
University of London 
Imperial College of Science, Technology and Medicine 

"RELIABILITY ANALYSIS OF FATIGUE AND FRACTURE 
UNDER RANDOM LOADING 

by 

WANGWEN ZHAO 

A thesis submitted for the degreee of Doctor of Philosophy 
in the Faculty of Engineering of the University of London 

Structural Engineering Section 

Civil Engineering Department 

March 1989 



ADSTRACT 

This thesis has developed a methodology for the reliability analysis of structural steel components 

with pre-existing cracks under the action of random loading. This analysis includes a study of 
fracture mechanics, fatigue prediction, random load modelling and structural reliability analysis. 

Chapter 2 reviews the development of structural reliability theory and presents a refined scheme 
for the second-order reliability calculation (SORM). Chapter 3 gives the theoretical background of 
fracture mechanics and the associated design methods, in particular the RG method. Chapter 4 

develops a method by which the reliability analysis of a cracked component under non-cyclic loading 

can be carried out. In Chapter 5a new method for determining the probability distribution of 
the stress range in a structure subjected to stochastic loading is developed, and this is followed in 

Chapter 6 by a detailed deterministic fatigue analysis. Finally, in Chapter 7, the various techniques 

are combined to construct a method for the reliability analysis of a structural component failing by 

fatigue and fracture under random loading. 

New contributions include: 

1) The formulation of failure functions for reliability analysis of components failing by fatigue and 
fracture. For assessing the critical state of the structure, the CEGB R6 method has been used, 
including the treatment of ductile tearing instability. 

2) The modelling of basic variables for fatigue and fracture, especially the loading variable. It is 

found that the stress range distribution derived from the rainflow method can be modelled as the 

weighted sum of two Weibull distributions whose parameters are functions of the spectral properties 

of the stress process. Using this model, the equivalent stress range can be calculated and has been 

found to agree more closely with the simulated results than other empirical models. 

3) Improvement to the methods for reliability evaluation. A more efficient scheme for SORM has 

been implemented in a computer program. 

4) Sensitivity studies. The results of sensitivity studies show that for typical steels (a) plastic collapse 

failure mode is likely to be important in both deterministic and probabilistic safety assessment, (b) 

for long term fatigue problems, the reliability is not sensitive to the non-fatigue variables such as 

fracture tougliness or yielding stress, so that LEFM approach may be acceptable as a failure criterion. 

Finally, in structures where the fatigue damage is related to the fundamental natural frequency of 

the system, uncertainties in either the natural frequency or the frequency of the dominant source of 

loading can be of extreme iniportaiice in governing the reliability of a structure against fatigue. 
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Chapter 1 

1.1 General Remarks 

This thesis has developed a methodology for the reliability analysis of structural components which 
fail by fatigue and fracture. The author has chosen this work both for its theoretical interest and 
because of its application potential. The theoretical interest derives from this relatively new approach 
to safety assessment and the in-depth study of natural phenomena, whereas the application potential 
results from the urgent need to improve safety standards in industry and to optimise the total cost 
of design, construction and maintenance. 

1.2 The Need For Reliability Analysis 

Safety of the living space has always been the prime consideration for human beings. The advance 

of knowledge, especially in civil engineering, in this century has increased the safety standards for 

structures dramatically. However in recent years, a series of major disasters have occurred all over 
the world, for example, the Chernobyl nuclear accident in USSR, the Piper Alpha offshore platform 
disaster in the UK, the earthquakes in China and the USSR, the hurricanes in the UK and the 

Caribbean, the floods in Bangladesh etc. The attainment of higher standards of structural safety is 

obviously a challenge. 

In the past, structures have been designed using a simple factor of safety approach to determine 

the maximum load carrying capacity of a structure, or the length of time that a particular type 

of load can be sustained. T'raditionally, each variable, whether loading or resistance is selected in 

a conservative way as judged by previous data, experience and, if necessary, human intuition. For 

different structures (e. g. aircraft, railway, offshore) , the effective safety factors can be quite different. 

There is a growing demand from industry to quantify the true safety of structures by statistical 

calculations. For a good, reliable and durable structure, more initial investment is needed, resulting 

in reduced maintenance costs. On the other hand, when the initial investment is low, maintenance 

costs can be expected to rise. The correct balance between these approaches requires knowledge 

beyond intuition. 

In addition, existing structures present an economic maintenance problem. In some cases it is 

difficult to know how much maintenance is needed to ensure the continuing safety of the structure. 

This is particularly the case for offshore structures, where maintenance costs are typically very high. 

The reliability approach for safety assessment has emerged as a rational method for treating the 

safety. In this approach, structural failures are events arising from an unfavourable chance coinbi- 
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nation of statistical variables which govern the behaviour of the structural system. 

More specifically, reliability methods calculate the reliability or probability of failure of the system. 
In practical situations, the systems are often too complex even for a deterministic approach to 

incorporate all the factors contributing to the safety of the structure. Thus, the structural system 
has to be idealised. The reliability calculated in such a way should not treated as an absolute value 
but rather as a comparative measure of safety. 

Research has been pursued by a number of people to minimise the difference between the idealised 

reliability and actual reliability. Nevertheless, reliability models are often simplified when applied 
to actual structures. Some of the ch aracteris tics, which the application models may have, have been 

summarised by Duddeckil. 11: 

1. Reality is not portrayed but substituted. 

2. Validity is restricted to certain regions of application. 

Some variables and theories are ignored if the design is insensitive to them. 

4. Loads are idealised and limit states are simplified to a few representative ones. 

The mechanical model is simplified considerably: neglect of imperfections, initial stress, sec- 

ondary stress concentration, etc. 

The above list does not apply to every model of application. In this work effort has been made to 

maintain high accuracy of reliability calculation with efficiency. 

In this thesis, the aim has been to develop reliability methods for application to fatigue and fracture 

problems. The reliability methodology constructed is intended to aid decision making and to be 

used as a tool for design. The emphasis is put on efficiency using the latest reliability calculation 

techniques. Some of the necessary assumptions are discussed in the following text. 

1.3 Problems To Be Dealt With When Carrying Out A Reliability Analysis For Fatigue 

And Fracture Problems 

This study has combined developments in fracture mechanics, fatigue analysis, random load and 

reliability analysis for the purpose of undertaking an integrity analysis of a cracked structural coni- 

ponent under random loading. 
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The methodology includes: 

1) fracture mechanics to determine the critical state of a cracked component 

2) fatigue crack growth using fracture mechanics to determine the crack size at any time 

-9) random loading analysis to provide the input cyclic loading or extreme loading 

statistical modelling of each of the input variables from past experience and data 

5) efficient and accurate reliability analysis to determine the probability of failure condition being 

"ached. 

When applying reliability to fatigue and fracture integrity assessment, one has to undertake at least 

the foRowing tasks: 

a) to understand the concept of reliability theory for practical and theoretical problems. 

b) to understand the physical phenomena of fatigue and fracture process and structural stress or 

strain history in order to construct failure functions and conduct statistical analysis. 

c) to identify basic statistical variables in the failure function and construct their probability distri- 

bution functions. 

to calculate the reliability using an appropriate computer implementation of the physical and 

statistical models. 

To be more specific, for the reliability analysis of fatigue and fracture for a structural steel component 

under random loading, a number of problems has to be solved: 

1) How can reliability theory be adapted for use with fatigue and fracture problems with efficiency 

and accuracy? 

2) If one is to apply the fracture mechanics approach to predict fatigue failure or to assess the 

integrity of a cracked component, what kind of fracture theory and component failure criteria 

should be used in order to minimise the model uncertainty? 

3) Which basic variables should be used in the fracture mechanics theory? How does one calculate 

the reliability of cracked components with multiple failure modes, in particular, for the crack 

instability failure mode? How can one evaluate the results? 

How can the fatigue loading data input under random loading, e. g. the stress range distribu- 

tion, be suitably modelled? 
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How does a crack in a welded joint of an offshore structure grow under random loading? What 
is the efficient way to implement a computer program for the calculation of reliability of a 
cracked component failing by fatigue? 

6) How does one form the integrity analysis of a cracked component under random loading? How 

can one interpret the results of a reliability analysis ? 

The above problems apply both to the analysis of specific structures and to the reliability analysis 
of fatigue and fracture problems in general. 

1.4 Layout Of Thesis 

The thesis is arranged in the order given in section 1.3, and attempts to solve the problems of 
methodology one by one. Because of the wide range of subjects involved, reviews of relevant material 

are made in each of the Chapters and contributions from this study can be seen separate chapters 

and also in the way of incorporating all these into a comprehensive methodology. 

Chapter 2 reviews the development of reliability theory and provides a refinement for the computa- 
tional technique for second order reliability analysis. This Chapter explains the concept of reliability 
in detail, especially first order and second order reliability methods, and thus forms a basis for the 

later chapters. 

Chapter 3 deals with the physical process of fracture, the theoretical explanations of the fracture 

process and design practice. This Chapter evaluates different fracture theories and design approaches 

and identifies the uncertainties associated with each of the basic variables. In this Chapter, a failure 

function has been constructed using the CEGB R6 method and a proper computer implementation 

is described. 

Chapter 4 applies reliability theory to the safety assessment of a cracked component under non-cyclic 

loading. 

Chapter 5 turns to fatigue problems. The fatigue stress cycle distribution derived from the rainflow 

counting method under random loading has been successfully modelled. The results are compared 

with data obtained directly by simulation and very close agreement is found. 

Chapter 6 deals with the deterministic aspects of fatigue analysis under random loading. The fatigue 

growth process of cracks in offshore welded joints under random loading is explained in terms of the 

equivalent stress range concept and is used to build fatigue crack growth models. A proper computer 
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procedure is implemented for efficient reliability analysis. 

In Chapter 7, all the important results from previous chapters are brought together to develop a 

methodology for the assessment of a cracked component subjected to random fatigue loading, but 

failing eventually by fracture or plastic collapse under some random overload. A practical example 

of a welded joint in an offshore structure is examined in detail and the sensitivity of the reliability 

to the various sources of uncertainty is examined. 

Chapter 8 summarises the conclusions from this research and discusses the scope for further work 
in this important field. 

In all, this study has attempted to advance the reliability analysis of components failing by fatigue 

and fracture and has constructed a methodology for engineering application based of previous work 

and new research. 
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Chapter 2 

Structural Reliability Theory 

Nomenclature 

A 

Ai 

bi 

B 

c 

Cov[.,. ] 

E 

E[XJ 

Fx(x) 

fx (X) 
g (X) or g(7, ) 

Vg 

11vgil 

I 

ki 

Ni 

F(. ) 

Pf 

R 

Var[. ] 

v 

vi 

xi 
zi 

x 

X* or 
zi 

Z 

zi 

cei 

a 

transformation matrix 

second order reliability component 

linear function multiplication parameter corresponding to Xj 

(bl, b2; b") 

covariance matrix 

covariance 

event 
fx fx(x)dx 

cumulative probability distribution function 

probability density function 

failure function 
a-q ag a 

-M) 
49ZI 1 aZ21 -*" aZn 

n 
1( 

29 )2 VM azi 
unit matrix 

main curvature of the design point 

co-ordinates of the unit normal vector on the failure surface 

probability 

probability of failure 

reliability 

variance 

velocity vector 

velocity parameter 

basic random variable 

realisation of basic random variable Xj 

(XI) X2) 
.... ) 

Xn) 

design point 

standard normal random variable 
(ZI 

i 
Z2 

. ..... 
Zn) 

realisation of standard normal variable Zj 

sensitivity factor of zi 
(Ct 

Ij OC2) .... ) Oýn) 

2.1 



Chapter 2 

P reliability index 
PHL reliability index from Hasofer and Lind algorithm 

YX mean value of X 

I 
lux equivalent mean value of X after normalisation 

P correlation coefficient 

ax standard deviation of X 

or/ x equivalent standard deviation of X after normalisation 
W standard normal probability density function 

4ý (X) standard normal cumulative distribution function 

Q sample space 

w failure surface 

E contained in 

Other symbols are defined in the text. 
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2.1 Introduction 

As early as 1947 Freudenthal[2.11 stated in a pioneering paper: the purpose of this paper is to analyse 
the safety factor in engineering structures in order to establish a rational method of evaluating its 
magnitude[2.11. Since then reliability theory and applications have undergone a steady development 

although even earlier works can be related to reliability theory. 

Usually design can be undertaken deterministically by using mathematical models that approxi- 
mately reflect reality together with appropriate safety factors[2-21, Limit state design has been 
introduced to further enhance the treatment of safety[2.3). However, of far greater significance, is 

the development of reliability theory, which has made it possible to assess the safety of structures 
more rationally in terms of probability and thus to optimise their cost[2.4]. 

The purpose of this chapter is to review the latest development in structural reliability related to 

the safety assessment of a single cracked structural element. Further improvement in computer 

programming of reliability theory is developed. The theory and computer algorithm given in this 

chapter will provide a basis for the following chapters which set up a methodology to calculate the 

reliability of flawed components using probabilistic fracture mechanics. 

Due to the scope of this study and the fast development of reliability methods, it is not appropriate 

to give a detailed review of structural reliability theory. References are made only to those techniques 

which have been used in this thesis and to their possible extension in the near future. 

2.2 Fundamental Probability Theory 

In reliability problems, the calculation of the reliability R is complementary to the calculation of 

the probability of failure. 

R= I-Pf 

Before proceeding to the reliability theory, some basic axioms of probability will be stated. 

A quantity probability P(. ) is associated with an event E, i. e. P(E). An event is a subset of a 

sample space or a set of sample points. Then: 

1) For any event E 

< P(E) <1 (2.2) 

For the sample space 0 

P(fl) == 1 (2.3) 
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If El, E2, ..., E,, are mutually exclusive events then 

P(U Ei) =r P(Ei) (2.4) 

In addition there are two important axioms: 

4) The probability of occurrence of event E, conditional upon the occurrence of event E2 is 

P(EllE2) = 
P(EinE2) 

(2.5) 
P(E2) 

5) Event E, is said to be statistically independent of E2 if 

P (Ei 1 E2) =P (Ei) (2.6) 

Another important theorem is Bayes' theorem . Let the sample space 0 be divided into n mutually 

exclusive events El, E2,... E,, and A be an event in the sample space. Then 

P(Ei JA) = En 
P(A1Ei)P(Ei) 

j=, P(A1Ei)P(Ej) 
(2.7) 

In reliability theory, an outcome or an event can be identified as a random variable. Then the 

probability distribution function of this random variable can be obtained from experiments or ob- 

servations. For instance a probability distribution function for fracture toughness has been obtained 

by Gates [2.5] from experimental data. The probability distribution function Fx can be defined as: 

Fx (x) = P(X 
-< x) 

The probability density function (pdf) is then 

dFx (x) 
dx 

Also equation (2.7) and (2.9) can be expanded to include more than one random variable 

variables are correlated to each other, the covariance is : 

Cov [X� X2 ]= E[ (X, 
- px, ) (X2 

- ux. )1 

where E[-J and y are defined at the beginning of this chapter. 

(2.8) 

(2.9) 

If two 

(2.10) 
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And the correlation coefficient is 

40XIX2 - 

COV[xl) X21 

OIX, OIX2 

Furthermore, the covariance matrix is defined by 

( Var[Xll 

c 
Cov [X2, X, ] 

COV[Xn)Xil 

2.3 Reliability Methods 

2.3.1 General remarks 

Cov[XJ, x21 
... 

Cov[XI, X, ]) 

Var[X2] ... 
COV[X2, Xn] 

COV [X� X21 
... Var[X, 1 ) 

(2.11) 

(2.12) 

In reliability methods, the reliability index or notional reliability may be used to define the safety level 

of a structure or a component. The second moment method has greatly simplified the calculation of 
such parameters. The papers by Cornell[2.61, Hasofer and Lind[2.7], and Ditlevsen [2.81 have laict. 

down the theoretical base for the second moment reliability methods. 

Reliability methods can be classified into different levels according to the scale of the calculation. For 

instance in reference [2.4] there are three levels of reliability analysis. Level III obtains the probability 

of failure by integration over the multidimensional probability space. Level Il obtains the reliability 
index at a selected point of the failure boundary by certain mathematical approximations. Level 

I defines the safety of the structure by appropriate partial safety factors on the basic variables. 
However due to the recent developments in reliability theory, these three levels of reliability analysis 

are often not clearly distinguished. For instance Madsen[2.91 has given 4 levels of reliability analysis 

depending on the extent of the analysis. 

In this thesis, the original level II method is used, with modifications dictated by the requirements 

of fatigue and fracture failure assessment. 

In general structural reliability analysis consists of three basic steps[2.101: 

(1) Choice of basic variables and formulation of failure function , g(X). 

(2) Probability modelling of uncertainties in basic variables to give their probability distributions. 

Calculation of the reliability index or the probability of failure. 

2 3.2 Failure function 

Structural behaviour can be idealised into two performance states: failure and non-failure. To define 

the failure state deterministic failure criteria are used to build the failure boundaries in the multi- 
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dimensional variable space. A set of variables X, termed as the basic variables, are chosen to be 
the basis of the reliability analysis. They are chosen, on grounds of convenience, availability of data 

and deterministic equations, to cover all the sources of uncertainty that are relevant to the situation 
being analysed. 

Failure functions are of the form of 

m= g(x) (2.13) 

When M >0, failure does not occur; 

when M <0, failure does occur. 

Therefore, equation (2.1) becomes 

P(M < 0) (2.14) 

M is called the safety margin. 

Given a set of basic variables Xj, i = 1,2,.... n with probability distribution functions fx, (xi), the 
Level II reliability theory has been developed to calculate the reliability in Eqn. (2.14) both efficiently 

and accurately. 

The function g(X) does not need to be a single explicit equation. It can express the outcome 

of a lengthy series of calculations. However problems can arise from the type of function which 

makes convergence of reliability index calculation difficult. In these cases, modification of the failure 

function can sometimes make the convergence much easier. For instance, if 

9 (X) :: "z 91 (X1) 
- 92 (X2) : -- 

does not converge, an equivalent failure function may be adopted 

g(x) = 
1, (Xi) 

92 (X2 

2.3.3 Probability modelling of basiC variables 

The modelling of basic variables is itself a big subject. To discuss all the aspects of basic variable 

modelling is beyond the scope of this thesis. In addition there are cases where a process e. g. fatigue is 

taken as being stochastic rather than a basic statistical variable of the fatigue failure functions 12.13 

A number of references are useful[2.41, [2.91, [2.101, [2.12]. The procedure for basic variable niodelling 

is given below: 

A Uncertainty classification and recognition of basic variables. 
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B Choice of distribution type. 

C Determination of parameters for distributions 

The detailed discussions are as follows: 

A. Uncertainty classification and recognition of basic variables 

There are normally three types of uncertainties: 

1. physical uncertainty: Some physical phenomena are of random nature, for example, wave loading, 
fatigue crack growth, the measurement of a crack size etc. These uncertainties can be modelled by 

probability distributions or stochastic processes. 

2. statistical uncertainty: The probability or stochastic models may have many parameters. As a 

result of lack of information, these parameters may themselves be considered as random variables. 
r%__ 
For example , the seastate spectrum parameters in wave analysis can be taken as random variables. 

3. Model uncertainty: No function g(X) could model exactly all the influences of many random 

variables, except in very simple cases. The models are built up by making some assumptions, 

or by ignoring some variables due to lack of information, or for reasons of economy, or through 

inability to incorporate it into the mathematical equation. For instance in elastic plastic fracture 

mechanics different fracture criteria e. g. CTOD method and the J integral method (see chapter 3) 

can give different results because each model has emphasis on different physical aspects. Therefore, 

a model uncertainty should be introduced to take account of the variability from the model to 

reality. Nevertheless a better model can be achieved with reduced model uncertainties by a better 

understanding of the physical problem. 

B. Choice of distribution type 

After the selection of the random variables used to represent the uncertainties in loading and re- 

sistance parameters, one has to find a suitable type of probability distribution for each random 

variable. 

There are three ways to determine the distribution types: 

1. Choice by accuracy of fit with the available data. 

2. Physical reasoning. This is very important because very often the available sample data are 

insufficient to reflect the nature of the probability distribution. 

3. Use of distributions types capable of generating a wide variety of forms. This is a natu- 

2.7 



Chapter 2 

ral development from the first approach. Many available distribution types, e. g. the three 

parameter Weibull distribution, the Pearson distribution 
, have such capacity. 

Estimation of distribution parameters 

The process of parameter estimation can be thought of having three steps: 

1. initial inspection of the data 

application of a suitable estimation procedure 

final model verification 

The first step is to check the data for obvious inconsistencies and errors. For instance in a small 

population of data, an outlier may be found and must be eliminated for overall assessment of the 
distribution type. 

The second step can be undertaken by many techniques, for instance: 

* the method of moments 

* the method of maximum likelihood 

* various graphic procedures 

* use of order statistics 

Detailed procedures can be found in a range of references, for instance 12.10], 12.13). 

The third step is model verification . Goodness of fit may be judged a) by graphic methods b) by 

tests from classical statistics, c) by comparing one or more values such as the higher order moments 

of the distribution and the data. 

2.3.4 Calculation of the reliability index or the probability of failUre 

1) Cornell Reliability index[2.6] 

Rom Eqn. [2.11 and Eqn. [2.141, the calculation of reliability becomes the calculation of Pf in the 

sample space with the failure boundary defined by setting failure function g(X) = 0. 

Pf =fff... 
fxl, 

x2 
...... 

Xn (-'I 
1 -1: 2 1 .... i -In) dx I d'2... dx,, (2.15) 
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where fx,, X, ...... X,, (-'1: 11 X2 i .... ) Xn) is the joint density function of variables X1, X2,... X,. 

Cornell defined a reliability index (or safety index) P, as 

EIM] 
te c D[M] 

where D[M] is the square root of the variance of M. 

If the failure function is a hyperplane, it is possible to define a linear function 

g(X) = bo 

Then, the reliability index takes the value : 

n 
EbiXi =bo+B 

TX 

i=l 

Pc = bo + 
]3TE[XI 

BTCxB 

(2.16) 

(2.17) 

(2.18) 

where E[XI is the vector of expected value and CX is the matrix of covariance of X as defined in 

Mi- rdqn 

If g(X) is a nonlinear function, g(X) can be approximated by a first order Taylor series expansion. 

Therefore the failure surface is approximated as a hyperplane and equation (2.17) can be used as 

before. 

2) The Hasofer and Lind reliabihty index[2-7] 

Ditlevsen[2.81 has demonstrated the lack of failure function invariance of the Cornell reliability index. 

This problem was solved by a mapping technique proposed by Hasofer and Lind. 

Hasofer and Lind proposed a nonhomogeneous linear mapping of the set of basic variables into a set 

of normalised and uncorrelated variables Zi, which should have the following characteristics: 

E(Z) = 

CZ = COVIZ, ZT] == 1 (2.20) 

The transformation can be written as 

2.9 



Chapter 2 

Z= A(X - E[X]) (2.21) 

Using Eqn(2.20), A can be obtained using standard linear algebra. 

The mean value point in the X space is mapped into the origin of the Z space. The failure surface 
in the X space is mapped into the Z space. An example of the transformation can be seen in Fig. 
2.1. 

The perpendicular distance from the origin to the plane of g(Z) =0 is defined as P. And if the 
hyperplane is in the standard normal space: 

Pf = 4ý (- 0) (2.22) 

Conversely, 

16 = -ýý-'(Pf) (2.23) 

The reliability index defined as the shortest distance from the origin to the failure surface is then 

(ZTZ) rninzE,, z 

equivalently 

ß= rninXC-�x «X - E[XI)TC X 
'(X-EIXI»i 

This reliability index is used to approximate the probability of failure from Equation (2.16). 

(2.24) 

(2.25) 

The solution for X from equation (2.25) is denoted as X*, and this point is named the design point. 

It has been proved that the two definitions for the reliability index P will coincide if this expansion 

of Taylor series is made about the design point[2.41. The Hasofer Lind reliability index generalises 

the concept of reliability index. 

Non-normal variables 

The Hasofer Lind reliability approximation operates in standard normal space. Very often the 

basic variables are not normally distributed. For independent non-normal variables, the following 

transformation can be used: 

(D (zi) = Fxi (xi) %=1,2 (2.26a) 
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fxi (xi) 
(2.26b) 

OlXj 

The inverse transformation is: 

xi = Fx, ' (ýD (zi)) i=1,2, n (2.27) 

Therefore the failure function in the Z space is given in terms of the failure function in the X space 
as 

g(X) (2.28) 

For the simple transformation of the normal independent variable X into standard normal indepen- 
dent variable Z: 

Zi = 
Xi - Axi 

O'Xi 
(2.29) 

For non-normal variables, each may be replaced by an equivalent normal variable Xj' having the 
following parameters: 

ax! (2.30) 
1 fxi (Xi*) 

J. IX$ = Xi - ax, (D-'(Fx (xý)) (2.31) 
iiiI 

With this new failure function in Z space, the Hasofer and Lind reliability index can thus be 

calculated by means of a computer program. This algorithm is often called the R-F (Rackwitz- 

Fiessler) algorithm [2.141. 

When basic variable are not mutually independent, the Rosenblatt transformation may be used to 

transform basic variables into standard normal variables [2.15). 

4) Closing remarks 

The reliability calculation method using hyperplane approximation about the design Point is called 

the First-Order Reliability Method (FORM). 

The principle of FORM is simple: transformation of arbitrary random uncertainty vectors into 

independent standard normal vectors and approximation of the boundaries of the relevant failure 

domains by linear expaiisions at certain points on the failure boundary so that failure probability 

can simply be estimated from the probabilities of linear forms in normal variables. 

. 
Z. 3.5 Alg-oritbm for FORM 
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In the normahsed uncorrelated Z space, Z can be expressed as 

(2.32) 

where a is the normal unit vector thus: 

CX2 (2.33) 

ß= (ZTZ)-21 (Z C- w) (2.34) 

where 

p9f Z) 

Cti - axi - aß (2.35) 
n-Z azi i= 

2 E 

n, 
. ag(x) axi 

azi =l ax.. azi 

If the basic variables are independent =0 when i : 76 j. Furthermore if the basic variable Xi is 
Zi 

normal variable, OXi. 

If the basic variables are not independent, a 11 must be obtained from the Rosenblatt transformation azi 
or from a Jacobian matrix co-ordinates rotation if the variables are normally distributed. 

a is then the sensitivity measurement of the reliability index to variations in the value of zi at the 

point of minimum distance Z*. 

To determine the design point in Eqn(2.24), i. e. the minimum value of P, an iteration procedure 

must be used from equations (2.32), (2.34) and (2.35). 

The procedure is as follows: [2.91 

1) Initially, a trial set of values of Z, preferably in the neighbourhood. of Z*, is selected. 

a is calculated from Eqn. (2.35) 
. cii can be calculated numerically using a small step increment 

Zýzi of each zi in turn. 

A new point Z,,,,,, is found from: 

Znew : --: 
(Z'a)a g(Z) 

, 
FE n9g (75) 

azi 

(2.36) 
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In the basic variable space, 

X. 
�, = E[X] + CxVg(X) 

(X - E(X»TVg(X) - g(X) (2.36a) 
Vg(X), Tczvg(X) 

repeat 2) and 3) to achieve convergence. 

5) evaluate 8 from Eqn(2.34). 

A computer program based on this algorithm is available at Imperial College, which has facilitated 

this study greatly. However this algorithm does not automatically ensure convergence, so that care 

should be taken in applications. 

2.4 Further development 

2.4.1 Second Order Reliability Method(SORMI 

FORM has provided a fast way of calculating the reliability by approximating the failure surface as 

a hyperplane at the design point - that is, the point which has the shortest distance from the origin 

to the failure surface in the standard normal space. The Taylor expansion of the failure surface at 

the design point is only to the first order. However, this approximation can be misleading when the 

failure function has appreciable contributions from higher order terms. 

Fiessler et al[2.16] proposed to approximate the g- function by a quadratic g-function instead of a 

linear function in a normalized Z space. In general , 
by including the second order partial derivative 

of g(Z) in the analysis, SORM can produce more accurate Pf estimates than However this 

accuracy depends on the qualities of the quadratic approximation of g(Z). 

For the special case of the failure function having its global minimum at Z= Z* only, Tvedt[2.17] 

has derived a three- term approximation to the reliability, based on a study by Breitung[2.181, as 

Pf =A, + A2 + A3 

where n-1 

Al = (P (_p) 11 (1 _ pk j )-1/2 

j=l 

n-I n-I 

A2= 11 (1 - fiky) - 112 + 1)kj) -112) 

n-I "-I 

A3 H (I - flki)- 112 
- Re(rl (1 - (fl + t*)kj) -1/2)1 

j=l j=l 

(2.37) 
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In the above formula, i is square root of -1,1c, is the main curvature at the design point of the failure 

surface. To obtain the main curvatures, formulae from differential geometry have to be used. 

Calculation of ma-in curvatures 

First define the curvature as being positive when the curve rotates inwards; otherwise it is negative. 

i. e. the unit normal vector: 

N 
Vg 

llvgll 

ag 89 ag ox, OZ2 Oz,, 
(2.38) llvgll, llvgll llvgll) 

So 
ag 

Ni - 
az' (2.39) 

llvgll 

The main curvatures are the eigenvalues of the Weingarten map 12.19] Lp : Sp Sp for a unit 

normal vector oriented ( n-1)-surface in n space and the point p on surface S. 

If the failure surface S is defined by g(Z) = 0, the Weingarten mapping[2.191 is: 

Lp(v) = -V, N 

= -(V, NI, VN2 (2.40) 

For a (n-1) surface in n space, there exist (n-1) independent vectors along the surface. Therefore 

V, 

V2 
v 

V, 

(2.41) 

If zi are independent variables, set Vj is the velocity vector along the zi axis direction, we can obtain: 

ami 49N2 v 
£7x , 09z, i 

c9 N1 0N2 
... 

V2 

Lp (v) az2 az2 a-, 2 

( 

ON, 0N2 aNn-1 Vn-1 
0 Z, -1 13Zn- 1 ... az, 1 1 

=L wV 

(2.42) 
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In general terms : 

Lji 
Mi 

(2.43) 
19zj 

a2 92 ag n ag a29 

azia-liv9ll -D Zi azi k=l az, az 
- 
kaZj (2.44) llvgll, 

The eigenvalues are the solution of 

L*V-AIoV=o (2.45) 

If the basic variables X are independent normal variables 

(9 g ag(X) 

axi O'xi (2.46) 

and 
a29 ag2(X) 

azi azi a, xiaxi 
axi Olxj (2.47) 

If the basic variables are correlated a more complicated form of transformation is needed. This 
involves the use of Rosenblatt transformation or orthogonal transformation if all the variables are 

normally distributed. 

Each term in equation (2.44) can be obtained from analytical differential solution or numerical finite 

differentiation. In the reliability analysis of fatigue and fracture the value g(X) is usually calculated 
implicitly by numerical procedure rather than explicitly in one or more equations. This calculation 

process sometimes involves a large amount of computer time for each value of g(X) in the iterative 

procedure, for instance, the cycle by cycle calculation of crack growth. 

The standard scheme for finite differentiation for second order derivatives for n variables needs the 
function g to be evaluated at 2n +4 n(n-1) +1 points. In this study, in equation (2.44) 

, only first 2 

order and second derivatives at one point of the surface are of interest. If we assume the g function 

is second order continuous and smooth, by choosing a small mesh size, a further simplification can 

be obtained by the mesh scheme shown in Fig 2.2 for two dimensional space. 

The second order partial derivatives can be approximately assessed by the following equations: 

a2 9 9(Xtl2) - 9(Xti)) - 9(Xt2) + 9(XO) 

(9X1 (9X2 dxl dX2 
(2.48) 

The point of differentiation is the point within the square of M, tl, 0, t2 as shown in Fig. 2.2. 
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For ii-dimensional problems 

a2 9 g(xtij) - g(xti) - g(xtj) + g(xo) (2.49) 
x -ia -xi dzi dxi 

The accuracy of this scheme is dependent on the mesh size dxi, dxj and the local shape of the failure 

surface. The number of g(X) values needed according to this scheme is only 2n + I(n- 1) + 1. Using 2 

this numerical scheme computation time is reduced significantly. 

One example is taken from data group 2 for crack fracture reliability in chapter 4. Probability 

calculations have been conducted by SORM from the standard standard finite difference scheme 

and the present scheme. From Table 2.1 very little difference can be found between results obtained 
from the present scheme and the standard scheme. 

From the above description, only if the design point has already been determined and the failure 

surface is continuous up to second order, can the probability of failure be obtained from SORM 

using equation (2.37). One further point that should be mentioned is that because the design point 

is the shortest distance from the origin to the failure surface in the standard normal space, the main 

curvatures are therefore < 1/P 

2.4.2 Three parameter normal tail ap]proximation 

Based on the usual normalisation procedure as proposed by Rackwitz and Fiessler[2.141, Chen and 

Lind [2.201 proposed using a three parameter normal tail approximation. The R-F algorithm can 

result in serious discrepancy when the failure surface is very skew. 

