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ABSTRACT

This thesis has developed a methodology for the reliability analysis of structural stcel components
with pre-existing cracks under the action of randomn loading. This analysis includes a study of

fracture mechanics, fatigue prediction, random load modelling and structural reliability analysis.

Chapter 2 reviews the development of structural reliability theory and presents a refined scheme
for the second-order reliability calculation (SORM). Chapter 3 gives the theoretical background of
fracture mechanics and the associated design methods, in particular the R6 method. Chapter 4

develops a method by which the reliability analysis of a cracked component under non-cyclic loading
can be carried out. In Chapter 5 a new method for determining the probabibity distribution of
the stress range 1n a structure subjected to stochastic loading is developed, and this is followed in
Chapter 6 by a detailed deterministic fatigue analysis. Finally, in Chapter 7, the various techniques

are combined to construct a method for the reliability analysis of a structural component faiing by

fatigue and fracture under random loading.

New contributions include:

1) The formulation of failure functions for reliability analysis of components failing by fatigue and

fracture. For assessing the critical state of the structure, the CEGB R6 method has been used,

including the treatment of ductile tearing instability.

2) The modelling of basic variables for fatigue and fracture, especially the loading variable. It is

found that the stress range distribution derived from the rainflow method can be modelled as the
welighted sum of two Weibull distributions whose parameters are functions of the spectral properties

of the stress process. Using this model, the equivalent stress range can be calculated and has been

found to agree more closely with the simulated results than other empirical models.

3) Improvement to the methods for reliability evaluation. A more efficient scheme for SORM has

been implemented in a computer program.

4) Sensitivity studies. The results of sensitivity studies show that for typical steels (a) plastic collapse

failure mode is likely to be important in both deterministic and probabilistic safety assessment, (b)
for long term fatigue problems, the reliability is not sensitive to the non-fatigue variables such as

fracture toughness or yielding stress, so that LEFM approach may be acceptable as a failure criterion.

Finally, in structures where the fatigue damage is related to the fundamental natural frequency of
the system, uncertainties in either the natural frequency or the frequency of the dominant source of

loading can be of extreme importance in governing the reliability of a structure against fatigue.
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—  Chapter 1

1.1 General Remarks

This thesis has developed a methodology for the reliability analysis of structural components which
fail by fatigue and fracture. The author has chosen this work both for its theoretical interest and
because of its application potential. The theoretical interest derives from this relatively new approach
to safety assessment and the in-depth study of natural phenomena, whereas the application potential
results from the urgent need to improve safety standards in industry and to optimise the total cost

of design, construction and maintenance.

1.2 The Need For Reliability Analysis

Safety of the living space has always been the prime consideration for human beings. The advance
of knowledge, especially in civil engineering, in this century has increased the safety standards for
structures dramatically. However in recent years, a series of major disasters have occurred all over
the world, for example, the Chernobyl nuclear accident in USSR, the Piper Alpha offshore platform
disaster 1n the UK, the earthquakes in China and the USSR, the hurricanes in the UK and the

Caribbean, the floods in Bangladesh etc. The attainment of higher standards of structural safety is

obviously a challenge.

In the past, structures have been designed using a simple factor of safety approach to determine
the maximum load carrying capacity of a structure, or the length of time that a particular type

of load can be sustained. Traditionally, each variable, whether loading or resistance is selected in
a conservative way as judged by previous data, experience and, if necessary, human intuition. For

different structures (e.g. aircraft, railway, offshore) , the effective safety factors can be quite different.

There is a growing demand from industry to quantify the true safety of structures by statistical
calculations. For a good, reliable and durable structure, more initial investment 1s needed, resulting
in reduced maintenance costs. On the other hand, when the initial investment is low, maintenance

costs can be expected to rise. The correct balance between these approaches requires knowledge

beyond intuition.

In addition, existing structures present an economic maintenance problem. In some cases 1t 1s
difficult to know how much maintenance is needed to ensure the continuing safety of the structure.

This is particularly the case for offshore structures, where maintenance costs are typically very high.

The reliability approach for safety assessment has emerged as a rational method for treating the

safety. In this approach, structural fallures are events arising from an unfavourable chance combi-
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Chapter 1

nation of statistical variables which govern the behaviour of the structural system.

More specifically, reliability methods calculate the reliability or probability of failure of the system.
In practical situations, the systems are often too complex even for a deterministic approach to
incorporate all the factors contributing to the safety of the structure. Thus, the structural system
has to be 1dealised. The reliability calculated in such a way should not treated as an absolute value

but rather as a comparative measure of safety.

Research has been pursued by a number of people to minimise the difference between the idealised
reliability and actual reliability. Nevertheless, reliability models are often simplified when applied

to actual structures. Some of the characteristics, which the application models may have, have been

summarised by Duddeck|1.1}:
1. Reality 1s not portrayed but substituted.
2. Validity is restricted to certain regions of application.
3. Some variables and theories are ignored if the design is insensitive to them.
4. Loads are idealised and limit states are simplified to a few representative ones.

5. The mechanical model is simplified considerably: neglect of imperfections, 1nitial stress, sec-

ondary stress concentration, etc.

The above list does not apply to every model of application. In this work effort has been made to

maintain high accuracy of reliability calculation with efficiency.

In this thesis, the aim has been to develop reliability methods for application to fatigue and fracture
problems. The reliability methodology constructed 1s intended to aid decision making and to be
used as a tool for design. The emphasis is put on efficiency using the latest reliability calculation

techniques. Some of the necessary assumptions are discussed in the following text.

1.8 Problems To Be Dealt With When Carrying Out A Reliability Analysis For Fatigue
And Fracture Problems

This study has combined developments in fracture mechanics, fatigue analysis, random load and

reliability analysis for the purpose of undertaking an integrity analysis of a cracked structural com-

ponent under random loading.
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The methodology includes:

1) fracture mechanics to determine the critical state of a cracked component

2) fatigue crack growth using fracture mechanics to determine the crack size at any time
8) random loading analysis to provide the tnput cyclic loading or eztreme loading

4) statistical modelling of each of the input variables from past ezperience and data

5) effictent and accurate reliability analysis to determine the probability of failure condition being

reached.

