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Categorical data clustering has attracted much attention recently due to the fact that much of the data
contained in today’s databases is categorical in nature. While many algorithms for clustering categorical
data have been proposed, some have low clustering accuracy while others have high computational com-
plexity. This research proposes mean gain ratio (MGR), a new information theory based hierarchical divi-
sive clustering algorithm for categorical data. MGR implements clustering from the attributes viewpoint
which includes selecting a clustering attribute using mean gain ratio and selecting an equivalence class
on the clustering attribute using entropy of clusters. It can be run with or without specifying the number
of clusters while few existing clustering algorithms for categorical data can be run without specifying the
number of clusters. Experimental results on nine University of California at Irvine (UCI) benchmark and
ten synthetic data sets show that MGR performs better as compared to baseline algorithms in terms of its
performance and efficiency of clustering.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Clustering is an important data mining technique which parti-
tions a set of objects into clusters such that objects in the same
cluster are more similar to each other than objects in different
clusters [37]. Most previous clustering algorithms focus on numer-
ical data whose inherent geometric properties can be exploited
naturally to define distance functions between objects. However,
many fields, from statistics to psychology, deal with categorical
data. Unlike numerical data, it cannot be naturally ordered. An
example of categorical attribute is color whose values include
red, green, blue, etc. Therefore, those clustering algorithms dealing
with numerical data cannot be used to cluster categorical data.
Recently, the problem of clustering categorical data has received
much attention.

A number of algorithms have been proposed for clustering
categorical data [1–23,25–34,38–41]. Similar to other clustering
problems, categorical data clustering can also be considered as
an optimization problem [17], thus a typical method for clustering
categorical data is to define a dissimilarity measure between
objects, an objective function, and then iteratively minimize or
maximize the objective function until a solution is found. Unfortu-
nately, this optimization problem is NP-complete. Therefore most
researchers resort to heuristic methods to solve it. ROCK [2], k-
modes [5], and k-ANMI [20] are representative examples of such
type of methods. These methods require the user to specify the
number of clusters first and then conduct the processes of initiali-
zation, iteration, and so on. They focus on the relationship between
the objects and clusters during the process of clustering, as a result,
their time complexity increases greatly with the increase in the
number of objects. We can say these methods have implemented
clustering from the viewpoint of objects. As we know, a data set
consists of two elements: objects and attributes. Besides objects,
attributes are also an important aspect to be considered for cluster-
ing. Generally, the number of attributes is much less than the num-
ber of objects in a data set, thus it is possible to improve the
clustering efficiency if we employ attributes for clustering. The fol-
lowing example reveals the potential of attributes for categorical
data clustering.

Table 1 shows a categorical data set with ten objects and five
attributes. The column of real classes implies that the set of objects
can be partitioned into three classes. We assume that the objects in
each class are the same while completely distinct from the objects
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Table 1
Example data set with ten objects and five attributes.

Objects Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5 Real classes

O1 A1 A2 A3 A4 A5 1
O2 B1 B2 B3 B4 B5 2
O3 B1 B2 B3 B4 B5 2
O4 C1 C2 C3 C4 C5 3
O5 A1 A2 A3 A4 A5 1
O6 B1 B2 B3 B4 B5 2
O7 A1 A2 A3 A4 A5 1
O8 C1 C2 C3 C4 C5 3
O9 B1 B2 B3 B4 B5 2
O10 C1 C2 C3 C4 C5 3
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in other classes. Ai, Bi, and Ci for i = 1, 2, 3, 4, 5 denote different cat-
egories on ith attribute. The user is required to cluster the data set
without knowing the real classes in advance.

Using the methods mentioned above, the user has to specify the
number of clusters first. Imagine the number of clusters is set to
two, the accuracy of clustering will be affected. In fact, from the
viewpoint of attributes, it can be seen that each attribute partitions
the data set in the same way. If we can find such relation between
the attributes, a perfect clustering of the data set including three
clusters will be obtained by using the partition defined by any
attribute without specifying the number of clusters in advance.
Obviously, using attributes to cluster the data set in this example
is a more natural way.

In a real life categorical data set, the partitions defined by attri-
butes are not as perfect as that in the above example (i.e. the par-
titions defined by attributes are not always the same); however, if
the real classes are sufficiently distinguishable from each other, the
objects in the same real classes will create distinct values on some
attributes from the objects in the other real classes, consequently,
there exist some partitions defined by attributes which are similar
to the real clustering of objects; at least, there exist some equiva-
lence classes (the set of objects which has the same value of the
attribute) in these partitions which are similar to the real classes.
Our goal is to find such partitions and equivalence classes to
construct the clustering of the objects.

In this paper, a novel information theory based hierarchical
divisive clustering algorithm for categorical data, namely MGR, is
proposed. MGR iteratively performs two steps on the current data
set: selecting a clustering attribute and an equivalence class on the
clustering attribute. Information theory based concepts of mean
gain ratio and entropy of clusters are used to implement these
two steps respectively. Experimental results on nine UCI real life
and ten synthetic data sets show that our algorithm has lower
computational complexity and comparable clustering results.