Let 

Z* =W- 
ßx) (2.50) 

crx 

and a function scaled from a standard normal CDF be 

Fx(x) = t7(D( 
a, 

Three conditions should be met: 
Fx(x*) ý t74ý(z*) (2.52) 

(9Fx(x*) i9(i7lý(z*)) (2.53) 
ax (9 x 

a2FX(x*) a, (? 7 (D (z 
(2.54) 

(9X2 (9X2 
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Note that the additional condition to the R-F algorithm is the equality of the second derivative in 

the approximate normal distribution and the original independent variable distribution as in Eqn. 
(2-54). By introducing the third condition, a third variable r7 should also be introduced. 

This algorithm is only suitable for independent variables and original hyperplane surface in the X 

space. Care should also be taken that fx (x) should be positive in the upper tail and negative in the 
lower tail. Otherwise, the original R-F algorithm should be used without the additional condition 
equation (2.54). 

Solving these equations , gives: 

z* gb (z-) 
=_ 

Fx (x*) f 'x (x*) 
(2.55) [fX(X*)]2 

The solution for z* from equation (2.55) is found to be of the form 

Zi = 6ifl = rn 
ajoxi (2.56) 

lr, 
i=, 

(aiax, )2]1/2 

where a,, a2, a3, ..... , a,, are determined from curve fitting and can be found from Chen and Lind[2.201. 

After solving for Z* from equation (2.55), the result for lower tail approximation is (one can have 

rotational symmetry results for the upper tail): 

For linear cases, 

Fx (x*) 
(2.57) 

e(Z*) 

u, _ 
Fx(x*)0(z*) (2.58) 
fx (x. ) 4D (Z*) 

91za,, (2.59) 
x 

n 
PHL f7i (2.650) 

and q can be calculated at the end of the routine. 

Wirsching[2.211 used the Chen-Lind three parameter approximation principle but obtained the pa- 

raineters through least square calculation and thus claimed to have a more precise result. 
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2.4-3. Sensitivity analysis 

In Eqn(2.28) ot at the design point can measure the sensitivity of the reliability index to uncertainties 
in the value of Zi . From eqn(2-35)) ai can be interpreted as the fraction of uncertainty caused by 

the uncertainties described through zi at the design point. 

The values of sensitivity factors can provide information for further analysis: 

For large cti, zi can have large uncertainty and thus it is of interest for analysts to undertake 
further investigation. 

2) For small aj, the contribution of zi to the reliability index is small. Depending on the required 

accuracy of the FORM index, the basic variables with small sensitivity factors can be omitted. 

Madsen[2.22] found that for independent basic variables, with Icei 1 :50.14, the relative error in 

the reliability index by replacing a basic variable by its mean value is less than 1%. Madsen then 

proposed using an omission algorithm, i. e. at each step after the first iteration a variable Zi with 
juil < at is replaced by the deterministic value #,,, cxi/2. Om is updated every step, but aj can be 

taken from the first iteration. However caution must be taken when the numerical iterations are 

complicated procedures. 

In conventional design codes, partial safety factors are presented to designers. Partial safety factors 

are decided from the calibration and optimisation of the weighted probability of failure in relation 

to the target probability of failure. This process involves the calculation of sensitivity factors. 

In this study, the sensitivity factors are studied to judge relative importance of the various basic 

variables in fatigue and fracture. 

2.4.4. Multiple failure modes and system reliability 

This is currently a very active area of reliability research. This part is given a less emphasis In 

this thesk, because the calculation of reliability is only for the structural element . However, in the 

R6 method of fracture mechanics, two failure modes, [2.231 i. e. plastic collapse and fracture, are 

combined into one failure function. The failure surface may have two or more places which are 

locally the shortest distance to the origin. Either the multiple integration technique or the system 

bounds theory should be used. 

Let the failure sets be F1, F2, F3,.... F, and 
n 

F= UFi 
i=I 

Ditlevsen has given general bounds for a structural systeni[2.24]: 
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for the upper bound 

P(F) P(Fj) - 
1: maxj<j P(F inFj) (2.62) 

for the lower bound 

P(F) ý! P(Fj) +E max[{P(Fi) -E P(FinFj)}; oj (2.63) 
i=2 j=1 

For independent normal variables Zi[2.25]: 

na 9g. 9' ýL! ij COV (gi, gy) = 1: ( -: ", )( (2.64) 
k=1 

aZk azA, 

Ic ag, 
agi aZk 

)2 (2.65) 

From Eqn. (2.11), 

Pjj - 
COV(gi, gj) n 

(2.66) E 
CfikCfjk 

agi 019k 
k=1 

if 

P(FinFj) (-, 6i, - #j; Pij) (2.67) 

Set 

P(A) = 
(2.68) 

ýVT1 -p2 

P(B) = -) 
(2.69) 

p2 

If P>0, 

rnax[P(A), P(B)] :! ý P(F P(A) + P(B) (2.70) 
inFj) 

If P<0, 
0< P(F rnin[P(A), P(B)j (2.71) 

inFj) 
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2.5 Concluding Remarks 

This chapter has reviewed the methodology for general structural reliability analysis. The rational 

assessment of structural performance in probabilistic terms is explained. A reliability calculation 

algorithm is presented which has been used in the applications to fatigue and fracture reliability 
discussed in later chapters. An extension has been made to the second order reliability method 

and has been implemented in the available level 2 reliability computer program. A new scheme 

with significant reduction of computer time to calculate the main curvatures of the failure surface 
is proposed . For a full reliability study of fatigue and fracture, the following tasks remain: 

1) Formulation of the failure function for failure by fatigue and fracture. 

2) Determination of the probability distributions for the basic variables. 

3) Approximation of the probability of failure in nonlinear failure surfaces. 
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Table 2.1 Comparison of Probability of Failure from FORM, SORM by Standard 
Finite Difference Scheme (SORM. SFD) and SORM by Approximate Finite Differenc 
e Scheme (SORM. AFD) 
--------------------------------------------------------------------- 

LOGIO(Pf) For data group 2 of series 1 in Chapter 4 
--------------------------------------------------------------------- 
mean point FORM SORM. SFD SORM. AFD 
-------- 

1 
------------------- 

-16.75607 
-------------------- 

-16.75535 
---------------------- 

-16.75535 
2 -15.02572 -15.02439 -15.02439 3 -13.35106 -13.34880 -13.34880 4 -11.73164 -11.72788 -11.72788 
5 -10.16423 -10.15793 -10.15793 
6 -8.64078 -8.62994 -8.62994 
7 -7.14531 -7.12610 -7.12610 
8 -5.64926 -5.61483 -5.61483 
9 -4.10813 -4.05340 -4.05339 
10 -2.61955 -2.58225 -2.58225 
11 -1.53626 -1.51568 -1.51563 
12 -. 76435 -. 75843 -. 75843 
13 -. 30402 -. 30518 -. 30518 
14 -. 08803 -. 08430 -. 08811 



-1 C- (" 

62-G 

2r, .0 

17.6 

0.0 

a)I 

FAILURE SURFACE 

iI IN ESUi\ 
,L SPACE F' --IFAC[. IIN THIE STAINDARD 14 rý L 

-f 

115fc, r Illm on ,, ow F, 1, ",, 11 1.. .--, c-, tI'. I I., ! (ý s )m 

U 



Z2 
t 

t12 

ýl 
-* zi 

Any circI6 standard Finite Difference Scheme 
Filled circle points needed for prop'ors-ed scheme 

Fig. 2.2 Two dimensional finite difference scheme 



Chapter 3 

Chapter 3 

Deterministic Fracture Mechanics and Design 

Nomenclature 

a crack size 
Zýa crack extension 
B specimen thickness 
b ligament thickness 
C compliance 
CTOD crack tip opening displacement 

CVN Charpy V-notch test energy 
E Young's modulus 
EPFM elastic plastic fracture mechanics 
F external force 

C energy release rate 
f local stress 
HRR field crack stress field by using J proposed by Hutchinson, Rice and Rosengren 

K stress intensity factor 
Kid dynamic plane strain fracture toughness 

LEFM linear elastic fracture mechanics 
M failure margin 

M multiplication factor of ay for stresses ahead of the crack tip 

P potential energy 
R zone size beyond which HRR unique stress and strain field can apply 

rp radius of plastic zone 

q load line displacement 

U strain energy 

U displacement 

W energy required to produce crack growth 

overall width of the specimen W 
y crack geometry factor 

CTOD 

strain 
f(geometry, hardening) for calculation of J 

?7 
Poisson's ratio V 
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P plastic zone size or plasticity correction factor in R6 

or stress 

Subscripts: 

cc external energy 

el elastic 
ic internal energy 
ini initiation 

PI plastic 

Y yielding 

1C critical in plane strain mode 

C critical 

Other parameters are defined in the text. 
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3.1 Introduction 

, 
3.1.1 General remarks 

When a structural component has a crack the strength of the component under tensile stresses will 
decrease rapidly for which the main reason is that the crack leads to fracture by stress or strain 
concentration. 

M- Fracture is the separation of a solid body into two or more parts under stresses. The fracture process 
initiates at the weakest point where there are large stress concentrations and low material resistance. 
When stressed part of the body cannot sustain the locally concentrated stress, the solid body will 
be deformed and some atomic bonds will be broken, so that a macro crack can be formed and grow. 
In places where a crack or a notch already exists , the crack will be made even larger. The crack 

may develop to total separation of the solid body or may stop growing at some point depending on 

circumstances. 

There are two kinds of fracture: 

1) BRITTLE FRACTURE in which after initiation there is rapid crack propagation followed 

by breakage of the component with little gross deformation. 

2) DUCTILE FRACTURE in which after initiation there is an appreciable amount of plastic 
deformation prior to or during crack propagation. In ductile fracture a crack may stop due 

to the energy absorption through active plasticity without increase in applied load. 

In brief, the distinction between brittle fracture and ductile fracture in the sense of mechanics is the 

ability to sustain large strains, i. e. plastic deformation, during the fracture process. 

It is important that the difference between micro aspects of brittle fracture and ductile fracture and 

the macro aspects of brittle fracture and ductile fracture should be noted. In the micro sense, brittle 

fracture is the separation of crystals with only negligible deformation, whereas ductile fracture is 

the growth and coalescence of microvoids. In the macro sense, brittle fracture usually occurs by 

the sudden acceleration of the crack growth up to complete separation prior to general plastic 

deformation. Ductile fracture on the other hand is the stable tearing of the crack which may stop 

at some point or finally tear in an unstable manner. The speed of ductile crack growth is much 

slower than the brittle one from start to final fracture. Usually in ductile fracture some time may 

elapse between initiation and final separation of the solid body, while the brittle fracture occurs 

suddenly. In some metals notably in steel in the transition region, a micro brittle separation after 

macro general deformation occurs. 

As far as fatigue is concerned, crack growth cannot be described as the break of the solid body 
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bonds. It is now well accepted that the deformation of crystals under a cyclic loading occurs by 

slip or shear displacement of one atom plane past to an adjacent plane. The initialisation point of 

a fatigue crack is determined by the type of crystal and by the presence of a discontinuity in the 

form of a microcrack, foreign particle, or a void. The fatigue process has yet to be described in 

mathematical terms partly due to insufficient knowledge of the solid body or inability to interpret 

fatigue data. However over the past twenty years, fracture mechanics, for instance the Paris' law, 

has been widely and relatively successfully applied to help to explain the fatigue process and to 

predict fatigue life. 

3.1.2 Scope of the Chapte 

In this thesis, fracture mechanics is taken as the best defined mathematical and physical tool to study 
fatigue and as the reference for the final failure of a cracked structural component. Consequently 

linear elastic fracture mechanics and ductile fracture mechanics should be understood to a sufficient 

extent. This section is intended to clarify some basic concepts of Linear Elastic FYacture Mechanics 

(LEFM) and Elastic Plastic aacture Mechanics (EPFM). 

Firstly, LEFM will be introduced and briefly reviewed in section 3.2.2. LEFM is relatively well 

established theory and will lay a base for EPFM studies. 

EPFM will be discussed in section 3.2.3. Due to the complexity of EPFM and vast literature in 

EPFM, only relevant parts of the EPFM studies are presented and critically discussed. J is an 

important parameter in this study acting both as the characterisation for the crack tip stress field 

and the energy release rate. J should also be viewed with uncertainties for the HRR stress field and 

the energy for crack growth. 

Section 3.3 presents and evaluates one of the fracture design method , the R6 method in detail . 
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3.2 Dackground of Fracture Mechanics 

3.2.1 General remarks 

Although this section will not cover any original work directly, it is important in a fracture or fatigue 

study to understand the basis for physical models before one could treat the problem in terms of 
probability. The development of fracture mechanics has given new directions as well as confusions. 
The author of this review attempts to present the related literature in a logical way. As a result, 
the reliability analysis for design can be carried out with integrity. 

3.2.2 Linear Elastic FYacture Mechanics 

For brittle fracture, LEFM analyses the stress concentration in the region of the crack tip and 
the correspondence between concentrated stress and fracture occurrence. So far , LEFM is a well 

established theory within its limiting conditions [4.11. 

3.2.2.1 Stress Intensity Factor 

In LEFM, the stress intensity factor K is used to characterise the crack tip stress field. The critical 
value of K corresponding to fracture behaviour is called the fracture toughness. More about fracture 

toughness will be in section 3.2.2.3. 

The principle of the stress intensity theory is that: 

the distribution of the elastic stress field in the vicinity of the crack tip is 

invariant in all structural components subjected to this type of deforma- 

tion and that the magnitude of the elastic stress field can be described by 

the single parameter, K, i. e. the stress intensity factor. 

For Mode I opening crack fracture 

constant xax , 
fa- = Yovla- (3.1) 

where a is the nominal applied stress perpendicular to the crack plane, Y is often called LEFM 

shape factor. 

The Y factor depends on the crack size, shape and orientation and the structural configuration 

associated with structural comp one nt4. Various methods of finding it are available: 

1) Analytical methods for only relatively simple geometries(e. g. Westergaad stress function) 
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2) Green's function 

3) Weight function techniques 

4) Boundary collocation 

5) Finite element method 

6) Integral equations 

7) Boundaxy method 

8) Compounding method 

9) Experimental methods 

Each method has its own advantages and disadvantages. And each method can be suitable for some 
special cases. For common crack geometries, there are many solutions in Handbooks[3.21. It should 
also be noted that there will be no ideal solution in practical situations due to the diversity caused 
by the assumptions each method has to make. Therefore , the solutions have uncertainties to a 
greater or lesser extent. Further discussion on those uncertainties can be found on section 3.2.2.6. 

3.2.2.2 Energy consideration 

With an understanding of the stress concentration at the crack tip and the singularity of the stress 
field characterised by K, the question then arises about the critical energy value for the crack to 

extend. Historically, the energy consideration came before the crack tip characterisation. But in 

this thesis because emphasis has been put on the application of fracture mechanics, the K factor is 

explained first. 

The stress concentration will store a large amount of energy in the cracked body. Griffith[3.31 

confined his attention to a brittle material containing a single crack of length 2a. He then considered 

the energy changes in the system associated with an incremental extension of the crack. He stated 

that a crack will propagate when the decrease in elastic potential energy is at least equal to the energy 

required to create the new crack -surface. Therefore for perfect linear elastic material the following 

condition must be met: 

The total energy of the system must be reduced by an incremental extension of the notch. 

In the crack growth process the sum of the energies will be U+W-Fe. The variation of UWU+W 

can be shown schematically when in fixed displacement condition where external energy Fe =0 in 

Fig. 
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In the graph, W increases linearly because the energy to break an atomic bond is assumed to be 

constant. 

From Griffith's theory , the crack will extend uncontrollably when 

a(w + U), 
-0 (3.2) 

aa 
i. e. 

au aw -- =-= constant (3.3) 
aa aa 

Set 

G1 
au 

(3.4) 
B (9a 

Iq 

G is then referred as the crack driving force. A critical value of G can be defined as G,, it , at which 

unstable crack propagation will occur. Gcrit can be a material property since aw is a constant. aa 

01 01 
2 

ira ac =c 

E 

Ccrit 

u2 ira cv 2), 

E 

for plane stress (3.5) 

for plane strain (3.6) 

Also G has a direct relationship with the compliance of the structure which is defined as: 

displacement 
=u (3.7) 

force F 

i. e. 
CF (3.8) 

In fixed-grip condition , the strain energy release rate per unit thickness for crack extension is 

-1/2u6F. In fixed-load condition , the strain energy release for crack extension is -1/2 FSu. So, for 

a small crack extension the energy per unit thickness: 

Uf ixed grip ý-- -1 u6F =-I CF6F =-1 F6u = Ufixed load (3-9) 
222 

For the fixed-grip condition, 

G=_a 
Uf ixed grip 

=-1 CF 
6F 

(9a da 

I 
F2 

aC 

2 9a 

In t1lis way G can be obtained from the interpretation of compliance measurement from the load 

displacement record on the cracked specimen. 
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Irwin [3.41 found that the relation between K and G is 

K2= E'G 

where 

F! tom. this equation, one can see that Kic (see section 3.2.2.3) will be a material property since Gic 

is a material property. 

3.2.2.3 Fracture Toughness 

In equation(3.1), 01, a, Y affect the value of K, but do not change the stress field distribution. R-om 

this feature, it is possible to correlate the laboratory test results with practical design by using the 

fracture toughness concept: 

unstable fracture occurs when the stress intensity reacIvsa critical value. For mode I de- 

formation and for the plane strain condition, the critical stress intensity factor for fracture 

instability is called KIC. 

Various experimental methods are used to determine Kjc, e. cl. ASTM designation E 399-78. [3.51. 

Specimen Size Requirement A typical crack configuration is shown at Fig. 3.2. It is found that K, 

and C, are strongly thickness dependent. 

KC values change very much when thickness is small and after certain value of thickness become 

stable. The reason is that when B is small , the failure mode is plane stress condition; wben B 

becomes bigger , the failure mode approaches a plane strain condition. The plane strain fracture 

toughness ) Kic, is the minimum of the KC values. This minimum fracture toughness is a material 

constant. 

The condition for K1C to be a constant for a flat fracture is for the crack to have a plane strain 

opening behaviour. Empirically [3.6j: 

E' 
E for plane stress 
Tj-- Ty for plane strain 

w 
a, B, ->2.5 2 oly 

(3.13) 

Or in other words the plastic zone, to be discussed in section 3.2.2.4, is to be restricted within an 

elastic stress field. That is: 
B 

< To 
(3.14) 

where p is the plastic zone size as e. g. defined in equation (3.21). 

Charpy test5 
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The Kic tests recommended by the ASTM committee and other laboratory test methods [3.71 are 
often not convenient for large complex structures. Some auxilzary methods have to be used. One of 
the most popular fracture toughness tests since the early stage of fracture mechanics application is 

the Charpy test. 

The Charpy V-notch(CVN) impact fraýcture toughness test specimen is widely used as a general 
reference specimen as well as in actual toughness specification. It is simple, inexpensive and easy to 

conduct. Similarly, the CVN slow-bend test is carried out but with a different loading rate. 

There are some empirical correlations between the CVN test result and fracture toughness Kj,. 

Kic-CVN upper shelf correlation 

Based on experimental results from a number of investigators, Barsom and Rolfe [3.81 suggested the 

relationship of Kjc and CVN as 

(Kic) 2=5 
(CVN - 

ýýY) 
ay ay 20 

for Kl,, in ksiNFin-, oyin ksi, CVN in ft-lb; 

or Kic 2 38.7 
= -(CVN - 

(3.15a) 
ay 

) 

ay 3.9 

for Ki, in MPa-, /m-, ayin MPa, CVN in J. 

K1C and CVN transition region correlation 

The prediction of Kic by the CVN in the transition temperature region is more complicated than 

in the upper shelf. The correspondence between K1C and CVN energy absorption 

values at a particular test temperature and at the same strain rate for both the Kic and CVN can 

be approximated as[3.91: 

K2 IC A(CVN) T- - 
(3.16) 

The constant A incorporates the effects of specimen size and notch acuity. It can be decided by 

correlating to the experimental data. 

temperature shift 

order to incorporate KId value for K1C under different test conditions, temperature shift is needed 
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to take account of the different loading rates[3.101. The magnitude of the temperature shift between 
dynamic(ý - losec-I ) and slow-bend (ý ; ýý 10-'5sec-1 ) is: 

Tshif t= 215 - 1.5ay for 36 ksi < oy < 140ksi (3.17) 

T. hift 7--- 0 for ay > 140 ksi 

or 

(3.18) 

Tshif t= 215 - 0.218ay f or 248 MPa < ay < 965MPa (3.17a) 

To hif t "': 0f or cy > 140MPa (3.18a) 

The magnitude of the temperature shift between dynamic(i - 10sec-1 ) and intermediate strain 
-3. SeC-1 rate 10 was found to be 75% of the shift between dynamic and slow-bend curves. 

A detailed procedure can be seen in Ref. [3.101. As an engineering approach, the CVN test results 

are effectively used but empiricism and uncertainty will inevitably prevail. 

3.2.2.4 Plasticity effect 

The stress concentration around the crack tip will reach the yielding criteria and will create a plastic 

zone. LEFM is based on the elastic assumption which -cannot be possible in any case. Because 

fracture mechanics concentrates its study on the region around the crack tip, the effect of plasticity 

on the fracture of the component will be profound. 

The determination of a precise plastic zone size and shape in mode I needs a large amount of com- 

putation either by finite element method or any other method and need the detail of the geometry. 

However , there are two main approximate plastic zone models, namely, 

1) Irwin's plastic zone model 

2) Dugdale's plastic zone model 

Irwin [3.11] assumed that a notional crack extends beyond the real crack tip to the centre of the 

yielding plastic zone and that the stresses in the zone equals the yielding stress. This crack extension 

is given by: 

rp =1( 
Ki 

2 7r may 

where Ki is the stress intensity factor for mode I 

(3.19) 
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M1 
for plane stress (3.20) V3- for plane strain (empirically) 

One can have the actual plastic zone size: 
1 

p=2rp= _( 
Ki 

)2 (3.21) 
7r ma, 

Dugdale [3.121 assumed that the plastic zone ahead of the crack could be treated as if the actual crack 
extends through it and the portion of the extended crack situated in the plastic zone experiences a 
constant , negative pressure of the same magnitude as yield stress. 

Because the stress singularity of the plastic zone dimension p, the superposition of the stress intensity 

factors by remote stress with the extended crack and by the plastic closure negative stress should 
be zero. If K, and K,,, the stress intensity factors from a and ay, 

K, +K, 
V=O 

(3.22) 

K, =a 
V7-r -(a+ p) (3.23) 

K, 
y -2oy -+p arccos( 

a (3.24) 
7r a+p 

Hence, 
a 

COS( 
M7 (3.25) 

a+p 2ay 

When a< ay; 

p= 
7r (K (3.26) 
8 ay 

Comparing equation (3.26) with (3.21), the values are with small difference for plane stress case 

rr& = 1. 

It should also be emphasised that the approximations for equations (3.21) and (3.26) strictly lack 

theoretical basis and exclude such effects as work hardening and large strains. If in the zone ahead 

of the crack moy is used rather than uy, then the Dugdale model is correct until the total load on 

the section exceeds limit load because Dugdale model is based on an infinite plate. These will be 

discussed with other aspects in 

3.2.2.5 D-es-ig-n-Er-Ocdure 

later section for (EPFM). 

Under the conditions of LEFM, to minimise the possibility of brittle fracture in a given structure, 

the designer has three primary factors to control: 

1. Material toughness at the particular service temperature and loading rate (Kic., ) 
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Nominal stress level (a) 

3. Flaw size present in the structure (a) 

'M - Equation (3.1) gives a combination of the three factors. For the safety of the structure: 

K< KIc (3.27) 

The safety margin is : 
Klc -K= Kic - YaVa- (3.28) 

When M>0 the component is safe 

When M<0 the component is unsafe 

The limiting stress is 

< 
Kic 

(3.29) 
Y. \/-a 

The limiting crack size is 

< (KIC)2 (3.30) 
Yo, 

In the same way as in equation (3.28), safety margin equations for limiting stress and limiting crack 

size can be constructed. 

A example graph is shown in Fig 3.3. It is interestin g to compare this diagram with the column 

instability Euler curve diagram. It seems that both share the same trend with increase in a or 

slenderness ratio. 

If a is modified to become a+p from the Dugdale's model with 

-1(7r 
9 

a+ P= a cos 2 oy 

The new K, clenoted as K*, is 

7r a 
YaVa cos-l(--) < Kic 

2 ory 

which leads tO 

K2 7r 01 

K2-< Cos( 2a Ic Y 

where K is originally defined in Eqn. (3.1). 

(3.31) 

(3.32) 

(3.33) 
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if 

K'= (K) and S'= ( ol 
Kic Oy 

equation (3.33) then becomes: 
12 <C0.9 ( 7r 

K2 sl (3.35) 

This is very similar to the Failure Assessment Diagram to be discussed later in the R6 method except 
the R6 method will introduce plasticity and redefine the S' . 

3.2.2.6 DiScussion 

LEFM is a well established theory but contains many idealisations. Generally it is only suitable to 
be directly applied to brittle fracture design. The main assumptions for LEFM are: 

homogeneous material 

2. no plasticity effect 

K1C value can be used for large scale structure although obtained from small laboratory test 

specimen. 

Those assumptions will inevitably bring uncertainties to the engineering design: 

(1) Plasticity Effect LEFM assumes that small scale yielding occurs in the crack tip region. The 

plastic zone size from Irwin's and Dugdale's models are without convincing the- 

oretical base. If there is large plasticity, then LEFM cannot be applied. These 

problems lead to the use of EPFM. 

(2)Notch Effect In practical situations , the crack may not be of uniform length or even all 

through the thickness, but the Y factors in equation (3-1) are taken from empir- 

ical equations or graphs containing surface and backface geometrical corrections. 

Newman, J. R. [3.13] reviewed 14 of the commonly used surface crack K equations 

and graphs. By employing a brittle epoxy as an ideal material for brittle frac- 

ture, Newman was able to get the variation of each representation of K. They 

are ranked ± 20% to ± 10 % standard deviation with 95 % of the data analysed. 

(3) Scaling Effect LEFM theory assumes that the fracture behaviour of a real crack component can 

be predicted by scaled smaller size laboratory specimen. A survey conducted by 

Sinclair, G. B . and Chambers, A. E. for brittle fracture mechanics found that 

the physical agreement with the strength predicted from LEFM is not valid 

especially when there are appreciable changes in scale. In their extrapolation, 
fracture toughness may not be a material property. 
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LEFM is related to simple and idealised materials. It is widely used as a theoretical base for codes 
of practice and many primary investigation of brittle fracture mechanics. In fatigue study, LEFM 
is now widely used for crack growth predictions due to cyclic elimination of the plasticity effects. 

Many real fracture problems will not be so ideal. EPFM will take the yielding into account and thus 

extend the view and applicability of fracture mechanics. 

3.2.3 Elastic Plastic Fracture Mechanics(EPFM) 

3.2.3.1 General remarks 

In many cases fracture will occur after widesread plasticity in the crack tip region. LEFM cannot 
explain and thus solve these problems. In the last 20 years people have come to realise the need for 
EPFM. However, due to the engineering complexity and uncertainties in various aspects, EPFM is 

much less established than LEFM[4.11. Fortunately, the consequence of ductile fracture may not be 

as serious as brittle fracture because the higher ductility of the cracked body material makes the 

crack growth detectable before final fracture. The high ductility will be important in limit state 
design for the large reserve of capacity against failure in ductile fracture and thus important for 

reliability analysis. 

Two concepts are widely used to explain EPFM; the Crack Tip Opening Displacement (CTOD) and 
J-integral methods. 

In LEFM the entire energy provided by the external force will be stored by the elastic strain and 

then can be released through fracture. In EPFM, part of the energy from external force will cause 

plasticity of material and will thus will not be recovered. The size restraint effects resulting in 

nonidealised, plane stress or plane strain conditions and the redistribution of stress and strain will 

make the plasticity even more complex so that the fracture mechanics of the crack will become more 

difficult to analyse. 

The first problem to encounter is again the characterisation of crack tip state, which in LEFM is by 

the stress intensity factor. In EPFM, CTOD uses the geometric state of the crack tip region, while 

the J-integral uses the strain energy around the crack tip to characterise the crack tip state. Many 

of the design methods are derived from these two concepts. Further investigation has shown these 

two concepts can be related to each other. 

This section is intended to give a systematic review of the EPFM theory which will be the theoretical 

basis of design methods and serve for the understanding of uncertainties in the reliability assessment 

of cracked components. 
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3.2-3.2 CTOD method 

The basic assumption of the CTOD method is that the crack state is characterised by the opening 
distance right behind the crack tip. The relationship between this displacement and the critical 
fracture state has been shown in a large number of experiments [3.15] [3.1], while the theoretical 

base for CTOD could be the Dugdale stress yield line model. 

The Dugdale plasticity model was discussed in the LEFM as in Eqn. (3.26). If relating the Dugdale 

model to the geometry of the crack tip, one could set up a mathematical criteria for fracture. 

Dugdale [3.121 showed the length of the plastic region (a, - a) was 

(a, - a) = a[sec( 
7ra (3.36) 
2f 

where a, is the extended crack including plastic region 

is the local stress system 

Burdekin and Stone[3.161 evaluated the displacement at the tip of the real crack for the line plasticity 

model by combining with the elastic solutions and found 

2v. . 
8fa 

ln(sec 7ro) (3.37) 
7rE 2f 

If the In(sec) term is expanded 

1 7r ol 8fa 
[1( ?r o)2 

+_(_ _) 
4+ (3.38) 

7rE 22f 12 2f 

and taking only the first term gives, 

! fa 1 
(7r o)2, (3.39) 

irE 22f 

In plane stress 

7ro, 2a=G 
(3.40) 

Ef f 

and K20,2 7ra G==- (3.41) 
EE 
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Lk- 
rrom the above equation, G 

m ay 

Burdekin and Stone also evaluated the overall strain in plane stress by assuming f= cy: 

E1 k'+n 21 

-I(k 
2 +n 211 

-{2n coth- 11 (- ý-) 2+ vcog- k) 
f 7r -n T --K 2) 

21 + (1 
- V) Cot 

K2 yK 

where 
a 

n=- 
y 
7rol 

cosTf 

ey = 
ay 
E 

(3.42) 

(3.43) 

The document of BSI PD6493 (3.151 in 1980 ha-s used CTOD to assess crack integrity by using the 

non-dimensional factor 0. However the design curves in BSI PD6493 were drawn from experiments. 

6=( 
-'E )2 for -E < 0.5 (3.44) 

21rcya EY EY 

=( -'E 0.25 f or -, 
E 

< 0.5 (3.45) 
27rcya cy CY 

Criticisms of the CTOD method are 1) the theoretical assumptions of Dugdale model, 2) the inade- 

quacy for large scale plasticity and 3) the reliability of data obtained in hostile environment and for 

complex geometry. 

Several features of the Dugdale model are noticeable: 

(1) the stress state is illustrated as a yielding stress line which is only nearly true for plane 

stress. 

(2) the stress field is without any work hardening. 

Although many efforts have been made on the modification of the CTOD method since it first 

appeared, the essential limitation of this model on large scale plasticity, which will result in strain 

hardening and size restraint effects, cannot be effectively removed. 
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3.2.3.3 J-Integral Method 

The J-integral concept was first introduced into engineering practice in the United States by Rice[3.171 

Mathematically, the J-integral is the integration of the strain energy on a contour around the crack 

tip, which actually ignores the part right in the crack tip, i. e. considers only the non-linear aspects. 
It measures the energy flow in a contour about the crack. 

By definition 

a ui f {Z dy - Ti ý-}ds 
rx ý 

(3.46) 

where Z is strain energy density, Z=f ujideq, or density of stress working if the recoverable sense 

of the term strain energy is to be avoided. 

Tj is the component of surface tractions 

Uj is the displacement component at the surface 

s is the distance along any contour 

Several important features of J can then be verified: 

1. It is path independent for nonlinear elastic material but for the incremental laws of plasticity 

can only be used providing the contour is sufficiently large enough, i. e. away from the crack 

tip. This feature is important for the uniqueness of computation. 

Through HRR 13.181 [3.191 unique stress and strain field, J is able to characterise the crack 

tip state, i. e. 

JE 11 ) N+I Grij 
(0) 

JE N1 
gij (0) (3.47) 

. IaU2a) 
N+l 

u 

JE ) r; (r) --L Uij = cyce( .2 
N+I -, 

ü 
ij 

(0) 

Ictu.. a 

EPI 
= 

ol (3.48) 
-a(-) 

I" 
ey ay 

where arij, 6ij is the tensor vector of stress and strain. 

ce) N are the constants to represent the work hardening state. 
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I is the normalising constant depending on the symmetry of the field and on whether plane 

strain or plane stress hold as the tip approaches. 

