of cut and axial depth of cut) 

on the behavior of cutting forces. The response surface methodology (RSM) is utilized. 

RSM is statistical techniques that are useful for modeling the relationship between the 

input parameters (cutting conditions) and the output variables, as elaborated by 

Kadirgama et al. (2008). RSM saves cost and time on conducting metal cutting 

experiments by reducing the overall number of required tests. In addition, RSM helps 

describe and identify, with a great accuracy, the effect of the interactions of different 

independent variables on the response when they are varied simultaneously. RSM has 

been extensively used in the prediction of responses such as tool life, surface roughness 

and cutting forces. As we all know, The RSM is used to build the relationship between 

the input parameters and output responses, and used as the fitness function to measure 

the fitness value of the genetic algorithm (GA) approach. The GA is later applied to find 

the optimal parameters for a milling process. The experimental results show that the 

integrated approach does indeed find the optimal parameters that result in very good 

output responses (Hou et al., 2007). 

 

2.4  INPUT PARAMETERS 

 

There are many input cutting parameters that need to be considered in end 

milling process such as nose radius, cutting speed, depth of cut, federate and many 

more. The range of these input parameters need to be carefully determine as it will 

directly affect the output parameters later on the experiment. 

 

2.4.1  Cutting Force 

 

According to Li and Liang (2006), the know-how of cutting forces is a 

requirement to cutting temperature estimation, tool life prediction, cutting process 

planning, and chatters analysis. Many researchers have conducted studies on predicting 

cutting forces produced in machining operations using theoretical and analytical 

approaches (Abou-El-Hossein et al., 2007).  Cutting force is the acknowledged factor 

that influences the most on the milling operation performance. Thus, prediction of 
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cutting forces before real machining can provide key guidelines to the planning and 

optimization of cutting process (Wei et al., 2011). It is crucial to create a set of 

predictive thermo-mechanical models in order to predicting the cutting forces as 

functions of near dry lubrication parameters and cutting conditions. The most 

documented studies on near dry machining were empirical and qualitative. Despite the 

fact that the evaporative heat transfer model is created for near dry machining, there is 

no experimental evidence was presented whatsoever. Since Yang and Park first 

developed a cutting force model for ball end milling, many contributions to modeling 

and/or predicting of the cutting force for ball end milling have been develop ( Yang and 

Park, 1991). The shear angle and chip thickness do not vary considerably with tool 

wear. The cutting forces can also be calculated as the summation of the forces attributed 

to the sharp tool and the forces attributed to the tool flank wear. In near dry machining, 

in order to achieve the cooling effect, a moving heat source method is pursued to 

quantify the primary-zone shear deformation heating, the secondary-zone friction 

heating, and flank face air–oil mixture cooling (Li and Liang, 2006). There are a lot of 

other effects to be considered but these two had been specifically used to estimate 

cutting forces under the condition of sharp tools. The predicted variables of flow stress, 

contact length, and shear angle obtained from the model are used to predict the cutting 

forces due to the tool flank wear effect. 

 

2.4.2  Depth of Cut  

 

Depth of cut (DOC) is an input parameter to determine the values of cutting 

range on which the material wish to be cut. There are multiple types of depth of cut, 

radial and axial depth of cut, on which both are equally important in most cases. Azeem 

et al. (2004) had addressed his idea regarding depth of cut parameters where describe 

that the CNC machines have radically changed the machining operations, especially 

those having high variety and moderate batch sizes. For machining process, there are 

multiple input cutting parameters to be acknowledge including cutting speed (v), feed 

rate (fr), radial depth of cut (dr) and axial depth of cut. After the proper machine 

sequence and operation had been chosen, the cutting tools and the parameters for each 

of the operations have to be determined. The parameters will later then have a 

substantial impact on the cycle time, the tool life and the material removal rate as well 
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as low surface roughness average and dimensional accuracy (Toussaint and Cheng, 

2006). Abou-El-Hossein et al. (2006) were investigated that the significance of input 

parameters in the improvement of the output parameters such as surface roughness and 

tool life. It is due to the fact that it has been observed that the improvement in the output 

variables, such as tool life, cutting forces and surface roughness through the 

optimization of input parameters, such as feed rate, cutting speed and depth of cut, may 

result in a considerable economic performance of machining operations. The authors 

also addressed that one of these output variables that may have either direct or indirect 

indications on the performance of other variables such as tool wear rate, machined 

surface characteristics and machining cost, is cutting forces.  

 

2.4.3  Feed Rate 

 

Feed rate is an important aspect. By selecting a fixed feed rate based upon 

maximum force, which is obtained during full length of machining, the tool is saved but 

very often these results in extra machining time, which reduces productivity. By 

optimizing the feed rate, both the objectives of saving the tool (and hence more tool life) 

and also reducing machining time thereby increasing productivity are achieved (Salami 

et al., 2007). Feed rate is measured in the units of mm/rev. Sun and Wright (2005) 

focused on ball end milling presents strategies and algorithms for selecting cutting 

parameters such as width of cut (WOC) and spindle speed. However, the authors 

decided to pin point their research towards feed rate. When it came to algorithms and 

strategies of milling process, there are a lot of goals and objectives to be considered. 

One of the major goals is to minimize the overall machining time, but it was done 

within the constraints of the cutting tool limitations (such as the CNC machine tool 

capability and the tool strength) and the design specifications of the part being 

machined (such as the allowable surface finish, the accuracy of machined dimensions of 

prismatic pockets, and the faithfulness between the CAD specified free-form contours 

and the as machined free-form contours--usually referred to as allowable form error). 

This is a multiple-variable and multiple constraint optimization problems (Sun and 

Wright, 2005).  

 