The rest of the paper is organized as follows. Section 2 briefly
reviews the related work. Section 3 describes our algorithm MGR,
with an illustrative example. Section 4 analyzes the limitations of
MMR [16] algorithm, the most similar work to our method, and
compares it with MGR. Section 5 presents experimental results,
with a comparison with other algorithms. Finally, Section 6
presents conclusions and recommendations for future work.
2. Related work

Ralambondrainy [1] proposes a method to convert multiple cat-
egories attributes into binary attributes using 0 and 1 to represent
either a category absence or presence, and to treat the binary attri-
butes as numeric in the k-means algorithm. ROCK algorithm [2] is
an adaptation of agglomerative hierarchical clustering algorithm in
which the notion of ‘‘links’’ is defined to measure the closeness
between clusters. STIRR [3] is an iterative algorithm, which maps
categorical data to non-linear dynamic systems. If the dynamic
system converges, the categorical data can be clustered. Based on
a novel formalization of a cluster for categorical data, a fast sum-
marization based algorithm, CACTUS, is presented in [4]. CACTUS
finds clusters in subsets of all attributes and thus performs a sub-
space clustering of the data.

The k-modes algorithm [5,6] extends the k-means paradigm to
categorical domain by using a simple matching dissimilarity
measure for categorical objects, i.e., modes instead of means
for clusters, and a frequency-based method to update modes.
Subsequently, based on k-modes, many algorithms are proposed
including adapted mixture model [7], fuzzy k-modes [8], tabu
search technique [9], iterative initial points refinement algorithm
for k-modes clustering [10], an extension of k-modes algorithm
to transactional data [11], fuzzy centroids [12], initialization
methods for k-modes and fuzzy k-modes [13,40,14], a dissimilarity
measure for k-modes [38], attribute value weighting in k-modes
clustering [40], and genetic fuzzy k-modes [15]. k-ANMI [20] is
also a k-means like clustering algorithm for categorical data
that optimizes the mutual information sharing based objective
function.

Besides k-means, classical information theory is another widely
used technique in categorical data clustering. COOLCAT [17]
explores the connection between clustering and entropy: clusters
of similar points have lower entropy than those of dissimilar ones.
LIMBO [25] is a hierarchical algorithm that builds on the Informa-
tion Bottleneck (IB) framework to detect the clustering structure in
a data set. ‘‘Best K’’ [26] proposes a BkPlot method to determine the
best K number of clusters for a categorical data set.

He et al. [19] formally define the categorical data clustering
problem as an optimization problem from the viewpoint of cluster
ensemble, and apply cluster ensemble approach for clustering cat-
egorical data. Simultaneously, Gionis et al. [27] use disagreement
measure based cluster ensemble method to solve the problem of
categorical data clustering.

Recently, several works try to solve the problem of categorical
data clustering by direct optimization. In algorithms ALG-RAND
[18], G-ANMI [21] and the iterative Monte-Carlo procedure in
[22], some concepts of information theory, such as generalized
conditional entropy, mutual information are used to define the
objective function and some optimization methods like Genetics
are used to solve the problem. While these algorithms improve
clustering accuracy on some data sets, as pointed out in [21],
considerable obstacles still remain before they can be widely used
in practice. One main obstacle is the efficiency of the optimization
algorithms like Genetics.

In addition, He et al. [28] propose TCSOM algorithm for cluster-
ing binary data by extending traditional self-organizing map
(SOM). The same authors also propose Squeezer algorithm [29].
Squeezer is a threshold based one-pass algorithm which is also
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suitable for clustering categorical data streams. Chen and Chuang
investigate the correlation between attribute values and develop
CORE algorithm [30] by employing the concept of correlated-force
ensemble. Abdu and Salane [41] proposed a spectral-based cluster-
ing algorithm for categorical data using data summaries.

There also exist some algorithms focusing on transaction data
clustering. Wang et al. [31] propose the notion of large item and
develop an allocation and refinement strategy based algorithm
for clustering transactions. Following the large item method,
another measurement, called the small-large ratio is proposed
and utilized to perform the clustering of market basket data [32].
Yun et al. [33] consider the item taxonomy in performing cluster
analysis. Xu and Sung [34] explore the purchase features of cus-
tomers and propose an algorithm based on ‘‘caucus’’ which is
known as the fine-partitioned demographic group.
Fig. 1. Basic steps of MGR algorithm.
3. MGR algorithm

3.1. Basic idea of MGR

In a categorical data set, each attribute defines a partition on the
set of objects and each partition consists of some equivalence clas-
ses. A good clustering of the objects should share as much informa-
tion as possible with the partitions defined by each attribute
(attributes partitions for short) [18–21]. The aim of MGR algorithm
is to search some equivalence classes from attributes partitions to
form such clustering of objects which can share as much informa-
tion as possible with the attributes partitions. Concretely, MGR
first of all will select a clustering attribute whose partition shares
the most information with the partitions defined by other attri-
butes, and then on the clustering attribute, the equivalence class
with the highest intra-class similarity is outputted as a cluster,
and the rest of the objects will form a new current data set. Repeat
the above two steps on the new current data set until all objects
are outputted. Fig. 1 illustrates the basic steps of MGR algorithm.
3.1.1. Determining clustering attribute
If two partitions share much information, it implies that they

are similar or close to each other. Therefore, among the attributes
partitions, the partition defined by the clustering attribute should
be the most similar one to the partitions defined by all other
attributes.