Several restrictions have to be put on this model[3.201: 

(2. a) In the fracture process zone where voids are produced and void coalescence occurs, and in 

the region where the solution from finite strain theory does not meet that from small strain 
theory for HRR. Let R be the zone of dominance in the singular fields beyond which HRR 

can apply. It depends on where plane strain or plane stress is assumed, on load, on strain 
hardening and on configuration. 

For mode I plane strain, McMeeking[3.21) found that R is 2 or 3 times the CTOD assuming 
that the fracture process zone is also within the radius 

R>3x CTOD (3.49) 

Shih[3.221 calculated that in plane strain with light or moderate strain hardening. 

or 

COD 0.6 x (3.50) 
ay 

COD x1 (4.51) 
m (7y 

(2. b) Under large scale yielding triaxiality may occur. For instance, in fully yielded bend type 

specimen where Pradtl field prevails 

0.07b (3.52) 

R>1.8 
1 (3.53) 
oly 

b> 25 
1 (3.54) 
oly 

But in cases where the high triaxiality state of stress ahead of the crack is lost such as the 

centre-cracked strip in plane strain tension. 

R;: zý. Olb 
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b> 200 
ay 

(3.56) 

Since the high triaxiality associated with J dominance generally gives the most critical answer 
for initiation and advance at lowest level for a given material, most effort in the past was put 
into the former case to a lower bound of J. 

(2-c) In stable crack growth, additional restriction may be satisfied to ensure that the HRR field 

outside the immediate vicinity of the crack tip where elastic unloading and strongly non- 
proportional plastic deformation occur. i. e. 

Aa< R (3.57) 

and D<R (3.58) 

where D is the zone size of elastic unloading and the non-proportional deformation. 

1-1 
(ýJR ) (3.59) 

D JI� da 

For fully bend type specimen under plane strain 

Aa 
= 0.07 (3.60) 

b 

b( ýJR 
)ý, > 14 (3.61) 

Jic da 

Parts of HRR model uncertainty can come from those restrictions discussed above. In addi- 

tion, it should be pointed out that the HRR model is originated from an infinite plate so that 

although all the conditions are more or less met and they are used reasonably well from the 

engineering point of view, they do not indicate the real state of the crack tip. 

3. The energy meaning of J can be compared with C in LEFM. In LEFM the characterisation 

parameter K is related to the energy balance with G. The J-integral is the amount of energy 

flow in the contour area. 

For non linear elastic material: 
dP (3.62) iý-da 

or 
i=- au (3.62a) 

Baa 
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In LEFM J=G. In EPFM, some of the energy may be dissipated by the plasticity or 
non-linear effect. 

3.2.4_n factors 

As pointed out by Sumpter and Turner in 1976 J3.231, J can be expressed in the form 

i= Jj 

+ JP1 

f7e(Uel 
+ 77pi UPI 

ýw 
- a)B (w - a)B 

(3.63) 

where Y7,1, r7pj are dimensionless geometry constants for Jj and Jpj. Uj and Upi are the elastic strain 

energy and the plastic strain energy. 

The introduction of q factors provides a convenient relationship for the analysis of several fracture 

problems. 

f7et ----: 
aC b 

(3.66) 
aa C 

Furthermore, from the expression for C in K or Y, the t7, t can be derived as: 

y2a 
(3.67) "": T l7el y -2 

ada 

For plastic i7pl , 
it will be more complicated. A general condition for the existence of 17pl was 

discussed in a paper by Paris, Ernst and Turner[3.24]. If: 

P=b2F, ( 6pi 
,a etc. ) (3.68) 

www 

and F, ( 
6pi 

)a etc. ) 
ww 

can be separated to be equal to the multiplication of two different variable function as: 

SPI a 
etc. ) G, (6" 

.... 
)xH, a (3.69) 

wwww 

then a genuine solution of 77pt can be obtained 

qpl = (2 -b 
o9 H, 1 (3.70) 

L (9 (11-) H, 
w 

The existence of ? 7,,, then depends on the separation of function Fl. 
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3.2A. Deltermi Lnatio Ln of j by e2jýerijmenjts 

3.2.5.1 Introduction 

In brittle fracture, the fracture toughness is the stress intensity factor at the onset of the crack 
extension as stated in section 3.2.2.1. The testing methods can be found from the recommendation 
in ASTM E399-78 [3.5] or BS. 5447 [3.71. 

However in ductile fracture, it is expected that after crack initiation, some stable crack growth should 

occur prior to the failure of the specimen. Therefore, the fracture resistance with crack growth must 
be studied as a parameter to characterise the crack growth process and the final fracture. 

In the experiments, usually three parameters are important, i. e. load F, displacement q or u, and 

the crack length. 

3.2.5.2 J for stationary crack tip 

When the J test is for the initialisation of crack growth, (Jlc), stationary crack tip J tests are 

carried out to meet the condition of path independence of J with no unloading. 

1) Compliance J 

As explained in section 2.3.3, J may be expressed for nonlinear elastic material with no crack advance 

as 

IU (3.71) 
B aa 

Iq c 

=1 
ac (3.72) 

B aa 
IF 

where U=f Fdq the work done 

Or in case of plasticitY 

ue UPI (2aal 

q+ 
'9aa 

F) 
(3.73) 

B 

2)R%cc-Paris-Merklc method 

The above compliance method needs multi-crack experiment and is often expensive . Rice et alý3.25] 

has found an alternative J test method employing the same theoretical principle as the above one. 
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For deep notched bending specimen, the angle of bend, 0, is only the function of the applied moment, 
M, and the square of the remaining ligament, b. 

=f 
m 

(3.74) 

The potential energy in equation (3.71) is 

0 
U= 

fo 
M dO (3.75) 

The solution for J from equation (3.71), (3.74) and (3.75) is 

J= 2M 
dO (3.76) 

Bb 0 

I 

Recalling to the t7 factor defined in section 3.2.4, one can see that for bend type specimen q is equal 
to 2. 

3) tension effects 

In the bending test the tension effects, which does exist in a smau proportion is ignored. To take 

account of this effect, Sumpter and Turner [3.23] suggested that 

j= Jet + jpl 

17el Uct tipt UPI 
ii-b +' Bb 

(3.7) 

Clark et al [3.261 used elastic perfectly plastic flow properties to estimate the contribution of the 

tension component in the compact speciemen test. 

77UT (3.78) 
Bb 

where 
UT = Ue + UPI 

Ret + f7pt 
2 

It is found that 

v7= 2+ ce (3.79) 
+ Q2 

) 

or 
t7 f: -- 2+0.522 

b 
for 0<b<0.5 (3.80) 

ww 
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where 

a=ý 
-(La 

)2a)- {( 
2a )+ lý 

b +2 ( Lb 
+2 b 

a (3.81) 

3.2.5.3 J for the zrowing crack 

When the crack is initialised, J can be no longer tested by the stationary test. The technique to 

test the growing crack resistance curve, named R-curve, has been developed in the last twenty years. 
It should be recognised that the difference between the stationary and growing crack J tests cause 

much difficulty both in the experimental technique and the analysis. The following section will 

review briefly the current practice. 

deformation J 

Due to the fact that in the testing process the crack is growing, the load versus load point displace- 

ment record will not follow the correct path to indicate the work done by the external force as shown 

in the last section. Rather the curve slips from the initial crack length F-v curve into F-v curve 

of the following crack length. So 

J= 17 JvFdv (3.82) 
0 Bb 0 

For growing if J is expressed as internal energy W 

Hence 

17w (3.83) 
Bb 

dJie t7 dW 
+J+bA (3.84) 

da iib- -äa- 'i ý 7a ?7 

If we put 
f (? 7) = (I +bd? 7 ) (3.85) 

t7 da 

dW = dU - BJda (3.86) 

d Ji, 
- 

tj dW 
+Jf(?? ) (3.87) 

da Bb da b 

Or 
V, dJj, ?I- dU J 

g(,? ) (3.88) 
da - -Ta = Wb Z+b 

Where 
g (77) f ?7 (3.89) 

V- 
-cur external energy, 

dJ,, 17 U tj dU 
+Jf (77) (3.90) 

da ' Bb Bb da b 
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From equation (3.86), 
dJ� dJi, i 
äa- z:: -ä-a + t7 -b 

The solution for J from external energy and internal energy would be different. However if 

dJ b 
>> f (n) 

then AW ; ý-, AU 
ZýJle = Ajie = Aj, 

If approximately , we set 
d J, 17 dU 
da Bb da 

A correction should be made as follows 

Aa Jr ý Jr(approm) * {1 + -b9(17)} 

Ernst [3.271 proposed a general form: 

(3.91) 

(3.92) 

(3.93) 

J1+1 = (Ji + (2)jAj, i+j){I - (2)j(aj+j - aj)j (3.94) 
bb 

where Jj is the J from crack length ai Jj+1 is the J at crack length ai+l Ai, i+l is the increment of 

area under the load displacement record between lines of constant displacement at ai and ai+l 

For a compact specimen 

i7i =2+0.522bi 
(3.95) 

1+0.76( 
bi (3.96) 
w 

For the deeply cracked bend specimen ? 7=2 and-y =1 independent of crack length. 

The following conditions must be imposed for the above R-curve formula: 

1) 
w>1 (3.96) 

ni a)< lor( ýý a) 
ný .1 

(3.97) 
bb 
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3) 

Bib> 25 
1 

(3.98) 
O'f low 

A modified J from computational analysis for larger Aa/b is proposed by Ernst (3.281: 

af JM : '-- JD 
- 

fa 
o aa 

vpl da 

where JD is the deformation plasticity J Or for the case of compact specimen, 

JM = JD +a1 
jpl 

da (3.100) 
10 

b 

3.3 The R6 method 

3.3.1. Introduction 

Fracture mechanics has undergone many developments as partly seen in section 3.2. The maturity 

of fracture mechanics had led to the widespread applications in design and safety assessment. In this 

section, one of the major application methodology for engineering design practise, the R6 method 
is presented and evaluated for the purpose of assessing the structural integrity and calculating the 

reliability of flawed structural components. 

When a structural component under tensile stress has a crack, the component can either fail by 

fracture or plastic collapse. The usual fracture mechanics design methods only predict failure in 

the fracture mode. The Two-Paraineter Fracture Criterion (TPFC) constructs a failure prediction 

method polarising the brittle fracture and plastic collapse to give a general failure mechanism[ 3.29). 

Based on this TPFC method, the Central Electricity General Board (CEGB) has gradually developed 

R6 method from revision I in 1979 and revision 2 to revision 3 in 1985. R6 revision(rev. ) 1 

constructed a relationship between S,, which is the ratio of applied load to the flow load, and 

K,, which is a ration of stress intensity factor to fracture toughness, in a In(sec) function derived 

from the expression in TPFC for CTOD. The R6 rev. 2 updated R6 rev. 2 but still use the same 

expression. The R6 rev.. '- :'3 [3.301 uses the J- integral as a valid parameter for characterising 

crack initiation and crack growth to construct a method for elastic plastic fracture prediction with 

brittle fracture and plastic collapse on both ends. The R6 method rev. 3 treats the stable ductile 

tearing (slow crack growth) and load instability by using a resistance curve approach. Also work 

in CEGB and EPRI have developed fully plastic solutions (deformation theory) [3.31] for fracture 

specimens. The CEGB R6 method rev. 3 stated that a tensile specimen could either fail by brittle 

fracture or plastic collapse and these two mechanism are connected by an interpolation curve based 

on J-integral study and experimental data. In R6 rev. 3, the abscissa S, in R6 rev. 1 is replaced by 

Lr which is the ratio of the applied load to the yield load. 
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The R6 method is used in this thesis as the failure criterion for the final failure of a cracked com- 
ponent. R6 method provides a safety margin function for cracked components for use in reliability 
analysis. In this thesis, when reference is made to the RG method, R6 revision 3 has generally 

been used unless other revisions are specified. 

3.3-2. Definitions 

As a methodology to apply in engineering practice, the R6 method defined many new parameters in 

addition to the commonly used fracture mechanics parameters. Some parameters in R6 rev. 3 are 
listed below. 

1. Crack size 
Aag maximum amount of ductile crack growth at which valid data can be derived from test specimens 
ag aini + Aag 

Aaj postulated amount of ductile crack growth 

ay aini + Aaj 

Stresses 

ap stresses arise from loads which contribute to plastic collapse 

as stresses arise from loads which do not contribute to plastic collapse 
C7 flow stress 

F factors (load factor related) 

loadfactorFL = 
the load which could produce a limiting condition 

the applied load in the assessed condition 
FLi) Abad factors for flaw sizes aini, ag respectively in - ýr- 

J factors 

J,, pp value of J due to the applied loading 

Jm, t value of J due to material resistance 

5. K factors 

KrP, KrSvalue of Kr due to loads giving rise to oP I oa respectively 

KO. 2 fracture toughness relating to K at 0.2 mm crack extension 

Kg fracture toughness after Zýag of the ductile crack growth 

K,,,,, t material fracture toughness as indicated in individual cases 

KQ(, nj4acture toughness after Aa of ductile crack growth 

Ordinate in the FAD 

== KP + K', 
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KI' (aj, i) KP =I X, at 

K8 (aij) 

I p(aini) Kmat 

P plasticity correction factor for a' stresses 

K, 
g = KPg + Ksg 

KP = 
Kj (a. ) 

rg Kg 

K, »g = 
K, (ag) 

+ p(a. ) 
Kg 

7. Abscissa in the FAD 

Lr ý 
total applied load giving rise to aP stresses 

plastic yield load of the flawed structure 

max = 
flowstress 

r ay 

8. strain 

'Eref uniaxial strain at load level Lr X O'y 

3.3.3. Failure Assessment Diagram (FADI 

In the R6 method, the limiting conditions for load, flaw size and fracture toughness or yielding stress 

are aR combined in one diagram called the Failure Assessment Diagram(FAD). The abscissa is L, 

the ordinate is K,. To set up the fracture failure criterion, the J-integral is used. 

j= Jl + jpl 

J, j can be obtained from various elastic fracture handbooks or can be calculated from the methods 

discussed in section 3.3. Jpj can be obtained through: 

1. elaborate J-integral calculation, 
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2. the fully plastic solution for flawed structure developed by EPRI. 

approximation from numerical or experimental data. 

Corresponding to these three levels of calculation R6 method has three options of Failure Assessment 

Line(FAL) function. Option 1 need elaborate calculation of J. Option 2 is subject to the availability 

of the fully plastic solution for flawed structure of interest, i. e. the availability of c,, f which is the 

uniaxial strain at stress of L, x a.. In option 3 an empirical curve, which acts as the lower bound 

of data from numerical and experimental analysis for K, can be formulated as: 

2 6)] K, - = (1 - 0.14Lr)[0.3 + 0.7exp(-0.65Lr for Lr < L"' r 
(3.101) 

Kr 0 for Lr > L"' r 
(3.102) 

This formula constructs a direct relationship between K, and L, without complicated calculation 

and reference to other parameters. Among the three options the option 3 is the most convenient but 

with greater inaccuracy. It is suitable for all materials which do not exhibit a yield discontinuity in 

the stress strain curve and which do not have high initial work hardening rate . It can be used for 

initial screening test with only uy and flow stress needed to be known. The option 3 FAL is called 

the general curve in R6. The general curve is illustrated in Fig. 3.4. In this thesis, option 3 FAL has 

been used for reliability analysis. 

Depending on the material fracture toughness, a cracked specimen can fail by brittle fracture or 

ductile tearing. The ductile tearing can have large reserved load capacity. To deal with different 

modes of fracture failure, the R6 method has three categories of fracture analysis. 

Category 1. When failure is by brittle fracture and significant ductile tearing is absent, Kmat can 

be taken as Kl,, or K,. If failure is by ductile mechanisms but no benefit is taken of the 

increase in toughness due to ductile tearing, K,,,,, t = Ko. 2. The co-ordinate (Lr 
1 Kr) 

can thus be calculated and should be below the Failure Assessment Line (FAL) for 

safety. The limiting condition is that the point of interest must be on the FAL. 

Category 3. When failure is by ductile mechanisms and benefit should be taken from the reserved 

load capacity due to increased fracture toughness, a J-integral resistance curve should 

be found. 

Kmat = Kn(Aa) = {EJ(Aa)}/' (3.103) 

The experimental procedure for the determination of the fracture resistance of ductile 

steels can be seen from the R6 rev. 3 and more detail from Neale, B. K et al [3.321. 

3.28 



Chapter 3 

The locus with crack size extending under fixed load condition is called crack extension 
locus and has been used in the category 3 analysis. The safe condition of category 3 
for stable crack growth is that at the applied load a part of the crack extension locus 

falls within the FAL . The limiting condition is therefore that the locus is tangential to 
FAL. 

Category 2. As an intermediate treatment between category 1 and category 3, category 2 performs 
the tearing analysis at two points only: 

Ko. 2 

Kmat -Kg 

The limiting condition is defined for two sets of conditions: 

and 

FL > 1.1 (3.104) 
9- 

FgL 
> 1.2 (3.105) 

T- - 

The first condition requires that there is a 10% margin on load to extend the crack by 

, niag. The second condition ensures that the difference between the applied crack driv- 

ing force and the material fracture resistance is sufficient to make the result relatively 
insensitive to variations in the resistance curve data. 

The detailing procedure of R6 method is shown in Fig. 3.5 as a chart form from the R6 rev. 3. 

3.3.4 Evaluation of R6 method 

(1) Comparison of prediction results with other methods 

The development of fracture mechanics has led to many methods of failure prediction by investigating 

different aspects of fracture. Some commonly used fracture design methods can be found in references 

[3.1)3.341. 

Rhee, H. C. et al[3.35] compared the CTOD method from the BSI document [3.15] and the R6 FAD 

from rev 1 and rev 3 option 2 by using J -integral crack instability analysis as the reference. The 

experimental specimens include 1) the centre-cracked tension panel(CCT) , the single-edge notched 

panel(SENP) and a pipe with internal circumferential flaw to study the geometry effects; 2) single- 

edge notch panel with three point bending (SENB) 
, with pure tension (SENT) and combined tension 

and bending to study the loading mode effects. 

From the comparison of prediction results, it was found that R6 FAD method has better behaved 
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solutions with relatively narrow bands with or without crack extension being considered than the 
CTOD method has. If the crack extension is considered, the solution scatter bands will also be 

reduced compared to that obtained without crack extension. The CTOD design curve from BSI 

can result in unconservative results for certain problems and can be influenced significantly by the 
loading modes and the geometric characteristics of the problem. 

In 1985 an ASTM Committee E24.06.02 Task Group [3.341 conducted a round robin study on fracture 
to evaluate and to document various elastic-plastic failure load prediction methods. 18 participants 
using 13 different failure prediction methods from United States and United Kingdom joined the 

round robin study. The CEGB R6 method was presented by Bloom as Deformation Plasticity Failure 
Assessment Diagram (DPFAD). 

The experimental fracture data for the round robin were gathered by NASA Langly Research Centre 

and Westinghouse Research and Development Laboratory. The tested materials were 7075-T651 

aluminium alloy, 2024-T351 aluminium and 304 stainless steel. The data provided to each participant 

were: 

a) tensile properties (ay, o,,,, E and full stress strain curve. ) 

b) fracture properties results from test on compact specimen (maximum failure loads, 

typical load displacement records, Kjz- curve, and JR curve. ) 

c) fracture analysis data from compact, middle-crack tension, and the three-hole-crack 

tension(THT) specimens (all specimen dimensions, ai,, i, K solution for THT specimen. ) 

The predictions from all the participants are ranked according their order of variation of predicted 

failure load to the experimental failure load. The results are summarised in Table 3.1 after reference 

[3.341. 

To compare the accuracy of the participants as well as their applicability ,a new comparison can 

be made: 

1) excluding the prediction methods which do not predict failure on all specimens. 

2) for each specimen, giving a score equal to the number of the rank in each speci- 

men and summing up. 

all the prediction methods are ranked in the inverse order of the amount of their 

score. 

There-fore according to the above rules and by studying the ASTM summary, first participants 3,10, 

11,12,17,18, are excluded from this comparison. The table below shows the subsequent comparison 
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Table 3.2 Ranking of ASTM round robin participants 

)articipants 7075-T651 2024-T351 304 Score 

4 3 3 2 7 

fR-curve and limit load 

2 4 4 10 

W DPFAD 

7 1 3 11 

CPFC (one parameter) 

5 1 10 1 12 

'CR-curve and limit load 

8 2 7 17 

CPFC 

3 4 9 5 18 

VR-curve and limit load 

10 5 9 24 

rheory of Ductile Fracture 

6 8 12 26 

, EFM (plastic zone) 

12 6 8 26 

rheory of Ductile Fracture 

L6 9 11 6 26 

FfR-curve and limit load 

L 5 12 11 28 

ýEFM (size effects) 
7 10 28 

rheory of Ductile Fracture 

results. 

It should be noted that participants 13,14,15,16 used different approaches for different material i. e. 

KR-curve for 7075-T651 aluminiurn 

KR-curve and limit load for 2024-T351 aluminium 

limit load for 304 stainless steel 

These tables clearly shows that within the reach of the ASTM round robin study, the R6 DPFAD 

has relatively good accuracy and consistency when compared Nvith the experimental results. 

(2) Features of R6 method 
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Ever since the R6 method revision 1 came out in 1976, the prime aim of the R6 method has been 
concentrated on the engineering applicability and accuracy of failure prediction by using the latest 
development of fracture mechanics. The R6 method has been undergoing constant review and 
updating. R6 rev. 3, uses the J- integral and fracture resistance curve concept and incorporates 
the most modern development in fracture mechanics which were current up to april 1985. The 
form of the R6 method enables it to be modified to take into account any new advances in fracture 
mechanics. 

The treatment of secondary stress of a" which has no role in plastic collapse failure in R6 has 
facilitated the applications. The combined load effects can be easily taken into account by the 

calculation of p factor. Ainsworth calculated the p factors for general use by using the reference stress 
technique and the concept of an equivalent mechanical load which produces the same deformation 

as the combined loading[3.36]. In R6 rev. 3, the p factors axe standardised as listed below: 

p- Pi L, < 0.8 

p= 4p, (1.05 - L, ) 0.8 < L, < 1.05 

p=01.05 < L, 

P, = O. lx 0.714 
- 

0.007X2 + 0.00003x5 x<5.2 

p, = 0.25 x>5.2 

X= -1 Kp 

(3.106) 

The adjustment by p is because at low value of L, the curve of FAL of combined loading rises above 

the curve of FAL for oP loading only because at any given Lr the small scale plasticity effects by the 

combined loading are greater than those by the aP only. Validation literatures by either theoretical 

analysis or numerical and experimental analysis can be found in reference [3.34]. 

In the R6 method the adaptation of ductile tearing into the FAD is made by the technique of crack 

extension locus as in the category 3 analysis. This procedure to accommodate the stable crack 

growth in the R6 method is proposed and validated by Milne [3.371. By comparing with other 

ductile fracture criterion e. g. the tearing modules theory and by experiment, Milne was able to 

conclude that the limiting condition for category 3 analysis is valid and conservative. 

The R6 method is in a standard format and relatively easy to use. Extensive validity studies have 

been conducted and further advances have been under pursuit. Large number of variables like crack 

location, material properties, flaw characterisation, loading regime, etc. could be analysed quickly 

and cheaply. A sensitivity study can tlius be conducted directly. These qualities very well suit for 

a reliability analysis which calculates the safety index of the integrity structure by treating every 

parameter and the model itself as statistical variable. 
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It was also pointed out by Rhee et al in their comparison of R6 method and the BSI CTOD procedure 
[3.151 that the most desirable feature of the R6 method is its predictability as critical load parameter 
which is demonstrated by the narrow scatter band and the most significant challenge for R6 method 
is the quantification of the level of conservatism. 

In the opinion of the author of this thesis, these features of the R6 method make it particularly 

suitable for reliability assessment. The results are more meaningful because there is a low model 

uncertainty and the parameters are clearly defined and consistent from brittle fracture to plastic 

collapse. In addition, the reliability analysis can help to quantify the uncertainties by conducting 

statistical investigations and sensitivity studies. More discussions of the uncertainties of the R6 

method, their quantification and the reliability analysis can be seen in a later chapter dealing with 

probabilistic fracture mechanics. 

(3) Limitations of the R6 method 

When applying the R6 methods , the following limitations exist: 

a. Limits on J controlled crack growth 

The R6 method is an adapted form of J-R curve method. The applicability of R6 method is 

thus under the same restriction for J controlled crack growth. Those restrictions have been 

discussed in section 3.2.3.3. 

b. The accuracy of the prediction of crack instability 

It seems that there is a lack of accuracy for the prediction of ductile instability compared with 

the K-R curve method in the ASTM round robin study[3.341. The uncertainties could be from 

the fracture extrapolation from Milne which was only for maximum load and is conservative. 

Also uncertainties may arise from the tedious numerical calculation which involves transferring 

J values into K values and finding the tangential points. This uncertainty can be due to 

uncertainty of J-R theory as well as the transformation in R6 FAD. A more exact instability 

load should be found from I theory 13.381 or other relevant literature. 

c. Availability of fully plastic solutions for flawed structures of interest 

The current plastic solutions for Jpj is limited to two-dimensional and axial symmetric flawed 

configuration. 
This would involves treating the material stress strain data explicitly and 

taking full account of the structural component geometry. More work relating to this aspect 

needs to be carried out. 

d. Applicability for various failure mode in practical situations 

3.33 



Chapter 3 

The R6 method has shown explicitly the failure mechanism of fracture and plastic collapse 
in one direction of the crack. However, the failure of a structural component in practical 
situations often involves the combination of several failure mechanisms. For instance , the 
leak before break analysis, the fatigue crack growth, the change of fracture mode other than 
the mode I crack opening fracture etc. are not fully implemented. R6 rev. 3 did recommend 
some solutions for some of these problems but is yet to be satisfactory. 

3.4 Conclusions 

This chapter has reviewed developments in LEFM and EPFM, and discussed R6 design method in 
detail. The purpose is to provide the physical basis for statistical analysis of basic variables, and to 

provide a failure function model of cracked components for reliability analysis. 

In the review for LEFM, emphasis is on stress intensity factor: its characterisation of the crack tip, 

and its relation with energy. Based on K, the concept of fracture toughness K, has been built. The 

size requirement of a steady K1, has been discussed. The Charpy tests are briefly presented. The 

design method using LEFM are discussed. In the end, some of the uncertainties associated with Kle 

applications are discussed. LEFM is important for brittle fracture analysis. 

For ductile fracture analysis, EPFM should be used. Comparison is made between J-integral method 

and CTOD method. J-integral method is used in this thesis for its features in mathematical integra- 

tion, crack tip characterisation, and energy meanings. Some experimental procedures to determine 

J have also been briefly reviewed. The restrictions and limitations of J-integral method have also 
been discussed. 

The R6 method, specially R6 Rev. 3, is evaluated and selected to be the design method for reliability 

assessment for cracked components. The R6 method analyses the safety of cracked components in 

an integrity manner and can be updated with the development of fracture mechanics. The R6 

method provides a relatively consistent and relatively reliable fracture failure criterion for reliability 

analysis. In this* chapter the limitation and features of R6 method are also discussed. Therefore 

in later chapters the reliability assessment of cracked components will use failure function from R6 

method. 
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Chapter 4 

The Reliability Assessment Of Cracked Components Under Tensile Loading 

Nomenclature 

a crack size 

ao average measured crack size 

aini initial crack size 

a mean crack size 
Aa crack extension 

C half of crack length 

Cov[.,. ] covariance matrix 
E Young 's modulus 
F geometry correction factor 

FL load factor 

FAL failure assessment line 

JO. 2 J integral fracture resistance with 0.2mm crack growth. 

Ki, brittle fracture toughness. 

K, ordinate in R6. Rev. 3 FAD. 

Lr ratio of applied load to plastic collapse load 

N number of NDT inspections 

M safety margin 

P load 

P(F) probability of failure 

W specimen thickness 

y crack geometry factor 

# reliability index 

standard deviation 

stress 

ap stress with effects on plastic collapse 

$ stress without effects on plastic collapse or 
yield stress Cy 

Other parameters are defined in the text. 
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4.1 Introduction 

In this chapter, each of the basic variables appearing in the fracture failure function has been 

examined for its statistical variability. With the failure functions for crack initiation and crack 
instability proposed in chapter 3 and the Level 2 reliability analysis method explained in chapter 2, 

the approximate probability of failure or the reliability index can be calculated efficiently . 

When a structural component has a crack resulting either from fabrication or from service, the 

component may fail by fracture or by plastic collapse under tensile loading. The integrity of the 

component is affected by a number of variables. Fig. 4.1 shows the failure paths which a cracked 

component can follow[4.1]. 

The deterministic safety assessment in the R6 method is carried out by the measurement of the load 

factor . The load factor in the R6 method is defined as the ratio of the applied load which produces 

a limiting condition against the applied load in the assessed condition. In normal cases, the limiting 

load is evaluated by changing the value of the specified load until the assessed point lies on the 

Failure Assessment Line(FAL). The deterministic sensitivity analysis for each variable is carried out 

by plotting a relation between the variable and the load factor over a range of values while keeping 

the other variables fixed. 

In a realistic environment, all the variables of the structural failure function such as loading, crack 

geometry, material resistances may be considered to be randomly distributed. By using a proba- 

bilistic model for each variable with parameters based on statistical analysis of the sample data, 

reliability theory can be used to calculate the probability of failure for a certain assessment point in 

a deterministic study (which is called the mean point in reliability study) to a sufficient accuracy 

and efficiency. 

With appropriate computer implementation, the reliability calculation can be a routine exercise for 

engineering purposes. With the benefit of reliability analysis, some of the characteristics of safety 

assessment can be expressed explicitly. For instance, a sensitivity factor can be obtained for each 

statistical variable from the co-ordinates of the design point (see chapter 2). Furthermore, in the case 

of more than one failure mode, the dominant mode can be determined by finding which reliability 

index is the smallest. 
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4.2 Failure Mode Identification 

As Fig. 4.1 (from Ref. [4.11) shows, a cracked body can follow a number of failure paths. The final 
failure modes are brittle fracture, ductile fracture , and plastic collapse. In each particular path, the 
failure mode will depend on material properties, loading conditions, geometry of the structure and 
other factors. 

If the material is brittle, immediately after crack initiation the structure will fail by rupture. In this 

case, failure paths 1 and 2 are followed. If the material has a high fracture toughness and a low 

yield stress, the cracked body may reach plastic collapse before fracture occurs. In this case failure 

path 6 is followed. 

If the material can sustain a certain amount of slow stable crack growth after initiation, failure paths 
31 4 or 5 may be followed. Failure path 3 is particularly dangerous, because after a seeming period 

of ductile stable crack growth, by increasing the triaxiality or crack velocity or by temperature shift, 

a sudden brittle fracture occurs. For engineering purposes, this is treated as in failure path 2 to 

exclude cleavage fracture from ductile analysis. 

Therefore for the present analysis, if the material is brittle or with little ductility, it may be assumed 

that failure occurs either when crack initiation occurs or when plastic collapse occurs. This series 

system of failure modes is shown in Fig. 4.2. as series 1. Series 1 follows failure paths 1,2,3 by crack 

initiation or failure path 6 by plastic collapse. If the material is ductile, failure occurs after slow 

stable crack growth by plastic collapse or tearing instability. This series system of failure modes is 

shown in Fig. 4.2 as series 2. Series 2 follows failure path 4, or 5 or 6. Failure path 4 and 5 in the 

R6 method can be determined only by the calculation of the maximum load for instability. 
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4.3 Discussions on The Probability Distributions for The Basic Variables 

4.3.1 '4,, eneral remarks 

In this chapter, only four types of parameters are considered to be statistical variables: 1) the 
fracture toughness Kl,, or JO. 2 and the slope of the fracture resistance curve, 2) the yield stress, 
3) the crack size and 4) the applied stress . Other parameters appearing in the failure function 

are either deterministic or have little statistical variation and so are of little importance. Model 

uncertainty is not considered yet because of the difficulty of having sufficient data to determine 

probability distribution parameters . Nevertheless model uncertainty remains a great challenge for 
future study. 

4.3.2 Fracture toughness 

Factors influencing the variability of the fracture toughness include: 

1) Microstructural variability, i. e. the within-specimen variability including metallurgical structure 

and thickness effects etc. 

2) Between-specimen variability, e. g. the non-uniformity in the fatigue pre-crack, material from 

different suppliers etc. 