When applying reliability to fatigue and fracture integrity assessment, one has to undertake at least

the following tasks:
a) to understand the concept of reliability theory for practical and theoretical problems.

b) to understand the physical phenomena of fatigue and fracture process and structural stress or

strain history in order to construct failure functions and conduct statistical analysis.

c) to identify basic statistical variables in the failure function and construct their probability distri-

bution functions.

d) to calculate the reliability using an appropriate computer implementation of the physical and

statistical models.

To be more specific, for the reliability analysis of fatigue and fracture for a structural steel component

under random loading, a number of problems has to be solved:

1) How can reliability theory be adapted for use with fatigue and fracture problems with efficiency

and accuracy?

2) If one is to apply the fracture mechanics approach to predict fatigue failure or to assess the

integrity of a cracked component, what kind of fracture theory and component fallure criteria

should be used in order to minimise the model uncertainty?

3) Which basic variables should be used in the fracture mechanics theory? How does one calculate

the reliability of cracked components with multiple failure modes, in particular, for the crack

instability failure mode? How can one evaluate the results?

4) How can the fatigue loading data input under random loading, e.g. the stress range distribu-

tion, be suitably modelled?

1.4
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5) How does a crack in a welded joint of an offshore structure grow under random loading? What
18 the efficient way to implement a computer program for the calculation of reliability of a

cracked component failing by fatigue?

6) How does one form the integrity analysis of a cracked component under random loading? How

can one interpret the results of a reliability analysis ?

The above problems apply both to the analysis of specific structures and to the reliability analysis

of fatigue and fracture problems in general.

1.4 Layout Of Thesis

The thesis i1s arranged in the order given in section 1.3, and attempts to solve the problems of
methodology one by one. Because of the wide range of subjects involved, reviews of relevant material
are made 1n each of the Chapters and contributions from this study can be seen separate chapters

and also in the way of incorporating all these into a comprehensive methodology.

Chapter 2 reviews the development of reliability theory and provides a refinement for the computa-
tional technique for second order reliability analysis. This Chapter explains the concept of reliability

in detail, especially first order and second order reliability methods, and thus forms a basis for the

later chapters.

Chapter 3 deals with the physical process of fracture, the theoretical explanations of the fracture
process and design practice. This Chapter evaluates different fracture theories and design approaches

and identifies the uncertainties associated with each of the basic variables. In this Chapter, a failure

function has been constructed using the CEGB R6 method and a proper computer implementation

1s described.

Chapter 4 applies reliability theory to the safety assessment of a cracked component under non-cychc

loading.

Chapter 5 turns to fatigue problems. The fatigue stress cycle distribution derived from the rainflow
counting method under random loading has been successfully modelled. The results are compared

with data obtained directly by simulation and very close agreement 1s found.

Chapter 6 deals with the deterministic aspects of fatigue analysis under random loading. The fatigue
growth process of cracks in offshore welded joints under random loading i1s explained in terms of the

equivalent stress range concept and is used to build fatigue crack growth models. A proper computer

1.5



Chapter 1

procedure is implemented for efficient reliability analysis.

In Chapter 7, all the important results from previous chapters are brought together to develop a
methodology for the assessment of a cracked component subjected to random fatigue loading, but
failing eventually by fracture or plastic collapse under some random overload. A practical example

of a welded joint in an offshore structure is examined in detail and the sensitivity of the reliability

to the various sources of uncertainty is examined.

Chapter 8 summarises the conclusions from this research and discusses the scope for further work

in this important field.

In all, this study has attempted to advance the reliability analysis of components failing by fatigue
and fracture and has constructed a methodology for engineering application based of previous work

and new research.
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hnear function multiplication parameter corresponding to X;

(by, b2, ...

covarlance matrix

Structural Reliability Theory

) bn)

covariance

event

[z fx(

z)dz

cumulative probability distribution function
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transformation matrix

second order reliability component

probability density function

failure function

unit matrix

main curvature of the design point

co-ordinates of the unit normal vector on the failure surface

probability

probability of failure

reliability

variance

velocity vector

velocity parameter

basic random variable

realisation of basic random variable X;

(Xl, XQ, *vavy Xn)

design point

standard normal random variable

(21, Z2, .y Zp)

realisation of standard normal variable Z;

sensitivity factor of z;

(al, X2y eaany O,'n)
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B reliability index

Brr reliability index from Hasofer and Lind algorithm
I75% mean value of X

Ly equivalent mean value of X after normalisation

p correlation coefficient

B standard deviation of X

Oy equivalent standard deviation of X after normalisation
é(z) standard normal probability density function
d(z) standard normal cumulative distribution function
(1 sample space

W failure surface

= contained 1in

Other symbols are defined in the text.
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2.1 Introduction

As early as 1947 Freudenthal[2.1] stated in a pioneering paper: the purpose of this paper 18 to analyse
the safety factor in engineering structures in order to establish a rational method of evaluating its

magnitude(2.1]. Since then reliability theory and applications have undergone a steady development

although even earlier works can be related to reliability theory.

Usually design can be undertaken deterministically by using mathematical models that approxi-
mately reflect reality together with appropriate safety factors[2.2]. Limit state design has been
introduced to further enhance the treatment of safety[2.3]. However, of far greater significance, is
the development of reliability theory, which has made it possible to assess the safety of structures

more rationally 1n terms of probability and thus to optimise their cost[2.4].

The purpose of this chapter 1s to review the latest development in structural reliability related to
the safety assessment of a single cracked structural element. Further improvement in computer
programming of reliability theory is developed. The theory and computer algorithm given in this
chapter will provide a basis for the following chapters which set up a methodology to calculate the

rehability of flawed components using probabilistic fracture mechanics.

Due to the scope of this study and the fast development of reliability methods, 1t 1s not appropriate
to give a detailed review of structural rehiability theory. References are made only to those techniques

which have been used 1n this thesis and to their possible extension in the near future.

2.2 Fundamental Probability Theory

In reliability problems, the calculation of the reliability R is complementary to the calculation of

the probability of failure.

R=1-F; (2.1)

Before proceeding to the reliability theory, some basic axioms of probability will be stated.