In decision tree classification algorithms C4.5 [36], the informa-
tion theory based concept of gain ratio is used as the similarity
measure of the partition defined by an attribute with respect to
the partition defined by class label attribute. In MGR algorithm,
the definition of gain ratio is extended to mean gain ratio (MGR)
to measure the similarity between the partition defined by an attri-
bute and the partitions defined by all other attributes. In algo-
rithms C4.5, the higher an attribute’s gain ratio is, the more
similar the attribute to the partition defined by the class label attri-
bute. Consequently, the higher an attribute’s MGR is, the closer the
partition defined by the attribute to the partitions defined by all
other attributes. Thus, the attribute with the highest MGR is
selected as the clustering attribute.
3.1.2. Selecting equivalence class
Clusters of similar data objects have lower entropy than those

of dissimilar ones [17]. In MGR algorithm, the entropy of cluster
is used to select equivalence class from the partition defined by
the clustering attribute. The lower the entropy of a cluster is, the
more similar the objects in the cluster. Thus, the equivalence class
with the lowest entropy is selected as the splitting equivalence
class and outputted as a cluster.

3.2. Definitions

Let U be the set of all objects, A be the set of all attributes, and U/
ai denotes the partition on U defined by attribute ai e A.

Definition 1. Given an attribute ai e A and suppose ai defines a
partition U/ai = {X1,X2, . . . ,Xh}. The entropy of ai about the partition
is defined as
EðaiÞ ¼ �
Xh

s¼1

PðXsÞlog2ðPðXsÞÞ ð1Þ

where h is the domain size of ai, Xs # U is an equivalence class, and
PðXsÞ ¼ jXs j

jUj , for s = 1, . . . ,h.
Definition 2. Given two attributes ai, aj e A, suppose ai and aj

define partitions U/ai = {X1,X2, . . . ,Xh} and U/aj = {Y1,Y2, . . . ,Yg},
respectively. The conditional entropy of aj with respect to ai

denoted by CEai
ðajÞ is defined as

CEai
ðajÞ ¼ �

Xg

t¼1

PðYtÞ
Xh

s¼1

PðYtjXsÞlog2ðPðYtjXsÞÞ ð2Þ

where Xs, Yt # U, PðYtÞ ¼ jYt j
jUj , and PðYt jXsÞ ¼ jYt\Xs j

jYt j , for s = 1, . . . ,h and
t = 1, . . . ,g.
Definition 3. Given two attributes ai, aj e A. The information gain
of ai with respect to aj denoted by IGaj

ðaiÞ is defined as

IGaj
ðaiÞ ¼ EðaiÞ � CEai

ðajÞ ð3Þ
Definition 4. Given two attributes ai, aj e A. The gain ratio (GR) of
ai with respect to aj denoted by GRaj

ðaiÞ is defined as

GRaj
ðaiÞ ¼

IGaj
ðaiÞ

EðaiÞ
ð4Þ
Definition 5. Given an attribute ai e A. The mean gain ratio of ai

denoted by MGR(ai) is defined as
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MGRðaiÞ ¼
PjAj

j¼1;j–iGRaj
ðaiÞ

jAj � 1
ð5Þ
Definition 6. Assume the attributes in A are independent from
each other and |A| = m. Given a cluster C # U, the entropy of C is
defined as

EntropyðCÞ ¼ ECða1Þ þ ECða2Þ þ � � � þ ECðamÞ ð6Þ

where EC(ai), for i = 1, . . . ,m denotes the entropy of attribute ai about
the partition defined by ai on C, which is calculated by Eq. (1).

Based on the above definitions, we present the MGR algorithm
below.
3.3. MGR algorithm

The details of MGR algorithm is shown in Fig. 2.
We have three remarks about MGR algorithm.

(a) In Step 3 (or Step 5), if there are multiple attributes with the
same highest MGR value (or multiple equivalence classes
with the same lowest entropy), we select the first attribute
with the highest MGR value (or the first equivalence class
with the lowest entropy value).

(b) It is unnecessary to specify k when the user experiences dif-
ficulties in identifying the number of clusters. The algorithm
will terminate as the current data set C is empty.

(c) In view of size, some selected equivalence classes might be
very small and we regard them as outlier. If the size of the
equivalence class with the lowest entropy is less than a
specified threshold, we continue checking the equivalence
class with the next lowest entropy until the size of an equiv-
alence class is greater than the threshold.
Fig. 2. MGR algorithm.
Example 1. Table 2 shows a data set of student enrollment quali-
fication in [23]. There are eight students with seven categorical
attributes. The number of clusters is set to 3.