3) Measurement errors 

4) Other factors. As discussed in chapter 3, K1, is a parameter in LEFM to define the critical level 

of stress intensity factor for brittle fracture. There are 3 main effects which may cause inaccuracy 

in its determination 1) plasticity effect 2) notch effect 3) scaling effect . 

Gates et al 14.2] [4.31 have demonstrated a normal distribution forK,,,, J0.2 and the slope of the R 

curve. 

4.3.3 Yield stress 

For yield stress, the first three sources of uncertainty are the same as for fracture toughness. In 

addition, different yield stress criteria, for instance von Mises or 11rasca criteria, can cause uncer- 

tainty. The usual assumption for yield stress is the normal or lognormal distribution or Weibull 

distribution. The lognormal distribution has the advantage of precluding negative values[4.4]. 

The parameters of probability distributions for fracture toughness and yield stress are estimated 

from data collection. From [4.41, the yield stress can be modelled by a lognormal distribution. In 

this study, the fracture toughness is assumed to be normally distributed and the yield stress is 

assunied to be lognormally distributed. 
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4.3.4 orrelation of fracture toughness and o,,, 

It is found for some steels that a high fracture toughness for cleavage is associated with low yield 
stress. There is no clear trend for this association in ductile fracture. Although this phenomenon 
appears in a wide range of steel, it is not clear how much the fracture toughness correlates with 
yield stress. 

In this chapter, in one example for brittle fracture it is assumed that for cleavage fracture the 

correlation coefficient of K1, and ay is -0.1. Otherwise, the correlation coefficient has been assumed 
to be 0. 

4.3.5 Crack size 

The uncertainties in the crack size distribution results from the following sources: 

1) the size distribution inherent from manufacture, 

2) the error in measuring the size of the crack associated with the non-destructive testing technique 

e. g. ultrasonic testing, 

3) the probability of not detecting such cracks in the course of subsequent pre-service inspections, 

4) the extension of cracks in service e. g. due to fatigue. 

In this chapter the crack is assumed to have been inspected at some stage of service so that only 

the second source is considered. 

The Welding Institute [4.51 has carried out a survey of the errors associated with the ultrasonic 

inspection of planar defects. Their results suggested that defects sizing errors are partly systematic 

and partly random. 

* There is a systematic undersizing of defects by lmm. 

* There Is a random error with a standard deviation of 2.5mm. Thus if an operator makes N 

scans, the standard deviation of the mean is 2. SIVN--. 

It is assumed that the NDT errors are normally distributed, then the probability distribution function 

of mean crack size d is 

fa (a) =1vf 
-N 

exp - 
N(a - ao - 1)2 

(4.1) 
2.5 27r 12.5 
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where ao is the average measured crack size. 

4.3.6 L2ýdA: ing 

The probability distribution of applied stress depends on the environment and the overall structural 

system . It is assumed in this study that the applied stress is tensile and normally distributed 

with a coefficient of variation of 0.1. It is further assumed in this chapter that residual stress is a 
deterministic parameter. 

4.3.7 Component geometx: y 

The dimensions of the cracked component in this chapter are assumed to be deterministic because 

their variations are small in comparison with the crack size and crack length. 

4.4 Construction Of The Failure Function 

4.4.1 Series 1 for brittle material 

For failure series 1 in Fig 4.2 failure criteria are crack initiation and plastic collapse. For crack 

initiation, from R6. Rev. 3 discussed in chapter 3: 

Y(O'+ 0'res)NFIra +p- [1 - 0.14L 2] [0.3 + 0.7exp(-0.65L 6)] (4.2) 
Ki, rr 

where for tensile applied stress a, and for the case where yield load equals ay(W - a) 

Lr - 
aw (4.2a) 

cy(W - a) 

and where p is plasticity correction factor. 

r 
is defined as: The other failure mode is plastic collapse. In the R6 method a cut off value of L max 

L max = 
flow load (4.3) 

r yield load 

rr1.15. 
So, 

The critical condition is Lr =L max 
- For A508 steel chosen for this chapter L max is 

1.15 - L, (4.4) 
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4.4.2 Series 2 for ductile material 

1) Discussion on R6 Rev. 3 category 3 analysis 

As seen in chapter 3, the R6 Rev. 3 category 3 analysis has the following steps: 

(a) Plot the reserve factor on load, FL, as a function of the postulated crack extension. 

(b) Repeat the analysis for different values of ao to establish the sensitivity of the results to initial 

crack size and plot these on the same graph. 

(c) Explore the effects of changing the other variables specified in the reserve factors. 

The main reason for such an extensive analysis is due to the complicated nature of ductile fracture 

and the fact that reserve factors can depend on each other and should not be considered in isolation. 

The failure criterion of the category 3 analysis can be presented as : 

Japp :5 Jm 
at 

(4.5) 

ajapp 
< 

dJmat 
(4.6) 

aa - da 

The instability load point or the limiting condition in category 3 is when both the above equations 

are satisfied as equalities. It is from these formula that Milne [4.8] set up the crack extension locus 

procedures to treat ductile crack instability together with some experimental validation. From Milne 

it is known that the maximum loading has a crack extension locus tangential to the crack initiation 

FAT . U. 

Despite the R6 category 3 analysis advantages of giving a detailed picture of the safety against crack 

ductile instability, there are certain shortcomings: 

A failure assessment line cannot be provided for general use in ductile instability. The instability 

point depends on both the R curve and the crack initiation FAL. There will be a different FAL 

for each different fracture resistance R curve in the (L,,, K, ) cartisian co-ordinate system. Also 

sensitivity analysis is carried out with little global view of the inter-relation of the many variables 

in the fracture governing system equations. 

The failure series 2m Fig 4.2 is for ductile tearing. Assuming that the specimen is under load 

controlled condition, the maximum stress is either the ductile tearing instability stress or the plastic 

collapse stress, whichever is the lowest. Thus the safety margin are: 

omax(maximum stress from ductile fracture analysis) - o" (4.7) 
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and 
M=L max - Lr 

r 
(4.8) 

One of the impediments in applying the R6 method is the tedious procedure used for considering 

crack stable tearing. The procedure in the R6 method involves plotting the reserve factor on load, 

FL as a function of the postulated crack extension to find the maximum FL [4.61. 

The R6 method presents an analysis in a schematic graphical manner. It should be understood that 

these graphical procedures were made for practitioners to visualise and to apply in a uniform way. 
Reliability methods can be introduced to investigate the interrelation of various variables and their 

relative sensitivities, in a more rational and more efficient way. However, the procedure to quantify 
failure margin in R6 Rev. 3 is not suitable for such a numerical iterative process of the reliability 

analysis. 

To quantify the reserve capacity (+ or -) of the flawed ductile component a mathematical failure 

indicator should be established. If the new failure indicator can be proved to be applicable, general 

use of it should be made. 

2) Numerical vrocedure to calculate the instability maximum load 

In this study, the procedure for finding the maximum load point is a numerical program to get the 

maximum FL' efficiently and directly instead of the schematic procedure suggested in R6 Rev 3. 

In Fig. 4.3, the failure assessment line (FAL) of R6 is plotted with three crack extension loci. These 

three crack extension loci differ only in the applied load with P, < P2 < P3. 

Crack extension locus 1 intersects with the FAL twice. In fact, the crack will stop growing at point 

a. Crack extension locus 3 does not meet the FAL, so that the crack will extend in an unlimited way 

until final collapse. Crack extension locus 2 is tangential to the failure assessment line. According 

to the definition in R6 rev 3, this is the critical limiting condition. 

It is evident that 

if P> P2 the crack extension locus will not meet the failure assessment line and the crack state 

is unstable. 

if p :5 P2 crack extension locus will meet the failure assessment line and the crack state is either 

stable or critical. 

In order to obtain the critical P value i. e. P2, the following algorithm is proposed: 

1) Input the set of variable values and find the position in the R6 FAD for this set of data. 
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Calculate the value of M from equation (4.2). 

3) If M>0, the assessed point is inside the frame of R6 FAD. The load is then increased 

with the increment being either the last increment or a third of the last decrement until the 
assessed point is outside the R6 FAD frame i. e. M<0. 

4) If M<0, the assessed point is outside the frame of R6 FAD; fix the applied load and go to 
the next step of crack extension (step 5 below). 

Increase only the crack size to see whether the crack extension locus will fall inside the frame 

of the R6 FAD by calculating the M value from equation (4.2) for each point. 

If any of the M values in the crack extension locus is greater than 0, the crack state is stable; 
then go to step 3. 

If none of the M values in the crack extension locus is greater than 0, the crack extension 
locus is outside the frame of R6 FAD and is unstable. Decrease the applied load by an amount 

equal to either a third of the last increment or to last decrement. 

If crack extension is equal to 0, repeat step 5. 

The magnitude of last increment or decrement is changed each time the crack extension locus 

is drawn, and becomes smaller and smaller. If pp is the magnitude of last increment or last 

decrement, the difference between the last stable load and the last unstable load is either pp 

or 2pp. SO IPeatimated - P21 :5 2pp. pp can therefore be taken as a indicator for convergence. 

If pp is less than some preset criterion, the computational procedure can be stopped and the 

P2 can thus be taken as the estimated value. 

The convergence and the accuracy depend on the situation and the amount of computation. They 

are controlled in the program by the preset criterion of parameter pp. The main strategy in this 

algorithm is the minimisation of pp. A flow chart is shown in Fig. 4.4. The results of an example 

calculation are shown in Fig. 4.5. 
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4.5 Example of Reliability Calculation for Brittle Material(series 1) 

4.5.1 Dimensions 

A structural component has a thickness, w, of 22mm. A semi-elliptical surface crack is found (see 

Fig. 4.2 ). For this example, it is assumed that a=c so that the crack has a semi-circular shape. 
Furthermore, a or c is much less than w. 

4.5.2 Stresses 

There are two sources of stresses: 1) applied uniform tensile stress 2) residual stress. The applied 

stress aP has an effect on plastic collapse while residual stress a" has no effect. 

4.5.3 Stress intensity factor 

For a semi-elliptical surface crack in a finite plate , the stress intensity factor according to Newman- 

Raju [4.7] is: 

Flý-F 
(4.9) 

where 
1+1.464(-') 1.65 for a<1 (4.10) 

cc 

1+1.464(c) 1. r"5 for a>1 
ac 

2.464 in this case. 

a )p +_ 1)( a )2p]f. 
F= [Mi + (, 'rQ - Mi)( N/Q(M2 - (4.12) 

ww 

where p= NFrj and f. is the finite-width correction factor. If the specimen width is much bigger 

than c, then And MI = 1.13 - 0.1 = 1.03 and M2 = 
V14' 

.L 
ie----j 4.5. . Plastic y Idin ý--Ioad 

In this case it is assumed that Py = ory(w - a) for a surface through crack. In practical cases, the 

plastic yielding load may have a more complicated form. 
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4.5.5Data preDaration 

For crack size, assume N=25, ao = limm. So the average crack size 12mm. The standard 
deviation of crack size is 0.5mm. 

Gates conducted a study on probabilistic elastic plastic fracture mechanics[4.2], where three different 
sets or groups of data have been used in order to study the relation between load factor and the 
probability of failure in three regions of the R6 FAD, i. e. the LEFM region, the plastic collapse 
region and the intermediate region. However, the analysis by Gates[4.21 was based on a thorough 
integration of the probability density function and the early revision of R6 method, R6 Rev. 1, 
rather than a clearly defined level 2 reliability method and the latest R6 revision, R6 Rev. 3. In 
R6 Rev. 3, the yield stress and ultimate stress are used instead of flow stress in R6 Rev. 1. These 
three different data group from [4.21 are taken for investigation in this chapter, with the flow stress 
equal to the yield stress here, for two reasons: 1) numerical convenience, 2) the strong correlation 
between flow stress and yield stress. The data by Gates[4.2] give the best estimates and 95% lower 

bounds. So in this example, the mean values are the best estimates and the standard deviations are 

calculated on the assumption that the lower bound corresponds to the 2.5 % fractile of a normal 
distribution. 

Table 4.1 data for analysis without ductile tearing 

(SD : standard deviation, X: positive multiplying factor ) 

parameter type of data group I data group 2 data group 3 
distribution linear elastic elastic plastic plastic 

Ki, (mean) normal 50 MPa VIm- 70 MPa Vfm- 210 MPa Vm-- 

KI, (SD) 5.10 MPa vrm- 7.14MPa vrm- 21.4MPa \, Fm- 

a,, (mean) lognormal 830 MPa 415 MPa 415 MPa 

av ( SD 55.10 MPa 27.55 MPa 28.05 MPa 

a (mean normal 12mm 12mm 12mm 

a( SD . 5mm . 5mm . 5mm 

crP (mean) normal 33 X MPa 33 X MPa 33 X MPa 

orP( SD ) 3.3 X MPa 3.3 X MPa 3.3 X MPa 

Oro 31 X MPa 31 X MPa 31 X MPa 

w1 1 
22 mm 1 

22 mm I 
22mm 

The mean values for these three groups of data are shown in Fig 4.6 for various values of the scale 

multiplier 

The load factor is an inverse relation between applied stress and maximum, stress which is specified 

in R6 Rev. 3. For illustrative purposes, in this chapter, a nominal safety parameter is defined in 

Fig. 4.7. It should be noted that with the definition used, an increase in the safety parameter 
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corresponds to an increase in the probability of failure. 

4.5.6 Reliability calculation procedures 

IM__ From. the structural reliability theory discussed in chapter 2 and the failure functions discussed in 

section 4.4 of this chapter, an iterative computer program has been developed. The program is 
described in the flow chart in Fig. 4.18. 

4.6 Results and Discussion 

Figs. 4.8,4.9 and 4.10 show the correspondence of safety parameter with Iogj0P(F) calculated from 
FORM, SORM and FORM with negative correlation of Kl,, and aY for data groups 12 and 3. Fig. 
4.11 presents results obtained by FORM for all three data groups in one diagram. 

From. these figures, some obvious statements can be made: 

There is very little difference in the reliability calculated by FORM and SORM. This is 

because the local shape of the failure surface in the standard normal space is relatively flat. 

2) There is a small decrease in probability of failure due to the negative correlation between 

fracture toughness and yield stress in data group 2, i. e. the intermediate region in the R6 

FAD. There is very little influence of the correlation in the LEFM region and plastic collapse 

region. 

3) There is not a unique relationship between safety parameter or load factor [4.21 and probability 

of failure. The differences in the value of log, oP(F) decrease with an increase in the values 

of the safety parameter. The differences in log, OP(F) are more than 1.0 until log, oP(F) 

reaches a value of about -3.0 at a value of the safety parameter around 0.7. As seen in Fig. 

4.11 the increase of the safety parameter corresponds only to the general trend of increase in 

probability of failure. 

Because of the wide scattering of the reliability results, this findings confirm that a comprehensive 

reliability analysis is thus necessary, rather than using safety parameters or load factors to indicate 

the safety of the structure. Further variations in safety levels can of course occur as a result of 

variations in statistical parameters between different structures but this is beyond the scope of this 

example. 

Figs. 4.12,4.13, and 4.14 present the results of sensitivity factors at the design points which govern 

the reliability. If more than one failure mode is considered, the design point is chosen as the design 

point of the mode with the lowest reliability. It is known from chapter 2 that the absolute value 

of sensitivity factor reflects the contribution of the variation of that variable to the probability of 
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failure. 

4) For data group 1, the sensitivity factor of K1, is much larger than that of O'y. When KI, and 
ay are assumed to be negatively correlated, sensitivity factors of O'y change from negative to 

positive. Comparatively, the sensitivity factors of a, a and ay are much less than that of 
Kj,. KI, has a dominant role in deciding the reliability in the LEFM region. 

For data group 2, the absolute value of the sensitivity factor of Ki, decreases dramatically 

while the other three increase sharply when the safety parameter is more than 0.5. The order 
of absolute sensitivity values of these four variables are a, Kj, a and ay. There seems to be 

no overall dominant variable. 

6) For data group 3, the sudden change of the slope of sensitivity factors is due to the change 

of dominant failure modes. The plastic collapse failure modes determine the reliability when 

safety factors are more than 0.4. In the plastic failure mode, there is no fracture toughness 

variable. 

7) For data group 3, sensitivity factor of KI, is 0 or a small value when KI, and oy are correlated. 
The sensitivity factor of yield stress has an important role on the value the reliability. 

8) With Ki, and ay are correlated, the sensitivities of resistance variable Ki, and oy are related 

to each other. When one of them is dominant, the other may take a positive value. 

4.7 Reliability of Component Failing by Ductile Fracture(series 2) 

When material is at the upper shelf temperature, it behaves in a ductile manner. There will be a 

large reserve of capacity. Much effort in the past has been put into the investigation of the R-curve 

both by means of global analysis and micromechanism. Gates et at [4.3] have conducted a statistical 

analysis and found the statistical properties for one group of material investigated, by assuming a 

linear relation between J and crack extension Zýa. 

J: -- Jo. 2 + Aa 
dJ 
da 

wherejO. 2 is the J value with 0.2 mm crack extension. The relation between Jo. 2 and K1, is 

(4.14) JO. 2 

For the material Of an A508 forging, it was found from tests on six specimens that the inean value 

and standard deviation are[4.3]: 
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/4j,,., - 182.2kN/M and 0ý JO. 2- 33.84kN/M 

, u, ij/d,, = 658MPa and O'dJlda = 209MPa 

These quantities are both assumed to be normally distributed. Together with the above data group, 
it is also assumed that 

y,,,, == 140OMPa and a,, r= 140MPa 

and that ay is lognormally distributed. 

For this material, it is assumed that L, ma, = 1.2. The crack dimensions aP and a" are the same as r 
in the study for series 1. This data group has mean points seen in Fig 4.15. 

Fig. 4.16 shows the increased reliability (decreased probability of failure) when ductile tearing is 
taken into account. For this example, the difference of probability of failure as judged by initiation 

and by ductile tearing is as much as two orders of magnitude. 

Fig. 4.17 compares the sensitivity factors for the failure mode of initiation and plastic collapse(series 
1) and the failure mode of ductile instability and plastic coHapse(series 2). For the data group in the 
intermediate region, for the former case, JO. 2 and ay have sensitivity factors with similar magnitude. 
But for the latter case with ductile tearing, the sensitivity factors for Jo. 2 and dJlda are 0. This 

can be explained for the following reasons: 

In Fig. 4.15 the design point from FORM with corresponding assessment point (or mean point) are 

shown. The design point for FORM is the point with the shortest distance to the mean point in the 

standard normal space. Because the failure surface for ductile tearing is further from the assessment 

point than the failure surface for plastic collapse, the plastic collapse failure mode governs the failure 

probability. 

The variation in the slope of the J-R curve appears not to be important in this particular case. The 

failure probability may be sensitive to the J-R curve in some other cases when the J-R curve has 

much lower mean values or the data group is in the LEFM region. 

This result can be compared with a deterministic study by Milne [4.91 where a range of material 

with more or less ductility was found to fail finally by plastic collapse. Those failures may not be 

caused by the initial crack but with the crack extension all fail near the state of plastic collapse. 

However, the study by Milne [4.91 should not be confused with this study. Milne found that all 

the specimens in that study failed near the plastic collapse lirnit after certain crack extension in 

a deterministic condition. In this study, for a group of mean points in the R6 FAD, with the 

assumed statistical distributions, the most probable mode of failure is plastic collapse. There is 
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still a possibility of ductile tearing instability. This study and Milne's study point out the need to 
investigate further the failure mode of plastic collapse. 

4.8 Conclusions 

A reliability method has been set up for conducting the safety assessment of a structural steel 

component with a crack. For failure by crack initiation or plastic collapse example cases with three 

typical series of data for LEFM region , plastic collapse region and the intermediate region are 

analysed. For ductile tearing instability plus plastic collapse, only one group of data is analysed. 
Some general conclusions can be drawn from the results: 

1) In the context of fracture assessment, an algorithm to calculate ductile instability load is 

proposed. The maximum stress can be calculated by a iterative scheme. The sensitivity 
factors can be calculated from reliability analysis. 

2) In the context of reliability calculation a detailed formula and a simplified numerical scheme to 

calculate second order reliability has been proposed. It is found that reliability calculated from 

SORM differs very little from FORM for the examples considered, confirming the adequacy 

of FORM for general purposes. 

3) In the context of safety assessment for fracture without ductile tearing , it is found that a single 

safety parameter or load factor[4.21 as used in R6 method can not give a satisfactory indication 

of safety. The failure probability can vary drastically with the same safety parameter. In the 

intermediate region, the probability of failure can be decreased by the negative correlation 

between fracture toughness and yield stress. In the near plastic collapse region, the plastic 

failure mode is the dominant failure mode. 

4) In the context of sensitivity analysis, it is found that the sensitivity factors for different 

variables vary dramatically from region to region. In the LEFM region, fracture toughness 

has a very high sensitivity factor while yield stress has a low sensitivity factor. The opposite 

happens in the data group for the plastic region. These facts can have a serious implication 

if one is to consider giving a partial safety factor for each variable in the future. 

5) In the context of ductile fracture reliability analysis, it is found for the example, that there is 

a large difference of failure probability with and without ductile tearing. The plastic collapse 

failure mode is found to be dominant if considering ductile tearing. To this extent, this 

implies that only the mean values of the slopes of the J-R curves are of importance in most 

cases. However, considering that the failure mode of ductile tearing instability is much less 

catastrophic than the other two failure modes, especially brittle fracture failure, the academic 
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interest in pursuing the R-curve distributions may be justified. 

6) For future study, a number of topics can be mentioned: 1) the reliability in the transition 

region between the two extremes of brittle fracture and ductile fracture, 2) the statistical 
distributions of basic variables, 3) the modelling of model uncertainties 4) investigation of 

the plastic collapse failure mode 5) application to more specific material and component 

configurations. 
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Fig. 4.4 Flow chart for computing maximum stress for crack instability 
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Chapter 5 

Modelling Of Stress Range Under Stochastic Loading For Fatigue Amalysis 

Nomenclature: 

a,, bi, 

a2, b2 parameters in f (s) 

BIC paraxneters in Wirsching's spectrum 
Ci constants in autoregressive simulation 
D damage indicator 

E[. ] mean 

el I..., ek values of the theoretical stress range pdf 
f frequency in Hz. 

fmax maximum frequency in target spectrum of simulation. 
fW probability density function of parameter x 
fW weighting factor in f (s) 

9 acceleration due to gravity 
H, significant wave height 

I irregularity factor 

rN ith power integration of spectral density function from Eqn. (5.41) 

nj number of applied cycles for stress range Sj 

Nj number of cycles to failure for stress range Si 

ncl, ..., nCk frequencies of simulated stress range 

q value of X2 probability validity test 

R, 7,7 
(r) stationary process au t o- correlation function 

S stress range 

3 normalised stress range 

8 (t) random structural stress response 

S/ spectral density of mean square 
" 

(W) 

s(.,. ) spectral density function 

t time 

TD dorninant period 

Xi parameters in f (s) 

X(t) sea profile above some arbitrary datuni 

a, 18 parameters in P-M spectrum 

, 
8b alternative bandwidth parameter 
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W frequency in rad/sec 

T time interval 

A correction factor defined in Eqn. (5.38) 

01 root mean square 
A normalised force spectral function 

Win natural frequency of the ith mode 

Oi damping factor for the ith mode 

17 sea profile elevation 

E bandwidth parameter 

Other symbols are defined in the text. 
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5.1 Introduction 

5.1.1 General remarks 

Let s (t) denote a continuous, random function of time t representing, for example, the random struc- 
tural stress response at some point in a structure. The probability distributions of the maxima and 

minima of a stochastic process have been investigated to a considerable extent[5.11, [5.2]. However 
in fatigue studies, the problem of determining the stress range distributions is yet to be solved. 
Related to this is the problem of defining stress ranges. 

The primary loading on many structures is of a stochastic nature. For many types of structures, 

extensive data collection has made it possible to obtain analytical models for the processes giving 
rise to the loads (e. g. wave spectrum) or, alternatively, stress spectra directly. 

Under stochastic primary loading the structural response is also stochastic -namely a random func- 

tion of time s(t). Fatigue loading data may be obtained directly from structure monitoring records, 
in the form of strain gauge records[5.31. However, in many cases, this is not possible or economical. 
Alternatively, the loading data for fatigue analysis of a structure under random amplitude loading 

can be compiled in the following way: 

(i) specification of primary loading (e. g. wind, wave, traffic, machinery, etc. ). 

(ii) determination of the structure's stress or strain response. 

(iii) quantification of stress or strain for fatigue analysis (e. g. stress or strain ranges, mean value 

of each range, order of ranges). 

In this thesis, offshore structures under random wave loading have been examined. The ocean wave 

processes can be divided into a series of stationary processes corresponding to separate sea states 

that give rise to the loads. The transfer function from wave height to the actual response of the 

structure is generally complex and thus for normal engineering purposes a number of simplifying 

assumptions are often made[5.41. Nevertheless, for the purpose of this thesis, it is assumed that the 

response spectra in terms of stress are available, as required. 

In fatigue life prediction under random loading, it is generally recognised that uncertainty can result 

in part from the cycle counting method used. In the work described here, the rainflow method has 

been used as a reference procedure, by which to compare other methods, since this gives a better fit 

to experimental fatigue data than other cycle counting methods. 

Usually, approximate methods are used to quantify stress ranges for the purpose of fatigue analysis 

[5.5j, [5.6], [5.71, [5.81, rather than using direct simulation and cycle counting, which involves an 

appreciable amount of numerical computation [5.9], [5.101. However, these methods can be shown to 
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give rise to considerable inaccuracies when compared with the results from simulations. A number 
of previous attempts have also been made to derive analytical solutions for stress range probability 
distribution functions but they either require excessive computer time, or need sufficient statistical 
information. 

This chapter presents a set of simple empirical models, which enable close approximation to the true 

probability distributions of stress range for use in fatigue analysis. They are derived directly from 
the properties of any response spectrum, without recourse to simulation and cycle counting. This 

chapter will serve as the basis for fatigue reliability analysis under random loading, with later work 
in this thesis taking full advantage of this better understanding of fatigue loading. 

5.2. Loading Process 

5.2.1 General remarks 

Development has led to the definition of various kinds of spectra for describing the loading process 
in offshore structures. Time series can thus be simulated from these spectra. 

The response spectrum proposed by Wirsching[5.4] in 1976 has been widely accepted as a convenient 

form for research and application. Some of the assumptions originally set out by Wirsching may 

not be necessary in all cases. It is beyond the scope of this thesis, which is intended to be generally 

applicable to reliability analysis, to investigate the validity of each assumption. 

To obtain a response spectrum for an offshore platform under wave loadings, Wirsching has made 

the following basic assumptions: 

1. The structure is linear. Damping is small and can be linearised. The response is also linear. 

2. The seastate is two dimensional with the worst case for the structure occurring when the wave 

direction is orthogonal to one side of the structure. 

3. Motion of the platform is negligible. 

The wave force is concentrated at the mean water level. 

In computing the wave force on the structure, the structure has zero width relative to the 

wave. 

Having obtained the general spectrum of structural response, e. g. the stress in the structural com- 

ponent, the stochastic loading process should be reproduced from these spectra. In order to simulate 

the loading history, some simulation technique has to be used. An exact transfer from power spec- 

trum in the frequency domain, to time series in time domain may not be possible. The closer the 
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features of simulated process are to original spectrum, the more computer time is needed. However, 

the most important features in the time series for fatigue study are the maxima and minima, which 

can then form loops. Autoregressive simulation can provide a self-motivated time series without 

periodical effect and only requires limited computation. 

5.2.2 Loading spectra 

5.2.2.1 Sea state sRectra 

Wave loading has been chosen as an example for modelling because fatigue damage in offshore 

structures is mainly caused by wave loading. Waves are generated by wind blowing over the surface 

of the sea. The sea profile above some arbitrary datum, X(t), at any point is a random process 

[5.11]. The mean value is 
00 

jux 
(t) =E (X (t» = xfx (x, t) dx (5.1) 

where fx (x, t) is the first-order density function of X. 

The auto- correlation function Rxx (tj, t2) is defined by: 

Rxx (tjjt2) = E[X(ti) X(t2)] (5.2) 

00 
= 

f-' 

00 
XIX2fX(Xl; X2; tl, t2) dxl dX2 (5.3) 

When the first order and second order distribution of X(t) are independent of absolute time, the 

process is said to be weakly stationary. i. e. when 

Rxx(ti, t2) = Rxx(r) 

where 7- = Itl - t2l 

(5.4) 

The conditions in the open sea are not stationary throughout. However, within a finite period of 

time, these conditions can be considered to be stationary. 

If rl(t) is the wave surface elevation above mean still water level, this quantity may be modelled as a 

zero mean, continuous space, continuous time stochastic process, which over a short period of time 

is stationary. And, 
R, 7 . 

(r) == E[ t7 (t) t7 (t + r) I- oo <r<+ oo (5.5) 

The spectral density of mean square can be defined as: 
00 

R17 y) 
(r) c dr - oo < -r < oo (5.6) 

2 -7r 

f 

00 

where R, 7,7 
(r) has an inverse Fourier relationship with S,,,, (w), i. e. 

00 
R, ) 

st -iwr dw - oo <w< oo (5.7) 
f- 

00 
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When r =: 
00 

R�7 (0) = E(i7 (t)2) =St (w) dw (5.8) 
f-' 

00 
rl 97 

u, 21 y2,7 (5.9) 

When M, 7= 0, as it is assumed for the wave surface elevation, then 

00 
dw 

Setting f= w/2r as the frequency in Hertz, and putting 

S, (f )=S, ' 
,,, 

(w) where f= wl21r (5.11a) 

gives 

,2S, 
7,7 

(w) &v =2 ?rS, 7,7(f) df - oo <f :5 oo 
00 

C17 
f 

co 

f-, 

00 

For engineering purposes, the single sided spectrum is used. Thus, 
CX) 

ol 2= 27r S, 
7,7 (f ) df 0<f< oo rl 

fo 

From the assumption that IL, 7(t) = 0, Eqn. (5.9) becomes 

E[t7(t)21 = o,, 27 (5.9a) 

The left side of equation (5.9a) can be obtained from a simulated random process; while the right 

side can be calculated from Eqn. (5.10), Eqn. (5.11) and Eqn. (5.12). A random process 17(t) from 

simulation, should have similar, if not equal statistical properties, to its original spectral function. 

Eqn (5.9a) could be used to check how close the statistical properties of the simulated time series 
is, to those of the response spectra in a simple way. 

A number of empirical spectral formulations of the water elevation, which are known as the seastate 

spectra, are in common use, e. g. the Piers on-Moskowit z (P-M) and the JONSWAP spectrum[5.121, 

(5.131. For a fully developed sea, the P-M spectrum is often used. The P-M spectrum is defined by 

wind speed and two dimensionless constants a, #. 

cxp 

where 
WO = 

, 419.5 

(5.13) 
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yjq.. 5 is the wind speed in m/s at a height of 19.5m above the mean still water level 

a is equal to 0.0081 

p is equal to 0.74 

Alternatively 
, the P-M spectrum may be expressed in terms of the seastate parameters , H, , the 

significant wave height and, T, the mean zero crossing period [5.111 or TD the dominant period. 

5.2.2.2 Response sDectra 

A response spectrum can be represented in a number of different ways: 

a) as an explicit function of frequency[5.12] 

b) implicit in terms of an input spectrum and transfer function (often involving a linearisation)[5.14] 

c) in numerical form. 

In many cases, however, exact analytical expressions do not exist for other than simple structures. 

In offshore structures, when the seastate spectrum is obtained, if the structure is linear, the ordinates 

of the response spectrum for each frequency will be the product of the seastate spectrum and the 

transfer function as in Eqn (5.15). 

The transfer function depends on mass , stiffness and damping of the system, apart from the external 
loading[5.111, [5.141. Many factors should be included e. g. water elevation, deck mass, soil stiffness, 

pile geometry, pile flexibility, batter, damping force, water particle velocity, platform velocity etc. 

The exact solution will require considerable computation efforts [5.8], [5.14], [5.15]. For the purposes 

of preliminary design and reliability fatigue analysis, a simple algorithm was proposed by Wirsching 

[5.4], to provide the mechanism for the efficient introduction of probabilistic design theory. 

Wirsching claimed to have a much simplified response spectrum, which is summarised in the following 

paragraphs [5.41, without resorting to extensive computation. For each mode of structural response, 

the natural frequency can be identified. A filter equation can be made to include most of the effects 

discussed in the second paragraph of this section, and to transfer the seastate spectrum to the 

response spectrum. 