A quantity probability P(.) is associated with an event E, 1.e. P(E). An event is a subset of a

sample space or a set of sample points. Then:

1) For any event E

2) For the sample space {1
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3) If £y,F,,..., E, are mutually exclusive events then
P E) =) P(E) (2.4)
1=1 1=1

In addition there are two important axioms:

4) The probability of occurrence of event E; conditional upon the occurrence of event E, is
P(E, () E-2)
P(E\|FEy) = —————— .
( 1| 2) P(Eg) (2 5)

5) Event FE, is said to be statistically independent of E, if

P(FE,:|E;) = P(E,) (2.6)

Another important theorem 1s Bayes’ theorem . Let the sample space {1 be divided into n mutually

exclusive events F,, E>,...E, and A be an event in the sample space. Then

P(A|E;)P(E;)

Z?:J, P(A|EJ')P(EJ') (2'7)

P(E;|A) =

In reliability theory, an outcome or an event can be identified as a random variable. Then the
probability distribution function of this random variable can be obtained from experiments or ob-
servations. For instance a probability distribution function for fracture toughness has been obtained

by Gates [2.5] from experimental data. The probability distribution function Fx can be defined as:

Fx(z) = P(X £ z) (2.8)
The probability density function (pdf) is then

de(I)

fx(z) = - (2.9)

Also equation (2.7) and (2.9) can be expanded to include more than one random variable. If two

variables are correlated to each other, the covariance 1s :
Covl Xy, Xz = E|(Xy — pxa) (X2 = i) (2.10)

where E[.| and p are defined at the beginning of this chapter.
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And the correlation coefficient is
COU[X] y Xz]

PX1X3 = T ox.ox. (2.11)

Furthermore, the covariance matrix is defined by

Var|X;] Cov|X1,X2] ... Cov[X;, X,]

CovlX2,X1] Var[Xz] ... Cov[X3 X,]

C= (2.12)

Cov(X,,, X;] CovlX,,X2] ... Var(X,]

2.3 Reliability Methods

2.3.1 General remarks

In reliability methods, the reliability index or notional reliability may be used to define the safety level
of a structure or a component. The second moment method has greatly simplified the calculation of
such parameters. The papers by Cornell|2.6], Hasofer and Lind[2.7], and Ditlevsen [2.8] have laid.

down the theoretical base for the second moment reliability methods.

Reliability methods can be classified into different levels according to the scale of the calculation. For
instance in reference |2.4| there are three levels of reliability analysis. Level III obtains the probability

of failure by integration over the multidimensional probability space. Level Il obtains the relability
index at a selected pomt of the failure boundary by certain mathematical approximations. Level

I defines the safety of the structure by appropriate partial safety factors on the basic variables.
However due to the recent developments in reliability theory, these three levels of reliability analysis

are often not clearly distinguished. For instance Madsen|2.9| has given 4 levels of reliability analysis

depending on the extent of the analysis.

In this thesis, the original level II method 1is used, with modifications dictated by the requirements

of fatigue and fracture failure assessment.

In general structural reliability analysis consists of three basic steps|2.10:

(1) Choice of basic variables and formulation of failure function , g(X).

(2) Probability modelling of uncertainties in basic variables to give their probability distributions.
(3) Calculation of the reliability index or the probability of failure.

2.3.2 Failure function

Structural behaviour can be idealised into two performance states: fallure and non-failure. To define

the failure state deterministic failure criteria are used to build the failure boundaries in the multi-
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dimensional variable space. A set of variables X , termed as the basic variables, are chosen to be
the basis of the reliability analysis. They are chosen, on grounds of convenience, availability of data
and deterministic equations, to cover all the sources of uncertainty that are relevant to the situation

being analysed.

Failure functions are of the form of

M = g(X) (2.13)
When M >0, failure does not occur;
when M <0, failure does occur.
Therefore, equation (2.1) becomes
R=1-P(M <0) (2.14)

M 1s called the safety margin.

Given a set of basic variables X;,1 = 1,2,....n with probability distribution functions fx.(z;), the

Level IIreliability theory has been developed to calculate the reliability in Eqn. (2.14) both efficiently

and accurately.

The function ¢g(X) does not need to be a single explicit equation. It can express the outcome
of a lengthy series of calculations. However problems can arise from the type of function which

makes convergence of reliability index calculation difficult. In these cases, modification of the failure

function can sometimes make the convergence much easier. For instance, if
g(X) = g1(X1) — 92(X2) =0

does not converge, an equivalent failure function may be adopted

g1 (X1)
92(X2)

9(X) = —1=0

2.3.3 Probability modelling of basic variables

The modelling of basic variables is itself a big subject. To discuss all the aspects of basic variable
modelling is beyond the scope of this thesis. In addition there are cases where a process e.g. fatigue 1s
taken as being stochastic rather than a basic statistical variable of the fatigue failure functions|2.13].

A number of references are useful[2.4], [2.9], [2.10], [2.12]. The procedure for basic variable modelling

is given below:

A Uncertainty classification and recognition of basic variables.
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B Choice of distribution type.

C Determination of parameters for distributions

The detailed discussions are as follows:
A. Uncertainty classification and recognition of basic variables

There are normally three types of uncertainties:

1. physical uncertainty: Some physical phenomena are of random nature, for example, wave loading,
fatigue crack growth, the measurement of a crack size etc. These uncertainties can be modelled by

probability distributions or stochastic processes.

2. statistical uncertainty: The probability or stochastic models may have many parameters. As a
result of lack of information, these parameters may themselves be considered as random variables.

For example , the seastate spectrum parameters in wave analysis can be taken as random variables.

8. Model uncertainty: No function g(X) could model exactly all the influences of many random
variables, except in very simple cases. The models are built up by making some assumptions,
or by ignoring some variables due to lack of information, or for reasons of economy, or through
inability to incorporate it into the mathematical equation. For instance in elastic plastic fracture
mechanics different fracture criteria e.g. CTOD method and the J integral method (see chapter 3)
can give different results because each model has emphasis on different physical aspects. Therefore,

a model uncertainty should be introduced to take account of the variability from the model to

reality. Nevertheless a better model can be achieved with reduced model uncertainties by a better

understanding of the physical problem.

B. Choice of distribution type

After the selection of the random variables used to represent the uncertainties in loading and re-

sistance parameters, one has to find a suitable type of probability distribution for each random

variable.

There are three ways to determine the distribution types:
1. Choice by accuracy of fit with the available data.

2. Physical reasoning. This is very important because very often the available sample data are

insufficient to reflect the nature of the probability distribution.