First, the MGR of each attribute is calculated using Eq. (5). The
results of GR and MGR of all attributes are summarized in Table 3.

Second, the clustering attribute with the highest MGR is chosen.
Table 3 shows that attribute ‘‘Experience’’ has the highest MGR,
thereby, it is chosen as a clustering attribute.

Third, the splitting equivalence class with minimum entropy is
determined. Attribute ‘‘Experience’’ defines a partition
{{1,2,3,4,5,6}, {7,8}}. According to Definition 6, the entropy of
equivalence classes {1,2,3,4,5,6} and {7,8} are 5.323 and 2.000,
respectively. The set {7,8} is selected as a splitting equivalence
class because it has the lowest entropy.

Finally, the splitting equivalence class {7,8} is outputted as a
cluster and equivalence class {1,2,3,4,5,6} is regarded as the
new current data set for further process. The above procedure is
repeated over the new current data set until all students are out-
putted. At the end of the process, the data set is partitioned to three
clusters, i.e., C1 = {7,8}, C2 = {1,2}, and C3 = {3,4,5,6}.

3.4. Computational and spatial complexities

Given a data set, assume n is the number of objects, m is the num-
ber of attributes, k is the required number of clusters and l is the
maximum number of values in the attribute domains. To achieve
k clusters, the algorithm has to run k � 1 iterations. In each iteration,
the time to determine equivalence classes for each attribute is mn;
the time to calculate the entropy of attributes is ml; the time to cal-
culate the conditional entropy is m2l; the time to calculate the IG
and GR is 2m2; the time to calculate MGR is m; the time to determine
the clustering attribute is m; and the time to calculate the entropy of
the equivalence classes on the clustering attribute is ml2. The whole
time for k � 1 iterations is km2(2 + l) + km(n + l + l2 + 2). Generally,
l < < n, therefore the overall computational complexity is a polyno-
mial O(km2l + kmn).

The algorithm only needs to store the original data set in the
main memory, so the spatial complexity of this algorithm is
O(mn). If n is a larger number, then we can reduce the spatial com-
plexity by keeping two attribute partitions in the main memory at
each moment for calculating the GR. Thus the space complexity
can be reduced up to O(2n).

4. Comparisons with MMR

The most similar work to MGR is MMR [16] which is a rough
set-based hierarchical algorithm for categorical data clustering. It
first chooses an attribute with the least mean of roughness value
as a partitioning attribute, and then splits the set of objects into
two clusters based on the selected attribute. Iteratively, it repeats
the process on the current longest cluster until reaching the
desired number of clusters. However, MMR has two inherent lim-
itations, which are analyzed as follows.

4.1. Limitations of MMR

(1) MMR algorithm is biased towards the attribute with the
smallest domain size or most unbalanced partition when
determining the partitioning attribute.

There are two reasons for this limitation. First, about MMR, we
have two properties as follows:

Proposition 1. Given the set of objects U and the set of attributes A, if
an attribute defines a one-equivalence-class partition, then the
attribute has minimum Min-Roughness, i.e. MMR



Table 2
An information system of student enrollment qualification in [23].

Student Degree English Experience IT Mathematics Programming Statistics

1 Ph.D Good Medium Good Good Good Good
2 Ph.D Medium Medium Good Good Good Good
3 M.Sc Medium Medium Medium Good Good Good
4 M.Sc Medium Medium Medium Good Good Medium
5 M.Sc Medium Medium Medium Medium Medium Medium
6 M.Sc Medium Medium Medium Medium Medium Medium
7 B.Sc Medium Good Good Medium Medium Medium
8 B.Sc Bad Good Good Medium Medium Good

Table 3
GR and MGR of all attributes in Table 2.

Attribute (w.r.t) Degree English Experience IT Math Programming Statistics MGR

Degree – 0.374 0.541 0.667 0.333 0.333 0.230 0.413
English 0.529 – 0.305 0.293 0.236 0.236 0.293 0.315
Experience 1.000 0.399 – 0.384 0.384 0.384 0.000 0.425
IT 1.000 0.311 0.311 – 0.000 0.000 0.189 0.302
Mathematics 0.500 0.250 0.311 0.000 – 1.000 0.189 0.375
Programming 0.500 0.250 0.311 0.000 1.000 – 0.189 0.375
Statistics 0.344 0.311 0.000 0.189 0.189 0.189 – 0.204
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Proposition 2. Given the set of objects U and the set of attributes A, if
an attribute defines a partition with one-element equivalence class,
then the attribute has maximum Min-Roughness in A.

The proofs of Propositions 1 and 2 are listed in the Appendix.
The attribute that defines a one-equivalence-class partition is

termed P1-type attribute, and the attribute that defines a partition
with one-element equivalence class is termed P2-type attribute. It
is easily seen that a P1-type attribute has the smallest domain size
and most unbalanced partition. Reversely, a P2-type attribute has
the biggest domain size and most balanced partition.