For the ith mode of structural dynamic response, from the P-M seastate spectrum, if A(W) is defined 

as the normalised force spectral density function from the sea state spectrum, derived from p-M 
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spectrum, we have: 

Bc { 
A(w) = 7ýý+, exp TL"c for w 

where B>0, c>0, (for example B= 1050, c= 4 as in the Bretschneider example [5.41) and 

f 00 
A (w) dw 

Multiplying the force spectrum by the transfer function, the response spectrum is: 

2) 2 
(5.15) 

where 
ryi -4 

Win 

w 

and ýi is the damping factor for the ith mode 

Based on the response spectrum of equation (5.15), if 

Win A= 
27r 27r 

[ -B 

S(f) = AH,, ý* ,p 
(27rTDf)4 

4 )2}2 + {21L}2] TD (27rf), 5[{l 
- 

(f 
fn fft 

where B= 1050 

(p = 3.25 in this study 

A is scaling factor of 5580 when H, is in metres 

e=0.02 in this study 

The 11 seastate spectra are shown in Fig. 5.1 according to data provided by Table 5.1 from ref. [5.30]. 

By choosing f, =O-286 the 11 response spectra are shown in Fig. 5.2. 

Fig. 5.3 shows each spectrum separately to illustrate the change of band width. It is obvious that 

spectrum 1 has a relatively wide band width whilst spectrum 11 is relatively narrow band. 
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Table 5.1 Sea states 

Sea 
st ate 

Significant 

wave height 
H, (m) 

Dominant 

period 
TD (SeC) 

Fraction 

of time 

1 16.01 17.3 3.68xlO-5 
2 14.48 16.5 9.32xlO-5 
3 12.96 15.8 3.70x 10-4 
4 11.43 14.7 2.20 x 10-3 

5 9.90 13.6 7.30X 10-3 

6 8.38 12.7 1.35x 10-2 

7 6.86 11.6 2.65 x 10-2 

8 5.33 10.3 6.01 x 10-2 

9 3.81 9.1 2.00xlO-l 
10 2.28 7.7 4.90X10-1 
11 0.76 4.4 1.9OX10-1 

5.2.3 Loadinjg Process simulation 

5.2.3.1 Introduction 

To relate the statistical properties of the structural response spectrum to a real time history, a 

direct numerical simulation has been conducted. It is virtually impossible to simulate the exact 
time history which will satisfy all the statistical properties e. g. the moments of the power spectrum 

to a very high level. In fatigue study, the most important features of the loading history are the 

peaks and troughs, from which the stress ranges can be obtained. By using current knowledge, the 
loading peaks and troughs process can be approximated to a sufficient extent. The time interval for 

simulation has been taken as half the reciprocal of the maximum frequency in Hertz, so that the 

minor differences can be ignored. 

5.2.3.2 Normal methods 

In the past, the simulation of peaks and troughs from the sample functions of the random process 

has been a very cumbersome task, as shown by Shinozuka [5.161. In the late sixties, the Fast Fourier 

transform(FFT) was developed. Yang [5.17] then used the FFT technique to generate discrete time 

series which could serve as artificial random signals, as in the following explanation. 

rrom Eqn (5.6) and Eqn (5.7) for a stationary process, the spectral density and auto-correlation 

function of the process forms an inverse Fourier relationship. If the random process is stationary 

and Gaussian with zero mean and spectral density S' VIM, put 

00 
X0 (t) = 

f- 

00 

'w t dRo 
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where dFco(w) is an orthogonal random process with zero mean and 

E[dko (w 1) d4 (W2)] 7-- 0f or W1:? ý W2 

EII &Tco (W) 121 = S, 
7,7 

(w) dw 

The asterisk denotes the complex conjugate. 

Using condition (5.17), one can see 

I? n, 7 
(r) = E[? 7 (t) t7 (t + r) 

f co 
S, 

7,7(. 
) 
c"' dr (5.20) 

00 

if 
2 S, ' 

1,7 
(w) 

f 00 
S(w) coswr dr (5.21) 

So from equation (5.18), if one defines 

dU(WK) ý2 (5.22) - [2S(w) ýýWKIICOSIPK 

2 (5.23) dV(WK) == -[2S(w) Jýý(VKJI'sinlkK 

where OK (K == 1,2.... ) are independent and identically distributed random phase angles with a 

uniform density function 1/27r in [0,27r ], then 

AnýWK WK+l - WK (5.24) 

Xo(t) = cos(wt) dU(w) + sin(wt) dV(w) (5.25) 

will satisfy conditions (5.18), (5-19). 

Therefore, for a stationary random process 

N 

Xo(t) [2S(WK)JýýWK12 r-05(wKt + OK) (5.26) 
K=i 
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From equation (5.26), by selecting 'ýýWK, a pseudo-random process can be achieved. 

The computational cost of simulation will depend on the length of the required loading process and 
the shape of the spectrum. If all ýýWK are equal, X(t) will be periodic with a period equal to the 

reciprocal of the minimum frequency of the input spectral density. To avoid this periodic problem, 
two ways have been proposed: 

(1) Make AWK small, hence N is big and the period is bigger than the length of the 

simulation loading process (J. N. Yang) [5.17]. 

Choose random ýýWK. (P. Wirsching) [5.8]. 

The first way will raise the computation cost depending on the length of record wanted, while the 
latter approach might miss some significant spectrum points which, for example, may happen in the 

second narrow peak of the double peak offshore response spectrum. 

5.2.3.3 Autoregressive simulation 

May [5.18] generated wind records which specify a particular power spectrum using an autoregressive 
filter. The same approach is used by Anagnostides [5.19] for earthquake simulation. This autoregres- 

sive method makes a time series system oscillating under its own internal random forces. Therefore 

the problems from Ref. [5.171 and [5.81 can be avoided. Consider the random process S(t) formed 

by a moving linear combination of another random process X.: 

8 
(t) 

: --:: 7 Co Xq + Cl Xq 
-1....... 

+ Ckxq-ic (5.27) 

where C, C, 
.... 

CA; are constants. 

If At is the increment of the series then the power spectra of s(t) and Xq are related as shown in 

[5.18] by spectral density values: 

S"(f) = ly(f)12S x (f) (5.28) 

where IY(f)12 is the transfer characteristic of the autoregressive filter, given by: 

y(f) 12 = b,, + 2b I coswnst + 2b2cos2wZýt . ..... + 2bkcoskwZýt (5.29) 

where 
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bo Co Ci ... 
Ck-1 CO Co ý 

bi cl C2 
... 

Ck cl 

(5.30) 

bk- 1 Ck-1 Ck 00 ck-i 
bk Ck 000 Ck 

Hence, a time series with a specific power spectrum can be generated as follows: 

Initially, a sequence of independent random numbers /ii with uniform distribution in 

the interval (0,1) is obtained using a standard sub-routine in the computer. 

(2) A new sequence of independent random numbers {Xj} with a Gaussian distribution 

having zero mean and unit variance is obtained with the transformation [5.20]. 

Xi = (- 21npi) 21 cos (27r/. Li+ 1) 

Xi+l = (-21nyj)12'sin(2? rjzj+j) (5.31) 

where i is an odd number. 

(3) Fý-om Eqn (5.28 ), by transformation of Eqn (5.27 ), the transfer characteristic of the 

required autoregressive filter is 

2 
S-U) 

IYMI 37(f) 
(5.32) 

where S, (f) is the target spectrum, for instance, S(f) equation (5.16). The power 

spectral density function of the ensemble form has the function[5.201: 

Sx So 
6- 8cos(wAr) + 2cos(2wAr) (5.33) 

(W Ar) 4 

Sx (f 27rSo 
6- 8cOs (2rf Ar) + 2cos (4? rf Ar) 

(5.34) 
(2 ?rf Ar) 4 

where 
so 

7r 

Zý, r is the time interval of the white number jui. 

If we set 
Ar =1 (5.35) 

2 f,,, x 
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there will be no local maximum or minimum between two points because it must require 

a period less than Ar, which is impossible, for is the maximum frequency in Hertz. 

(4) The coefficients (bo, bl,..., bk) in equation (5.29) are obtained by the solution of equation 
(5.29) for (k + 1) values of w and so S, (f), Sx(f) and ly(f)12 

. 
The coefficients 

(Co, Ci,..., Ci, ) of the autoregressive filter can then be obtained by solving the non- 

linear equations (5.30) by using Newton- Raphson's method. 

(5) The most costly part of computation in autoregressive simulation is to solve the non- 
linear equations (5.30). Any random process s(t), can be efficiently generated through 
U% - r-, qn (5.27), with any random number set pi, and hence with the random number set 
xi - 

The autoregressive filter only needs one set of Ci for a target spectrum to produce any length of 

time series. The eleven spectra referred to in Section 5.2.2 have their Ci solutions in Table 5.2 with 
fm,,., = 0.34, and k= 60. 

Accordingly, time series have been generated for the 11 spectra listed in Table 5.1. Two of them , 
spectrum 1 and spectrum 11, which represent the wide band spectrum and narrow band spectrum, 

are shown in Fig. 5.4 and Fig. 5.5. 

5.2.2.4 Discussion 

Random loading process simulations are complicated. However, the peaks and troughs process could 

be easily simulated from the spectral properties by the autoregressive simulation method as shown 

in this section. 

The autoregressive simulation method has been adopted for this study because of its efficiency in 

generating large numbers of process points. Only if the solution of transformation coefficients of 

selected frequency spectral density are obtained, can the loading process be generated from the 

addition of zero mean unit variance random numbers. Furthermore, the autoregressive simulation is 

not restricted by the form of the target power spectrum, so that any other fatigue random loading 

can be generated in the same way. Clearly, the autoregressive simulation method has the advantages 

over the other method in section 4.2.3.2. 

The general problem, however, is to obtain a solution for stress range frequencies having similar 

accuracy, but without resorting to time-consuming simulation. The easily generated loading process, 

provides a route for further study of stress ranges, to build up a semi-empirical model by observations 

of a number of generated records of different spectra. This shall be discussed in the following sections. 
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5.3 Cycle Counting Methods 

5.3.1 General remarks 

In order to calculate the fatigue damage caused by a variable loading process, the primary infor- 

mation required is the number of stress cycles or strain loops. For a variable amplitude loading 

process, there are a number of methods to define a cycle. Different definitions of stress cycles lead 

to different cycle counting methods and somewhat different results. The rainflow method is used in 

this study because of its highly reliable performance in the prediction of fatigue life under random 
loading compared with other methods. 

5.3.2 Rainflow Algorithm 

The rainflow method identifies small strain ranges or stress ranges associated with closed hysteresis 

loops. From that, a complex loading process is divided into many small stress reversals or strain 
loops. At the present time the rainflow method is widely used in fatigue analysis of weldable 

structural steels[5.211. 

In the rainflow method, the stress history should be first converted to a series of peaks and, troughs 

as shown in Fig. 5.6, with peaks numbered at consecutive even number. The time axis is then 

viewed as a sequence of roofs with rain falling on them. The rainflow paths are defined according 

to the following rules [5.81, [5.211. 

(a) A rainflow path is started at each peak and trough. 

(b) When a rainflow path started at a trough, comes to the tip of the roof, the flow stops if the 

opposite trough is more negative than that at the start of the path under consideration (e. g. 

paths [1-81 and [9-101.. ). A path started at a peak is stopped by a peak which is more positive 

than that at the start of the rain path, (e. g. path [2-3], path [4-5] and path [6-71 
... 

). 

(c) If the rain flowing down a roof intercepts flow from a previous path, the present path is 

stopped, (e. g. paths [3-3a] and [5-5a]... ). 

(d) A new path is not started until the path under consideration has stopped. Half cycles of 

trough originated stress ranges magnitudes Si are projected on the stress axis (e. g. [1-81, [3- 

3a], [5-5a] etc. ). It should be noted that for time series sufficiently long, any trough originated 

half cycle will be followed by another peak originated half cycle for the same range. 

In a fatigue study, those points in a loading process without reversal, where the structural component 

has a monotonic loading increase or decrease, will not have any cyclic effect. Fatigue damage 

accumulation is therefore insensitive to the elimination of those points. In the rainflow method 

those points should be eliminated before the rainflow algorithm can be applied. 
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In practical situations, a time history is unlikely to begin at the highest peak or lowest trough. In 

these cases, an ideal loop will not be formed . 
As in normal practice, the time history should be 

reset, moving the time origin to the highest peak or lowest trough, whichever occurs first, while the 

time series before the origin should be moved to the end of the whole time history. 

After the elimination and the resetting of the time history, a simple computer program can be 

created; let the range of each peak and valley be identified as follows: 

range under consideration; 

previous range adjacent to X. 

As each peak or valley is encountered, it is stored in the computer. 

Rainflow counting then proceeds according to the following steps: 

1. Find the highest peak or the lowest valley in the process. 

Set the time history origin at the highest peak or the lowest valley, whichever is the 

first, and move the parts of the time series before origin to the end. 

3. Rainflow starts at the time series origin. 

4. Read the next peak or valley (if out of data, stop) 

5. Form ranges of X and Y (if at the beginning, less than three points are available, go to 

step 4). 

Compare ranges X and Y. 

a) if X<Y, go to step 4 

b) if X>Y, go to step 

7. Store each range Y. Discard the peak or valley of Y. Go to step 5. 
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5.3.3 Other cycle countiniz methods 

In addition to the rainflow method, some commonly used cycle counting methods are peak counting 
and range counting methods [5.221. 

Peak counting method 

All the local maximum above zero are counted and paired with local minimum of the same size 
below zero. It is thus implied that the pdf of f,,,,, (x) and f,,, i,, (-x) of local maxima and minima 
satisfies: 

fma, (X) (5.36) 

The relative location of local maxima and minima are ignored. The pdf for a stress range is: 

fa fmax (5.37) 
2 

In section 5.4.4, one can see that the above equation only holds true in narrow band stationary 

process. 

Range counting method 

Each stress range, i. e. the difference between two successive local extremes, is counted as one half 

stress cycle. The range counting method only use the local information about the stress process, 

as each local extreme is only combined with the preceding and the following local extreme. This 

method 

* does not refer to the mean level of stress cycle, 

* takes every small cycle into account, 

* breaks large ranges into several smaller ones. 

5.3.4 Evaluation of rainflow method and other methods 

Dowling[5.231 examined a number of cycle counting methods with a test of 83 specimens of 2024-T4 

steel and found that the rainflow method gave the best results. Predicted fatigue lives using the 

rainflow method, were within a factor of three of the actual lives for all the tests. For all the tested 

specimens, the summations of the cycle ratios were all between 0.36 to 1.5. The rainflow method 

has been widely used as a cumulative damage procedure and counting method for fatigue research 

and applications. Also, the rainflow method is used in British Standard 5400, as the practice for 

fatigue design and assessment of steel, concrete and composite bridges. 
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As shown in this section) the rainflow method has the advantage over peak counting method by taking 
the relative location of a local maxima and local minima into account, and the advantage over the 

range counting method is that by considering the whole loops of stress cycles, the bigger stress 
ranges are not ignored. This would suggest that the peak counting method tends to overestimate 
stress cycles and that the range counting method tends to underestimate stress cycles, while the 

rainflow method predicts results in between. 

However, whereas the peak counting method and range pair method can directly use results from 

statistical maxima distribution or order statistics, the rainflow method needs extensive simulation 
and counting, so it is very cumbersome. This thesis will demonstrate a way to achieve a stress 

range distribution function directly from a response spectrum. The distributions so obtained, can 
be shown to closely approximate the distributions obtained by simulation and rainflow counting. 

5.4 Construction Of The Stress REmge pdf Models 

5.4.1 General remarks 

For structures under random loading fatigue damage is often approximated using a narrow band load- 

ing assumption. This avoids the loading simulation and rainflow counting procedure. Wirsching[5.5] 

has defined the fatigue damage rate correction factor A as: 

damage rate by rainflow analysis 
damage rate by Rayleigh analysis 

A= 
Drainflow (5.38) 

Dnarrow band 

Fig. 5.7 shows the correlation between the bandwidth parameter 'E, which is defined by equation 

(5.40), and fatigue damage rate from three different simulation studies [5.61. The trend of those 

points in relation to the bandwidth parameter, suggests that the stress range probability distribution 

should be a function of spectral properties. Due to the complexity of the loading process and the 

nature of the rainflow method, attempts in the past to model the stress range pdf have not been 

entirely successful. 

With a narrow band loading process, the stress range probability distribution approaches the 

Rayleigh distribution as each positive peak would correspond to a negative trough. However as 

seen in Fig 5.8, the simulated stress range probability distribution from spectrum 11, which is rel- 

atively narrow band with e -0.167, deviates significantly from the Rayleigh distribution (shown as 

the smooth curve). For a wide band spectrum as shown in Fig. 5.9, the shapes of the simulated 

histograms are far from the Rayleigh distribution. Therefore the approximation of the relationship 

5.17 



Chapter 5 

between damage rate and bandwidth is not satisfactory. In this section the stress range probability 
distribution is investigated from a different direction. 

(1) The parameters of the distributions are assumed to be functions of stress range amplitude 
and an alternative bandwidth parameter. 

The Stress Range Probability Density Functions (SRPDF) f (s) are treated empirically as the 

sum of two weighted Weibull probability density functions. 

Constants in f (s) are obtained through careful adjustment Ito 
fit the model with the stress 

range histograms over a wide range of spectra. 

(4) The validity of the semi-empirical f (s) are tested against the results obtained by simulation 
and rainflow counting using the X2 test. 

This technique is called Combined Distribution Technique(CDT) which starts directly from the 

study of stress range frequency of occurrence, obtained from simulation and rainflow counting. This 

is a more fundamental approach than previous studies. A series of ready made solutions, for general 

spectrum in practical application, can be provided. 

5.4.2 Literature review 

Early work by Cartwright and Longuet-Higgins [5.11 studied the statistical distributions of the 

maximum values of a random function, which is the sum of an infinite number of sine waves with 

random phases. By mathematical derivation from Rice [5.241, the probability distribution of the 

height of maxima above the mean level, q, is: 

1 
t? /C 

+ (I I-I rl [eel 62) 2 f7e 2 F2 T2; )2 00 
e2 -5dxl (5.39) 

MOM4 - M2 2 

rnO M4 

00 
mi fý S(f)fsdf 

(5.40) 

e is shown to represent the relative width of the power spectrum - the so-called bandwidth parameter. 

In reference [5.11, two extreme cases of iff were discussed: 

1) when ea0, the spectrum is narrow band 

-12 (77 ý' (77) = 
t7e rl 

(77 '-5 

which is the Rayleigh distribution; 

(5.41) 
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2) when e ----+ 1, the spectrum is wide band 

(5.42) 

which is a Gaussian distribution. 

The proportion of negative maxima, -1, is a function of e given by 

I=1 
(1 

_ 
(1 

_ C2) (5.43) 
2 

Also, it was shown that the mean height of the 1/n highest proportion of the wave series is a function 

of E, but tends to decrease with increasing E. 

The work done by Borgman [5.251, and later by Moe and Crandall [5.26], gave an asymptotic 

probability density of normalised local maximum to be a two phase distribution, which is of Rayleigh 

distribution in the high maximum part, but exponential in the low maximum part. 

Based on the extreme value theory, as in equations (5.1), (5.4) and (5.5), Choudhury and Dover [5.7] 

proposed a general theoretical form for the probability density of peak amplitude as the combination 

of a Rayleigh density function and a Gaussian density function, for different seastates. 

The works mentioned above all relate stress range to the local maxima or minima distribution. 

For a fatigue study, it is more important to study the stress range from rainflow counted stress 

ranges. Using the direct simulation method as in Section 3.2, Wirsching explored the stress ranges 

of rainflow counting approach for various forms of spectral density function [5.8]. Because the Weibull 

distribution has been widely used in engineering practice, of which the Rayleigh distribution is a 

special case, the former was investigated as a possible fit to the data used in that study. However, 

it was recognised that the probability distribution of stress ranges is not Weibull in general. 

Because of difficulties in getting the SRPDF for random loading, the fatigue damage rate as defined 

by equation (5.20), has to be approximated by various methods [5]. Wirsching related damage rate 

A to c, while Lutes et al related A to a more general term 8b as defined in Eqn (5.44). 

Recent work of Rychlic [5.271,15.28) and Ford [5.291 has attempted to give a analytical solution. 

Rychlic redefined the rainflow counting procedure and approximated the loading process as a Markov 

chain. Ford used time series theory to calculate range pair exceedance probability and then related 

the theory into the stress range from the rainflow method. Both of them need appreciable numerical 

effort and sufficient statistical information. 
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5.4.3 The new models 

5.4.3.1 Selection of parameters 

Wirsching [5.5] found that the damage rate of fatigue (see equation 5.2) is related to e. However, 

the data also indicates a significant scattering from the mean line, which was discovered by Lutes 

et al from a comprehensive study of several simulation results[5.61. To accommodate the variation 

of A, Lutes et al inferred that a general form of bandwidth parameter can be related to the damage 

rate. Those bandwidth parameters are defined as: 

fib 
- 

Mb 

(MO M2b) 

where mi is defined by Eqn. (5.40). 

(5.44) 

ror any b>0,8b can be considered as a bandwidth parameter. A has some obvious characteristics: 

(i) 0 
-< 

A1 

(ii) A ý'-- 1 if the power spectrum contains only one frequency. 

(iii) When b=2,8b = 
Vl- --c2. 

On a purely empirical basis, Lutes et a45.6] found that if using the Paris' law to predict the crack 

growth with Paris' parameter m=3, A shows a stronger correlation with 90.7,5 than with other 

values as shown in Fig 5.10. Comparing Fig 5.10 with Fig 5.7 , one can see that the plotted data 

have less variation from the mean line with 80.76 than with e. It is also pointed out by Lutes et al 
that P0.75 is not the only bandwidth parameter to adequately correlate with A value. There can be 

other alternative bandwidth parameters, similar in form to A, which may be appropriate for some 

other situations. 

Since the Paris' parameter m=3 is the most common value for steels, it may be presumed from the 

above discussion that 80.75 is a more suitable value to model the probabihty distributions of stress 

ranges than c. 

By using the 11 offshore response spectra from reference [5.301, the value of the parameters PO. 75 

and c have been calculated and are listed in Table 5.3. 

From the Table 5.3, one can see that c changes rapidly from about 0.5 to nearly 1, while 0.75 changes 

only a small amount. 
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Table 5.3 Statistical values of the 11 spectra 

Sea 

state 
Peak rate 

E(P) 
Hz 

f PO. 75 RMS 

cr 
(Mpa) 

1 . 244 . 506 . 689 47.65 
2 . 247 . 534 . 698 41.31 
3 . 250 . 559 . 704 35.17 
4 . 254 . 603 . 717 29.79 
5 . 257 . 651 . 733 24.81 
6 . 260 . 693 . 746 19.86 
7 . 264 . 693 . 746 15.51 
8 . 268 . 809 . 787 11.68 
9 . 271 . 862 . 807 7.86 
10 . 275 . 917 . 827 4.33 
11 . 283 . 986 . 852 1.69 

5.4.3.2 Structure of the new models 

Fig. 5.9 illustrates the distribution of stress ranges simulated from three typical structural response 

spectra, (spectrum 1, spectrum 6, and spectrum 11 from Table 5.1), using 9,000 time interval points 
(&r = 1/2f,,,, ý) in Eqn (4.36). In the figure, the normalised stress range is: 

S 
3=- 

2o 

where S is the real stress range 

(5.45) 

If the simulated process has normalised stress ranges between si and si + ds k times, and has the 

total number of stress ranges equal to n, then the ordinate in Fig. 5.9. is determined by: 

k 

n ds 
(5.45a) 

The ordinate is then caUed the Normalised Probability Density of Stress Range (NPDSR) f (s). 

Fig. 5.20 shows the stress range frequencies of the 11 selected spectra by simulation and rainflow 

cycle counting. 

From Fig. 5.20, one can see that the frequencies of the small stress range gradually become smaller, 

while the frequencies of the middle stress range gradually become larger, from spectrum 1 to spec- 

trum 11, when the value Of PO. 75 increases. Interestingly, the Weibull distribution function has the 

same trend. Seven typical Weibull probability density functions are plotted for different values of 

parameters a and b in Fig. 5.11. 

The two parameter Weibull probability density function has the form 

b) abx 
b-i e- ax 

bx>0; 

a>0b>0 (5.46) 
ýo 

x<0 
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From Fig. 5.11, one can see that when b< 1$ the Weibull density function has a maximum value 

only at s=0; when a == 1, and b>1, the bigger b is , the further away the peak of f (s) is from the 

axis s= 

Setting b=2 in Eqn(5.46) gives 

(x; a, b) 2aze-" 2 for x>0; a>0 fo 
x<0 

(5.47) 

which is the Rayleigh distribution. Four typical Rayleigh distributions are shown in Fig. 5.12. In 

Fig. 5.12, one can see that the larger a is, the closer the peak of f (s) is to s= 

Also from Fig. 5.20 it can be seen that f (a) has a strange shape which is not identical to any of 
the Weibull distributions. The the frequencies of th large stress range (about s>1.6) remain to be 

almost the same. In a fatigue study, it is very important to study the effect of high stress range s, 

while the low stress range s may not cause any damage at all. The high tail parts of f (s) are thus 

significant. 

However, from the flexibility of two parameter Weibull distribution, the sum of two weighted Weibull 

distribution functions may be taken to model the individual stress range distribution frequencies and 
their progressive changes closely. 

A model for f (s) may therefore be assumed to be 

f (s) = fwalbis bi-1 
C-als 

bl 
+ (i - fw)a2b2S b2 - l. -a2 Sb2 (5.48) 

3>0; al > 0, bl > 0; a2 > 01 b2 >0 

/a,, bi are adjusted so that as 80.75 o0 (i. e. the spectrum becomes more wide band), the primary 

peak of f (s) appears in the position s10. a2, b2 are to maintain the second peak in f (s). For a 

narrow band spectrum, the two Weibull distributions will both become Rayleigh distributions. The 

parameter fW is used to give the correct weight of the two Weibull functions. A typical function of 

f (, s), from Eqn. (5.48) is shown in Fig. 5.13 where the first term curve and the second term curve 

are also clearly shown. Therefore the problem of finding f (s) has simply become that of finding 

suitable sets of the parameters a,, bi, a2, b2, fW. The technique is called the Combined Distribution 

Technique(CDT). 
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5.4-3.3 Determination of a,, bi, a.?, bq, fw 

a,, bi, a2, b2, fW in equation (5.48) are constants for a single spectrum but must change with the 
changes of spectral properties to model the change in f(s). The purpose of this section is to make 
a,, bi, a2, b2) fw as functions defined by spectral properties in order to make f (s) in equation (5.48) 
fit with the simulated distribution of stress range for any general spectrum. 

By definition the integral of any Weibull distribution function from zero to infinity equals 1. There- 
fore, from equation (5.48): 

00 
f fw + fw) 

As discussed in Section 5.3.1, f (s) should be treated as f (8; PO. 75). Therefore a,, bi, a2, b21 fW should 
be functions Of PO. 75- When PO. 75 l1, the power spectrum is narrow band so that the stress 

range pdf should approach the Rayleigh pdf, which implies that bl, b2 i 2. 

The 11 seastate response spectra selected, range from wide band to narrow band. The spectral 

properties are listed in Table 5.1, Table 5.2. Simulated stress range frequencies of occurrence, from 

spectrum 1, spectrum 6 and spectrum 11 are shown in Fig. 5.9. 

The following procedure has been adopted to determine the values of a,, bl, a2, b2; fw. This proce- 
dure is a graphical fit procedure. 

(1) choose some initial values for a,, bi, a2, b2; fw For instance, with two WeibuH distribu- 

tion functions, equal weight may be given to each of them (i. e. f,,, =. 5 ), and for the 

second peak, b2 = 

choose the remainder of the parameters a,, bi, a2, b2jfw as functions of 160.7,5 and un- 

decided exponents xi The function can initially be set intuitively, and can be altered 

according to the situation to fit with the simulated f (s). The number of undecided ex- 

ponents xi should be big enough to accommodate the changes of different f (S) resulting 

from different spectra, and should be simple enough to manipulate. 

determine the undecided exponents xi to fit f (s) for general spectrum This can be carried 

out by fitting the curve for frequencies from the wide band spectrum 1, and then fitting 

the curve for frequencies from the narrow band spectrum 11 without changing the 

values of parameters for spectrum 1, and then fitting for frequencies from other spectra 

Normally if f (S) without changing much the values of parameters for previous spectra. 

curves for spectrum 1, spectrum 6 and spectrum 11 fit with the simulated results, the 

rest of the curves will grossly fit with the simulated results. 
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go to step 2 and try a new set of a,, bl, a2, b2, fW 

repeat step (3) 

compare the results 

(7) check validity by X2 test It could be a further enhancement to the step 3 graphical fit. 

As a first attempt: 

(1) Assume b2 =2 and a2 = 0.5 from which the second term in the right side of Eqn(5.48) 
is a Rayleigh distribution. 

Assume b, 1+p'l r,, where x, is a constant which makes bl 2 when 90.75 0.7 

and b, 1 when flO. 75 0. Also it can be assumed that 

PO'275)'3 

bi 
.7 (5.49) 

where 12, x3 are constants. When P0.76 i 1, a, i 0.5, fw is constant 

(3) By trial and error, xj, X2, X3, and fw were determined to be 4,2,4 and 0.55 to fit 

the simulated results. b, =1 + p4 0.75 
2 
0 

)4 A 

a, 
(2 fiý. 

75 

bl 
b2 =2 (5.50) 

a2 =0-5 

fw =0.55 

This is called model 1. The f (s) from this model are compared with the simulated 

results for spectra 1,6 and 11 in Fig. 5.14. The 11 f (s) of model 1 for the 11 spectra 

are shown in Fig. 5.15. 

(4) In model 1, a2, b2 are invariabIes with PO. 75- In order to obtain a better model for 

f (s), a2 is now taken as a decreasing function Of RO. 75 while b2 remains equal to 2; fW 

is also a variable, taken as a function Of 90.75- 

Set 

a2 
(2 

- 60.75)x2 

b2 

Also, fw is to be a function Of P0.76. By repeating the same approach as in (3), one 

obtains: 
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b, =1+ 
#04.7.5 

(_ #2 5 2 0.75)' 
a, bi 
b2 =2 (5.50) 

a2 = 
(2-, 80.75) 2*5 

b2 

fw =0.2 + 0.35VPO. 
75 

This will be called model 2. The f (s) from this second model are compared with the 

simulated results for spectra 1,6 and 11 in Fig. 5.16. The 11 f (s) of model 2 for the 
11 spectra are shown in Fig. 5.17. 

In a fatigue analysis, the stress ranges of high value will have more severe effect and 
thus should be paid higher attention. So in a new round of curve fitting, in step (3) 

the manipulation is specially aimed to fit the stress ranges densities in the high tail 

with a2 being an increasing function Of P0.755. By adopting the same strategy, it is then 

decided that: 

+ p4 
0.75 

p2 

a, 
(2 0.75)5 

bi 
62 =2 

a2 + #06.7.5) 

fw =1.3 - 1-00.75 

(5.51) 

This will be called model 3. The f (s) from model 3 in comparison with the simulated 

results for spectra 1,6 and 11 are shown in Fig. 5.18. The 11 f (s) of model 3 for the 

11 spectra are shown in Fig. 5.19. 

(7) Validity tests are to be carried out in Section 5.4.4. 

(8) The application of equivalent stress range is carried out in chapter 6. 

5.4.4 Validity test 

The models for f (s) obtained by CDT were determined on the basis of a graphical fit with the 

simulated histogram of stress ranges. The validity of these assumed distributions should be verified 

statistically by goodness-of-fit tests. 

One of the commonly used goodness-of-fit tests is the X2 test for distribution [5.311. 

Consider a sample of n simulated values of the stress ranges. The X2 good ness-of-fi t compares 
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Table 5.4 x2 test results 

2 400 
ei)2 X399 Z 

(rici 

399 ei 399 

Sea state model I model 2 model 3 Rayleigh 

1 . 959 1.169 1.095 69.294 
2 

. 846 1.012 . 943 52.900 
3 . 869 . 993 . 993 56.538 
4 . 831 . 902 . 920 44.211 
5 . 869 . 880 . 884 40.973 
6 . 905 . 878 . 910 32.360 
7 . 960 . 912 . 893 25.206 
8 1.050 1.010 . 923 22.081 
9 1.036 1.000 . 906 14.410 

10 1.163 1.170 1.042 14.064 
11 1.299 1.364 1.192 10.964 

the simulated frequencies ncl, nC2, .... nCk of k values of the stress ranges with the corresponding 
frequencies el, e2, ... ) Ck from the proposed theoretical models of equation (5.48). The quantity in 

this comparison is: 

(nci - ei) 
q=E 

ei i=l 

(5.52) 

which approaches the chi-square (X/ ) distribution with (f =k- 1) degrees of 11freedom. as n1 00. 

Values of X2 are tabulated for various significance -levels[5.31]. If q is less than the value of X2 then 
f 

the model is acceptable at that level. It should also be pointed out that the results of 

2 test be treated in relative terms rather than in absolute terms as there is arbitrariness in the 

choice of sig"ificance level. 