3 Use of distributions types capable of generating a wide variety of forms. This 1s a natu-
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ral development from the first approach. Many available distribution types, e.g. the three

parameter Weibull distribution, the Pearson distribution , have such capacity.
C. Estimation of distribution parameters
The process of parameter estimation can be thought of having three steps:
1. mitial inspection of the data
2. application of a suitable estimation procedure

3. final model verification

The first step is to check the data for obvious inconsistencies and errors. For instance in a small

population of data, an outlier may be found and must be eliminated for overall assessment of the

distribution type.

The second step can be undertaken by many techniques, for instance:

* the method of moments

* the method of maximum likelihood

* various graphic procedures

* use of order statistics

Detailed procedures can be found in a range of references, for instance |2.10|, [2.13).

The third step is model verification . Goodness of fit may be judged a) by graphic methods b) by

tests from classical statistics, ¢c) by comparing one or more values such as the higher order moments

of the distribution and the data.

2 3.4 Calculation of the reliability index or the probability of failure

1) Cornell Reliability index(2.6]

From Eqn. [2.1] and Eqn. [2.14], the calculation of reliability becomes the calculation of P; in the
sample space with the failure boundary defined by setting failure function g(X) = 0.

‘Pf 2//// thXa ...... Xn (1:1,:1:2,.,,_,In)d:rldlig.“d:l:n (2'15)
M <0
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,,,,,, x. \z1,2Z2, ... :z:n) 1s the joint density function of variables X, X5,...X,,.

e = ——— (2.16)

where D{M| is the square root of the variance of M.

If the failure function is a hyperplane, it is possible to define a linear function

g(X) =bo+ » b:iXi=bo+BTX (2.17)

1=1

Then, the reliabihity index takes the value :

(2.18)

where E[X] is the vector of expected value and Cx is the matrix of covariance of X as defined 1n

Eqn(2.12).

If g(X) is a nonlinear function, g(X) can be approximated by a first order Taylor series expansion.

Therefore the failure surface is approximated as a hyperplane and equation (2.17) can be used as

before.

2) The Hasofer and Lind reliability index|2.7]

Ditlevsen|2.8] has demonstrated the lack of failure function invariance of the Cornell reliability index.

This problem was solved by a mapping technique proposed by Hasofer and Lind.

Hasofer and Lind proposed a nonhomogeneous linear mapping of the set of basic variables into a set

of normalised and uncorrelated variables Z;, which should have the following characteristics:

E(Z) =0 (2.19)

Cz = Cov|Z,Z"} =1 (2.20)

The transformation can be written as
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Z = A(X - E[X]) (2.21)

Using Eqn(2.20), A can be obtained using standard linear algebra.

The mean value point in the X space is mapped into the origin of the Z space. The failure surface

In the X space 1s mapped into the Z space. An example of the transformation can be seen in Fig.

2.1.

The perpendicular distance from the origin to the plane of g(Z) = 0 is defined as 8. And if the

hyperplane is in the standard normal space:

P; = () (2.22)

Conversely,

f=-2""(F) (2.23)

The reliability index defined as the shortest distance from the origin to the failure surface 1s then
g = minzewz(ZTZ)% (2.24)

equivalently

B = minxewx (X — EX])TCx (X - E[X]))? (2.25)

This reliability index is used to approximate the probability of failure from Equation (2.16).

The solution for X from equation (2.25) is denoted as X*, and this point is named the design point.
It has been proved that the two definitions for the reliability index § will coincide if this expansion
of Taylor series is made about the design point[2.4]. The Hasofer Lind reliability index generalises

the concept of reliability index.

3) N on-normal variables

The Hasofer Lind reliability approximation operates in standard normal space. Very often the

basic variables are not normally distributed. For independent non-normal variables, the following

transformation can be used:

O(z;) = Fx,(z;) 1=1,2,...,n (2.26a)
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(2.26b)

The inverse transformation is:

z; = FH(®(%)) 1=1,2,..n (2.27)

Therefore the failure function in the Z space is given in terms of the failure function in the X space

asS

9(X) = o(F5* (8(2)) (2.28)

For the simple transformation of the normal independent variable X into standard normal indepen-

dent variable Z:

Iy — ﬂx‘.
Zy = ——— (2.29)

O'X‘.

For non-normal variables, each may be replaced by an equivalent normal variable X; having the

following parameters:

ox! = é((b_;}fi?;()x:))) (2.30)
px; =z —ox; @7 (Fx, (=) (2.31)

With this new failure function in Z space, the Hasofer and Lind reliability index can thus be

calculated by means of a computer program. This algorithm is often called the R-F (Rackwitz-

Fiessler) algorithm [2.14].

When basic variable are not mutually independent, the Rosenblatt transformation may be used to

transform basic variables into standard normal variables|2.15].

4) Closing remarks

The reliability calculation method using hyperplane approximation about the design point is called
the First-Order Reliability Method (FORM).

The principle of FORM 1s simple: transformation of arbitrary random uncertainty vectors into
independent standard normal vectors and approximation of the boundaries of the relevant failure
domains by linear expansions at certain points on the failure boundary so that failure probability

can simply be estimated from the probabilities of Linear forms in normal variables.

2 3.5 Algorithm for FORM
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In the normalised uncorrelated Z space, Z can be expressed as

Z = fa (2.32)
where o 1s the normal unit vector thus:

Z af =1 (2.33)

t1=1
B=(2TZ)3 (Z € w) (2.34)

3g(2)
o d

Q= — g = __’?. (2.35)

where

dg(Z) z": d9(X) 8z;
az,; =1 3:1:1- 32','

If the basic variables are independent %EJ}=O when 1 # 7. Furthermore if the basic variable X; is

normal variable, %f‘- = Ox,.

If the basic variables are not independent, %f must be obtained from the Rosenblatt transformation,

or from a Jacoblan matrix co-ordinates rotation if the variables are normally distributed.

a 1s then the sensitivity measurement of the reliability index to variations in the value of 2; at the

pomnt of minimum distance Z~.

To determine the design point in Eqn(2.24), i.e. the minimum value of B, an iteration procedure

must be used from equations (2.32), (2.34) and (2.35).

The procedure is as follows:[2.9]

1) Initially, a trial set of values of Z, preferably in the neighbourhood of Z*, 1s selected.

2) « is calculated from Eqn (2.35) . o, can be calculated numerically using a small step increment

Nz; of each z; 1n turn.

3) A new point Z,., is found from:

Zoaw = (ZTa)a — _____.f_r’_LZ_)__a (2.36)
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In the basic variable space,

— E(X))TVg(X) — g(X)

X new = E[X] + CxVg(X) (X 79 (X)TC, Ve (X) (2.364)

4) repeat 2) and 3) to achieve convergence.