Therefore, the two propositions imply that the attribute with
smaller domain size or more unbalanced partition usually has a
lower Min-Roughness, which means MMR algorithm prefers to
select such attribute as the partitioning attribute. This finally
results in the extreme selection in determining the partitioning
attribute, namely, the MMR algorithm is biased towards the attri-
bute with the smallest domain size or most unbalanced partition.
For example, if we want to select a partitioning attribute from an
attribute set which includes a P1-type attribute, according to
MMR algorithm, the P1-type attribute will be selected since it has
MMR value.

Second, from the definition of roughness (Eq. (4) in [16]), it can
be seen that the formula only focuses on the precision of X with
respect to aj, regardless of the size of X and the distribution (bal-
anced or unbalanced) of attribute ai. This also contributes to the
extreme selection in determining the partitioning attribute. Such
extreme selections will decrease the clustering accuracy of MMR
algorithm; after all, the real clusters are not always embedded in
such attributes.

(2) Selecting the current longest cluster for further binary split
is not always consistent with the natural distribution of
clusters.

For unsupervised learning, the length of the clusters is not
known in advance. There exist some clusters with longer length
in the data sets. Therefore, using the length of clusters as the crite-
rion is not natural, that is, it is not always consistent with the nat-
ural distribution of clusters.
4.2. A comparison of MGR and MMR

(1) MGR algorithm is not biased towards extreme selections.

There are three reasons for this view. First, we cannot confirm
that P1-type and P2-type attributes have the maximum or mini-
mum of MGR. Thus, they are not necessarily selected as clustering
attribute. Second, in the decision tree learning algorithms C4.5, the
reason for using gain ratio is to avoid extreme selection results
from the information gain measure [35]. The MGR used in MGR
algorithm has the same principle, thus it can avoid extreme selec-
tions. Third, from the definition of gain ratio in Eq. (4), it can be
seen that both similarity and the distribution of ai are considered,
information gain IGaj

ðaiÞ measures the similarity of ai with respect
to aj, E(ai) is related to the distribution of ai against the bias on
attribute selection results from using information gain solely.

(2) MGR algorithm outputs the found cluster in each iteration
regardless of its length and performs binary split on the
remaining objects, which is more natural than MMR
algorithm.

5. Experimental result

We conduct a series of experiments to evaluate the clustering
performance, efficiency, and scalability of MGR algorithm. In this
section, we describe these experiments and the results.

5.1. Experimental design

Besides MGR algorithm, we repeat other four algorithms includ-
ing MMR, k-ANMI, G-ANMI, and COOLCAT for comparing with
MGR. Choosing these algorithms for comparison is based on the
following consideration. MMR is the most similar work to MGR.
COOLCAT, k-ANMI, and G-ANMI, are based on information theory
as well. In addition, it has been demonstrated that k-ANMI and
G-ANMI algorithms can produce better clustering output than
other algorithms.

Nine real-life data sets obtained from the UCI Machine Learning
Repository [24] are used to evaluate the clustering performance,



Table 4
Nine UCI data sets.

Data set
name

Number of
objects

Number of
attributes

Number of
classes

Zoo 101 16 7
Votes 435 16 2
Breast cancer 699 9 2
Mushroom 8124 22 2
Balance scale 625 4 3
Car

evaluation
1728 6 4

Chess 3196 36 2
Hayes-Roth 132 4 3
Nursery 12,960 8 5
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including Zoo, Congressional Votes (Votes), Wisconsin Breast Can-
cer (Breast Cancer), Mushroom, Balance Scale, Car Evaluation,
Chess, Hayes-Roth and Nursery. The information about the data
sets is tabulated in Table 4. There are missing values in some data
sets. In our implementation, we delete the objects with missing
value in the Breast Cancer data set, thus the number of objects is
683 (both Breast Cancer data set used in k-ANMI and G-ANMI con-
tain 683 objects), and we treat missing value as another domain
value for the attribute in the other data sets.

In addition, using the method proposed by Cristofor [18] for
synthetically generated data set, we create 10 categorical data sets
to evaluate the efficiency and test the scalability of MGR algorithm.
These ten data sets contain 10,000, 20,000 through 100,000
instances, respectively. The number of attributes and the number
of classes are set to be 10 and 10 separately. We name these data
sets as R1, R2 through R10.

Five algorithms are sequentially run on all data sets. Each algo-
rithm has some parameters which need to be set before running.
MMR, k-ANMI, G-ANMI, and COOLCAT require the number of clus-
ters as an input parameter. In our experiments, the number of clus-
ters is set to be the known number of its class labels. For instance,
the number of cluster is set to 7 for the Zoo data set. MGR algo-
rithm can be run with specifying the number of clusters as well
as without specifying the number of clusters. For the purpose of
fair comparison, we specify as the same number of clusters for
MGR as that for other four algorithms (Section 5.4 describes the
experimental result of MGR without specifying the number of
clusters).