For each spectrum, (i. e. for each value Of P0.75 and a., ), there is a set of ý a,, 61, fw, a, 2, b2, for each 

of the three models. f (s) can be obtained from , equation (5.48) so el, e21 ... ) Ck can be calculated. 

Taking k= 400 and .=4, 

ej =f (sj)dsj x number of stress ranges 

By simulation and counting for each of the 11 spectra, ncj, nc2,..., nck can be ýobtained with 

90,000 points generated, The results of x2 test results on the three proposed models together with 

Rayleigh distribution test results are shown in Table 5.4. 

r as The Rayleigh distribution has very large test results, w1licl, gradually beconic smalle a, the, Spec- 

trum approacbes the narrow band spectruin. With k= 399, all the test values froin three pi-opose(I 

models are very similar and much smaller than those from the . Rayleigh distribution. Alt the q1399 
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values are within the band of [0.831,1.364] 
- 

The significance level of 0.50 has a test result of 1.0. 
With k as big as 400, this '. 'Aest results show that the proposed models all have X2' test result close 
to L, and Ahus are satisfactory. 

It can be seen that in these three models there is no single set of parameter a,, bi, fw, a2, b2 which 
is absolutely superior to the other sets. The constants xj, in the set, are all simple integer numbers 

or values with not more than two decimal points. This can be explained partly by the empiricism 

of each model and by the probabilistic nature of stochastic loading processes, in which any model 

would only fit for a random number set, within certain bands of confidence. 

5.5 Conclusions 

The fatigue effects of a random cyclic loading process, especially for offshore structural response, 
have been investigated. The loading variables are treated as numbers of cycles of stress ranges, 
derived from the rainflow method, subjected to the random cyclic loading process. A set of new 

models for stress range pdf f(s) obtained by the combined distribution technique ( CDT ) have 

been found to fit the simulated stress range frequency of occurrence. The validity test and graphical 
demonstration show that pdf f (9) is almost exact in most cases. 

It is found that the stress range pdf f (s) from the rainflow counting method can be considered as 
the sum of two weighted Weibull distributions with parameters defined by the spectral properties. 
Therefore, without going through cumbersome simulation and cycle counting, one can obtain the 

numbers of cycles of stress ranges directly from the response spectrum, knowing its spectral prop- 

erties. This discovery saves time in reaching a solution for fatigue effects under random loading. 

In this chapter, only offshore structural response spectra are studied in. detail. It is important to 

stress that any other power spectrum in the frequency domain could be generated as a time series 

in this way for fatigue study, and thus the probability distribution models developed in this chapter 

will not be limited only to offshore applications. In fact, various workers in the past have generated 

time series for other spectra to study fatigue perform anc e [5.5 ], [5.61 and found that there is a general 

trend between damage correction factor A and spectral properties. The only parameters which are 

of significance in the time series generation are the mathematical properties of the spectra no matter 

what sources the spectra are from. However, when applying to other kinds of spectra, if the results 

are not quite satisfactory, the strategy adopted in section 5.4.4.2 can be used to form a new kind of 

f (s). The analytical solution for f (s) would be expected to have a coniplex form. However the f (s) 

obtained in the thesis is relatively simple and easy to apply. 
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TABLE -5.2 AUTOREGRESSIVE SIMULATION COEFFICIENTS OF RANDOM SERIES 
FOR 11 SPECTRA 

SPECTRUM 1 SPECTRUM 2 
-- 

SPECTRUM 3 
- - --------------- ----- 

C1 
------------------ 

. 22195597E+01 
------------------ 

. 43596186E+01 
--- - 
-. 54319752E+01 

C2 -. 89279409E+00 -. 37024955E+01 . 27239687E+01 
C3 . 17843752E+01 . 66567558E+01 . 64039869E+01 
C4 . 86574840E+00 -. 50045888E+01 -. 56461503E+01 
C5 . 84602944E+00 .1 2560300E+02 -. 96244603E+01 
C6 . 21213429E+01 -. 67256164E+01 . 83231390E+01 
C7 -. 74607237E-01 .1 1949634E+02 . 26793993E+01 
C8 . 31308190E+01 -. 88191068E+01 . 47916828E+01 
C9 -. 95033244E+00 . 12075649E+02 -. 14274985E+02 
Clo . 36249152E+01 -. 31945820E+01 . 51045124E+01 
Cil -. 11 590285E+01 . 59659972E+01 . 30609078E+01 
C12 . 33144677E+01 -. 29441320E+01 . 23949255E+01 
Cl 3 -. 1 8968115E+00 -. 44695371E+01 . 52977296E+00 
C14 . 21291455E+01 . 58374733E+01 -. 1 3655515E+02 
C15 . 20337297E+01 -. 68537373E+01 . 75652150E+01 
C16 . 34949681 E+00 . 89363123E+01 -. 1 3539096E+02 
C17 . 49182070E+01 -. 15948901E+02 .1 2381792E+02 
C18 -. 15069894E+01 . 82330921 E+01 -. 17267271E+02 
Cl 9 . 72254354E+01 -. 75286016E+01 .1 3836ý01 5E+01 
C20 -. 28747074E+01 . 13595720E+02 -. 14102117E+02 
C21 . 75167778E+01 -. 28031301 E+01 . 54317105E+01 
C22 -. 33127112E+01 . 24454157E+01 -. 1 0890727E+01 
C23 . 48695745E+01 . 21567583E+01 .1 3362583E+01 
C24 -. 26018828E+01 . 66358953E+01 -. 93721561 E+00 
C25 -. 41818144E+00 .1 2996328E+02 . 97602926E+00 
C26 -. 71529199E+00 -. 11401671E+01 . 72665590E+01 
C27 -. 65259969E+01 . 27076230E+00 . 39607484E+01 
C28 . 22389022E+01 -. 69527597E+01 . 89948412E+01 
C29 -. 10586370E+02 . 40276817E+01 -. 59837117E+01 
C30 . 59258403E+01 -. 20201586E+01 -. 57927897E+00 
C31 -. 99966660E+01 -. 62718320E+01 -. 11759034E+02 
C32 . 

94862630E+01 -. 14345439E+02 -. 48883738E+00 
C33 -. 41049500E+01 -. 66689481 E+01 -. 11570960E+02 
C34 .1 1251214E+02 . 20031257E+00 -. 85805045E+01 
C35 . 46871099E+01 . 85334773E+01 -. 1 0941593E+02 
C36 . 89746363E+01 . 19205815E+01 -. 49139498E+01 
C37 . 11483311 E+02 . 58574905E+01 . 42770277E+01 
C38 .1 0731270E+01 . 89738637E+01 .1 0997897E+02 
C39 .1 1569944E+02 .1 7596727E+02 . 16059196E+02 
C40 -. 11276552E+02 .1 6855274E+02 .1 0289205E+02 
C41 . 42228051 E+01 . 28844072E+01 . 79931761 E+01 
C42 -. 22534950E+02 -. 11453167E+01 . 23621679E+01 
C43 -. 50107944E+01 -. 15484181E+02 . 41150721E+00 
C44 -. 24026113E+02 -. 10520067E+02 -. 15340359E+02 
C45 -. 67075152E+01 -. 20838537E+02 -. 18630592E+02 
C46 -. 96349136E+01 -. 16010077E+02 -. 28283146E+02 
C47 . 45068547E+01 -. 12372968E+02 -. 18671676E+02 
C48 . 15930728E+02 -. 57502315E+01 -. 11857375E+01 
C49 . 21098494E+02 . 10878917E+02 . 20895071 E+02 
C50 . 33682661 E+02 . 21259605E+02 . 32866259E+02 
C51 . 23011784E+02 . 39498715E+02 . 20145061 E+02 
C52 . 21551421 E+02 . 34738657E+02 . 54923533E+01 
C53 -. 40137435E+01 . 65291603E+01 -. 1 1526303E+02 
C54 -. 18454085E+02 -. 20124825E+02 -. 24990900E+02 
C55 -. 40114274E+02 -. 37453541 E+02 -. 15804116E+02 



C56 
C57 
C58 
C59 
C60 
----- 

-. 40433731E+02 
-. 31555955E+02 

. 65562723E+01 

. 29096122E+02 

. 58894149E+02 
-- - 

-. 19870039E+02 
-. 22710133E+01 
-. 40037545E+01 

. 24467232E+02 

. 21816409E+02 

-. 77474114E-01 
-. 20029455E+01 

. 11 316519E+02 

. 32304270E+01 
-. 55825299E+01 

---------- -- 
SPECTRUM 4 

- -- - ------------- 
SPECTRUM 5 

---- - 
SPECTRUM 6 

C1 . 66023968E+00 . 14789169E+02 -. 59087183E+01 
C2 -. 31231285E-+, 02 . 73159841E+00 . 78092079E+01 
C3 .1 6529962E+01 -. 85014664E+01 -. 10831273E+02 
C4 -. 80072523E+01 . 78126208E+01 -. 42889763E+01 
C5 -. 30675174E+01 .1 6754135E+01 . 40454072E+01 
C6 . 37503702E+01 -. 45412393E+01 -. 1 8916215E+-Ol 
C7 .1 4014840E+02 -. 35365306E+01 -. 55255944E+01 
C8 . 28855199E+02 . 34968944E+00 -. 31918515E+01 
C9 . 51688419E+01 . 98905417E+01 . 77833709E+01 
Clo . 46791594E+01 . 62645396E+01 -. 63905438E+00 
Cil -. 25044298E+02 . 21053429E+01 . 34845778E+01 
C12 -. 1 0292497E+02 . 28715477E+01 -. 89317244E+01 
C13 -. 26494551 E+02 -. 12411240E+00 . 72819233E+01 
C14 -. 48323612E+01 . 76904064E+00 -. 41386299E+01 
cis -. 80476071 E+01 -. 85171848E+01 -. 50504182E+00 
C16 .1 5363834E+02 -. 1 2316040E-+02 -. 72806903E+01 
C17 .1 5490487E+02 -. 66644268E+01 -. 73406285E+01 
C18 . 15645037E+02 -. 58270947E+00 . 57401911 E+01 
Cl 9 . 35366911 E+01 . 16691990E+02 -. 52334172E+01 
C20 -. 96092084E+01 . 12118685E+02 . 94787781 E+01 
C21 -. 62290052E+01 . 17967376E+02 -. 77583747E+01 
C22 -. 96179849E+01 .1 7647956E+01 . 10675601 E+02 
C23 . 43097285E+01 -. 89104135E+00 -. 19772687E+01 
C24 -. 55598871 E+01 -. 1 6024235E+02 . 64968586E+01 
C25 . 35454915E+01 -. 15601853E+02 -. 77705194E+01 
C26 -. 85523767E+01 -. 13174774E+02 -. 46633989E+01 
C27 .1 7725308E+01 .1 7885845E+01 -. 86625176E+01 
C28 -. 69511866E+01 .1 2748655E+02 -. 1 2134392E+01 
C29 . 21451653E+01 . 14944072E+02 -. 29132571E+01 
C30 -. 14299767E+01 . 73199666E+01 .1 1367420E+01 
C31 . 74265951 E+01 -. 53645830E+01 .1 2582384E+01 
C32 . 50617535E+01 -. 38192797E+01 . 53246177E+01 
C33 . 25726682E+01 -. 42488174E+01 . 87955235E+01 
C34 -. 56918116E+01 .1 2384194E+02 .1 5414304E+01 
C35 -. 93636665E+01 -. 29282592E+00 .1 1797189E+01 
C36 -. 40280144E+01 . 80974390E+01 -. 12063035E+02 
C37 . 29543172E+01 -. 16062371E+02 -. 37174770E+01 
C38 . 81860030E+01 . 26816145E+01 -. 90265205E+01 
C39 . 15941811 E+01 -. 94853666E+01 . 19985618E+01 
C40 -. 60171878E+01 . 11 889290E+02 -. 15862226E+01 
C41 -. 10130675E+02 -. 64060296E+00 . 46233165E+01 
C42 -. 42103947E+01 . 48730446E+01 . 52967195E+01 
C43 . 51890521E+01 -. 28232719E+00 . 70797690E-+Dl 
C44 . 73022356E+01 -. 32823125E+00 . 26239518E+01 
C45 . 35992138E+01 . 8792481 OE+01 -. 60100805E401 
C46 -. 67786196E+01 -. 26296032E+01 -. 1 2601156E+02 
C47 -. 67743003E+01 . 69587516E+01 -. 10248409E+02 
C48 -. 53235709E+01 -. 10071859E+02 -. 92446140E+00 
C49 . 43198867E+01 . 36381806E+01 . 9921971 OE+01 
C50 . 23914674E+01 -. 48374703E+01 .1 1527445E+02 
C51 . 15308794E+01 . 58740382E+01 . 35282265E+01 
C52 -. 69082022E+01 . 11931635E+01 -. 63120883E+01 



C53 -. 49691900E+01 
C54 -. 43945801 E+01 
C55 . 15174638E+01 
C56 . 41982855E+00 
C57 -. 43688584E+00 
C58 -. 30496345E+01 
C59 -. 32164557F, +Ol 
C60 -. 48560165E-01 

SPECTRUM 7 

.1 6026043E+00 

. 16220188E+01 
-. 21797668E+01 

. 64822040E+01 
-. 34681818E-01 

. 65774846E+01 
-. 210168030E+01 

. 24120900E+01 

SPECTRUM 8 

-. 1 2382843E+02 
-. 71000770E+01 
-. 31732603E+00 

. 5307911 OE+01 

. 42872007E+01 
-. 10794793E+01 
-. 26235669E+01 
-. 58511973E+01 

SPECTRUM 9 

cI 
. 94512742E+01 . 11 163073E+02 -. 34723564E+01 

C2 -. 38728211E+01 . 13658505E+01 . 30450729E+01 
C3 -. 40956489E+01 -. 10415224E+02 -. 31390039E+01 
C4 . 10686421E+02 -. 12041144E-H)l -. 48156676E+00 
c5 . 12693963E+00 . 34497981 E+01 -. 40032509E+01 
C6 . 69308367E+00 . 66815256E+01 . 37095639E+01 
C7 -. 51498555E+01 . 44074358E+01 -. 24602307E+01 
C8 . 25711199E+01 -. 26895953E+01 -. 49241897E+00 
c9 . 31459102E+01 -. 27059035E+01 -. 22147404E+01 
clo .1 5538093E+00 -. 29944187E+01 . 20077934E+01 
cl 1 -. 1 5456882E+01 . 92668203E+00 . 94366590E+00 
C12 -. 72828237E+00 . 42063357E+01 -. 15629857E+01 
Cl 3 . 29623311 E+01 . 32838802E+01 -. 28792487E+01 
Cl 4 . 41404294E+01 . 29003291 E+01 .1 3368330E+01 
C15 . 24014020E+00 -. 71241283E+00 . 99664849E+00 
C16 -. 69089946E+00 -. 28562819E+01 -. 18937742E+01 
C17 -. 1 6374659E+01 -. 1 0800922E+01 -. 1 9922993E+01 
C18 . 83033778E+00 -. 29341142E+01 -. 27975299E+00 
C19 . 21745364E+01 . 39312104E+01 . 22377358E+01 
C20 -. 24391324E+01 -. 42515179E+00 -. 40883502E+01 
C21 . 16805496E+01 . 53587498E+01 . 45763313E+01 
C22 -. 42866024E+01 -. 1 6387669E+01 -. 57795306E+01 
C23 . 80801477E+01 . 14543807E+01 . 23127720E+01 
C24 -. 16972215E+01 -. 32911578E+01 -. 15120162E+01 
C25 . 80748573E+01 -. 51228092E+00 . 26072625E+01 
C26 -. 57038680E+01 -. 61936900E+00 -. 35887153E+01 
C27 . 33472674E+01 .1 6218380E+01 -. 40405920E+00 
C28 -. 36222982E+01 . 29943416E+01 . 19098304E+01 
C29 .1 5872572E+01 . 21474938E+01 -. 20015472E+01 
C30 -. 10818805E+01 . 25495159E+01 . 35669218E+01 
C31 -. 42720019E+01 -. 15606537E+01 -. 42492512E+01 
C32 . 25256372E+01 . 52275050E+00 . 22308634E+01 
C33 -. 24773278E+01 -. 49378816E+01 -. 21506991 E+01 
C34 . 11 352000E+02 . 23088672E+01 .1 7308615E+01 
C35 -. 1 4769124E+01 -. 45674332E+01 -. 12265101E+01 
C36 . 83991605E+01 . 67420812E+01 -. 37498243E+00 
C37 -. 74467760E+01 -. 32038133E+01 -. 34602892E+01 
C38 . 32042062E+01 . 78716426E+01 . 17884227E+01 
C39 -. 61735874E+01 -. 36395525E+01 . 78506521 E+00 
C40 . 10481041E+01 . 41907642E+01 -. 17785666E+01 
C41 -. 47547120E+01 -. 35161655E+01 . 21077965E+01 
C42 -. 1 6268944E+01 -. 70188807E-01 -. 33481660E+01 
C43 . 24463351E+01 . 75146046E-01 . 29053709E+01 
C44 . 58940140E+01 -. 18131306E+01 -. 86965168E+00 
C45 . 11 029059E+02 . 50069483E+01 . 83405554E+00 
C46 . 22736891 E-H)l -. 24092531 E+01 -. 31897067E+01 
C47 -. 17629162E+01 . 64927090E+01 -. 26836623E+01 
C48 -. 1 1509012E+02 -. 35597043E+01 . 60179133E+00 
C49 -. 62630178E+01 . 38206814E+01 . 25008147E+01 



C50 
C51 
C52 
C53 
C54 
C55 
C56 
C57 
C58 
C59 
C60 
----- 

-. 60575116E+00 

. 81168640E+01 

. 97498866E+01 

. 34432685E+01 
-. 91194749E+00 
-. 69460944E+01 
-. 11669124E+01 
-. 16037500E+00 

. 66029167E+01 

. 31157642E+01 

. 37942944E+01 
-- ---- 

-. 36166654E+01 

. 59334868E+00 
-. 90430359E+00 
-. 43622918E+00 

. 32446318E+01 
-. 19167372E+00 

. 50544632E+01 
-. 43344137E+00 

. 44235940E+01 
-. 88746488E+W 

. 15573107E+01 
- 

. 28669137E+01 
-. 55499516E+00 
-. 29641686E+01 
-. 45548853E+01 
-. 44417995E+00 

. 1001 9723E+01 

. 36636381 E+01 
-. 39954704E+00 
-. 1 6908182E+01 
-. 25633691 E+01 
-. 34060271 E+01 

--- -- --- 
SPECTRUM 10 

- ------ 
SPECTRUM 11 

----- - ------------ 
C1 . 35556027E+01 

----- -- 
-. 94079987E+00 

C2 . 22668981 E+01 .1 4734507E+00 
C3 -. 24943079E+01 -. 61343607E+00 
C4 -. 21132625E+01 . 20827761 E+00 
C5 . 22426889E+01 -. 25958088E+00 
C6 . 80801478E+00 -. 16240363E+00 
C7 . 71106022E+00 -. 1 0512348E+00 
C8 . 48397473E+00 -. 38038253E+00 
C9 -. 10716136E+01 -. 12783613E-01 
Cl 0 . 44277471 E+00 -. 92699672E-01 
Cl 1 . 33056004E+00 -. 15834679E+00 
Cl 2 .1 1707647E+00 -. 84511467E-01 
C13 . 96382443E+00 . 73817392E-01 
C14 -. 16751147E+00 . 33771694E-03 
Cl 5 . 28529645E+00 -. 30310398E+00 
C16 . 81107280E-01 . 17773703E+00 
C17 . 52849949E-01 -. 43764172E+00 
C18 -. 10287048E+00 . 52215184E-01 
C19 . 75870855E+00 .1 1247977E-01 
C20 -. 89654932E+00 -. 46908755E+00 
C21 .1 5074423E+01 . 39530847E+00 
C22 -. 13384554E+01 -. 28384946E+00 
C23 .1 5886247E+01 -. 17865104E+00 
C24 -. 11062462E+01 . 42256705E+00 
C25 . 12945572E+01 -. 89729639E+00 
C26 -. 82002573E+00 . 84390225E+00 
C27 .1 2025505E+01 -. 13441097E+01 
C28 -. 81828068E+00 . 98192156E+00 
C29 .1 2066705E+01 -. 95381385E+00 
C30 -. 65596884E+00 . 41683201 E+00 
C31 . 72502302E+00 -. 52399863E+00 
C32 . 12558540E+00 . 47761789E+00 
C33 -. 33501573E+00 -. 39497063E+00 
C34 . 12638246E+01 -. 78238328E-01 
C35 -. 13144809E+01 . 51712888E+00 
C36 . 20496485E44)1 -. 82071771E+00 
C37 -. 16198919E+01 . 62478653E+00 
C38 . 21651172E+01 -. 88243760E+00 
C39 -. 14396654E+01 . 90231583E+00 
C40 . 19508985E+01 -. 14476077E+01 
C41 -. 13014897E+01 . 11659421 E+01 
C42 .1 7529668E+01 -. 1 0786237E+01 
C43 -. 11339201E+01 . 50658623E+00 
C44 .1 3115205E+01 -. 44512682E+00 
C45 -. 34266046E+00 -. 34719483E-01 
C46 . 16715807E+00 . 34701949E--03 



C47 
.1 1280740E+01 -. 23005468E+00 

C48 -. 14249730E+01 -. 33654477E-01 
C49 . 23978485E+01 -. 42115100E+00 
C50 -. 24008425E+01 . 40000479E+00 
C51 . 25742040E+01 -. 63219170E+00 
C52 -. 18785231 E+01 . 36229095E+00 
C53 .1 6148130E+01 -. 54088520E+00 
C54 -. 1 5613677E+00 . 23675895E+00 
C55 . 23084398E+00 -. 40537614E+00 
C56 .15,680216E+01 . 36434825E-01 
C57 -. 67563276E+00 -. 43424279E+00 
C58 . 20828747E+01 -. 68744752E-01 
C59 -. 79444245E+00 -. 13268398E+00 
C60 .1 4443427E+01 -. 59419656E+00 
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Chapter 6 

Deterministic Fatigue Analysis 

Nomenclature 

a crack size 

a,, bi, a2, b2) fW parameters in the stress range pdf constructed in Chapter 5 

ani fraction of time for spectrum i 

C constant in Paris' Law 

f (-) pdf 
E(P) peak rate defined in Eqn. (6.42) 

F threshold filter 

I irregularity factor -v/-l--, E2 
k number of stress ranges 
AK stress intensity factor range 
AKth stress intensity factor range threshold 

K, fracture toughness 
Kmax and Kmi, maximum and minimum stress intensity factor 

M constant in Paris' Law 

n number of cycles 
N number of cycles to failure 

pdf probability density function 

r yield zone size 

rpeak yield zone size from peak load 

R stress ratio 
S stress range 

S normalised stress range sS 2a. 

SIC equivalent stress range 
Sh normalised equivalent stress range 

t time 

t, iteration unit 

w crack section thickness 

Y geometry factor 
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E bandwidth (see Chapter 5) 

17 peak amplitude of a stochastic process 
damage f rorn rainf low calculation 

-damagelrorn narrow band approximation 

ax root mean square of the stochastic process 

Other symbols are defined in the text. 

6.2 



Chapter 6 

6.1 Introduction 

6.1.1 Generýgj remarks 

This chapter aims to discuss the basic fatigue mechanism and especially the influence of random 
loading on the fatigue process. It is necessary to examine the fatigue crack growth deterministically 

before a reliability analysis of fatigue can be conducted. 

Fatigue is a very complex process. Even after years of research and engineering experience, a large 

scatter in the prediction of failure still exists. This is partly due to the stochastic nature of the 

fatigue process and partly due to limited knowledge. By using the present level of understanding of 
the fatigue process and admitting the existence of some uncertainties, a general pattern of fatigue 

crack growth can be drawn. 

6.1.2 Fatigue mechanism 

When an engineering component is subjected to repeated applications of loads much less than its 

static strength, it may develop a crack or cracks and, if the loading is continued, some of these cracks 

may grow and ultimately lead to complete rupture. This phenomenon is termed fatigue. 

In chapter 3, distinction has been made between fatigue crack growth process and a fracture process. 
The main difference between these two processes is the crack growth mechanism. The process of 
fatigue can be divided into three stages or regimes: 

(a) Nucleation or crack initiation, i. e. the primary stage. This stage starts with the first load cycle 

and ends when a technically detectable crack is present. When the strain ranges imposed upon 

the material by repeated loads is greater than that which the material can accommodate by 

elastic deformation, usually in some critical region corresponding to a high stress concentration 

or local weakness, a microcrack can be produced by continued deformation. This stage takes 

a high proportion of life in low amplitude fatigue. 

(b) Crack propagation, i. e. the secondary stage. This stage can have two phases. Phase I is in 

the form of slip band growth. Phase II is in the form of crack growth with direction normal 

to the maximum stress. The basic mechanism of fatigue crack growth is that of striation 

formation with variations on this basic mechanism dependent on micro-structure, ductility, 

stress intensity range and the environment etc. 

(c) Rapid crack growth and eventual failure by fracture or some other limiting states. This is the 

final stage and the failure criteria are important to establish the failure functions for reliability 

analysis. 
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6.1.3 Factors affecting fatigue 

Usually, a fatigue experiment will have results with a certain amount of scattering for different types 

of specimen or even for the same type of specimen. This is partly due to the probabilistic nature of 
fatigue process and partly due to the fact that fatigue behaviour is dependent on many factors. 

The major factors which affect fatigue behaviour are: [6.1] 

(1) type and nature of loading 

(2) geometry of component 
(3) surface finish and directional properties 
(4) stress or strain concentrations 
(5) mean stress or strain 
(6) environmental effects 
(7) metallurgical factors and material properties 
(8) strain rate and frequency effects 

6.1.4 ScoRe of fatigue analysis in this study 

While it is ideal in a fatigue analysis to include as many factors as possible, an experiment in 

the laboratory is subjected to many constraints and only some of the factors having predominant 

influence are studied. The analytical models built from experimental data cannot possibly include all 

the factors. The aim of this study is to build up a methodology for the reliability analysis of fatigue 

and fracture. Some limitations have been imposed although more factors can be taken into account 

in future studies. This study has provided a methodology for calculating fatigue crack growth using 

present knowledge. It is assumed that: 

1) The loading is medium frequency low amplitude (for example, the stochastic loading caused 

by waves in offshore structures). 

2) The material is structural steel; thus valid experimental results for structural steel can be 

used. 

3) The crack or defect is pre-existing, (e. g. in typical welded joints). The analysis of fatigue is 

therefore concerned only with fatigue crack propagation. For structural steel which has low 

strength and high fracture toughness the crack propagation stage occupies a relatively long 

proportion of fatigue life. 

4) The structural component is a typical welded joint of an offshore structure. The crack is found 

in the toe of the weldment of the joint. Y factors are calculated from 2-dimensional finite 

element computation [6.21. For a typical cruciform joint, the Y factors are listed in Table 6.1 

and plotted in Fig. 6.1. 
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5) Environmental effects are ignored (e. g. corrosion fatigue). However, in practical situations it 

should not be ignored. 

6) Only a one-directional stress is considered. Again like the fifth assumption, in practical 

situations, further extension to a multi-directional stress system is needed. 

Temperature effects are ignored. 

8) The material (e. g. BS4360 50D) chosen for study is not sensitive to stress ratio changes 
between -1 and 0.85 in experiments [6.31 so that residual stress effects can be ignored. However, 

for general material, residual stress effects i. e. their distributions in the crack extension 

sections, and their influence on crack growth rate through the stress ratio and threshold effect 

remain to be problems to be researched. 

The probabilistic nature of fatigue is to be studied in the next chapter. 

6.2 Fatigue Under Constant Amplitude Loading 

As discussed in section 6.1.2, the fatigue crack growth process can be divided into three regimes 

depending on the size of the crack. It has been found that there is an empirical relationship between 

AK and crack growth rate da/dn[6.11, [6.41, [6.5]. In view of this, the fatigue crack growth process 

can be divided into three regimes according to the value of AK. The relationship between AK and 

da/dn is Mustrated in Fig. 6.2[6.11. 

6.2.1 Fatigue limit or threshold value 

In regime (a) AK is small. stress ranges below a certain threshold level will not cause cracks to 

propagate. The threshold value of AK is often taken as a material property. This threshold value 

is named AKth- 

The threshold effects can be modelled in a number of ways. In reliability study (chapter 7), threshold 

value is to be treated as a statistical variable rather than as a deterministic value. One of the ways 

to model the threshold effect is to use a variable high pass filter[6.21. 

da da 
-= 

F(-) (with no threshold effects) dn dn 

In this thesis, for simplicitY the filter is given the form: 

(6.1) 

0 ZýK < AKth (6.2) 
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ZýKth < LK 

The fatigue threshold is reflected in the S-N curve as the lower limit stress range for unlimited crack 
life [ 6.4 1. 

6.2.2 Paris' Law 

In the intermediate region of fatigue crack growth, i. e. after the threshold region and before the 

rapid crack growth with K,,,, near KI, , Paris had reviewed the then previous models of crack 

growth rate da/dn, and found that the general trend is[6.51: 

where C, m are empirical material constants. 

AK = K,,,,,, - K,, i, = AaY, 1-7ra (60. 

This equation was developed from empirical results and found wide applications. Many modifications 

of this relationship can also be found. 

6.2.3 Forman eguation 

da 
= CAK' (6.4) 

dn 

(6.3) 

In regime (c) fatigue crack will experience rapid growth when K is approaching K,. To include the 

regime (c) into the general Paris' Law, Forman et at proposed the equation[6.61: 

da 
7n- = 

CAKrn (6.5) 
(i - R)K,, - AK 

where K, is the fracture toughness and R is the stress ratio. 

This equation takes the fracture toughness and the stress ratio into account and has been proved 

by several research laboratories to give a reasonable approximation to test results for many aircraft 

structural materials, e. g. [6.7]. 

Further refinement has been made to take account of the threshold effects [6.81: 

da C(AKrn -A Kt"nh 
dn (1 - R)K, - AK 

(6.6) 
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where 'ýýKth is the threshold level of stress intensity factor range. 

These more complex forms have some experimental support, but none has yet become established as 
the best available . The Paris' Law has the advantage of being neat and simple. The factors being 
ignored by Paris' Law can be treated as uncertainties in a reliability analysis and thus structural 
integrity can be studied in a general format. 

6.3 Fatigue Under Random Loading 

6.3.1 General remarks 

When a structure is subjected to random loading, cracks in structural components will experience 
changing stress amplitude. The stress interaction will have effects such as retardation and accelera- 
tion of crack growth. 

Various load interaction effects on the crack growth behaviour under random loading have been 

observed by many investigators. The following list is a summary of the significant effects[6.9]: 
1) tensile overload causes retardation in general . 

greater retardation is caused by: 

a. increasing the magnitude of the overload 
b. repeating the overload 

c. blocks of overload instead of single overload. 

after an overload, the crack growth rate may have a short increase and then gradually reduce 
to its lowest point before recovering to the baseline. It is called delayed retardation. 

compressive loads in compress ion- tension load cycles cause subsequent acceleration of crack 

growth. 

compressive loads in tension-compression load cycles reduce the retardation effect caused by 

previous tensile overload. 
6) in step loading, a high-low sequence has similar results to the overload effect, but a low-high 

sequence has little influence on the crack growth rate. 

The process of stress interaction is so complex that different quantitative models have been developed 

that give only an approximate correlation with the real mechanism. However, each of these models 

takeXonly some of the factors of influence into account, so that there is no complete agreement with 

the experimental results. These models can be classified into two groups, although overlap may 

exist: 

yield zone model, which is based on the yield zone size created by the load history[6.10] [6.11]. 

closure model, which is based on the closure caused by the crack surface deformation, which 

defines the crack opening or contact stress, Occurring within the yield zone [6-12]- 
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6.3.2 ýield zone models 

1) WHEELER MODEL 

The Wheeler model predicts retardation by reducing the crack growth rate through analysis of the 

plastic zone created by the overload and the plastic zone size due to the present load[6-10]. 

da (spectrum) = Cp 
da 

(baseline) 
dn dn 

where r, 
CP 

(rp.. 

k)m ry < rp,,, k inside the peak load plastic zone 
1 ry ý! rp, ak outside the peak load plastic zone 

m is a empirically determined constant from data fitting. 

ry and rp,,, A: are the yield zone size for the present load and the peak load. 

(6.7) 

The simplicity of this model makes it popular and refined versions have been made over the years. 

2) WILLENBORG MODEL 

In the Willenborg model[6.111, the retardation is accounted for by a reduction in the stress intensity 

factor and by truncating the minimum effective stress intensity factor for stresses below zero. 

da 
-= CAK' (6.8) 
dn spectrurn 

where C and m are stress ratio dependent. 