5) evaluate S from Eqn(2.34).

A computer program based on this algorithm is available at Imperial College, which has facilitated

this study greatly. However this algorithm does not automatically ensure convergence, so that care

should be taken in applications.

2.4 Further development

2.4.1 Second Order Reliabiity Method{SORM])

FORM has provided a fast way of calculating the reliability by approximating the failure surface as
a hyperplane at the design point - that is, the point which has the shortest distance from the origin
to the failure surface in the standard normal space. The Taylor expansion of the failure surface at
the design point is only to the first order. However, this approximation can be misleading when the

failure function has appreciable contributions from higher order terms.

Fiessler et al[2.16| proposed to approximate the g- function by a quadratic g-function instead of a
linear function in a normalised Z space. In general , by including the second order partial derivative
of g(Z) in the analysis, SORM can produce more accurate Py estimates than d(—p). However this

accuracy depends on the qualities of the quadratic approximation of g(Z).

For the special case of the failure function having its global minimum at Z = Z° only, Tvedt|2.17]
has derived a three- term approximation to the reliability, based on a study by Breitung(2.18}, as

Pr = A1 + Az + As (2.37)
where L
Ay = 8(-p) [ (1 - pk;)7*/2
Az = [B2(-F) - ¢(ﬂ)]{f[ (1= Bky) M2 - f[ (1— (B +1)k;)~ /%)
Az = (B +1)[B2(-F) - ¢5(ﬂ)]{ﬁ(1 — Bk;) 2 — Rc(f[ (1— (B +1)k;)"1/?)}
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In the above formula, 1 13 square root of -1, k; 13 the main curvature at the design point of the failure

surface. To obtain the main curvatures, formulae from differential geometry have to be used.

Calculation of main curvatures

First define the curvature as being positive when the curve rotates inwards; otherwise it is negative.

1.e. the unit normal vector:

Vg
N = ——
INZdl
Y99  8g 99
321 322 Ozn
= (22 N 2.38
(IlVgll IVl ||V9||) (2.38)
So
9dg
N; = -2z 2.39
Vgl (2:39)

The main curvatures are the eigenvalues of the Weingarten map [2.19] L, : S, — S, for a unit

normal vector oriented ( n-1)-surface in n space and the point p on surface S.

If the failure surface S is defined by ¢g(Z) = 0, the Weingarten mapping|2.19] is:

— —(V,N;, V,Ng, ..., V,N,.) (2.40)

AN AN, ONn-1
dz, dz, B 0z Vl
AN, IN3 ONn—3 V,
- 8z d z5 T Jdz;3
Ly(v)= - . . . : N B , (2.42)
N}  _ONa_ ON, -, Vn-1
dzp-1 Jdzn—) T Jdzp-)
= LeV
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In general terms :

o N;
Lij = — 3z, (2.43)
8%g ¢
IVgl? - 29 522
om0z, 19— 5 Z__: 9z azkaz,
= —""""""—"'_"‘—'——:—-——————-—-— 2.44
Nk (2.44)
The eigenvalues are the solution of
LeV-J)eV =0 (2.45)
If the basic variables X are independent normal variables
dg _ 9g(X)
az‘. — 3:1:,; OX. (246)
and
82 g% (X
g _ 9g%( )Uxiax,- (2.47)

0z;0z; B dz;0z;

If the basic variables are correlated a more complicated form of transformation is needed. This

involves the use of Rosenblatt transformation or orthogonal transformation if all the variables are

normally distributed.

Each term in equation (2.44) can be obtained from analytical differential solution or numerical finite
differentiation. In the reliability analysis of fatigue and fracture the value g(X) is usually calculated
implicitly by numerical procedure rather than explicitly in one or more equations. This calculation

process sometimes involves a large amount of computer time for each value of g(X) in the iterative

procedure, for instance, the cycle by cycle calculation of crack growth.

The standard scheme for finite differentiation for second order derivatives for n variables needs the

function g to be evaluated at 2n + 41("'2—_1)- + 1 points. In this study, in equation (2.44) , only first
order and second derivatives at one point of the surface are of interest. If we assume the g function
is second order continuous and smooth, by choosing a small mesh size, a further simplification can

be obtained by the mesh scheme shown in Fig 2.2 for two dimensional space.

The second order partial derivatives can be approximately assessed by the following equations:

3%  g(Xei2) — 9(Xe1)) — 9(Xe2) + 9(Xo)

0z10zo B dz,dzo (2‘48)

The point of differentiation 1s the point within the square of t12,¢1,0,t2 as shown in Fig. 2.2.
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For n-dimensional problems

P9 oXuy) = oK) ~9Ke) + o(K0)
31’;32:]' dz; dxj

(2.49)

The accuracy of this scheme is dependent on the mesh size dz;,dz,; and the local shape of the failure
surface. The number of g(X) values needed according to this scheme is only 2n + ﬂ—”:‘,_—ll + 1. Using

this numerical scheme computation time 1s reduced significantly.

One example 1s taken from data group 2 for crack fracture reliability in chapter 4. Probability
calculations have been conducted by SORM from the standard standard finite difference scheme
and the present scheme. From Table 2.1 very little difference can be found between results obtained

from the present scheme and the standard scheme.

From the above description, only if the design point has already been determined and the failure
surface is continuous up to second order, can the probability of failure be obtained from SORM
using equation (2.37). One further point that should be mentioned is that because the design point

is the shortest distance from the origin to the failure surface in the standard normal space, the main

curvatures are therefore < 1/4*.

2.4.2 Three parameter normal tail approximation

Based on the usual normalisation procedure as proposed by Rackwitz and Fiessler|2.14|, Chen and
Lind [2.20] proposed using a three parameter normal tail approximation. The R-F algorithm can

result in serious discrepancy when the failure surface is very skew.

Let .
N il >'9) (2.50)
ox

Z

and a function scaled from a standard normal CDF be

P (z) = no({Z=£2) (2.51)
Three conditions should be met:
Fx(z*) = n®(z") (2.52)

_ o=z )) (2.53)
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Note that the additional condition to the R-F algorithm 1s the equality of the second derivative in
the approximate normal distribution and the original independent variable distribution as in Eqn.

(2.54). By introducing the third condition, a third variable 5 should also be introduced.