In all the experiments, the threshold of the size of the splitting
equivalence class in MGR algorithm is set to be 3% of the number of
current data set. All the parameters required by G-ANMI are set to
be default as in [21]. Moreover, the population size has a great
effect on the quality of clustering in G-ANMI. Here, we vary the
population size from 50 to 500 in the experiments to calculate
the average performance and efficiency. COOLCAT has two param-
eters: buffer size and the percent of reprocess. Since each data set
has different number of objects, we specify different buffer size for
each data set. For example, the buffer size is set to be 30, 100, 100,
and 200 for Zoo, Votes, Breast Cancer, and Mushroom data sets,
respectively. The buffer size is set to be 2% of the total number of
objects for each synthetic data set. In addition, we set the percent
of reprocess to 0.0, 0.1, 0.2, and 0.4 respectively to calculate the
average performance and efficiency.

All programs were written in C language and compiled on the
Borland C++ version 5.02. All experiments were conducted on a
machine with Intel Core2 Duo CPU T7250 @ 2.00 GHz, 1.99 GB of
RAM, running Microsoft Windows XP Professional.
5.2. Performance evaluation methods

In the performance analysis, we adopt two widely used meth-
ods to evaluate the clustering results.
5.2.1. Clustering accuracy
This method needs external class labels to compute the best

matches between the clusters produced by the clustering algo-
rithms and the true clusters. Given the true class labels and the
required number of clusters, k, clustering accuracy is defined asPk

i¼1
ai

n , where n is number of objects in the data set and ai is the
number of objects with the class label that dominates cluster i.
According to this measure, if a clustering has clustering accuracy
equal to 1, it means that it contains only pure clusters, i.e., clusters
in which all objects have the same class label. Hence, we can con-
clude that a higher value of clustering accuracy indicates a better
clustering result.

5.2.2. Adjusted rand index (ARI)
The ARI is frequently used in cluster validation since it is a mea-

sure of agreement between two partitions: one is the clustering
result and the other is defined by external criteria. Given a set of
n objects, suppose U = {u1,u2, . . . ,us} and V = {v1, v2, . . . ,vt} represent
the original classes and the clustering result. Let nij be the number
of objects that are in both class ui and cluster vj. Let ci and dj be the
number of objects in class ui and cluster vj respectively. The
adjusted rand index is defined as

ARI ¼

P
ij
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If the clustering result is close to the true class distribution, then
the value of ARI is high. Based on these two evaluation methods,
we analyze the performance of MGR algorithm and compare it
with other algorithms on nine real data sets shown as follows.

5.3. Clustering results

Tables 5–13 show the clustering results of MGR algorithm on nine
UCI data sets, as well as the clustering accuracies and ARI values.

5.4. Comparison with other four algorithms

5.4.1. Accuracy
With the same process, we apply MMR, k-ANMI, G-ANMI, and

COOLCAT to the nine real life data sets. The clustering accuracies
of five algorithms are summarized in Table 14. The last column
of the table shows the average clustering accuracy of each algo-
rithm on nine data sets. On average, MGR achieves the highest
accuracy. Fig. 3 illustrates their comparison on clustering accuracy.

5.4.2. ARI
The ARI values of five algorithms are summarized in Table 15.

Fig. 4 illustrates their comparison on ARI.
As shown in Tables 14 and 15, on average, MGR algorithm

achieves the highest clustering accuracy and highest ARI value.
Considering clustering accuracy and ARI value jointly, MGR outper-
forms MMR and G-ANMI on five data sets, performs better than
COOLCAT on six data sets and k-ANMI on four data sets. k-ANMI
has the highest accuracy and ARI on the Cancer data set and the
second highest accuracy and ARI on the Vote data set; however,
it has the lowest accuracy and ARI on Zoo data set, which indicates
that k-ANMI is unstable. Compared to k-ANMI, MGR has a higher
stability. G-ANMI has a good performance on Votes and Cancer
data sets; however, we will see later that G-ANMI has the lowest
efficiency in comparison with other algorithms. An important
observation is that MGR and MMR do much better than other algo-
rithms in the Zoo data set.



Table 5
Results of MGR on the Zoo data set.

Cluster number Mammal Fish Bird Invertebrate Insect Amphibian Reptile Max number Acc ARI

1 41 0 0 0 0 0 0 41 0.931 0.96
2 0 13 0 0 0 0 0 13
3 0 0 20 0 0 0 0 20
4 0 0 0 0 4 0 0 4
5 0 0 0 0 0 4 5 5
6 0 0 0 7 0 0 0 7
7 0 0 0 3 4 0 0 4

Table 6
Results of MGR on the Votes data set.

Cluster number Votes Republicans Democrats Max number Accuracy ARI

1 208 8 200 200 0.828 0.80
2 227 160 67 160

Table 7
Results of MGR on the breast cancer data set.

Cluster number Instances Benign Malignant Max number Accuracy ARI

1 373 369 4 369 0.884 0.79
2 310 75 235 235

Table 8
Results of MGR on the mushroom data set.