ZýKapectrum (Kmax 
- Kret) Kmin - 

Kret) (6.10) 

Kret 
Kpeak - 

Kax ry < rpeak inside the peak load plastic zone (6.11) 
0 ry ý! rpeak outside the peak load plastic zone 

R- 
Krnax - Kret 

(6.10) 
K, j, - Kret 

The yield zone models assume that retardation effects oifly exist in the overload plastic zone (opz) 

while experimental evidence has shown that the retardation zone is beyond the opz. Both models 

predict the maximum retardation immediately after an overload while in reality maximum retar- 

dation is observed sometime after the overload. The effects of compressive overloads, and multiple 
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overloads are not considered in the yield zone models. These models are used for their convenience 
and fit for the particular type of data used. 

6.3.3 Crack closure models 

In 1969, Elber[6.121 found that crack closure can occur with the permanent tensile plastic deforma- 

tion left in the wake of the propagating crack even in the cyclic loading process. The crack growth 
rate for even constant amplitude loading should be decided not only by the stress intensity factor 

range ZýK but also by the so called crack opening load influenced by residual plastic deformation. 

For fatigue cracks under cyclic tensile loads, the plastic zone formed by the increasing part of the 
loading cycle is named as forward yield zone and the one by the unloading part as reversed yield zone 

embedded in the former. In the forward yield zone, permanent sets of plastic tensile straining occur 

which will subsequently experience compressive actions by the surrounding elastic matrix during 

unloading. The material in the vicinity of the crack tip is in a state of plastic tensile strain and the 

compressive stress. This state is then called the residual deformation. 

With residual deformation, the sides of the crack ahead of the tip will be forced into contact so that 

the crack will not be open until some level called the crack opening stress. After overloading the 

overload residual deformation increases the crack opening stress. The crack growth rate will retard 

until the normal residual deformation state ahead of the crack tip is recovered. 

Also it is found that the overload will cause excessive residual deformation as well as bigger front 

blunting in the crack tip region than the following low stress amplitude cycles [6.131. The big 

crack front blunting can increase the crack opening load. Therefore the delayed retardation can be 

explained in the way that immediately after overload the blunting effects are dominant and decrease 

with the advance of the crack until the residual deformation has a dominant effect. 

It was later found that this discovery can help to explain the stress interaction effect due to variable 

amplitude loading and also the threshold concept[6.141. As for threshold effects under random 

loading, they are different from that under constant amplitude loading. Under constant amplitude 

loading, the crack opening stress can be assumed to be a constant, and so can the threshold value. 

Under random loading, due to the change of crack tip state, the crack opening stress can be lower 

or higher than that under constant amplitude loading. 

6.3.4 Discussion 

An impressive amount of work has been devoted to investigate stress interaction effects. Literature 

on some of the main developments can be found in ASTM STP 743,687,677,637,595[6.151) 

[6.91, [6.14], [6-16], [6.17). 

The models based on yield zone size are constructed to relate parameters in the model and the 

6.9 



Chapter 6 

calculated yield zone to the experimental data. These types of models are easy to adopt and efficient 
under some circumstances. The model based on the crack opening concept has a better physical 
explanation but needs more data acquisition and computer effort. The crack opening concept can 
also help to explain the threshold phenomenon under random loading. Various models originating 
from these two models have been developed. 

However, no ideal solution for general practical application has been provided. Each model has its 
own limitations. 

6.4 Equivalent Stress Range 

6.4.1 General remaxks 

For some materials like offshore structural steel the stress interaction effects are less serious. Certain 

alternative approaches can be used to reduce the effort required to calculate random stress inter- 

action, for conventional fatigue analysis. In engineering practice the concept of equivalent stress 
range is used to replace the variable amplitude loading by simpler constant amplitude loading giving 

rise to equivalent damage. Some empirical formula have been proposed by Wirsching, Dover and 
Hancock from analytical and simulation studies [6.181 [6.191 [6.20] [6.21] [6.22]. 

6.4.2 F&uivalent stress range conceRt 

In a variable amplitude loading process, the crack initiation and crack growth processes are inevitably 

complex. Fatigue data are usually based upon stress amplitudes or stress ranges in a cycle. In other 

words, the stress amplitudes or stress ranges in a cycle are used to describe the fatigue damages. 

By definition, the amplitude is the difference between the peak and the mean and the stress range 
is the algebraic difference between the maximum and minimum stress in the cycle. Normally, some 
damage accumulation rules are used to calculate the effect of a variable amplitude loading process 

on fatigue performance. 

One of the damage accumulation rules is Miner's Rule [6.23]. By ignoring the crack growth non- 

linearity and sequence effects, Miner assumed a linear damage summation: 

k 
EDi n. 

i=l 
Ni 

(6.12) 

where ni is the number of cycles for stress range Si while Ni is the number of cycles to failure for 

stress range Si. 

Usually, D is set equal to 1 for failure. In the more general case, D can be a random variable 16.24]. 

From, fracture inechanics theory, the crack growth for constant amplitude loading in the intermediate 
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regime (i. e. moderate values of ZýK )can follow the Paxis law. 

jn 
da= CS' Y' (7ra) 2 dn 

or 
da 

(6.13) 

(7r a)-" Y 
-rnC = S' dn (6.14) 

2 

Integrating both sides of equation (6.14) for constant S, we have: 

af da- 
= NS' (6.15) 

fa. 

(7ra)'2 YMC 

where ao is the initial crack size, af is the crack size failure criterion and N is the number of cycles 
to failure. 

if 

Km 
f af da 

a. 
(? ra) 

12 YMC 

then 

This is the form for S-N curve, i. e. 

NSM = Km (6.17) 

Srn 

For variable amplitude loading, the damage caused by each stress range Si is: 

where ni is the number of cycles for Si. 

By the linear summation rule, we have 

If K,, does not change with different Sj, 

Di = 
ni 

=, 
niSi" 

Ni K.. 

kk 
nisr- D=EDi=E -' 

(6.20) 

i=l i=I 
Krn 

then k 
E 

ni Sj' 

D %. =' 
K, 

(6.21) 
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If we define 

k 00 
-I- -L Sre = [E(2'ý)Si'l m=( Sj' f (Si) dSj) m (6.22) 

i=l n 

fn 

k 
with n rj=1 ni 

then 
Se mn 

(6.23) 

When D=1, n should be equal to N, i. e. in the final failure, then 

N=K, (6.24) Sre rn 

By comparing equation (6.24) with equation (6.18), S, can replace the variable amplitude loading 

fatigue in the constant amplitude loading S-N curve. S, is then called the equivalent stress range. 

Yamada and Albrech [6.251 have reported that the equivalent stress range concepts and Miner's rule 
become a special case of the fracture mechanics approach to fatigue under the following conditions: 

1) All stress ranges considered are above the threshold value. 

The fatigue life consists of crack propagation only. 

3) Sequence effects resulting from the loading process are negligible. 

4) The slope of the cyclic crack growth rate curve is the same as the absolute value of the 

inverse slope of the S-N curve. 

However from experience, the above conditions are not strictly necessary for the concept of equivalent 

stress range to be valid in fatigue studies for most situations. 

6.4.3 Literature review of empirical eguivalent stress range models 

For a stationary narrow-band Gaussian load process, each peak is associated with a trough with 

approximately the same amplitude. The stress range is thus double the peak amplitude. Therefore, 

the distribution of stress ranges is the same as the peak distribution with amplitude equal to half 

of the value of the stress range. 

From probability theory, the distribution of peaks for a narrow- band and stationary Gaussian 

process is the Rayleigh distribution [6.26], thus from Rayleigh distribution, the pdf of peak amplitude 

F7 is: 
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Y7 
2 

2ox2 (6.25) 
OIX 

Hence, from equation (6.22), putting S= 277 , and 

ni f (? 7) d77 (6.26) 
n 

gives 
co 

Sre [fo f(i7)(2t7)' (6.27) 

Sre 2-4{r(!! + i))-mLa-- (6.28) 
2 

By normalisation, i. e. dividing by the RMS of the process 

m Sh = 2V2-{r(- (6.29) 
2+w 

When the spectrum is not ideal narrow band the peak pdf will not be in such a form as equation 
(6.25). As a result, the normalised equivalent stress range obtained from (6.27) will not be of the 

form of equation (6.29). 

Wirsching and Light presented simulation results from rainflow analysis and found an empirical 

correction factor A could be used to relate the damage rate by rainflow analysis to damage rate by 

Rayleigh approximation . 

The question then is to have some spectrum parameters to provide a simple method of estimating 

the rainflow prediction of fatigue life. 

By least square regression, Wirsching[6.18] has managed to obtain a empirical formula for A. 

where 

and so that 

g+ (1 - g)(1 - c)' (6.30) 

0.962 - 0.033m (6.31) 
1.587m - 2.323 

Sh = 2vlr2[Ar(- m 
-m 

2+ 
1)1 L (6.32) 

Chaudliury and Dover[6.21] proposed an equation of Sh valued between the narrow band approxi- 

mation and the broad band approximation . 
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They have: 

Sh = 2V2-[ c m+2 m+13m (6.33) IF ( )+ ir(-, +i)]- 
2, ýf7F 242 

A modified version of the above model by Kam and Dover[6.27] replaced the second term in the 

right side of the above equation with a error function, erf (e, m), which is related to the bandwidth 

parameters c and m. 

m+2 
Sh = 2V2[-r(m+ 

1) 
+ (1 + erf(e, m))-ir(m + (6.34) 

2 \, f? -r 222 

By a polynomial fit with the error function it is found that: 

erf (I, m) = 0.30121 + 0.491612 + 0.918 113 -2.353414 - 3.33071'5 

+15.6524P - 10.784617 for 0.13 <I<0.96 (6.35) 

erf(l, m) =1 for 0.96<1 (6.36) 

Also, Hancock proposed two forms of Sh[6.22], 

Model A: 

and model B: 

m Sh = 
V2 [I r(- (6.33) 

2+ 
1)1-, 

m 
rn (6.37) Sh =6 [1'(- + 1)] 

u 

where 6= /2(2 
_ C2) 

U= 2- 

The Sh values from all those models are shown in Fig. 6.3,6.4,6.5,6.6,6.7 for the 11 spectra given 

in Chapter 5, for a range of values of the Paris' Law parameter m. 

Using the method of autoregressive simulation shown in Chapter 5, the loading process on a crack 

has been reproduced and counted by the rainflow method as discussed in Chapter 5. Then these 

stress ranges were converted to equivalent stress ranges by Eqn (6.27). For each calculation, 9,000 

data points were generated in the autoregressive simulation. Results of Sh are shown in Fig. 6.8 

with each curve representing one of the 11 spectra. 
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All the approximations are based on one or the other theoretical analysis. The reason for the 

empiricism of Sh is the difficulties in getting the distribution of f (S) 
. This impediment can be 

overcome with the new semi-empirical stress range probabilistic distribution models described in 

chapter 5. 

6.4.4 Eguivalent stress range from the stress range pdf models 

Chapter 5 has proposed three separate equations for the normalised stress range distribution f (s), 

which show very good agreement with the rainflow stress range results from 9,000 time interval 

points, with the time interval equal to 1, where fm,,., is the maximum frequency in Hertz. In 2f mc, 

this way f (s) can be directly related to spectrum parameters. The solutions of f (s) therefore provide 
some new forms of Sh by integration from (6.22). 

From models for f (s) in chapter 5 with stress range S=2xa., x s, the equivalent stress range is 

L 
S, e = 2or.,, [r(i + m)al fw + P(I + M)a2- 1ý2 fw (6.38) 

bi b2 

Then the normalised equivalent stress 

m iiL f2L 

Sh=2[r(l+-)al-rlfw+r(l+m)a2- (6.39) 
bi b2 

The equivalent stress ranges obtained from these three models in Chapter 5 are shown in Fig. 6.9, 

6.1016.11. 

6.4.5 Comparison and Comments 

From Eqn. (6.22), the equivalent stress range is the summation or integration over the whole range 

of stress ranges to the mth power. As such, the equivalent stress range can be treated as a kind of 

mathematical criterion for the accuracy of the proposed f (s) in Chapter 5. 

Comparing each of the models with the simulated results (Fig. 6.8) and among one another, some 

observations can be made: 

(1) All the semi-empirical models for Sh from [6.181, [6.211, [6.22], [6.27] show conservative results. 

(2) All the three models calculated from the semi-empirical stress range dis tributions of the 

present work give a better fit for Sh with the simulated results and all are more or less 

conservative. 
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Some detailed comparisons are as follows: 

1) WirschingýýModýel 

As the first tentative model for Sh for random loading, this model pointed a general trend for Sh to 

relate to m and bandwidth but this model is overconservative. When m<2$ this model gives high 
Sh for wide bandwidth and low Sh for narrow band, which is in contrast to the simulated results. 

2) Hancock model A 

This model has improved from Wirsching's model greatly. More distinct differences can be observed 
for each spectrum and the accuracy has increased. However, it still gives very conservative estimates. 

3) Hancock model B 

The distinguishing feature of this model is the overlapping of Sh curves when m c-- 6. This feature 

can be compared with the simulated results which intersect when m ý-- 4. 

4) Chaudhurv and Dover's model 

This model has increase accuracy from Hancock's models in most cases. This model assumes that 

the distribution of rainflow stress ranges in a stochastic process follows the distributions of peaks 

which is the combination of Rayleigh (narrow band) and Gaussian (white noise)[6.211. 

5) Kam and Dover's model 

This model has improved the accuracy of the model by Chaudhury and Dover but still bases their 

stress range distribution from rainflow counting on the distribution of peak amplitude. As such, the 

distribution from peaks should have a greater value of Sh than the one from rainflow counted stress 

ranges. 

6) Models from stress range i)df from Chavter 5 

Model I for Sh has the largest values and is thus most conservative. Model 2 for Sh is is closer to 

the simulated results for most of the cases than model 1. In model 3 the Sh curves not only have 

the closest results to simulation Sh among the three models but also have an overlapping region of 

Sh curves for the 11 spectra when m n-- 4 which is the same as for the simulation results. 

The Sh values from the different models for f (s) can serve as a measurement to judge the accuracy 

of f (s). The values of Sh with higher values of m are more sensitive to the estimation of f (S) in 

the larger s part because the larger s can have a much higher percentage of Sh when m becomes 

big. It can be seen that in model 3f (s) has a good fit in the higher m region and thus provides the 
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best estimation for the large s part of stress range pdf. Overall, when m<3, all three models have 

similar results which fit well. 

6.5. Equivalent Block Loading 

One of the other applications for the stress range probability distribution models is the calculation 

of equivalent block loading. Because the stress ranges frequencies for the discretised period of 

stationary loading can be easily obtained from the proposed stress range probability distribution 

models, the numbers of stress ranges over a long non-stationary period can just be accumulated as 
follows. 

Having obtained the probability density functions of stress ranges for a single response spectrum, it 

is a straightforward procedure to extend this to block loading (which is defined here as the addition 

of the same range of stresscycles for different loading conditions or seastates). 

Number of cycles for stress range Si = probability density of stress range Six 

peak rate of the process x fraction of total time x dSj (6.40) 

where 
dSi = Sj+j - Si 

Lx- 
rrOM OUr models in chapter 5, f (s) can be obtained for response spectra. For Si 

f (Si)dSi =f (si)dsi (5.41) 

If n(Si) denote the cycle numbers of Si, and the peak rate (i. e. the number of peaks per unit time, 

which is equal to the number of cycles per unit time) is: 

rn2 
E(P) = 

Fý4 
(6.42) 

rn 2 

where rN and m2 are the spectral moments defined in chapter 5, then 

n(Sj) -f (si) x E(P) xtx dsi (6.43) 

If over a period, several seastates occur 

k 

n(Si) =Ef (si)jE(P)jtjdsi- (6.44) 
j=l 
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where k is the number of seastates. 

Therefore the frequency for stress range Si over the whole range of spectra would be: 

n(Si) 
00 (6.45) 

E, 
=, n(Si) 

6.6 Fatigue Crack Growth Calculation 

6.6.1 Fatigue crack growth calculation procedure 

For fatigue crack growth under random loading with high frequency and low amplitude (e. g. off- 

shore wave loading), the calculation can be divided into two groups: 1) directly considering stress 
interaction effects, 2) indirectly considering stress interaction effects. Section 6.3.2 and section 6.3.3 

have reviewed some proposed models to calculate stress interaction directly. 

Due to the complexity of the stress interaction problem and lack of experimental data on stress 
interaction influence on structural steel, no direct consideration of the stress interaction effect has 

been taken in this study. Instead, fatigue crack growth has been calculated by the equivalent stress 

range approach, which assumes that the crack growth follows Miner's rule over the period of interest 

as presented in section 6.4, with additional considerations of threshold effects. 

To summarise, for structures under stochastic loading the procedure for calculating the crack growth 
is as follows: 

1) Give information describing the initial flaw geometry. 

Find Y(a). For any short period of time, the crack increment is assumed to be small so that 

Y can be assumed to be constant. Also for each small period Miner's rule should be followed. 

3) Give information of material properties, e. g. ay, Kj, C, m, and,! ýSKth- If stress interaction 

effects are ignored and Paris' Law is used to calculate crack growth, Kjc and ay will not 

affect the crack growth. 

Define the stochastic loading process either by analytical spectra or numerical forms as dis- 

cussed in chapter 5. 

Assume that stress interaction effect can be ignored so that equivalent stress range can be 

used for calculation of crack growth as the cyclic loading. S, can be obtained from equation 

(6.38). 

The number of cycles for spectrum t, i. e. for equivalent stress range S,,, for a period of tinle 

tj is: 
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ni = E(P)j x tj (6.46) 

For stress range S,,,, determine the range of stress intensity factor AKj- 

8) Check whether AKi exceeds the threshold AKth and if so, compute the increment of crack 
growth from Paris' Law. i. e. 

a- [aa(2d-')12 +2-m2 2-m 
new old 2 

CY'FS, n,, 7rj"nil 
2 

(6.47) 

---: (aold, Y, C) M) Srei 
1 ni) 

Reset aold = anew, and repeat step 2 to 4 for all the seastate equivalent stress ranges that 

wiH be encountered over the period considered. 

6.6.2 Exami)le 

The above procedure is used in the following example: 

1) Crack geometry: 

A typical welded cruciform joint is studied. The Y factors are obtained from 2 dimensional finite 

element calculation. The stress concentration in this way is automatically considered. The initial 

flaw is taken as ao =2 mm and situated at the toe of the attachment weld. The section thickness 

w=40mm. 

2) Y factor: 

Y(a) can be obtained from the piecewise-cubic polynomial fitted to the normalised stress intensity 

factor data, (see Fig 6.1 finite element output). 

3) Material properties: 

0.0001315(895.4)-' for K in (N MM-3/2) 

3.0 

, ýsKtjý, = 9ONrnni -3/2 

KIc = 3ooMPaV"n-i 

6.19 



Chapter 6 

ory = 375 MPa 

4) Loading process: 

The loading process is defined by 11 spectra provided by Wirsching[6.24]. 

5) Stress range: 

Model 3 of the constructed stress range pdf in chapter 5 has demonstrated to fit well with the 

simulated results. Therefore equivalent stress ranges can be calculated from Eqn. (6.38) with 
a,, bi, a2, b2 and f,,, from model 3. 

6) Number of cycles: 

It is difficult with the data given by Wirsching to decide how long a seastate last in real situations. 
However, the fraction of time, namely ani, for each seastate is given. So for an iteration period of 
total time t for all these spectra, tj =tx ani for spectrum i. Thus ni can be obtained from Eqn. 
(6.46). 

Step 7), 8), 9) can be carried out accordingly. The crack growth curve is shown in Fig. 6.13. 

It is not practical in a reliability calculation to conduct a cycle by cycle calculation for any step 

in the R-F algorithm while the changing Y factor limit the Miner's rule applicable only to a small 

period of time. In order to avoid excessive computation and maintain accuracy, an appropriate 

iteration unit t. should be found for reliability analysis. 

By taking one iteration as from minimum stress range to the maxii-num stress range the crack growth 

curves are shown in Fig. 6. U, in which for spectrum i in each iteration: 

ni = t. x E(P)i x ani (6.48) 

It can be seen from Fig. 6.12 that for iteration unit smaller or equal to 10'5, very little difference 

can be observed. Therefore it can be stated that 10'5 can be taken as iteration unit with acceptable 

crack growth curve. 

Care should be taken that the nonlinearity of crack growth is subjected to the Y factor ,C and m. 

The result of appropriate iteration unit may deviate from the Miner's rule in some other circum- 

stances. 
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6.7 Conclusions 

In this Chapter, the problems of fatigue calculation for reliability analysis are discussed. To narrow 
the wide range of fatigue problems to a particular case, the cracks in offshore platform joints under 
wave loading are studied in detail. 

For crack growth under random loading, the complexity of stress interaction effects have not yet 
been fully understood. The equivalent stress range concept has been used for its simplicity and good 
agreement with experimental results. 

By using the stress range distribution models from chapter 5, the equivalent stress ranges obtained 
are found to have much better agreement with simulation results than previous empirical models by 
Wirsching, Hancock and Dover et al[2.181, [2.21], [2.22], 12.27]. The great improvement in accuracy is 
due to a more fundamental treatment of the equivalent stress range as the result of better estimation 

of stress range pdf from the rainflow counting method. 

Fatigue crack growth based on cycle by cycle calculation, is not practical for a reliability analysis, 

which will require the fatigue crack growth calculation many times for the convergence of reliability 
index. It is found from crack growth calculation that cycle by cycle calculation is not necessary 
to have an acceptable crack growth curve if the total cycle numbers per iteration for the whole 11 

seastates example is less than 105. In this way an efficient crack growth calculation can be achieved. 
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Table 6.1 Y factor for a cruciform joint 
----------------------------------------------------------------- 

a/t Y 

. 001 5.6017 

. 002 4.4524 

. 004 3.5523 

. 008 2.8437 

. 010 2.6550 

. 020 2.1491 

. 040 1.7723 

. 060 1.6098 

. 080 1.5289 

. 100 1.4838 

. 120 1.4513 

. 140 1.4464 

. 160 1.4513 

. 180 1.4639 

. 200 1.4786 

. 300 1.6565 

. 400 1.9738 

. 500 2.4211 

a D's rP 
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Chapter 7 

The Reliability Assessment Of Cracked Components 

Failing By Brittle Fracture Or Plastic Collapse 

Following Fatigue Under Random Loading 

Nomenclature 

a crack size 

ai initial crack size 
anew crack size after fatigue crack growth 
C Paris' law material constant C=ColOFc 

E(P) peak rate 
Fc parameter in Paris' Law 

f frequency in Hz 
A natural frequency in Hz 

H, significant wave height 

K stress intensity factor 

Kic fracture toughness 

M Paris' law material constant 
P(ni) probability of occurrence of seastate i 

Pj transition matrix 
S equivalent stress range 
SP parameter defined by Eqn. (7.13) 

SCF stress concentration factor 

t time 
T time unit=2,500,000 seconds 
TD dominant period 
Y geometry shape factor 

C'max maximum stress 

Ory yield stress 

au ultimate stress 

Other symbols are defined in the text. 
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7.1 Introduction 

This chapter has incorporated the studies in previous Chapters to form a methodology for the 
overall reliability analysis of cracked structural components under stochastic fatigue and fracture. 
This Chapter should be read in conjunction with all previous Chapters. 

Structural reliability theory has been discussed in chapter 2. Deterministic fracture mechanics and 
fatigue have been discussed in Chapters 3 and 5. Leading from those theories, the failure functions 
for the final failure of cracked components under tensile stress are defined by the R6 method in 
particular R6 rev. 3. The uncertainties in the random variables which appear in the failure function 

are discussed both in chapter 3 and chapter 4. Following chapter 2 and chapter 3, reliability analysis 
is conducted for some examples in chapter 4. A reliability computation procedure for the combined 
fracture and fatigue problem is also Presented in chapter 4. In fatigue analysis random loading 
data is often obtained by approximation. However in chapter 5, a rainflow stress range probability 
distribution function for spectral loading is presented which closely agrees with simulation results. 
This model can further facilitate parametric study in reliability analysis. Chapter 6 discussed the 
deterministic fatigue process and defined solutions for the analysis of fatigue problem in this thesis. 
A crack growth calculation procedure was also presented in chapter 6. 

It is assumed in this chapter that a cracked component is subjected to random cyclic loading, for 
instance, ocean wave loading for a given period of time. A reliability analysis is conducted to 

calculate the probability of failure at the end of that period by assuming the occurrence of an 
extreme load. The output includes sensitivity factors, design points, coefficients of correlation of 
linearised failure modes for fracture and plastic collapse, and an approximate probability of failure 

as shown in Table 7.1. 

The methodology for a reliability analysis of fatigue and fracture for cracked components includes 

1) modelling of basic variables 2) construction of failure functions 3) reliability computation. Since 

some of the tasks for constructing such a methodology have been discussed in previous chapters, the 

scope of this chapter will be to: 

1) discuss the statistical fatigue process 

2) review previous work on modelling of stochastic fatigue process 

3) construct failure functions for the failure of the cracked component following fatigue 

4) choose the probability distributions for the basic variables 

5) undertake a reliability analysis for some examples. 
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7.2 The Statistical Nature of The Fatigue Process 

In chapter 6, the basic fatigue crack growth mechanism is discussed. Factors influencing the fatigue 

process have been discussed in detail. Each factor is subject to variation in practical situations. 
Therefore fatigue laboratory results cannot be taken as deterministic values. 

The variables normally used for fatigue analysis of a structural defect include: 

1) initial state of the crack 

2) geometry of the structural component or system 

3) external loading e. g. wind, traffic, wave 

4) factors affecting the response to the loading, e. g. mass, stiffness, direction, inertial force, stress 

concentration, drag force if the source is fluid, continuity mechanism etc. 

5) material properties, slope of S-N curve in S-N approach; C, m, AKth, K1, etc. 

However, at the fundamental level, even if the values in categories 1 to 5 above are fixed as deter- 

ministic, the fatigue crack develop process is still a stochastic process as shown in typical laboratory 

tests where the test conditions are well controlled [7.11. This indicates that the fatigue process itself 

is a stochastic process. Recalling discussions in Chapters 2,3,4 and 6, the main factors contributing 

to the variation of crack growth rate are: 

1) inhomogeneity of material e. g. inclusions in welds, voids in polycrystal, and notches and crack 

opening stress. 

2) crack irregularity. Stress intensity factors used for fatigue study are usually K in the Kjr 

(i. e. mode I). The actual crack front does not extend uniformly across the thickness of a test 

specimen due to microstructural differences and the state of the stress; hence the cracks may 

grow in a non-symmetric manner 

the threshold value is a nominal one to account for a complicated process which may include 

1) stage I crack growth 2) crack opening process 3) crack tip blunting 4) change of fracture 

mode 

random loading stress interaction effect 

5) uncertainties in the nominal material properties 

uncertainties in the final fracture model 
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measurement errors in experimental tests whether by the secant method or polynomial method.. 

7.3 Stochastic Models of The Fatigue Process 

The fatigue process has been modelled as a stochastic process in different ways. The main models 
proposed have been at two extremes: 1) statistical analysis of laboratory records or simulated data 

to predict the stochastic fatigue process (Kozin[7.2], Yang[7.31), and 2) engineering models based on 
a deterministic governing equation for fatigue crack growth and statistical distribution of the basic 

variables (Baker[7.41, Wirsching[7.51 ). 

The crack growth equation can be written as 

da(t) 
x(t)g(a(t)) (7.1) 

where a(t) denotes the crack size at time t, g(a(t)) is the usual deterministic equation governing the 

crack growth rate. 

Yang[7.31 has treated x(t) as a random pulse train to simulate the stochastic crack growth. 
N(t) 
E Zk w (t, -rk) 

k=l 

(7.2) 

where N(t) =a homogeneous Poisson counting process giving the total number of pulses that arrive 

within the time interval [-oo , *rl, ], 

rA: = arrival time of the k th pulse 

Zk = random amplitude of the kth pulse independent for different k. 

w(t, r)= 
1) O<t-r<A 10 

otherwise 
(7.3) 

The probability distribution of the random time to reach a given crack size and its statistical mo- 

ments, and probability distribution of random crack size at any time, with additional assumption of 

a(t) as a Markov process, can be obtained from the above equations. 

There are two extremes for this model a) the process is fully uncorrelated for any two different times. 

In this case, the variability of random time to reach a specific crack size would be a minimum. b) 

z= x(t) is treated as a random variable as opposed to a random process. In this case, there will 

be the largest variability of random time to reach a specific crack size. Yang has assunied this 

to be a lognormal distribution . 
Also in a later studyJ7.61 Yang has replaced the Markov proce, -s 

approximation 
by a cumulant-neglect closure model. 
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However, these mathematical attempts seem to somehow lack convincing physical arguments. 

The Kozin-Bogdanoff model[7.2] [7.6] uses the concept of duty cycle , which is a repetitive period 

of time in the operational life of the component in which damage can accumulate, to discretise the 

real stress cycles into a series of duty cycles. 

In the Kozin-Bogdanoff (B) model, the stochastic process of interest is the cumulative damage (CD) 

for a large number of data sets in the fatigue life, fatigue crack growth and wear. The state of damage 

is only considered at the end of the duty cycle. The damage during one duty cycle is assumed to be 

non-negative, and the state of damage at time t is given by the vector: 

Pt ý-- [Pl(t))p2(t)) 
..... I Pb (t) I (7.4) 

where pi(t) is the probability that damage is in state i at time t. b denotes the defined state of 
Eb 

1 Pi (t) failure and i= 

If we assume an initial damage state vector po, ptthen follows from Maxkov chain : 

Pt = POPlP2 . ..... 
Pt 

The statistical characteristics can be derived thereafter. 

(7.5) 

The above models all need data acquisition for special specimens and extensive statistical analysis. 

These are not yet generally available. 

One important approach for engineering reliability analysis is to start with deterministic crack growth 

and failure functions and then introduce random quantities into the model parameters. (Baker[7.41, 

Madsen[7.71, Wirsching[7.5]) 

In previous chapters of this thesis the fracture mechanics parameters have been fully discussed and 

the random loading process has been modelled successfully. From literature and past experience, 

material parameters appearing in the crack growth equations can be treated as random variable 

and given appropriate types of distributions. In this way, we can have a consistent approach for a 

reEability study. 
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7.4 Modelling of Statistical Variables 

7.4.1 Loading variables 

Chapter 5 has analysed the stress range distribution under random loading and proposed three 

similar models for stress range distribution under spectrum loading. 

In chapter 6, the equivalent stress ranges are modelled for stochastic wave loading. The seastate 

spectrum parameters are taken as deterministic values. The transfer function from the seastate spec- 
trum to the response spectrum can include a number of factors. In this thesis, only the fundamental 

natural frequency is taken as statistical variable as an example. The structural natural frequency 

depends on many factors (mass, stiffness, the joint flexibility, the pile foundation etc. ). Due to the 

dominant effect of the first mode on the structural vibration, only the first mode natural frequency 

is considered. The uncertainties in natural frequency are recognised by assuming a coefficient of 

variation of 0.15 with a normal distribution. 

For the stress response in a welded joint, the stress concentration factor should be introduced to 

take account the discontinuities at the joint. However, in this study the Y factors calculated from 

finite element analysis have already included the stress concentration effect. The Y factors are give 

in Table 6.1. 

The reliability of the joint is calculated at the end of a stochastic fatigue growth period at which it 

is assumed that some peak load will be applied to the structure. It is assumed that the peak loading 

acting upon the cracked component will have a normal distribution with mean of 140 MPa and a 

coefficient of variation of 0.1. 

However, this is not very realistic and attempts should be made to improve this part of the model 

in future research. 

7.4.2 Initial crack size 

The initial crack state is assumed to be the same as discussed in Chapter 6 for typical offshore 

welding joints. The crack size is assumed to be normally distributed with a coefficient of variation 

(COV) of 10%. 

7.4.3 Material ! T=erLtle-s 

The probability distribution of yield stress and fracture toughness have been discussed in Chapter 

4. For fatigue a few extra material properties are required: 1) threshold value 2) Paris parameters 

C and rn. 

The deterministic value of threshold stress intensity factor range has been discussed in Chapter 
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It is assumed that the mean values of the threshold filter ZýKth is equal to 90 N/mm '/' and the 
3/2 standard deviation is equal to 15 N/mm 

The factors C and m depend on materials. According to a probabilistic study by Snijder et al [7.81, 

the mean values for weld metal are m=2.6 and CO = 0.8833 10-12 (N, mm). The factor m is taken 
to be deterministic. The factor C is assumed to be log-normal: 

C=C 
0 10F, (Nmm) (7.6) 

where F, is normally distributed with mean value equal to 0 and standard deviation equal to 0.102. 