This algorithm is only suitable for independent variables and original hyperplane surface in the X
space. Care should also be taken that fx(z) should be positive in the upper tail and negative in the

lower tail. Otherwise, the original R-F algorithm should be used without the additional condition

equation (2.54).

Solving these equations , gives:

#®(z*) _ Fx(a*)fy(s")

7 7 2.55
5" fx(z)] (2:35)
The solution for z* from equation (2.55) is found to be of the form
Zi =6 = R TaTe (2.56)
‘ ‘ [22—.1(3110)(;)2]1/2 |
‘where aj, a2, as, ....., a,, are determined from curve fitting and can be found from Chen and Lind|2.20].

After solving for Z* from equation (2.55), the result for lower tail approximation is (one can have

rotational symmetry results for the upper tail):

- Fx(x*)
ke (2.57)
, _ Fx(z%)¢(2") |
Ox = fx (z*)®(2*) - (2.58)

ﬂ’}{ = :[:* —_ Z*O'x (2'59)

For linear cases, )
B=Pur ] n (2.60)

1=1

and n can be calculated at the end of the routine.

Wirsching[z.Zl] used the Chen-Lind three parameter approximation principle but obtained the pa-

~ameters through least square calculation and thus claimed to have a more precise result.
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2.4.3. Sensitivity analysis

In Eqn(2.28) o at the design point can measure the sensitivity of the reliability index to uncertainties
in the value of Z; . From eqn(2.35), a; can be interpreted as the fraction of uncertainty caused by

the uncertainties described through z; at the design point.
The values of sensitivity factors can provide information for further analysis:

1) For large «;, z; can have large uncertainty and thus it is of interest for analysts to undertake

further investigation.

2) For small o;, the contribution of z; to the reliability index is small. Depending on the required

accuracy of the FORM index, the basic variables with small sensitivity factors can be omitted.

Madsen|2.22| found that for independent basic variables, with la;| < 0.14, the relative error in
the reliability index by replacing a basic variable by its mean value is less than 1%. Madsen then
proposed using an omission algorithm, i.e. at each step after the first iteration a variable Z; with
lai| < ¢ is replaced by the deterministic value 8na;/2. By, 1s updated every step, but o; can be
taken from the first iteration. However caution must be taken when the numerical iterations are

complicated procedures.

In conventional design codes, partial safety factors are presented to designers. Partial safety factors
are decided from the calibration and optimisation of the weighted probability of failure in relation

to the target probability of failure. This process involves the calculation of sensitivity factors.

In this study, the sensitivity factors are studied to judge relative importance of the various basic

variables in fatigue and fracture.

2 4 4. Multiple failure modes and system reliabilit

. This is currently a very active area of reliability research. This part is given a less emphasis In
this thesis, because the calculation of reliability is only for the structural element . However, in the
R6 method of fracture mechanics, two failure modes, [2.23] i.e. plastic collapse and fracture, are
combined into one failure function. The failure surface may have two or more places which are

locally the shortest distance to the origin. Either the multiple integration technique or the system

bounds theory should be used.

Iet the failure sets be Fy, Fp, F3,....F;, and

F=|]JF (2.61)

Ditlevsen has given general bounds for a structural system|2.24]:
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for the upper bound

for the lower bound

n n

P(F) < Z P(F;) - Y maz;c;P(F;[ ) Fy)

For independent normal variables Z;[2.25]:

From Eqn. (2.11),

Set.

If p >0,

If p <0,

n

Covlang;) = 3 (22 (24
k=1

32’k 32’k

P(4) = #(-f)8(- =L
P(B) = o(-$2)8(-2—L2)
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2.5 Concluding Remarks

This chapter has reviewed the methodology for general structural reliability analysis. The rational
assessment of structural performance 1n probabilistic terms 1s explained. A relhability calculation
algorithm 1s presented which has been used in the applications to fatigue and fracture reliability
discussed in later chapters. An extension has been made to the second order reliability method
and has been implemented in the available level 2 reliability computer program. A new scheme
with significant reduction of computer time to calculate the main curvatures of the failure surface

is proposed . For a full reliability study of fatigue and fracture, the following tasks remain:
1) Formulation of the failure function for failure by fatigue and fracture.
2) Determination of the probability distributions for the basic variables.

3) Approximation of the probability of failure in nonlinear failure surfaces.
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Table 2.1 Comparison of Probability of Failure from FORM, SORM by Standard

Finite Difference Scheme (SORM.SFD) and SORM by Approximate Finite Differenc
e Scheme (SORM.AFD)

--hr__*- A A S e e e S

S N i - e - N S e e AR sy Al
-—_-__—__—-_---——___-_H_—I—___---_—_-——_—_—-——_-—_——————_ A

mean point FORM SORM.SFD SORM.AFD
1 -16.75607 -16.75535 -16.75535
2 -15.02572 -15.02439 ~-15.02439
3 -13.35106 -13.34880 -13.34880
4 -11.73164 -11.72788 -11.72788
S -10.16423 -10.15793 -10.15793
6 -8.64078 -8.62994 -8.62994
7 -7.14531 -7.12610 -7.12610
8 -5.64926 -5.61483 -5.61483
9 -4.10813 -4.05340 -4.,05339
10 -2.61955 -2.58225 -2.58225
11 -1.53626 -1.51568 -1.51563
12 ~-.76435 -.75843 -.75843
13 -.30402 -.30518 -.30518
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Chapter 3

Deterministic Fracture Mechanics and Design

Nomenclature

a crack size

Aa crack extension

B specimen thickness

b Iigament thickness

C compliance

CTOD crack tip opening displacement

CVN Charpy V-notch test energy

E Young’s modulus

EPFM elastic plastic fracture mechanics

F external force

G energy release rate

f local stress

HRR field crack stress field by using J proposed by Hutchinson, Rice and Rosengren
K stress intensity factor

Kiq dynamic plane strain fracture toughness
LEFM linear elastic fracture mechanics

M failure margin

m multiplication factor of o, for stresses ahead of the crack tip
P potential energy

R zone size beyond which HRR unique stress and strain field can apply
ro radius of plastic zone

g load line displacement

U straln energy

u displacement

%, % energy required to produce crack growth
" overall width of the specimen

% crack geometry factor

5 CTOD

p strain

n f(geometry,hardening) for calculation of J
L Poisson’s ratio
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plastic zone size or plasticity correction factor in R6

g stress

Subscripts:

ee external energy

el elastic

1€ Internal energy

1N initiation

Dl plastic

Y yielding

1c critical in plane strain mode
c critical

Other parameters are defined in the text.