Cluster number Instances Poisonous Edible Max number Accuracy ARI

1 1296 1296 0 1296 0.677 0.65
2 6828 2620 4208 4208

Table 9
Results of MGR on the balance scale data set.

Cluster number B R L Max number Accuracy ARI

1 10 98 17 98 0.635 0.53
2 11 71 43 71
3 28 119 228 228

Table 11
Results of MGR on the chess data set.

Cluster number WON NOWIN Max number Accuracy ARI

1 372 193 372 0.534 0.59
2 1297 1334 1334

Table 12
Results of MGR on the Hayes-Roth data set.

Cluster
number

Class 1 Class 2 Class 3 Max
number

Accuracy ARI

1 8 8 4 8 0.485 0.04
2 28 15 7 28
3 15 28 19 28
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5.5. Efficiency analysis

We use ten synthetic data sets R1, R2 through R10 to evaluate
the efficiency of MGR algorithm. Five algorithms are sequentially
applied to ten data sets. The running time of algorithms is used
as the criterion for evaluation. G-ANMI is very time-consuming,
for instance, it takes 20,759 s on the Mushroom data set when
the population size is set to 50. Thus we mainly compare the other
four algorithms. The running times of the four algorithms on the
ten data sets are summarized in Table 16. Fig. 5 illustrates the com-
parison of running times among these four algorithms.
Table 10
Results of MGR on the car evaluation data set.

Cluster number UNACC ACC GOOD

1 360 72 0
2 324 108 0
3 268 115 23
4 258 89 46
It can be seen from Table 16 and Fig. 5 that the MGR algorithm
takes the least time on all ten data sets and has the lowest average
VGOOD Max number Accuracy ARI

0 360 0.7 0.35
0 324

26 268
39 258



Table 13
Results of MGR on the nursery data set.

Cluster number Class 1 Class 2 Class 3 Class 4 Class 5 Max number Accuracy ARI

1 2 1924 1440 196 158 1924 0.53 0.45
2 0 1484 1440 132 570 1484
3 0 324 288 0 252 324
4 0 324 288 0 252 324
5 0 210 864 0 2812 2812

Table 14
Clustering accuracies of five algorithms on nine data sets.

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

A
cc
ur
ac
y

MMR

MGR 

k-ANMI

G-ANMI

COOLCAT

Fig. 3. Comparison of the clustering accuracies of five algorithms on nine data sets.
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Fig. 4. Comparison of the ARI values of five algorithms on nine data sets.

408 H. Qin et al. / Knowledge-Based Systems 67 (2014) 401–411
running time, an indication of having the highest efficiency. The
efficiency of MMR and COOLCAT are close to MGR. However, k-
ANMI takes the most time on all ten data sets, which are signifi-
cantly greater than other three algorithms.
5.6. Running MGR without specifying the number of clusters

Different from the other four algorithms, MGR can be run with-
out specifying the desired number of clusters and end automati-
cally. We apply this strategy to nine real life data sets and ten
synthetically generated data sets.

Table 17 shows the number of clusters obtained after running
MGR and the clustering accuracy on nine real life data sets. Fig. 6
illustrates the comparison of the accuracies obtained by running
MGR with and without specifying the number of clusters. In
Fig. 6, Auto denotes MGR without specifying the number of
clusters.
Table 15
ARI values of five algorithms on nine data sets.
As shown in Table 17, the numbers of clusters on Zoo, Votes and
Nursery data sets are very close to the real numbers of clusters.
Although the numbers of clusters on the other data sets are greater
than the real numbers of clusters, they are at an acceptable level (a
post process can be used to combine some of them).

It can be seen from Fig. 6 that the accuracies have improved on
Vote, Cancer, Mushroom, Balance Scale, Chess and Hayes-Roth data
sets when we do not specify the number of clusters, especially on
the Mushroom data set, with a rise from 0.677 to 0.865.

For ten synthetic data sets, Table 18 shows the number of clus-
ters obtained after running the MGR and the running time in sec-
onds on the data sets. Fig. 7 illustrates the comparison of the
running times obtained by running MGR on ten data sets with
and without specifying the number of clusters. In Fig. 7, Auto
denotes MGR without specifying the number of clusters.

As shown in Table 18, the numbers of clusters on all ten syn-
thetic data sets are the same, i.e. 11, which is very close to the real
numbers of clusters 10. It can be seen from Fig. 7 that the running



Table 16
Running times in seconds of four algorithms on ten data sets.

Table 17
Results of MGR on nine real life data sets without specifying the number of clusters.

Data sets Real number of clusters Number of clusters Accuracy

Zoo 7 8 0.931
Vote 2 3 0.848
Cancer 2 8 0.930
Mushroom 2 7 0.865
Balance scale 3 9 0.646
Car evaluation 4 7 0.7
Chess 2 7 0.617
Hayes-Roth 3 6 0.538
Nursery 5 7 0.43
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Fig. 6. Comparison of the accuracies obtained by MGR with and without specifying
the number of clusters.
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Table 18
Results of MGR on ten synthetic data sets without specifying the number of clusters.