Table 7.2 shows the statistical modelling of all the variables in a fatigue and fracture process under 

random loading for a typical steel of BS4360 50D steel. 
Table 7.2 Reliability calculation input 

Variable Distribution Values Reference 

Kir normal COV=. 1 Chapter 4 

Y deterministic function of a Chapter 6 

Acr governed by response spectra Chapter 5 

Sea state deterministic range Chapter 5 
parameters 

A deterministic pf,,, = 0.34 Hz Chapter 5 

or normal af,, = 0.05 Hz Chapter 7 

O'Max normal 11 140 MPa COV=. 1 Chapter 7 

ay lognormal 36OMPa a= 30 MPa Chapter 4 

L max 
r 

deterministic 1.225 Chapter 4 

M deterministic 2.6 Chapter 6 

CO deterministic 0.8833 10-12 Chapter 7 

F,, normal =0o, = 0.102 Chapter 7 

AKth normal P 9ON/mm 3/2 
or = 15N/mm 3/2 Chapter 6 

ai normal COV=O. 1 

T deterministic 2,500,000 seconds per unit Chapter 7 

w deterministic 40 mm Chapter 6 
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7.5 ]Failure Punctions 

7.5.1 Conventional failure function 

If failure is defined as the state in which the cracked component cannot sustain the extreme loading 
and therefore fails by rupture or plastic collapse at the end of the fatigue crack growth, a straight- 
forward form of failure function can be constructed as follows: 

1) calculate crack size a,,,,,, after fatigue growth 

2) determine K, and L, with a=a,,,,,, from R6 FAD.. 

3) for fracture failure mode, in the R6 FAD, the failure assessment line is assumed to be K, = 
then, the failure function is: 

gl (X) =K (L, ) - K, (7.7) 

for plastic collapse failure mode: 

g2(X) =L max - L, (7.8) 
r 

In a reliability analysis, the amount of computer time required for convergence in the R-F algorithm 
depends partly on the local shape of the failure surface. In the case of fatigue and fracture reliability 

analysis if the above failure functions are used, each iteration will involve time spent in calculating 
fatigue crack growth for determining the derivative of all the fatigue related variables including 

F,, niu, f,, ZýKth, a. Therefore, in each iteration fatigue crack growth needs to be calculated 4 or 5 

times. Hence, it is important to find a suitable failure function which converges quickly. 

In this study, it was found that the failure functions given by Eqn. (7.7) and Eqn. (7.8) often take 

many iterations to converge and in some cases convergence was not achieved. Eqn. (7.7) and (7.8) 

are not suitable for all cases, and more suitable failure functions are defined below. 

7.5.2 Alternative failure functions 

For the same definition of failure state as in section 7.5.1, alternative failure functions can be 

constructed as follows: 

a. for fracture failure mode: 

1) calculate crack size a,,,,,, after fatigue growth 

calculate critical crack size a,, it 
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3) 

g(X) = a,,. it - a,,,,, 

b. for plastic collapse failure mode, in addition to Eqn. (7-9): 

1) calculate crack size a,,,,, after fatigue growth 

2) calculate L, with a- anew 

3) for yield load=oy(w - a), 

g(X) = Lmax Y(l _ 
a,,,,, )_0, 

raw 

or 
max IL 

-1 g(X) = Lr r 

(7.9) 

(7.10) 

(7.11) 

V- Eqn. (7.7) and Eqn. (7.9) represent the same physical failure states with different mathematical 

expressions. Eqn. (7.7) relates the state of the cracked component of crack size a,,,,,, to its relevant 

position in the R6 FAD. Whereas Eqn. (7.9) compares the component crack size after fatigue, 

anew with the critical crack size obtained from R6 FAD, thus ensuring that the failure surface is not 
influenced by the local shape of the R6 FAD. Eqn. (7.10) compares the applied stress with maximum 

stress allowing for crack growth thus avoiding the difficulty in defining failure by Eqn. (7.8). Eqn. 

(7.11) is obtained by dividing both sides of Eqn. (7.10) by o,. 

For the examples given in section 7.6, the failure functions from Eqn. (7.9) and (7.10) were found to 

give a much faster convergence to the reliability index. Normally, only 4 to 5 iterations were needed 

for convergence. It was observed that the longer the fatigue loading period is, the more iterations 

are generally needed. This can be explained by the fact that the longer the fatigue time, the more 

scattering of fatigue crack growth is expected. 
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7.6 Examples 

Data prei)aration 

A series of examples has been chosen to demonstrate the use of the models for probabilistic fatigue 

and fracture analysis. The crack has been assumed to be found in a cruciform welded joint of an 
offshore platform. The Y factors are given in Table 6.1. 

For the purpose of reliability analysis under fatigue it has been necessary to define a time unit. This 

time unit has been chosen as 2,500,000 seconds, about one month, during which time it is assumed 
that all the seastates defined in the probabilistic study by Wirsching occur for the correct proportion 

of time. It is difficult to know, however, the real time interval corresponding to 1 time unit for a 

real offshore platform since all the very low seastates are not included in the model. When the time 

unit is zero, failure occurs without fatigue crack growth. 

First, assuming the structural natural frequency has a deterministic value of 0.34 Hz, with COV for 

ai and K1, provided in Table 7.2, the mean values are given by: 

Table 7.3 Example cases 
Case Pai (MM) MK,, (MPa -, /m) 

Case 1 2 50 

Case 2 4 50 

Case 3 6 50 

Case 4 4 70 

Case 5 4 90 

Together, cases 1,2,3 serve for a compaxison of reliability with differences only in the statistical 

properties of aj; whereas cases 2,4,5 serve for a comparison of reliability with differences only in 

the statistical properties of Kj, 

7.6.2 Probabifity of failure 

The same procedure as discussed in chapter 4 in the flow chart of program RAFF has been used to 

conduct a reliability analysis but with changes in the failure functions as discussed in section 7.5. 

As demonstrated in chapter 4, second order reliability methods were found to make only minimal 

difference to first order reliability results. Hence in this analysis, second order reliability estimates 

are not calculated. In fact, in the process of determining reliabilities, the author has tried some 

examples but no meaningful differences were found between FORM and SORM. 

Fig. 7.1 shows the the relationship between probability of failure and time (represented by the 

selected tirne unit) for cases 1,2 and 3, with the same statistical properties of KI, but different a, 

7.10 



Chapter 7 

As expected, as the mean value of ai increases the probability of failure increases. 

Fig. 7.2 shows the relationship between probability of failure with time for cases 2,4 and 5 with 
the same statistical properties of ai but different Kic. As the mean value of K1, increases the 

probability of failure decreases. It can also be seen that as the time increases, very little difference 
in the probability of failure can be found between case 4 and case 5. This is because the failure 

probability is governed by the fatigue crack growth and not the fracture parameters. The relationship 
of P(f) with time in the fracture mode alone for cases 2,4,5 is shown in Fig. 7.3. For the plastic 
collapse failure mode, Kl,, does not appear in the failure function so that the value of KI, has no 
influence on the probability of failure. So for plastic collapse failure mode, case 2, case 4 and case 5 
have the same relationship between time and P(f), as shown in Fig. 7.4. 

The probabilities of failure calculated from Ditlevsen's bounds for the two failure modes are only 
slightly bigger than those from fracture failure modes alone. The reasons are that 1) the contribu- 
tions of failure probabilities from the plastic collapse failure mode are low when T<2; 2) when 
T>2 although the contributions from the plastic collapse failure mode increase dramatically, the 

correlation between these two failure modes is very high (see Fig. 7.5). The coefficient of correlation 

p is determined from Eqn. (2.66). 

As time increases, the fatigue variables have more and more influence on the probability of failure 

while the non-fatigue variables become less important. This explains the closeness of P(f)in Fig. 

7.3 for case 4 and case 5 even with different Kj, For case 1, fracture failure mode is still dominant 

due to small Kj, These parametric relationships can be further explained in the sensitivity analysis 
in the next section. 

7.6.3 Sensitivity analyail 

Fig. 7.6 to Fig 7.10 show the sensitivity factors for the variables for cases 1 to 5. Resistance 

variables such as K1, oy and AKth have negative values while loading variables such as a, a and F, 

have positive values. As a? is used to judge their relative contributions to failure probability, only 

the absolute values of Cti should be compared. The general trend is that the sensitivity factors of 

the fatigue variables such as a, F, and AKth increase with time and the sensitivity factors of the 

non-fatigue variables Ki, cy, a decrease as time increases. 

Sensitivity factor for aj 

Generally the sensitivity factor for initial crack size increases with time. Comparing case 1, case 2, 

and case 3, one can see also that when the pa, increases from 2mm to 6mm, the sensitivity factor 

of aj increases by a large amount. Therefore in a structural safety assessment it is important to 

determine initial crack size by inspection. And in the quality control process, it is important to 

ensure a low initial crack size during fabrication. 
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Se ns itivity fa c to r fo r oy 

The small sensitivity factors for oy in these cases are partly due to the large mean value and small 

coefficient of variation. The component fails mainly by fatigue and fracture. The role of O-y in 

the fracture failure function is to introduce an element of yielding fracture mechanics. The small 

sensitivity factor for ay also implies that LEFM is sufficient to conduct a reliability analysis in these 

fatigue cases. 

SensitivitY factor for F, of the Paris parameter 

F,, is a fatigue crack growth parameter. The longer the fatigue crack has time to grow, the more 

influential the variation of F,, is, as shown in all the figures. 

SensitivitY factor for KI, 

Like ay, Kl,, is a non-fatigue material property when using the Paris' Law for fatigue calculation. In 

other fatigue crack growth formulae, e. g. Forman's equation, Kl,, can affect the crack growth rate 

especially in the final stages. In these examples, the Paris Law is used to calculate fatigue crack 

growth. With the increase of time, the sensitivity factor for Kl,, decreases quickly, especially for 

case 4 and case 5 where the sudden drop of sensitivity factor for K1, at T=3 can be seen. The 

insignificant role of Kjc in long term fatigue failure explains why in some approaches to fatigue the 

Kjc variable is ignored, for instance in the S-N approach. 

Sensitivity factor for o,, na., 

In this study, it is assumed that after a period of fatigue, a maximum stress with a mean of 140 

MPa and having a normal distribution are applied to the component. However, improvements in 

the way that the maximum stress is treated needs further research. 

Within the limit of the examples, the maximum stress has medium sensitivity factors. When time 

increases, the sensitivity factor for amax decreases, because of the increased importance of fatigue 

crack growth. 

Sensitivity factor for AKth 

In these examples, fatigue crack growth has been calculated from the equivalent stress ranges for 

the 11 seastates. The 11 equivalent stress ranges calculated for the 11 seastates discussed in chapter 

5 are obviously discontinuous. In 5 of the examples studied, the sensitivity factors for 6Kth appear 

to be either zero or reasonable large negative values and have no clear trend. This is because AKth 

only cuts off very small ZýK values below the threshold and thus it influences the fatigue crack 

growth process in the intermediate region and final failure very little. The threshold factor may 

have a more meaningful role in the crack initiation stage. 
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7.6.4 sa statistical variable 

Fýrom case 1 up to case 5, assumptions are made that the fundamental structural natural frequency 

has a deterministic value of 0.34 Hz- In an offshore structure, the pile foundations which provide the 

stiffness of the structure are quite uncertain. In addition, the part of the structure above ground will 
inevitably have uncertainties in mass and stiffness as well. The masses and the stiffnesses of all the 

components determine the natural frequency of the system. Therefore it is of interest to investigate 

the structural reliability with variable natural frequency. Because the cyclic fatigue loading can be 
directly determined from the models in chapter 5, it is also straightforward to do that. 

Fig. 7.11 shows the variations of spectral response functions from f, = 0.02 to f,, = 0.41 with wave 
loading spectral parameter H,, = 8.38 TD = 12.7. The maximum spectral amplitude is achieved at 
a natural frequency about the value of resonance. The double peak spectra cannot be seen in the 
figure due to the very high near resonance spectral amplitude. For the purpose of demonstrating the 

response spectra with double peaks, Fig. 7.12 is drawn to show the variations of spectral functions 

from f, = 0.25 to f,, = 0.43. Care should be taken when comparing Fig. 7.11 and Fig. 7.12 as the 

maximum amplitude in Fig. 7.11 is much larger than the maximum amplitude in Fig. 7.12. As the 

maximum amplitude increases the energy density calculated from the response spectrum increases. 

These two figures show the fact that the closer the natural frequency gets to the excitation frequency, 

the larger the energy density of the response process becomes. Therefore, the value of f" has great 
influence over the response spectral properties especially when f,, approaches the resonance value. 

The cyclic fatigue loading is generated from the response spectrum. The peak rates and the equiva- 
lent stress ranges can then be calculated from spectral properties. Hence, the fatigue damage can be 

calculated. The change of natural frequency will change the equivalent stress range and the peak rate. 
Fig. 7.13 shows the relationship E(P) and the equivalent stress range for f,, = 0.225,0.25,0.275,0.30. 

In Fig. 7.13, as f, increases, equivalent stress range E(P) increases i. e. the loading process has a 

lower amplitude but higher frequency for a fixed period of time. From the Paris' Law: 

da 
= CSrnyrnr, /2 

a'/2 
dN 

Aa = CSmyrn? rm/2 a' /2 AN (7.12) 

where 
AN = E(P) 

* the equivalent stress range is Si, the crack extension da will be proportional to If for spectrum 1, 

SýnE(P)j due to change in natural frequency. Sj can be directly calculated from spectral properties 
I 

from Fqn, (6.38). 
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Fig. 7.14 demonstrates the variation of Si-E(P)i from fn = 0.01 to f" = 0.4 for the 11 spectra in 

chapter 5. Furthermore if all 11 spectral have their probability of occurrence P(nj) as presented by 
Wirsching and as given in Table 5.1, and Y is assumed to be constant for a short extension of crack 
size, and it is defined such that 

11 
Sp =Z Ei (P)Si P(ni) 

i=i 

then 

, týia = CY'r'12a'12tSp 

i. e. Aa is proportional to Sp for a fixed time and crack size. 

Fig. 7.15 shows the relationship between f,, and Sp. 

Fig 7.16 compares the probabilities of failure between case 2 with variable f,, and with deterministic 

f,. It can be seen that the introduction of natural frequency can increase the probability of failure 

to a large extent. However for small times, the difference is small as well, because the crack has 

experienced only a small amount of fatigue crack growth. 

Fig 7.17 shows the sensitivity factor variation with time when natural frequency is treated a statistical 

variable. With an increase in time, the sensitivity factor for natural frequency increases dramatically 

to be close to 1. This is obviously due to the strong influence of natural frequency on the fatigue 

cyclic loading and may be partly due to the COV of f,, which is high (0.15) in this example. 
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7.7 Conclusions 

In this Chapter, a methodology for determining the reliability of a cracked component subjected 
to random loading has been developed and demonstrated. Failure by brittle fracture and plastic 

collapse are both treated .A number of examples have been studied in detail and the sensitivity of 
the failure probability to each of the input variables has been examined. The following conclusions 

can be drawn: 

1) A number of alternative failure functions have been considered for component failure under 
the action of fatigue. Of these, the functions which involve a comparison of the critical crack 

size with the crack size after fatigue have been found to be the most efficient when used with 

the Rackwitz-Fiessler algorithm. 

The examples have shown that with increased exposure to fatigue loading, the sensitivity 
factors of fatigue related variables ai, F,, AKth increase. The opposite is true for non-fatigue 

variables a, Kj, oy. Therefore, with increasing time, the fatigue related variables become 

dominant in determining the probability of failure. 

3) With increased exposure to fatigue loading, the absolute magnitude of sensitivity factors of 

ay and Kjc can decrease to near zero. This fact demonstrates that the variations of yield 

stress and fracture toughness have little influence on the probability of failure in the long term 

fatigue of a cracked component. Thus, LEFM may be justifiable for used in a fatigue fracture 

analysis. 

4) Natural frequency variations can have a great influence on the cyclic fatigue loading and thus 

on the probability of failure of cracked components. The variation of natural frequency could 

be dominant in determining the probability of failure of cracked components for long term 

fatigue problems. When the natural frequency of the structure is close to the peak of the 

seastate, the equivalent stress range of the loading process increases, but the number of cycles 

decreases. Hence, the sum of S: nE(P)jP(nj), to which the crack extension is proportional, 

can have a much larger value. The probability of failure by fatigue and fracture can be 

increased by the variation of natural frequency as the deterministic value. 
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Table 7.1 Output Example Of Case 2 

--------- 
Variable 

-------- 
pdf 

----------- 
mean 

------------- 

standard 
------------ 

maxima 
---------- 

minima 
------- 

math. 
name 
--------- 

type 
-------- 

value 
- -- - 

deviation symbol 

CRACKSIZE NORMAL 
----- - - 
. 4000E+01 

------------- 
. 4000E+00 

------------ 
. 4000E+02 

---------- 
. 
40OOE-01 

------- 
a 

Y STRESS LOGNOR 
. 
3860E+03 

. 3000E+02 
. 3860E+04 

. 
3860E+02 a 

PARISM NORMAL 
. 2600E+01 OOOOE+00 

. 2600E+01 
. 
2600E+01 Y 

M 
PARISC NORMAL 

. 
8833E-12 OOOOE+00 

. 8833E-11 
. 
8833E-11 c 

PARISFC NORMAL OOOOE+00 
. 1020E+00 

. 1000E+01-. 1000E+01 Fc 
K1C NORMAL . 

5000E+02 
. 5000E+01 

. 5000E+03 
. 
5000E+00 Kjc 

WIDTH NORMAL . 4000E+02 OOOOE+00 
. 
4000E+02 

. 4000E+02 w 
RESTRESS NORMAL OOOOE+00 OOOOE+00 OOOOE+00 OOOOE+00 Ures 
MAXSTRESS NORMAL . 1400E+03 

. 1400E+02 
. 1400E+04 

. 
1400E+01 0, 

NAT FREQ NORMAL . 
3400E+00 OOOOE+00 

. 3000E+01 
. 
30OOE-01 fn 

THRESH DK NORMAL . 
9000E+02 

. 1500E+02 
. 
9000E+03 

. 
9000E+01 &Kth 

MODE 1 ITERATION -4 MODE 2 ITERATION - 
RHO= . 353079E+00 

* 
274077E-05 < FIRST 0', 

PROBABILITY OF FAILURE 
PROBABILITY OF FAILURE 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 
SENSITIVITY FACTOR OF 

RDER PF < 
OF MODE 
OF MODE 

CRACKSIZE 
Y STRESS 
PARISM 
PARISC 
PARISFC 

KlC 
WIDTH 
RESTRESS 
MAXSTRESS 
NAT FREQ 
THRESH DK 

. 
274077E-05 

1 FROM FORM- . 274077E-05 
2 FROM FORM= . 263616E-23 

. 
177098E+00 

-. 491182E-01 
OOOOOOE+00 
OOOOOOE+00 
OOOOOOE+00 

-. 857548E+00 
OOOOOOE+00 
OOOOOOE+00 

. 480453E+00 
OOOOOOE+00 
OOOOOOE+00 

TOTAL LOAD CYCLES- 0 
DESIGN POINT COORDINATES 
LR - . 

505635E+00 KR - . 
956915E+00 

BEETA = . 
454566E+01 

CRACK INCREMENT= OOOOOOE+00 mm 

MODE 1 ITERATION -4 
RHO, = . 

379103E+00 

* 915936E-0. 
PROBABILITY 
PROBABILITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 
SENSITIVITY 

5< FIRST 01 
OF FAILURE 
OF FAILURE 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 
FACTOR OF 

MODE 2 ITERATION - 

RDER PF < 
OF MODE 
OF MODE 

CRACKSIZE 
Y STRESS 
PARISM 
PARISC 
PARISFC 

KlC 
WIDTH 
RESTRESS 
MAXSTRESS 
NAT FREQ 

. 915936E-05 
1 FROM FORM= . 915936E-05 
2 FROM FORM= . 131716E-22 

. 231431E+00 
- -. 525785E-01 
- OOOOOOE+00 

OOOOOOE+00 

. 732589E-01 
-. 831791E+00 

OOOOOOE+00 
OOOOOOE+00 

. 496420E+00 
OOOOOOE+00 



SENSITIVITY FACTOR OF THRESH DK 
TOTAL LOAD CYCLES= 

. 
800814E+06 

DESICN POINT COORDINATES 
LR - . 

512651E+00 KR 
BEETA = . 

428461E+01 
CRACK INCREMENT= 

. 
731732E+00 mm 

OOOOOOE+00 

955298E+00 

--------------------------------------------------------------------- 
MODE 1 ITERATION =5 MODE 2 ITERATION = 23 
RHO= . 

489225E+00 

. 121830E-03 < FIRST ORDER PF < 
PROBABILITY OF FAILURE OF MODE 1 
PROBABILITY OF FAILURE OF MODE 2 
SENSITIVITY FACTOR OF CRACKSIZE 
SENSITIVITY FACTOR OF Y STRESS 
SENSITIVITY FACTOR OF PARISM 
SENSITIVITY FACTOR OF PARISC 
SENSITIVITY FACTOR OF PARISFC 
SENSITIVITY FACTOR OF KlC 
SENSITIVITY FACTOR OF WIDTH 
SENSITIVITY FACTOR OF RESTRESS 
SENSITIVITY FACTOR OF MAXSTRESS 
SENSITIVITY FACTOR OF NAT FREQ 
SENSITIVITY FACTOR OF THRESH DK 
TOTAL LOAD CYCLES- . 160163E+07 
DESICN POINT COORDINATES 

. 
121830E-03 
FROM FORM= . 121830E-03 
FROM FORM= . 167070E-20 
- . 

315726E+00 
- -. 572318E-01 
- OOOOOOE+00 
- OOOOOOE+00 
- . 

310069E+00 

- -. 734110E+00 
OOOOOOE+00 
OOOOOOE+00 

. 511842E+00 
OOOOOOE+00 

-. 540241E+00 

LR - . 525705E+00 KR . 
952139E+00 

BEETA - . 
366890E+01 

CRACK INCREMENT- . 
291156E+01 mm 

MODE 1 ITERATION -7 MODE 2 ITERATION - 23 
RHO= . 774348E+00 

. 
262453E-02 < FIRST ORDER PF < 

PROBABILITY OF FAILURE OF MODE 1 
PROBABILITY OF FAILURE OF MODE 2 
SENSITIVITY FACTOR OF CRACKSIZE 
SENSITIVITY FACTOR OF Y STRESS 
SENSITIVITY FACTOR OF PARISM 
SENSITIVITY FACTOR OF PARISC 
SENSITIVITY FACTOR OF PARISFC 
SENSITIVITY FACTOR OF KlC 
SENSITIVITY FACTOR OF WIDTH 
SENSITIVITY FACTOR OF RESTRESS 
SENSITIVITY FACTOR OF MAXSTRESS 
SENSITIVITY FACTOR OF NAT FREQ 
SENSITIVITY FACTOR OF THRESH DK 
TOTAL LOAD CYCLES= . 

240244E+07 
DESICN POINT COORDINATES 

262453E-02 
FROM FORM= . 254066E-02 
FROM FORM= . 

231107E-03 

. 
390591E+00 

-. 460485E-01 
OOOOOOE+00 
OOOOOOE+00 

. 
675677E+00 

-. 467138E+00 
OOOOOOE+00 
OOOOOOE+00 

. 
412991E+00 
OOOOOOE+00 

-. 672337E+00 

LR - . 
536211E+00 KR . 949447E+00 

BEETA = . 
280184E+01 

CRACK INCREMENT- . 
237602E+02 mm 

MODE 1 ITERATION - 10 MODE 2 ITERATION - 30 

RHO= . 
919639E+00 

* 
331724E-01 < FIRST ORDER PF < . 

331724E-01 

PROBABILITY OF FAILURE OF MODE 1 FROM FORM= . 
331238E-01 



PROBABILITY OF FAILURE OF MODE 2 
SENSITIVITY FACTOR OF CRACKSIZE 
SENSITIVITY FACTOR OF Y STRESS 
SENSITIVITY FACTOR OF PARISM 
SENSITIVITY FACTOR OF PARISC 
SENSITIVITY FACTOR OF PARISFC 
SENSITIVITY FACTOR OF KlC 
SENSITIVITY FACTOR OF WIDTH 
SENSITIVITY FACTOR OF RESTRESS 
SENSITIVITY FACTOR OF MAXSTRESS 
SENSITIVITY FACTOR OF NAT FREQ 
SENSITIVITY FACTOR OF THRESH DK 
TOTAL LOAD CYCLES= 

. 
320325E+07 

DESIGN POINT COORDINATES 

FROM FORM= . 518820E-02 

- . 
396238E+00 

- -. 299134E-01 

- OOOOOOE+00 
OOOOOOE+00 

. 
831031E+00 

- -. 269292E+00 

- OOOOOOE+00. 
OOOOOOE+00 

. 
281016E+00 
OOOOOOE+00 

-. 589790E+00 

LR - . 
537363E+00 KR . 

949144E+00 
BEETA = . 183674E+01 
CRACK INCREMENT= . 

249973E+02 mm 

MODE 1 ITERATION 6 
RHO- . 871506E+00 

. 
145981E+00 < FIRST 

MODE 2 ITERATION - 31 

ORDER PF 
PROBABILITY OF FAILURE OF MODE 1 
PROBABILITY OF FAILURE OF MODE 2 
SENSITIVITY FACTOR OF CRACKSIZE 
SENSITIVITY FACTOR OF Y STRESS 
SENSITIVITY FACTOR OF PARISM 
SENSITIVITY FACTOR OF PARISC 
SENSITIVITY FACTOR OF PARISFC 
SENSITIVITY FACTOR OF KlC 
SENSITIVITY FACTOR OF WIDTH 
SENSITIVITY FACTOR OF RESTRESS 
SENSITIVITY FACTOR OF MAXSTRESS 
SENSITIVITY FACTOR OF NAT FREQ 
SENSITIVITY FACTOR OF THRESH DK 
TOTAL LOAD CYCLES= . 

400407E+07 
DESICN POINT COORDINATES 

. 145947E+00 
FROM FORM= . 145981E+00 
FROM FORM- . 346585E-01 

. 
395129E+00 

-. 233748E-01 
OOOOOOE+00 
OOOOOOE+00 

. 
863957E+00 

-. 210108E+00 
OOOOOOE+00 
OOOOOOE+00 

. 
229697E+00 
OOOOOOE+00 

-. 722627E+00 

LR . 534878E+00 KR - . 
949796E+00 

BEETA - . 105383E+01 
CRACK INCREMENT= . 135203E+02 mm 
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Fig. 7.1 The relationship of logioP(f) with time for cases 1,2,3 
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Fig. 7.3 The relationship of lovioP(f) with tisne in the fracture mode for cases 2,4,5 
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Fig. 7.5 The relationship Of coefficient of failure modes correlation p with time. 
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Fig. 7.6 The sensitivity factors from case I 
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8.1 Conclusions 

This thesis has developed a methodology for the reliability analysis of cracked structural steel com- 

ponents under the action of random loading. This study has linked fracture mechanics, fatigue 

analysis, the probabilistic analysis of loading and reliability analysis into a single procedure for 

integrity assessment. 

Chapter 2 has reviewed the development of structural reliability theory and has proposed a refine- 

ment for the finite difference scheme for second-order reliability analysis. Because the only important 

properties for second-order derivatives are those at the design point, the finite difference scheme for 

calculating those properties can be simplified. The number of points at which it is necessary to 

calculate the value of the safety margin can be reduced by a factor of about four. 

Chapter 3 has reviewed fracture mechanics theory for setting up a failure criterion for a critical crack 

state. The uncertainties in basic variables affecting fracture are discussed. Several design methods 

are presented. In particular, the R6 method has been evaluated and has been selected as the failure 

criterion to determine the critical crack state. This is failure either by fracture or plastic collapse. 

Chapter 4 provides a thorough study of the reliability of a cracked component under non-cyclic 

loading. The component can fail by brittle fracture for brittle material, ductile fracture for ductile 

material or plastic collapse for any material. The tedious manual procedure in the R6 method 

to determine the instability load for ductile material has been replaced by an efficient computer 

interactive procedure. Rom the reliability analyses undertaken in this chapter, a number of findings 

can be mentioned: 

1) For the examples studied, the difference between the values of the reliability calculated using first- 

order and second-order methods is small. 

2) The safety factor or load factor alone cannot give a satisfactory indication of component safety. The 

safety should be assessed by reliability calculation. 

3) The sensitivity factors for yield stress and fracture toughness change gradually from the linear elastic 

region where the fracture toughness variables are dominant to the plastic collapse region where yield 

stress is dominant. 

4) There are large differences in the computed reliabilities with and without ductile tearing, which 

means that the reserve strength of a structural component arising from ductility cannot be ignored. 

However, the probability of failure is not sensitive to variations in the slope of the J-R curve in these 

cases. 

5) The plastic collapse failure mode has a very important role in governing the probability of failure, 

especially with ductile crack growth. 
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Chapter 5 has studied the probability distribution of stress range derived from the rainflow counting 

method under stochastic loading. Under these conditions, the structural response is random and the 

stresses induced follow a stochastic process. Often, for short periods of time, the response process is 

assumed to be stationary. In a fatigue study, the rainflow counting method for variable amplitude 
loading is generally assumed to be the best method among the three that are often used, i. e. the 

range pair method, the peak counting method and rainflow method. However, the rainflow method 
involves response process simulation from given information, either in numerical form or from an 

analytical spectrum, and then counting cycle by cycle. 

Chapter 5 has shown that the stress range distribution derived from the rainflow method can be 

modelled as a function of spectral properties, and consisting of two Weibull functions. A series of 

stress range probability functions have been built which closely agree with the simulated stress range 
data. In this thesis, the combined Weibull distribution technique has only been applied to offshore 

spectra, although it is likely to be applicable to a wide range of random loading cases. By using this 

model, if one has a response spectrum in either numerical form or analytical form, one can obtain 

the stress range probability density function directly from properties of the stress spectrum without 

going through the time-consuming process of simulation and cycle counting. 

Chapter 6 has analysed fatigue problems deterministically. To narrow down a wide range of fatigue 

problems, the crack development in a welded joint of an offshore platform under wave loading is 

studied in detail. Chapter 6 also reviews fatigue crack growth calculation under random loading. The 

complexity of stress interaction is yet to be fully understood. The practical model for crack growth 

under random loading is still the ParisLaw with certain modifications in regime (a) by introducing 

a threshold value. However, the stress range counting process should be the rainflow method in 

order to have a prediction method that gives results close to the actual experimental results. The 

equivalent stress range concept has been used both for its simplicity and good agreement with 

experimental results. 

By using the stress range probability density functions in Chapter 5 the equivalent stress range 

has been calculated. The applications of stress range probability functions in the calculation of 

equivalent stress range was shown to give satisfactory results, in comparison with simulated results 

and other empirical models. To calculate the crack growth, the cycle by cycle calculation is the 

most precise but the least efficient. The cycle by cycle calculation is not necessary when the stress 

interaction effects are ignored and the Y factor can be treated as a constant for a short period of 

time, to keep Miner's rule applicable. Direct cycle by cycle calculation is not practical in reliability 

calculations. It is demonstrated that the cycle by cycle calculation can be replaced by a reasonably 

large number of cycles (up to 105) without affecting the accuracy of the results. 

Chapter 7 has incorporated the work from previous chapters and has described the reliability analysis 

of cracked components failing by fracture or plastic collapse following fatigue under random loading. 

It is found that the long-term fatigue reliability is not sensitive to non-fatigue variables including 
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yield stress and fracture toughness. However, sensitivity to fatigue related variable like Paris' Law 

parameters, AKthi increase with the increase in exposure time to fatigue loading. This implies 

that the use of LEFM is justifiable in many cases. Also in this study, it has been shown that the 

uncertainties in the natural frequency of the structure can have a dominant effect on the reliability 
of the system. 

As discussed in chapter 1, reliability methods are being developed for the use in rational safety 
assessment. These theories are based on the probabilistic study of the basic variables and the 

chance combination of these quantities in causing failure. In conclusion, this work has advanced 

reliability theory and its applications in three different directions: 

1) the probabilistic study of basic variables in fatigue and fracture problems, especially the loading 

variable; 

the development of suitable failure functions for the reliability analysis of fatigue and fracture 

under the action of random loading or monotonic loading; 

3) the development of suitable reliability calculation procedures for fatigue and fracture problems. 

8.2 Scope For Future Work 

This thesis has in a way raised more questions than it has solved. However as a direct result of this 

work further research can be briefly listed below: 

1) the extension of the probabilistic methods to the treatment of structural systems; 

2) the physical nature of fatigue and fracture problems in a probabilistic manner, e. g. stress inter- 

action effects, stochastic fatigue modelling, crack instability problems etc.; 

3) direct applications e. g. design safety, fatigue prediction, safety assessment for existing structures, 

maintenance strategies. 
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