3.2
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3.1 Introduction

3.1.1 General remarks

When a structural component has a crack the strength of the component under tensile stresses will

decrease rapidly for which the main reason is that the crack leads to fracture by stress or strain

concentration.

Fracture is the separation of a solid body into two or more parts under stresses. The fracture process
initiates at the weakest point where there are large stress concentrations and low material resistance.
When stressed part of the body cannot sustain the locally concentrated stress, the solid body will
be deformed and some atomic bonds will be broken, so that a macro crack can be formed and grow.

In places where a crack or a notch already exists , the crack will be made even larger. The crack
may develop to total separation of the solid body or may stop growing at some point depending on

circumstances.

There are two kinds of fracture:

1) BRITTLE FRACTURE in which after initiation there is rapid crack propagation followed

by breakage of the component with little gross deformation.

2) DUCTILE FRACTURE in which after initiation there is an appreciable amount of plastic
deformation prior to or during crack propagation. In ductile fracture a crack may stop due

to the energy absorption through active plasticity without increase 1n applied load.

In brief, the distinction between brittle fracture and ductile fracture in the sense of mechanics is the

ability to sustain large strains, i.e. plastic deformation, during the fracture process.

It is important that the difference between micro aspects of brittle fracture and ductile fracture and
the macro aspects of brittle fracture and ductile fracture should be noted. In the micro sense, brittle
fracture is the separation of crystals with only negligible deformation, whereas ductile fracture 1S
the growth and coalescence of microvoids. In the macro sense, brittle fracture usually occurs by
the sudden acceleration of the crack growth up to complete separation prior to general plastic
deformation. Ductile fracture on the other hand is the stable tearing of the crack which may stop
at some point or finally tear in an unstable manner. The speed of ductile crack growth is much
slower than the brittle one from start to final fracture. Usually in ductile fracture some time may
elapse between initiation and final separation of the sohid body, while the brittle fracture occurs

suddenly. In some metals notably in steel in the transition region, a micro brittle separation after

macro general deformation occurs.

As far as fatigue 1s concerned, crack growth cannot be described as the break of the solid body
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bonds. It is now well accepted that the deformation of crystals under a cyclic loading occurs by
slip or shear displacement of one atom plane past to an adjacent plane. The initialisation point of
a fatigue crack is determined by the type of crystal and by the presence of a discontinuity in the
form of a microcrack, foreign particle, or a void. The fatigue process has yet to be described in
mathematical terms partly due to insufficient knowledge of the solid body or inability to interpret
fatigue data. However over the past twenty years, fracture mechanics, for instance the Paris’ law,

has been widely and relatively successfully applied to help to explain the fatigue process and to
predict fatigue hife.

3.1.2 Scope of the Chapter

In this thesis, fracture mechanics is taken as the best defined mathematical and physical tool to study
fatigue and as the reference for the final failure of a cracked structural component. Consequently
linear elastic fracture mechanics and ductile fracture mechanics should be understood to a sufficient

extent. This section is intended to clarify some basic concepts of Linear Elastic Fracture Mechanics

(LEFM) and Elastic Plastic Fracture Mechanics (EPFM).

Firstlyy, LEFM will be introduced and briefly reviewed in section 3.2.2. LEFM is relatively well
established theory and will lay a base for EPFM studies.

EPFM will be discussed in section 3.2.3. Due to the complexity of EPFM and vast literature in
EPFM, only relevant parts of the EPFM studies are presented and critically discussed. J is an

important parameter in this study acting both as the characterisation for the crack tip stress field

and the energy release rate. J should also be viewed with uncertainties for the HRR stress field and

the energy for crack growth.

Section 3.3 presents and evaluates one of the fracture design method , the R6 method in detail .
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3.2 Background of Fracture Mechanics

3.2.1 General remarks

Although this section will not cover any original work directly, it is important in a fracture or fatigue
study to understand the basis for physical models before one could treat the problem in terms of
probability. The development of fracture mechanics has given new directions as well as confusions.

The _author of this review attempts to present the related literature in a logical way. As a result,

the reliability analysis for design can be carried out with integrity.

3.2.2 Linear Elastic Fracture Mechanics

For brittle fracture, LEFM analyses the stress concentration in the region of the crack tip and
the correspondence between concentrated stress and fracture occurrence. So far , LEFM is a well

established theory within its limiting conditions|4.1].

3.2.2.1 Stress Intensity Factor

In LEFM, the stress intensity factor K 1s used to characterise the crack tip stress field. The critical

value of K corresponding to fracture behaviour 1s called the fracture toughness. More about fracture

toughness will be 1n section 3.2.2.3.

The principle of the stress intensity theory is that:

the distribution of the elastic stress field in the vicinity of the crack tip 1s
invariant in all structural components subjected to this type of deforma-

tion and that the magnitude of the elastic stress field can be described by

the single parameter, K, i.e. the stress intensity factor.

For Mode I opening crack fracture

K = constant X 0 X v/Ja= Yo+/a (3.1)

where o is the nominal applied stress perpendicular to the crack plane, Y is often called LEFM

shape factor.

The Y factor depends on the crack size, shape and orientation and the structural configuration

associated with structural components. Various methods of finding it are available:

1) Analytical methods for only relatively simple geometries(e.g. Westergaad stress function)
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2) Green’s function

3) Weight function techniques
4) Boundary collocation

5) Finite element method

6) Integral equations

7) Boundary method

8) Compounding method

9) Experimental methods

Each method has its own advantages and disadvantages. And each method can be suitable for some
speclal cases. For common crack geometries, there are many solutions in Handbooks|3.2]. It should
also be noted that there will be no ideal solution in practical situations due to the diversity caused

by the assumptions each method has to make. Therefore , the solutions have uncertainties to a

greater or lesser extent. Further discussion on those uncertainties can be found on section 3.2.2.6.

3.2.2.2 Energy consideration

With an understanding of the stress concentration at the crack tip and the singularity of the stress
field characterised by K, the question then arises about the critical energy value for the crack to

extend. Historically, the energy consideration came before the crack tip characterisation. But in

this thesis because emphasis has been put on the application of fracture mechanics, the K factor is

explained first.