Data
sets

Real number of
clusters

Number of
clusters

Running time in
seconds

R1 10 11 0.906
R2 10 11 1.703
R3 10 11 2.807
R4 10 11 3.968
R5 10 11 5.438
R6 10 11 6.99
R7 10 11 8.729
R8 10 11 10.714
R9 10 11 13.036
R10 10 11 15.87
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Fig. 7. Comparison of the running times obtained by running MGR with and
without specifying the number of clusters.
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time on each data set is a little higher when we do not specify the
number of clusters. Such a little increase of running time is
acceptable.

5.7. Scalability test

We test two types of scalability of MGR algorithm on ten
synthetic data sets. The first one is the scalability against these
ten data sets for a given number of clusters and the second is the
scalability against the number of clusters for data set R10. Fig. 8
shows the running time of using MGR to detect ten clusters in dif-
ferent data sets. Fig. 9 shows the running time on R10 as the num-
ber of clusters varies from 2 to 10.

It can be observed from Fig. 8 that the running time of MGR
algorithm tends to increase linearly as the number of objects is
increased, which is highly desired in the real data mining
applications. It can be observed from Fig. 9 that the running time
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of MGR algorithm also tends to increase linearly with respect to the
number of clusters.
6. Conclusion

This paper has proposed a new information theory based hier-
archical divisive clustering algorithm, namely the MGR for categor-
ical data, which implements clustering from the viewpoint of
attributes. Information theory based concepts of MGR and entropy
of clusters are introduced in the algorithm to select clustering
attribute and divide the objects on the clustering attribute.

Experimental results on nine UCI real life data sets show that
MGR has better clustering results and stability. It can be applied
to the data sets which have balanced class distribution, such as
Votes and Breast Cancer, as well as those which have unbalanced
class distribution like the Zoo data set. Experimental results on
ten synthetic data sets show that MGR has better clustering effi-
ciency and scalability. It can be applied to small and large categor-
ical data sets. Another advantage of MGR is that it can be run
without specifying the number of clusters. This is a more natural
way especially when the user experiences difficulties in identifying
the number of clusters.

For future work, first, we are planning to combine the advanta-
ges of MGR and G-ANMI algorithms to improve the clustering
accuracy of MGR, at the same time keep the running time accept-
able. Second, we are trying to introduce a reprocess procedure like
that in the COOLCAT algorithm for further improvement of the
clustering accuracy of MGR.
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Appendix A

A.1. The Proof of Proposition 1

Suppose attribute ai e A defines a one-equivalence-class parti-
tion, which means all the objects in U have the same value of attri-
bute ai. Suppose the same value is b, for any attribute aj e A for
j – i, we have the lower and upper approximations of set
X(ai = b) with respect to aj

jXaj
ðai ¼ bÞj ¼ jXaj

ðai ¼ bÞj ¼ jUj:

Then the roughness of set X(ai = b) with respect to aj is obtained
as

Raj
ðXjai ¼ bÞ ¼ 1�

jXaj
ðai ¼ bkÞj

jXaj
ðai ¼ bkÞj

¼ 0:

Therefore, we get the mean roughness on attribute ai with
respect to aj, and minimum roughness of attribute ai

Roughaj
ðaiÞ ¼ 0; and MRðaiÞ ¼ 0:

From the definition of minimum roughness, it is easy to get
MR(a) P 0 for each a e A. Hence, attribute ai has a minimum of
Min-Roughness, i.e. MMR.

A.2. The Proof of Proposition 2

Suppose attribute ai e A defines a partition with one-element
equivalence class, which means each object in U has a different
value of attribute ai.

For any attribute aj e A for j – i, suppose there are Nj1 one-ele-
ment, Nj2 non one-element equivalence class in the partition U/aj,
we have the following roughness values:

(a) There are Nj1 equivalence classes in the partition U/ai whose
roughness equals to 0 with respect to attribute aj.

(b) There are Nj2 equivalence classes in the partition U/ai whose
roughness equals to 1 with respect to attribute aj.

(c) Thereby, we have the mean roughness of attribute ai with
respect to aj.

Roughaj
ðaiÞ ¼

Nj2

jUj

Conversely, the roughness of all equivalence classes in partition U/aj

with respect to attribute ai is equal to 0, hence we have

Roughai
ðajÞ ¼ 0:

Finally, we get the minimum roughness of attribute ai

MRðaiÞ ¼
minfNj2 jj ¼ 1; � � � ;m and j – ig

jUj P MRðajÞ ¼ 0:

The value MR(ai) = MR(aj) = 0 is achieved, when an attribute aj

exists with Nj2 ¼ 0, which means attribute aj also defines a partition
with one-element equivalence class. Hence, we can conclude that if
an attribute defines a partition with one-element equivalence class,
the attribute will have a maximum of Min-Roughness in A.
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