The stress concentration will store a large amount of energy in the cracked body. Griffith(3.3]
confined his attention to a brittle material containing a single crack of length 2a. He then considered

the energy changes in the system associated with an incremental extension of the crack. He stated

that a crack will propagate when the decrease in elastic potential energy 1s at least equal to the energy

required to create the new crack surface. Therefore for perfect linear elastic material the following

condition must be met:

The total energy of the system must be reduced by an incremental extension of the notch.

Tn the crack growth process the sum of the energies will be U +W — Fe. The variation of U,W,U + W

can be shown schematically when in fixed displacement condition where external energy Fe = 0 in

Fig. 3.1.
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In the graph, W increases linearly because the energy to break an atomic bond is assumed to be

constant.

From Griffith’s theory , the crack will extend uncontrollably when

(W + U)
5, =0 (3.2)
1.€.
o _aw
3. = 3 = constan (3.3)
Set
10U |
G=———— _
B da |q (3-4)

G 1is then referred as the crack driving force. A critical value of G can be defined as Gt , at which

unstable crack propagation will occur. G,,;; can be a material property since 9% i3 a constant.

da
o?ra
G, = 7 for plane stress (3.5)
Gerit =
o ma " :
Gic = CE (1 — v*), for plane strain (3.6)

Also G has a direct relationship with the compliance of the structure which is defined as:

displacement u
— oy = 3.7
¢ force F (3:7)

l.e.

u=CF (3.8)

In fixed-grip condition , the strain energy release rate per unit thickness for crack extension 1s

~1/2u§F. In fixed-load condition , the strain energy release for crack extension 1s -1/2 Féu. So, for

2 small crack extension the energy per unit thickness:

Uy ized orip = -—-21-u5F ~ --;-cpap _ —-%F&u e Uyined toad (3.9)

For the fixed-grip condition,
G = -———————-———an‘g‘:‘ 2P -—%CF% (3.10)
= %-FQZ—S- (3.11)

In this way ( can be obtained from the interpretation of compliance measurement from the load

displacement record on the cracked specimen.
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Irwin [3.4] found that the relation between K and G 1s

K*=EG (3.12)
where
o E for plane stress
o (—I:E-T) for plane strain

From this equation, one can see that K- (see section 3.2.2.3) will be a material property since G,¢

1s a material property.

3.2.2.3 Fracture Toughness

In equation(3.1), o, a,Y affect the value of K, but do not change the stress field distribution. From

this feature, 1t i1s possible to correlate the laboratory test results with practical design by using the

fracture toughness concept:

unstable fracture occurs when the stress intensity reachsa critical value. For mode I de-

formation and for the plane strain condition, the critical stress intensity factor for fracture

instability 1s called K.

Various experimental methods are used to determine K¢, ..q. ASTM designation E 399-78.(3.5|.

Specimen Size Requirement A typical crack configuration is shown at Fig. 3.2. It 1s found that K.

and G, are strongly thickness dependent.

Ko values change very much when thickness is small and after certain value of thickness become
stable. The reason is that when B is small , the failure mode is plane stress condition; when B
becomes bigger , the failure mode approaches a plane strain condition. The plane strain fracture

toughness , K¢, is the minimum of the K¢ values. This minimum fracture toughness is a material

constant.

The condition for Kic to be a constant for a flat fracture is for the crack to have a plane strain

opening behaviour. Empirically (3.6]:

2
a, B,iz"- > 2.5 (K“’) (3.13)

Or in other words the plastic zone, to be discussed in section 3.2.2.4, is to be restricted within an

elastic stress field. That 1s: .
(3.14)

where p is the plastic zone size as e.g. defined 1n equation (3;21).

Charpy tests
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The K- tests recommended by the ASTM committee and other laboratory test methods 3.7] are
often not convenient for large complex structures. Some auziltary methods have to be used. One of

the most popular fracture toughness tests since the early stage of fracture mechanics application is

the Charpy test.

The Charpy V-notch(CVN) impact fracture toughness test specimen is widely used as a general
reference specimen as well as in actual toughness specification. It is simple, inexpensive and easy to

conduct. Similarly, the CVN slow-bend test is carried out but with a different loading rate.
There are some empirical correlations between the CVN test result and fracture toughness Kj..

Kic-CVN upper shelf correlation

Based on experimental results from a number of investigators, Barsom and Rolfe [3.8] suggested the

relationship of Ko and CV N as

(Kw)2 = (oVN - 3%) (3.15)

or

(K1c)2 _ §-8J—(CVN ~ v (3.15a)

Kic and CVN transition region correlation

The prediction of Kic by the CV N in the transition temperature region is more complicated than

in the upper shelf. The correspondence between Kic and CV N energy absorption

values at a particular test temperature and at the same strain rate for both the K;c and CV NV can

be approximated as[3.9]:

K2
—1C - A(CV N) (3.16)

The constant A incorporates the effects of specimen size and notch acuity. It can be decided by

correlating to the experimental data.

temperature shift

In order to incorporate K4 value for K- under different test conditions, temperature shift is needed
n
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to take account of the different loading rates{3.10]. The magnitude of the temperature shift between

dynamic(é ~ 10sec™! } and slow-bend ( é ~ 10~ %sec™? ) is:

Tynise = 215~ 1.50, for 36 ksi < o, < 140ksi (3.17)
Tonise =0 for oy, > 140 ksi (3.18)
or
Tonife = 215 —0.2180, for 248 MPa < oy, < 965MPa (3.17a)
Tenist =0 for o, > 140M Pa (3.18a)

The magnitude of the temperature shift between dynamic(é ~ 10sec™! ) and intermediate strain

rate ( € ~ 107 °sec™! ) was found to be 75% of the shift between dynamic and slow-bend curves.

A detailed procedure can be seen in Ref. [3.10]. As an engineering approach, the CVN test results

are effectively used but empiricism and uncertainty will inevitably prevail.

3.2.2.4 Plasticity effect

The stress concentration around the crack tip will reach the yielding criteria and will create a plastic
zone. LEFM is based on the elastic assumption which cannot be possible in any case. Because

fracture mechanics concentrates its study on the region around the crack tip, the effect of plasticity

on the fracture of the component will be profound.

The determination of a precise plastic zone size and shape in mode I needs a large amount of com-

putation either by finite element method or any other method and need the detail of the geometry.

However , there are two mai<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>